51
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
52
|
Abdel-Mohsen DM, Akabawy AMA, El-Khadragy MF, Abdel Moneim AE, Amin HK. Green Coffee Bean Extract Potentially Ameliorates Liver Injury due to HFD/STZ-Induced Diabetes in Rats. J Food Biochem 2023; 2023:1-16. [DOI: 10.1155/2023/1500032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The goal of the current study was to examine the therapeutic potential of green coffee bean extract (GCBE) in the treatment of diabetic hepatic damage induced by high-fat diet (HFD) and streptozotocin (STZ) administration. The novelty of this study lies in constructing a newly stabilized in vivo obese diabetic animal model in rats using HFD/STZ for investigating the dose-dependent effect of two commonly used doses of GCBE in hepatoprotection against oxidative stress-induced hepatic damage by measuring many parameters that have not been carried out previously in other studies. GCBE that was used in this study was a hot water extract of green coffee beans with a concentration of 0.1 g ml−1. Male albino rats were given a single dose of STZ (35 mg kg−1), and HFD to induce diabetes mellitus (DM). For 28 days, two separate doses of GCBE 50 mg kg−1 and 100 mg kg−1 were administered orally to diabetic animals. Leptin, liver enzymes, oxidative stress parameters, inflammatory parameters, fasting plasma glucose (FPG), fasting plasma insulin (FPI), and lipid profile levels were examined. Real-time PCR and ELISA were used to quantitatively detect the mRNAs of the genes involved in the insulin signaling pathway, the genes involved in glucose metabolism, and the amounts of proteins. The levels of FPG, lipid profile, liver enzymes, inflammatory markers, and leptin in the HFD/STZ diabetic group revealed a considerable spike, while they considerably decreased after GCBE treatment in a dose-dependent manner. After GCBE treatment, the diabetic group showed a significant rise in the antioxidant markers glutathione, superoxide dismutase, and catalase, as well as a decrease in malondialdehyde and nitric oxide levels. The liver changes caused by HFD/STZ were entirely reversed by GCBE, and most intriguingly, in a dose-dependent manner. We concluded that GCBE can repair the hepatic oxidative damage caused by HFD and STZ by reversing all the previously measured parameters and improving the insulin signaling pathways. GCBE demonstrated strong antifree radical activity and significantly protected cells from oxidative damage caused by HFD/STZ.
Collapse
Affiliation(s)
- Doaa M. Abdel-Mohsen
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Manal F. El-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hatem K. Amin
- Biochemistry Department, Faculty of Pharmacy, Galala University, El-Galala, Egypt
| |
Collapse
|
53
|
Laurindo LF, de Maio MC, Minniti G, de Góes Corrêa N, Barbalho SM, Quesada K, Guiguer EL, Sloan KP, Detregiachi CRP, Araújo AC, de Alvares Goulart R. Effects of Medicinal Plants and Phytochemicals in Nrf2 Pathways during Inflammatory Bowel Diseases and Related Colorectal Cancer: A Comprehensive Review. Metabolites 2023; 13:243. [PMID: 36837862 PMCID: PMC9966918 DOI: 10.3390/metabo13020243] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are related to nuclear factor erythroid 2-related factor 2 (Nrf2) dysregulation. In vitro and in vivo studies using phytocompounds as modulators of the Nrf2 signaling in IBD have already been published. However, no existing review emphasizes the whole scenario for the potential of plants and phytocompounds as regulators of Nrf2 in IBD models and colitis-associated colorectal carcinogenesis. For these reasons, this study aimed to build a review that could fill this void. The PubMed, EMBASE, COCHRANE, and Google Scholar databases were searched. The literature review showed that medicinal plants and phytochemicals regulated the Nrf2 on IBD and IBD-associated colorectal cancer by amplifying the expression of the Nrf2-mediated phase II detoxifying enzymes and diminishing NF-κB-related inflammation. These effects improve the bowel environment, mucosal barrier, colon, and crypt disruption, reduce ulceration and microbial translocation, and consequently, reduce the disease activity index (DAI). Moreover, the modulation of Nrf2 can regulate various genes involved in cellular redox, protein degradation, DNA repair, xenobiotic metabolism, and apoptosis, contributing to the prevention of colorectal cancer.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| | - Mariana Canevari de Maio
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Natália de Góes Corrêa
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | | | - Claudia R. P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
54
|
Gao L, Zhang W, Yang L, Fan H, Olatunji OJ. Stink bean ( Parkia speciosa) empty pod: a potent natural antidiabetic agent for the prevention of pancreatic and hepatorenal dysfunction in high fat diet/streptozotocin-induced type 2 diabetes in rats. Arch Physiol Biochem 2023; 129:261-267. [PMID: 33522287 DOI: 10.1080/13813455.2021.1876733] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study investigated the effect of polyphenol-rich extract of Parkia speciosa (PPS) against pancreatic and hepatorenal dysfunction in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetes. Diabetic rats were treated with PPS (100 and 400 mg/kg) and glibenclamide. The results revealed that diabetic rats displayed marked hyperglycaemia, hyperlipidaemia, hypoinsulinemia as well as alterations in serum renal and kidney function markers. Furthermore, diabetic rats showed significant increase in hepatorenal level of malonaldehyde as well as suppression of antioxidant enzyme activities. Whereas, diabetic rats that received PPS displayed marked attenuation in most of the aforementioned parameters compared to the untreated diabetic rats. Additionally, histological examination revealed restoration of histopathological alterations of the pancreas, liver, and kidney of PPS treated diabetic rats. In conclusion, the results demonstrated that PPS could decrease serum lipids and blood glucose level, enhance insulin level and hepatorenal antioxidant capacity, as well as ameliorate hepatorenal dysfunction in rats.
Collapse
Affiliation(s)
- Liwei Gao
- Department of Cardiovascular Medicine, Danyang Peoples Hospital of Jiangsu Province, Danyang, Jiangsu, China
| | - Wenzhi Zhang
- Innoscience Research Sdn Bhd, Selangor, Malaysia
| | - Leiyan Yang
- Innoscience Research Sdn Bhd, Selangor, Malaysia
| | - Hong Fan
- Department of Endocrinology, Peace Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | | |
Collapse
|
55
|
Albrakati A. Monosodium glutamate induces cortical oxidative, apoptotic, and inflammatory challenges in rats: the potential neuroprotective role of apigenin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24143-24153. [PMID: 36334201 DOI: 10.1007/s11356-022-23954-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Monosodium glutamate (MSG) is used as a flavor, and a taste enhancer was reported to evoke marked neuronal impairments. This study investigated the neuroprotective ability of flavonoid apigenin against neural damage in MSG-administered rats. Adult male rats were allocated into four groups: control, apigenin (20 mg/kg b.wt, orally), MSG (4 g/kg b.wt, orally), and apigenin + MSG at the aforementioned doses for 30 days. Regarding the levels of neurotransmitters, our results revealed that apigenin augmented the activity of acetylcholinesterase (AChE) markedly, and levels of brain monoamines (dopamine, norepinephrine, and serotonin) accompanied by lessening the activity of monoamine oxidase (MAO) as compared to MSG treatment. Moreover, apigenin counteracted the MSG-mediated oxidative stress by decreasing the malondialdehyde (MDA) levels together with elevating the glutathione (GSH) levels. In addition, pretreatment with apigenin induced notable increases in the activities of cortical superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Furthermore, apigenin attenuated the cortical inflammatory stress as indicated by lower levels of pro-inflammatory mediators such as interleukin-1 b (IL-1b), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) as well as downregulated inducible nitric oxide synthase (iNOS) expression levels. Histopathological screening validated the abovementioned results and revealed that apigenin restored the distorted cytoarchitecture of the brain cortex. Thus, the present findings collectively suggest that apigenin exerted significant protection against MSG-induced neurotoxicity by enhancing the cellular antioxidant response and attenuating inflammatory machineries in the rat brain cortex.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
56
|
Carica Papaya Reduces High Fat Diet and Streptozotocin-Induced Development of Inflammation in Adipocyte via IL-1β/IL-6/TNF-α Mediated Signaling Mechanisms in Type-2 Diabetic Rats. Curr Issues Mol Biol 2023; 45:852-884. [PMID: 36826001 PMCID: PMC9956039 DOI: 10.3390/cimb45020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
The prevalence of obesity in contemporary society has brought attention to how serious it is all around the world. Obesity, a proinflammatory condition defined by hypertrophied adipocytes and immune cells that reside in adipose tissue, is characterized by elevated circulating levels of proinflammatory cytokines. The pro-inflammatory mediators trigger a number of inflammatory pathways and affect the phosphorylation of a number of insulin-signaling pathways in peripheral tissues. In this work, we pointed the outcome of the leaves of Carica papaya (C. papaya) on the inflammatory molecules by in vivo and in silico analysis in order to prove its mechanisms of action. Adipocytokines, antioxidant enzymes, gene and protein expression of pro-inflammatory signaling molecules (mTOR, TNF-α, IL-1β, IL-6 and IKKβ) by q-RT-PCR and immunohistochemistry, as well as histopathological analysis, in adipose tissues were carried out. C. papaya reinstated the levels of adipocytokines, antioxidant enzymes and mRNA levels of mTOR, TNF-α, IL-1β, IL-6 and IKKβ in the adipose tissues of type 2 diabetic rats. Molecular docking and dynamics simulation studies revealed that caffeic acid, transferulic acid and quercetin had the top hit rates against IKKβ, TNF-α, IL-6, IL-1β, and mTOR. This study concludes that C. papaya put back the altered effects in fatty tissue of type 2 diabetic rats by restoring the adipocytokines and the gene expression.
Collapse
|
57
|
Sułkowska-Ziaja K, Galanty A, Szewczyk A, Paśko P, Kała K, Apola A, Podolak I, Muszyńska B. Effect of Methyl Jasmonate Elicitation on Triterpene Production and Evaluation of Cytotoxic Activity of Mycelial Culture Extracts of Ganoderma applanatum (Pers.) Pat. PLANTS (BASEL, SWITZERLAND) 2023; 12:294. [PMID: 36679006 PMCID: PMC9867392 DOI: 10.3390/plants12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Abiotic elicitation, a well-known strategy in mushroom biotechnology, promotes increased accumulation of secondary metabolites in mycelial cultures. The study aimed the effects of methyl jasmonate (MeJA) on the production of triterpenes in submerged cultures of Ganoderma applanatum. Further, the study evaluated the cytotoxic activity of the extract corresponding to the optimal elicitation variant in selected human cancer cell lines as well as the selectivity against normal cells. MeJA was added on days 1, 4, 6, and 8 in the 10-day growth cycle at concentrations of 10, 50, 100, 150, and 200 µM MeJA. The HPLC-DAD was used to analyze the triterpenes. The cytotoxic activity was tested using the MTTFc assay in grouped panels of skin, prostate, and gastrointestinal cancer cells. The results of the quantitative analyses confirmed the stimulating effect of MeJA on the production of ganoderic acid A and ganoderic acid C. The greatest increase in total triterpenes was found on day 6 of the culture cycle compared to the control group-with the concentration of MeJA-150 µM. Compared to the control samples, mycelial culture extract after the most productive elicitation variant showed significant cytotoxic activity against prostate cancer cells and moderate effects on melanoma cells. Ganoderma applanatum mycelial cultures can be proposed as a model to study the dynamics of the accumulation of compounds with therapeutic values through abiotic elicitation.
Collapse
Affiliation(s)
- Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Apola
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
58
|
Olive Leaves Extract and Oleuropein Improve Insulin Sensitivity in 3T3-L1 Cells and in High-Fat Diet-Treated Rats via PI3K/AkT Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6828230. [PMID: 36647430 PMCID: PMC9840553 DOI: 10.1155/2023/6828230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Olive leaves extracts are known to exert potential pharmacological activities especially, antidiabetic and antiobesity. This study explores the anti-insulin resistant effect of olive leaves extracts and oleuropein in 3 T3-L1 cells and in high-fat diet fed rats. Our results showed that ethanol extract (EE) suppressed significantly (P < 0.01) triacylglycerol accumulation. In preadipocytes cells, EE 1/100 decreased cell viability and induced apoptosis. Real-time PCR analysis showed that EE reduced the mRNA levels of adipogenesis (CEBP-α, PPARγ, SREBP-1c, and FAS) and proinflammatory (TNF-α and IL-6) genes. Moreover, the cotreatment of EE 1/1000 or oleuropein with insulin increased considerably the expression of p-IRS, p85-pI3K, and p-AKT. In vivo model, the oral administration of oleuropein at 50 mg/kg in rats fed with high fat diet for 8 weeks reduced inflammation in liver and adipose tissues (WAT), improved glucose intolerance, and decreased hyperinsulinemia. Furthermore, the immunohistochemistry revealed that the expression level of p-Akt, IRS1, and Glut-4 were significantly enhanced in liver and WAT tissues after oleuropein supplementation comparing with that in HFD group. Additionally, the expression of IRS1 was markedly ameliorated in pancreas. Our obtained results can be adopted as an approach to used olive leaves as complement to prevent insulin-resistance disease.
Collapse
|
59
|
Badalyan SM, Hayrapetyan SS. Sterols Content of Fruiting Bodies of Medicinal Artist's Bracket Mushroom Ganoderma applanatum (Agaricomycetes) Collected in Armenia. Int J Med Mushrooms 2023; 25:65-74. [PMID: 37585317 DOI: 10.1615/intjmedmushrooms.2023048520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The qualitative analysis of hexane extracts obtained from different trama layers (WT, T1-T4) of dried fruiting bodies of medicinal bracket fungus Ganoderma applanatum collected in the Tavoush region of North-East Armenia was performed by GC-MS analysis. Three sterols [(7.22-ergostadienon, ergosterol and ergosta-14.22-diene-3-ol (3β, 5α, 22E)] have been identified. The results have shown that the content and ratio of sterols differ in analyzed trama samples. The highest amount of sterols was detected in middle parts of T2 and T3 layers, while content of sterols gradually decreased to the upper cortical (T4) and lower hymenial (T1) layers. The chromatographic profiles of identified compounds indicate that different sterols dominated in each layer: 7.22-ergostadienon in T4, ergosterol in T3, T2, and T1. The average weight loss of analyzed trama samples during six days of drying was about 40 wt.% (37.0-43.49 wt.%) of the total weight of basidiome, which decreased up to 5 wt.% in the next two days. The complete extraction of sterols lasted six days. Its further prolongation leads to stationary phase without an increase in the amount of extracted sterols.
Collapse
Affiliation(s)
- Susanna M Badalyan
- Laboratory of Fungal Biology and Biotechnology, Institute of Pharmacy, Yerevan State University, 1 A. Manoogian St., 0025 Yerevan, Armenia
| | - Sergey S Hayrapetyan
- Department of Analytical and Inorganic Chemistry, Yerevan State University, Armenia
| |
Collapse
|
60
|
The Neuroprotective Effect Associated with Echinops spinosus in an Acute Seizure Model Induced by Pentylenetetrazole. Neurochem Res 2023; 48:273-283. [PMID: 36074199 DOI: 10.1007/s11064-022-03738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Echinops spinosus (ES) is a medicinal plant with a wide range of pharmacological and biological effects. It is a medicinal herb having a variety of therapeutic characteristics, including antioxidant, anti-inflammatory, and antibacterial capabilities. The primary goal of this research is to investigate the neuroprotective and anticonvulsant characteristics of E. spinosa extract (ESE) against pentylenetetrazole (PTZ)-induced acute seizures. Negative control rats, ESE treatment rats, PTZ acute seizure model rats, ESE + PTZ rats, and Diazepam + PTZ rats were used in the study. The rats were given a 7-day treatment. ESE pretreatment elevated the latency to seizure onset and lowered seizure duration after PTZ injection. By reducing Bax levels and enhancing antiapoptotic Bcl-2 production, ESE prevented the release of interleukin-1β, tumor necrosis factor-α, and cyclooxygenase-2, as well as preventing hippocampal cell death after PTZ injection. ESE corrected the PTZ-induced imbalance in gamma-aminobutyric acid levels and increased the enzyme activity of Na+/K+-ATPase. Echinops spinosus is a potent neuromodulatory, antioxidant, antiinflammatory, and antiapoptotic plant that could be employed as a natural anticonvulsant in the future.
Collapse
|
61
|
Alsharif KF, Albrakati A, Al Omairi NE, Almalki AS, Alsanie WF, Elmageed ZYA, Habotta OA, Lokman MS, Althagafi HA, Alghamdi AAA, Moneim AEA, Alyami H, Belal SKM, Alnefaie G, Alamri AS, Albezrah NKA, Kassab RB, Albarakati AJA, Hassan KE, Agil A. Therapeutic antischizophrenic activity of prodigiosin and selenium co-supplementation against amphetamine hydrochloride-induced behavioural changes and oxidative, inflammatory, and apoptotic challenges in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7987-8001. [PMID: 36048389 DOI: 10.1007/s11356-022-22409-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Schizophrenia (SCZ), a multifactorial neuropsychiatric disorder, is treated with inefficient antipsychotics and linked to poor treatment outcomes. This study, therefore, investigated the combined administration of prodigiosin (PDG) and selenium (Na2SeO3) against SCZ induced by amphetamine (AMPH) in rats. Animals were allocated into four groups corresponding to their respective 7-day treatments: control, AMPH (2 mg/kg), PDG (300 mg/kg) + Na2SeO3 (2 mg/kg), and AMPH + PDG + Na2SeO3. The model group exhibited biochemical, molecular, and histopathological changes similar to those of the SCZ group. Contrastingly, co-administration of PDG and Na2SeO3 significantly increased the time for social interaction and decreased AChE and dopamine. It also downregulated the gene expression of NMDAR1 and restored neurotrophin (BDNF and NGF) levels. Further, PDG combined with Na2SeO3 improved the antioxidant defence of the hippocampus by boosting the activities of SOD, CAT, GPx, and GR. These findings were accompanied by an increased GSH, alongside decreased MDA and NO levels. Furthermore, schizophrenic rats having received PDG and Na2SeO3 displayed markedly lower IL-1β and TNF-α levels compared to the model group. Interestingly, remarkable declines in the Bax (pro-apoptotic) and increases in Bcl-2 (anti-apoptotic) levels were observed in the SCZ group that received PDG and Na2SeO3. The hippocampal histological examination confirmed these changes. Collectively, these findings show that the co-administration of PDG and Na2SeO3 may have a promising therapeutic effect for SCZ. This is mediated by mechanisms related to the modulation of cholinergic, dopaminergic, and glutaric neurotransmission and neurotrophic factors, alongside the suppression of oxidative damage, neuroinflammation, and apoptosis machinery.
Collapse
Affiliation(s)
- Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Naif E Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulraheem S Almalki
- Department of Chemistry, Faculty of Science, Taif University, Taif, 21974, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Zakaria Y Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA, 71203, USA
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Hussain Alyami
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Saied K M Belal
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ghaliah Alnefaie
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Nisreen Khalid Aref Albezrah
- Department of Obstetric and Gynecology, Medicine College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Rami B Kassab
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al Qura University, Makkah, Saudi Arabia
| | - Khalid Ebraheem Hassan
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, 18071, Granada, Spain
| |
Collapse
|
62
|
Zheng JY, Xu JY, Zhang L, Wang ZM, Yin XB, Qin LQ. Effect of 3,3'-diselenodipropionic Acid on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice. Biol Trace Elem Res 2022:10.1007/s12011-022-03491-1. [PMID: 36418634 DOI: 10.1007/s12011-022-03491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
3,3'-Diselenodipropionic acid (DSePA), a synthetic organoselenium compound, has received considerable attention because of its antioxidant properties and safety. Its protective effect against dextran sodium sulfate (DSS)-induced mouse ulcerative colitis (UC) and the role of T helper 17 (Th17) cell proliferation were investigated. Fifty C57BL/6 male mice were randomly assigned to one of five groups: control (Con), DSePA, DSS, low-dose DSePA (LSe), and high-dose DSePA (HSe). Mice in the DSS, LSe, and HSe groups drank 2% DSS to induce UC, and received normal saline, 1 and 2 mg/mL DSePA solution by intraperitoneal injection, respectively. The DSePA group only received 2 mg/mL DSePA solution. After 5 weeks, DSS challenge induced UC in the mice, which manifested as decreased body weight, shortened colon length, the loss of goblet cells, activated proliferating cells, and multiple signs of intestinal lesions by histological observation, all of which were reversed to varying degrees by DSePA administration. DSS upregulated the colonic protein expression of the macrophage marker F4/80 and proinflammatory cytokines (IL-1β, IL-6, and TNFα), whereas DSePA administration downregulated the expression of these factors. DSS upregulated the mRNA expression of retinoic acid receptor-related orphan receptor γt (RORγt, mainly expressed in Th17 cells), IL-17A, and IL-17F and the levels of IL-17A and IL-17F in the colon, whereas DSePA administration decreased them. No difference was observed between the Con group and the DSePA group without DSS induction. Thus, DSePA administration ameliorated DSS-induced UC by regulating Th17-cell proliferation and the secretion of proinflammatory cytokines.
Collapse
Affiliation(s)
- Jia-Yang Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Zhang-Min Wang
- Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for Functional Agriculture Science and Technology (iFAST), Nanjing, China
| | - Xue-Bin Yin
- Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for Functional Agriculture Science and Technology (iFAST), Nanjing, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| |
Collapse
|
63
|
Song S, Jeong A, Lim J, Kim B, Park D, Oh S. Lactiplantibacillus plantarum
L67
probiotics vs paraprobiotics for reducing pro‐inflammatory responses in colitis mice. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sooyeon Song
- Department of Animal Science Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
- Agricultural Convergence Technology Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
| | - Anna Jeong
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| | - Jina Lim
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
- Department of Animal Biotechnology and Environment Animal Genomics and Bioinformatics National Institute of Animal Science 1500 Kongjwipatjwi‐ro Jellabuk‐do 55365 South Korea
| | - Bum‐Keun Kim
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Dong‐June Park
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Sejong Oh
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| |
Collapse
|
64
|
Albrahim T. Lycopene Modulates Oxidative Stress and Inflammation in Hypercholesterolemic Rats. Pharmaceuticals (Basel) 2022; 15:1420. [PMID: 36422550 PMCID: PMC9693203 DOI: 10.3390/ph15111420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
The complicated disorder of hypercholesterolemia has several underlying factors, including genetic and lifestyle factors. Low LDL cholesterol and elevated serum total cholesterol are its defining features. A carotenoid with antioxidant quality is lycopene. Examining lycopene activity in an animal model of hypercholesterolemia induced using food was the aim of this investigation. Triglycerides, LDL cholesterol, HDL cholesterol, and plasma total cholesterol were all measured. Biomarkers of renal and cardiac function were also examined. Apoptotic indicators, pro-inflammatory markers, and oxidative stress were also assessed. Additionally, the mRNA expression of paraoxonase 1 (PON-1), peroxisome proliferator-activated receptor gamma (PPAR-γ), and PPAR-γ coactivator 1 alpha (PGC-1α) in cardiac and renal tissues was examined. Rats showed elevated serum lipid levels, renal and cardiac dysfunction, significant oxidative stress, and pro-inflammatory and apoptotic markers at the end of the study. Treatment with lycopene significantly corrected and restored these changes. Additionally, lycopene markedly increased the mRNA expression of PGC-1α and PON-1, and decreased PPAR-γ expression. It was determined that lycopene has the capacity to modulate the PPAR-γ and PON-1 signaling pathway in order to preserve the cellular energy metabolism of the heart and kidney, which in turn reduces tissue inflammatory response and apoptosis. According to these findings, lycopene may be utilized as a medication to treat hypercholesterolemia. However, further studies should be conducted first to determine the appropriate dose and any adverse effects that may appear after lycopene usage in humans.
Collapse
Affiliation(s)
- Tarfa Albrahim
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
65
|
Puppala ER, Aochenlar SL, Shantanu PA, Ahmed S, Jannu AK, Jala A, Yalamarthi SS, Borkar RM, Tripathi DM, Naidu VGM. Perillyl alcohol attenuates chronic restraint stress aggravated dextran sulfate sodium-induced ulcerative colitis by modulating TLR4/NF-κB and JAK2/STAT3 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154415. [PMID: 36070663 DOI: 10.1016/j.phymed.2022.154415] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is the most prevalent chronic inflammatory immune bowel disease. The modernization of lifestyle accompanied by the stress to cope with the competition has resulted in a new range of complications where stress became a critical contributing factor for many diseases, including UC. Hence there is an urgent need to develop a dual role in curtailing both systemic and neuroinflammation. Perillyl alcohol (POH) is a natural essential oil found in lavender, peppermint, cherries etc and has been widely studied for its strong anti-inflammatory, antioxidant and anti-stress properties. HYPOTHESIS/PURPOSE POH regulates the various inflammatory signaling cascades involved in chronic inflammation by inhibiting farnesyltransferase enzyme. Several studies reported that POH could inhibit the phosphorylation of NF-κB, STAT3 and promote the endogenous antioxidant enzymes like Nrf2 via farnesyltransferase enzyme inhibition. Also, the effects of POH against UC is not known yet. Thus, this study aims to explore the anti-ulcerative properties of POH on stress aggravated ulcerative colitis in C57BL/6 mice. METHODS Ulcerative colitis was induced by duel exposure of chronic restraint stress (day 1 to day 28) and 2.5% dextran sulphate sodium (day8 to day14) in mice. POH treatment 100 and 200 mg/kg was administred from day14 ti day28 following oral route of administration. Disease activity index, colonoscopy, western blot analysis and histological analysis, neurotransmitter analysis and Gene expression studies were perofomerd to asses the anti-colitis effects of POH. RESULTS The treatment reversed the oxidative stress and inflammatory response by inhibiting TLR4/NF-kB pathway, and IL-6/JAK2/STAT3 pathway in both isolated mice colons and brains. The inhibition of these pathways resulted in a decrease in pro-inflammatory cytokines like IL-6, IL-1β and TNF-α. The treatment improved the physiological and histological changes with decreased ulcerations as examined by colonic endoscopy and Haematoxylin and Eosin staining. The treatment also improved the behavior response as it increased mobility time which was reduced by chronic restrained stress. This was due to increased satiety neurotransmitters like dopamine and serotonin and decreased cortisol in mice brains. CONCLUSION These results infer that POH has significant anti-colitis activity on chronic restraint stress aggravated DSS-induced UC in mice.
Collapse
Affiliation(s)
- Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sunepjungla L Aochenlar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - P A Shantanu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Arun Kumar Jannu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sai Sudha Yalamarthi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary sciences (ILBS), New Delhi, Delhi 110070
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101.
| |
Collapse
|
66
|
Shen J, Ma X, He Y, Wang Y, Zhong T, Zhang Y. Anti-inflammatory and anti-oxidant properties of Melianodiol on DSS-induced ulcerative colitis in mice. PeerJ 2022; 10:e14209. [PMID: 36312760 PMCID: PMC9615967 DOI: 10.7717/peerj.14209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
Background Ulcerative colitis is a unique inflammatory bowel disease with ulcerative lesions of the colonic mucosa. Melianodiol (MN), a triterpenoid, isolated from the fruits of the Chinese medicinal plant Melia azedarach, possesses significant anti-inflammatory properties. Objective The present study investigated the protective effects of MN on lipopolysaccharide (LPS)-induced macrophages and DSS-mediated ulcerative colitis in mice. Methods In the study, mice were given MN (50, 100, and 200 mg/kg) and 5-ASA (500 mg/kg) daily for 9 days after induction by DSS for 1 week. The progress of the disease was monitored daily by observation of changes in clinical signs and body weight. Results The results showed that MN effectively improved the overproduction of inflammatory factors (IL-6, NO, and TNF-α) and suppressed the activation of the NF-κB signalling cascade in LPS-mediated RAW264.7 cells. For DSS-mediated colitis in mice, MN can reduce weight loss and the disease activity index (DAI) score in UC mice, suppress colon shortening, and alleviate pathological colon injury. Moreover, MN treatment notably up regulated the levels of IL-10 and down regulated those of IL-1β and TNF-α, and inhibited the protein expression of p-JAK2, p-STAT3, iNOS, NF-κB P65, p-P65, p-IKKα/β, and p-IκBα in the colon. After MN treatment, the levels of MDA and NO in colonic tissue were remarkably decreased, whereas the levels of GSH, SOD, Nrf-2, Keap-1, HO-1, IκBα, and eNOS protein expression levels were significantly increased. Conclusion These results indicate that MN can activate the Nrf-2 signalling pathway and inhibit the JAK/STAT, iNOS/eNOS, and NF-κB signalling cascades, enhance intestinal barrier function, and effectively reduce the LPS-mediated inflammatory response in mouse macrophages and DSS-induced intestinal injury in UC.
Collapse
Affiliation(s)
| | - Xinhua Ma
- Fujian Medical University, Fuzhou, China
| | - Yubin He
- Fujian Medical University, Fuzhou, China
| | | | - Tianhua Zhong
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | | |
Collapse
|
67
|
Huang S, Zhai B, Fan Y, Sun J, Cheng J, Zou J, Zhang X, Shi Y, Guo D. Development of Paeonol Liposomes: Design, Optimization, in vitro and in vivo Evaluation. Int J Nanomedicine 2022; 17:5027-5046. [PMID: 36303804 PMCID: PMC9594912 DOI: 10.2147/ijn.s363135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is one of the intractable diseases recognized by the World Health Organization, and paeonol has been proven to have therapeutic effects. However, the low solubility of paeonol limits its clinical application. To prepare and optimize paeonol liposome, study its absorption mechanism and the anti-inflammatory activity in vitro and in vivo, in order to provide experimental basis for the further development of paeonol into an anti-inflammatory drug in the future. METHODS Paeonol loaded liposomes were prepared and optimized by thin film dispersion-ultrasonic method. The absorption mechanism of paeonol-loaded liposomes was studied by pharmacokinetics, in situ single-pass intestinal perfusion and Caco-2 cell monolayer model, the anti-inflammatory activity was studied in a mouse ulcerative model. RESULTS Box-Behnken response surface methodology permits to screen the best formulations. The structural and morphological characterization showed that paeonol was entrapped inside the bilayer in liposomes. Pharmacokinetic studies found that the AUC0-t of Pae-Lips was 2.78 times than that of paeonol suspension, indicating that Pae-Lips significantly improved the absorption of paeonol. In situ single intestinal perfusion and Caco-2 monolayer cell model results showed that paeonol was passively transported and absorbed, and was the substrate of P-gp, MRP2 and BCRP, and the Papp value of Pae-Lips was significantly higher than that of paeonol. In vitro and in vivo anti-inflammatory experiments showed that compared with paeonol, Pae-Lips exhibited excellent anti-inflammatory activity. CONCLUSION In this study, Pae-Lips were successfully prepared to improve the oral absorption of paeonol. Absorption may involve passive diffusion and efflux transporters. Moreover, Pae-Lips have excellent anti-inflammatory activity in vitro and in vivo, which preliminarily clarifies the feasibility of further development of Pae-Lips into oral anti-inflammatory drugs.
Collapse
Affiliation(s)
- Shan Huang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Bingtao Zhai
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Yu Fan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Jiangxue Cheng
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China,Correspondence: Dongyan Guo, Tel +86-029-38185180, Email
| |
Collapse
|
68
|
Habotta OA, Wang X, Othman H, Aljali AA, Gewaily M, Dawood M, Khafaga A, Zaineldin AI, Singla RK, Shen B, Ghamry HI, Elhussieny E, El-Mleeh A, Ibrahim SF, Abdeen A. Selenium-enriched yeast modulates the metal bioaccumulation, oxidant status, and inflammation in copper-stressed broiler chickens. Front Pharmacol 2022; 13:1026199. [PMID: 36313334 PMCID: PMC9614105 DOI: 10.3389/fphar.2022.1026199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Copper (Cu) could be seriously hazardous when present at excessive levels, despite its vital contribution to various cellular processes. Selenium-enriched yeast (SeY) was reported to improve the health and metabolic status in broiler chicken. Hence, our study was endeavored to illustrate the mitigating efficacy of SeY on Cu-induced hepatic and renal damage. Cobb chicks aged 1 day were allocated into four experimental groups and offered a basal diet, SeY (0.5 mg/kg), CuSO4 (300 mg/kg), or SeY plus CuSO4 in their diets for 42 days. Our results revealed that SeY supplement antagonized significantly the Cu accumulation in livers and kidneys of exposed birds. Marked declines were also detected in the AST, ALT, urea, and creatinine levels, besides marked increases in total protein, glycerides, and cholesterol in the SeY-supplemented group. Moreover, enhancement of cellular antioxidant biomarkers (superoxide dismutase, CAT, GPx, and GSH) along with lowered MDA contents were achieved by SeY in hepatic and renal tissues. Further, SeY exerted a noteworthy anti-inflammatory action as indicated by decreased inflammatory biomarkers (IL-1β and TNF-α) and NO levels in both organs. Noticeable histopathological alterations of both organs further validated the changes in the markers mentioned above. To sum up, our findings indicate that SeY can be considered a potential feed supplement for alleviating Cu-induced hepatic and renal damage in broilers, possibly via activation of antioxidant molecules and lessening the inflammatory stress.
Collapse
Affiliation(s)
- Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Ola A. Habotta, ; Ahmed Abdeen,
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hamzah Othman
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Abdulrahman A. Aljali
- Department of Pharmacology, Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Mahmoud Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
- The Centre for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, Egypt
| | - Asmaa Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Amr I. Zaineldin
- Animal Health Research Institute (AHRI-DOKI), Agriculture Research Center, Kafrelsheikh, Egypt
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, Abha, Saudi Arabia
| | - Eman Elhussieny
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Amany El-Mleeh
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum, Egypt
| | - Samah F. Ibrahim
- Clinical Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
- Center of Excellence in Screening Environmental Contaminants (CESEC), Benha University, Toukh, Egypt
- *Correspondence: Ola A. Habotta, ; Ahmed Abdeen,
| |
Collapse
|
69
|
Othman MS, Khaled AM, Aleid GM, Fareid MA, Hameed RA, Abdelfattah MS, Aldin DE, Moneim AEA. Evaluation of antiobesity and hepatorenal protective activities of Salvia officinalis extracts pre-treatment in high-fat diet-induced obese rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75043-75056. [PMID: 35648345 DOI: 10.1007/s11356-022-21092-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/21/2022] [Indexed: 04/16/2023]
Abstract
The present study evaluated the effects of Hail Salvia officinalis total extract (SOTE) and its high flavonoid fraction (SOHFF) on the high-fat diet (HFD)-induced obesity and hepatorenal damage in rats. Salvia officinalis plants were collected from Hail region, Saudi Arabia. Rats were fed HFD and supplemented orally with SOTE (250 mg kg-1) or SOHFF (100 mg kg-1) or simvastatin (SVS; 10 mg kg-1) every day for 8 weeks. Compared to the controls, HFD-induced obesity led to significant increases in body weight, body weight gained, blood insulin, leptin, cardiac enzymes (LDH and CPK) activity, and atherogenic index (AI). HFD rats also showed higher levels of hepatic and renal function biomarkers (ALT, urea, and creatinine), as well as lower levels of PPARγ and Nrf2-gene expression and a disrupted lipid profile. Moreover, HFD rats had lower levels of hepatic and renal antioxidant biomarkers (CAT, GPx, SOD, GR, and GSH), accompanied by higher levels of hepatic and renal lipid peroxidation (LPO), nitric oxide (NO), and inflammatory mediators (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)). In addition, histological examination of hepatic and renal tissues revealed histopathological changes that validated the biochemical findings. Compared to HFD group, SOTE and SOHFF treatment led to marked amelioration of all the aforementioned parameters. Collectively, supplementation with SOTE and SOHFF effectively reversed HFD-induced alterations through its antioxidant, hypolipidemic, and anti-inflammatory properties. Hence, SOTE and SOHFF have therapeutic potential in controlling obesity and related pathologies.
Collapse
Affiliation(s)
- Mohamed S Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia.
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt.
| | - Azza M Khaled
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Ghada M Aleid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
| | - Mohamed A Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Reda A Hameed
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Doaa Ezz Aldin
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
70
|
Budesonide-Loaded Hyaluronic Acid Nanoparticles for Targeted Delivery to the Inflamed Intestinal Mucosa in a Rodent Model of Colitis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7776092. [PMID: 36203483 PMCID: PMC9532096 DOI: 10.1155/2022/7776092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to investigate the therapeutic potential of budesonide- (BDS-) loaded hyaluronic acid nanoparticles (HANPs) for treatment of inflammatory bowel disease (IBD) using an acute model of colitis in rats. The therapeutic efficacy of BDS-loaded HANPs in comparison with an aqueous suspension of the drug with the same dose (30 μg/kg) was investigated 48 h following induction of colitis by intrarectal administration of acetic acid 4% in rats. Microscopic and histopathologic examinations were conducted in inflamed colonic tissue. Tissue concentration of tumor necrosis factor (TNF)-α was assessed by ELISA assay kit, while the activity of myeloperoxidase (MPO) was measured spectrophotometrically. Results from in vivo evaluations demonstrated that administrations of BDS-HANPs ameliorated the general endoscopic appearance, quite close to the healthy animals with no signs of inflammation and reduced the cellular infiltration, as well as the TNF-α level, and the MPO activity. It was found that delivery by BDS-loaded HANPSs alleviated the induced colitis significantly better than the same dose of the free drug. These data further suggest the potential of HANPs as a targeted drug delivery system to the inflamed colon mucosa.
Collapse
|
71
|
Comparative Evaluation of Various Extraction Techniques for Secondary Metabolites from Bombax ceiba L. Flowering Plants along with In Vitro Anti-Diabetic Performance. Bioengineering (Basel) 2022; 9:bioengineering9100486. [PMID: 36290454 PMCID: PMC9598353 DOI: 10.3390/bioengineering9100486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Bombax ceiba L. (Family: Malvaceae) was rightly called the “silent doctor” in the past as every part of it had medicinal value. For centuries, humans have used this plant according to the traditional medicinal systems of China, Ayurveda, and tribal communities. Recently, with an emerging interest in herbals, attention has been paid to scientifically validating medicinal claims for the treatment of diabetes using secondary metabolites of B. ceiba L. flowers. In the present study, specific secondary metabolites from the flowers of B. ceiba L. were isolated in good yield using the solvent extraction methodology, and their in vitro anti-diabetic efficacy was examined. Extraction efficiency of each solvent for secondary metabolites was found in following order: water > ethanol> methanol > chloroform > petroleum ether. Quantitative analysis of secondary metabolites showed 120.33 ± 2.33 mg/gm polyphenols, 60.77 ± 1.02 mg/g flavonoids, 60.26 ± 1.20 mg/g glycosaponins, 0.167 ± 0.02 mg/g polysaccharides for water extract; 91.00 ± 1.00 mg/g polyphenols, 9.22 ± 1.02 mg/g flavonoids, 43.90 ± 0.30 mg/g glycosaponins, 0.090 ± 0.03 mg/g poly saccharides for ethanol extract; 52.00 ± 2.64 mg/g polyphenols, 35.22 ± 0.38 mg/g flavonoids, 72.26 ± 1.05 mg/g glycosaponins, 0.147 ± 0.01 mg/g polysaccharides for methanol extract; 11.33 ± 0.58 mg/g polyphenols, 23.66 ± 1.76 mg/g flavonoids, 32.8 ± 0.75 mg/g glycosaponins, 0.013 ± 0.02 mg/g polysaccharides for chloroform extract; and 3.33 ± 1.53 mg/g polyphenols, 1.89 ± 1.39 mg/g flavonoids, 21.67 ± 1.24 mg/g glycosaponins, 0.005 ± 0.01 mg/g polysaccharides for petroleum ether extract. Glucose uptake by yeast cells increased 70.38 ± 2.17% by water extract.
Collapse
|
72
|
Albrahim T, Robert AA. Lycopene Effects on Metabolic Syndrome and Kidney Injury in Rats Fed a High-Fat Diet: An Experimental Study. ACS OMEGA 2022; 7:30930-30938. [PMID: 36092554 PMCID: PMC9453973 DOI: 10.1021/acsomega.2c02796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/09/2022] [Indexed: 05/13/2023]
Abstract
The frequency of overweight and obesity is rising globally. These disorders are prevalent health problems. It has a substantial correlation with a number of health issues, including cardiovascular, metabolic, and diabetes mellitus disorders. Lycopene (Lyc) is an acyclic structural isomer of β-carotene and has powerful antioxidant properties with various promising therapeutic effects. In this study, rats fed a high-fat diet were examined to determine how lycopene affected metabolic syndrome and kidney damage. After being acclimated, rats were divided into 5 groups (n = 8/group) as follows: the first group served as the control and was fed on a normal pelleted diet (4.25% fat) until the end of the experiment. The second group (high-fat diet; HFD) was fed on a high-fat diet (45.5 kcal% fat) composed of 24% fat, 24% protein, and 41% carbohydrate. The third and fourth groups were fed on HFD and administered lycopene at 25 and 50 mg/kg bodyweight orally every day. The fifth group (standard drug group) received HFD and simvastatin (SVS; 10 mg/kg bodyweight orally daily) for 3 months. Tissue samples from the kidney were taken for determination of the biochemical parameters, lipid peroxidation (LPO), protein carbonyl (PC), reduced glutathione (GSH), total thiol group, antioxidant enzymes, namely, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), in addition to renal mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2), renal levels of inflammatory markers [tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)], and apoptotic markers (BCL2 Associated X (Bax), B-cell lymphoma 2 (Bcl-2), and Bax/Bcl-2 ratio). When compared to the control group, the HFD group's food consumption, body weight, serum levels of glucose, uric acid, creatinine, LPO, PC, TNF-α, IL-1β, Bax, and the Bax/Bcl-2 ratio all increased significantly. In the kidney sample of HFD-fed rats, there was a downregulation of Nrf2 mRNA expression along with a significant reduction in the enzymatic activity of SOD, CAT, GR, and GPx. Lyc treatment was able to successfully reverse HFD-mediated changes as compared to the HFD group. Consuming lyc helps to prevent fat and renal damage in a positive way.
Collapse
Affiliation(s)
- Tarfa Albrahim
- Department
of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation
Sciences, Princess Nourah bint Abdulrahman
University, Riyadh 11564, Saudi Arabia
- and
| | - Asirvatham Alwin Robert
- Department
of Endocrinology and Diabetes, Prince Sultan
Military Medical City, Riyadh 11159, Saudi Arabia
| |
Collapse
|
73
|
Idowu OK, Oluyomi OO, Faniyan OO, Dosumu OO, Akinola OB. The synergistic ameliorative activity of peroxisome proliferator-activated receptor-alpha and gamma agonists, fenofibrate and pioglitazone, on hippocampal neurodegeneration in a rat model of insulin resistance. IBRAIN 2022; 8:251-263. [PMID: 37786742 PMCID: PMC10528802 DOI: 10.1002/ibra.12059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 10/04/2023]
Abstract
Insulin resistance (IR) is a risk factor for metabolic disorders and neurodegeneration. Peroxisome proliferator-activated receptor (PPAR) agonists have been proven to mitigate the neuronal pathology associated with IR. However, the synergetic efficacy of these agonists is yet to be fully described. Hence, we aimed to investigate the efficacy of PPARα/γ agonists (fenofibrate and pioglitazone) on a high-fat diet (HFD) and streptozotocin (STZ)-induced hippocampal neurodegeneration. Male Wistar rats (200 ± 25 mg/body weight [BW]) were divided into five groups. The experimental groups were fed on an HFD for 12 weeks coupled with 5 days of an STZ injection (30 mg/kg/BW, i.p) to induce IR. Fenofibrate (FEN; 100 mg/kg/BW, orally), pioglitazone (PIO; 20 mg/kg/BW, orally), and their combination were administered for 2 weeks postinduction. Behavioral tests were conducted, and blood was collected to determine insulin sensitivity after treatment. Animals were killed for assessment of oxidative stress, cellular morphology characterization, and astrocytic evaluation. HFD/STZ-induced IR increased malondialdehyde (MDA) levels and decreased glutathione (GSH) levels. Evidence of cellular alterations and overexpression of astrocytic protein was observed in the hippocampus. By contrast, monotherapy of FEN and PIO increased the GSH level (p < 0.05), decreased the MDA level (p < 0.05), and improved cellular morphology and astrocytic expression. Furthermore, the combined treatment led to improved therapeutic activities compared to monotherapies. In conclusion, FEN and PIO exerted a therapeutic synergistic effect on HFD/STZ-induced IR in the hippocampus.
Collapse
Affiliation(s)
| | | | - Oluwatomisin O. Faniyan
- Department of Physiology, School of Bioscience and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | | | | |
Collapse
|
74
|
Kassab RB, Elbaz M, Oyouni AAA, Mufti AH, Theyab A, Al-Brakati A, Mohamed HA, Hebishy AMS, Elmallah MIY, Abdelfattah MS, Abdel Moneim AE. Anticolitic activity of prodigiosin loaded with selenium nanoparticles on acetic acid-induced colitis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55790-55802. [PMID: 35320477 DOI: 10.1007/s11356-022-19747-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune inflammatory disease associated with extensive mucosal damage. Prodigiosins (PGs) are natural bacterial pigments with well-known antioxidant and immunosuppressive properties. In the current study, we examined the possible protective effect of PGs loaded with selenium nanoparticles (PGs-SeNPs) against acetic acid (AcOH)-induced UC in rats. Thirty-five rats were separated into five equal groups with seven animals/group: control, UC, PGs (300 mg/kg), sodium selenite (Na2SeO3, 2 mg/kg), PGs-SeNPs (0.5 mg/kg), and 5-aminosalicylates (5-ASA, 200 mg/kg). Interestingly, PGs-SeNPs administration lessened colon inflammation and mucosal damage as indicated by inhibiting inflammatory markers upon AcOH injection. Furthermore, PGs-SeNPs improved the colonic antioxidant capacity and prevented oxidative insults as evidenced by the upregulation of Nrf2- and its downstream antioxidants along with the decreased pro-oxidants [reactive oxygen species (ROS), carbonyl protein, malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), and nitric oxide (NO] in the colon tissue. Furthermore, PGs-SeNPs protected intestinal cell loss through blockade apoptotic cascade by decreasing pro-apoptotic proteins [Bcl-2-associated X protein (Bax) and caspase-3] and increasing anti-apoptotic protein, B cell lymphoma 2 (Bcl2). Collectively, PGs-SeNPs could be used as an alternative anti-colitic option due to their strong anti-inflammatory, antioxidant, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Mohamad Elbaz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Atif A A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad H Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Hala A Mohamed
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ali M S Hebishy
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | | | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
75
|
Effect of Blueberry Extract on Liver in Aged Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3490776. [PMID: 35898615 PMCID: PMC9314000 DOI: 10.1155/2022/3490776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Aging and age-related disorders are prominent issues. Aging is associated with a gradual impairment of physiology at the genetic, cellular, tissue, and whole organism level that directly influences the development of chronic diseases and organ failure. Blueberries, on the other hand, are well known for their high content of bioactive compounds and have demonstrated positive impacts on metabolic factors that influence health and general well-being. This study is aimed at evaluating the ameliorating the effects of blueberry on the liver of aged rats by monitoring changes in metabolic disturbances, oxidative stress, and inflammatory disruption. The aged group of rats was orally administered with blueberry extract (200 mg/kg) for a period of 4 weeks. The results revealed that aging was associated with an increase in body weight, liver weight, and metabolic parameters like serum insulin, triglycerides, total cholesterol, and liver function markers accompanied with a decrease in vitamin D levels. Furthermore, the results showed a significant diminish in the activities of antioxidant enzymes, glutathione content with an elevation in lipid peroxidation, inflammatory mediators (tumor necrosis factor alpha, interleukin 6, and nuclear factor kappa-light-chain-enhancer of activated B cells) as well as fibrotic markers (TGF-β1) in the liver of aged rats. Compared to the young rats (control group), blueberry effectively reversed age-mediated disruption of the aforementioned parameters. Hence, blueberries can be used as a potential therapeutic strategy for the management of age-related liver dysfunction and disease.
Collapse
|
76
|
Tang X, Sun Y, Li Y, Ma S, Zhang K, Chen A, Lyu Y, Yu R. Sodium butyrate protects against oxidative stress in high-fat-diet-induced obese rats by promoting GSK-3β/Nrf2 signaling pathway and mitochondrial function. J Food Biochem 2022; 46:e14334. [PMID: 35848364 DOI: 10.1111/jfbc.14334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Sodium butyrate (NaB), obtained by fermenting dietary fiber via intestinal microflora, was recently shown to improve the activity of some antioxidant enzymes in vivo. This study aims to investigate the term changes of mitochondrial energy metabolism and redox homeostasis in skeletal muscles and clarify the regulatory mechanism and dose effect of NaB on skeletal muscle. Male Sprague-Dawley rats were divided into the control group, obesity-prone (OP) group and obesity-resistant (OR) group based on the gain of body weight after 8 weeks' of feeding high-fat diet (HFD), followed by sacrificing rats at the end of 20th week. NaB intervention (12 weeks) could effectively reduce the body weight of rats in the OP and OR groups. NaB also mediated upregulation of antioxidant enzyme activity and GSH/GSSG ratio, while reducing reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. At the molecular level, NaB upregulated Pi3k, Nrf2, Nqo-1, and Ho-1, but downregulated Gsk-3β mRNA expression by regulating the Nrf2 antioxidant pathway to enhance tissue antioxidant capacity. At the same time, NaB intervention significantly upregulated Glut4, Irs-1, Pdx1, and MafA, expression in gastrocnemius muscles of OP and OR rats, and elevated insulin secretion and muscle insulin sensitivity. Thus, NaB activates antioxidant pathway, improves the antioxidant capacity of obese rat tissues and promotes glucose metabolism. PRACTICAL APPLICATIONS: This study found that obesity-prone and obesity-resistant rats have differences in mitochondrial redox homeostasis and energy metabolism in tissues. Meanwhile, sodium butyrate can effectively promote muscle protein synthesis, increase insulin sensitivity, and promote glucose metabolism in obesity rats. Thus, sodium butyrate supplementation or increasing intestinal butyrate production (e.g., by consuming foods rich in dietary fiber) is a potential means of improving the body's glucose metabolism and obesity profile.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongjuan Sun
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yingrui Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuhua Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kai Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Ailing Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yipin Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Renqiang Yu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
77
|
The Ameliorative Role of Hibiscetin against High-Fat Diets and Streptozotocin-Induced Diabetes in Rodents via Inhibiting Tumor Necrosis Factor-α, Interleukin-1β, and Malondialdehyde Level. Processes (Basel) 2022. [DOI: 10.3390/pr10071396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hibiscetin, as one of the main bioactive constituents of Hibiscus sabdariffa, has many pharmacological activities, but its antihyperglycemic activity has not been fully interpreted yet. The current research was developed from this perspective. The study intended to appraise the antidiabetic capability of hibiscetin in a high-fat diet (HFD) and streptozotocin (STZ; 50 mg/kg, intraperitoneally)-induced diabetes in an experimental animal. The efficiency of hibiscetin at 10 mg/kg in an “HFD/STZ model” remedy in rats with experimentally caused diabetes was explored for 42 days. The efficacy of hibiscetin was observed on several diabetes parameters. The average body weight and an array of biochemical markers were determined, including blood glucose, insulin, total protein (TP), lipid profile, aspartate aminotransferase (AST), alanine aminotransferase (ALT), IL-6, IL-1β, tumor necrosis factor-α (TNF-α), adiponectin, leptin, resistin, malondialdehyde (MDA), catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD). The antidiabetic benefits of hibiscetin were proven by a substantial reduction in blood glucose, lipid profile (TC and TG), total protein, IL-6, IL-1β, MDA, TNF-α, leptin, adiponectin, ALT, and AST in the therapy group compared to the diabetic disease standard. Furthermore, hibiscetin therapy also reversed the lowered levels of insulin, resistin, GSH, SOD, and CAT in diabetic rats. It was determined that hibiscetin may be beneficial in terms of reducing diabetes problems due to its effects on both oxidative stress and inflammation and that more research for this design should be conducted.
Collapse
|
78
|
Alyami NM, Abdi S, Alyami HM, Almeer R. Proanthocyanidins alleviate pentylenetetrazole-induced epileptic seizures in mice via the antioxidant activity. Neurochem Res 2022; 47:3012-3023. [PMID: 35838827 DOI: 10.1007/s11064-022-03647-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 01/20/2023]
Abstract
The role of oxidative stress in the initiation and progress of epilepsy is well established. Proanthocyanidins (PACs), a naturally occurring polyphenolic compound, have been reported to possess a broad spectrum of pharmacological and therapeutic properties against oxidative stress. However, the protective effects of proanthocyanidins against epilepsy have not been clarified. In the present study, we used the pentylenetetrazole (PTZ)-induced epilepsy mouse model to explore whether proanthocyanidins could help to reduce oxidative stress and protect against epilepsy. Mice were allocated into four groups (n = 14 per each group): control, PTZ (60 mg/kg, intraperitoneally), PACs + PTZ (200 mg/kg, p.o.) and sodium valproate (VPA) + PTZ (200 mg/kg, p.o.). PTZ injection caused oxidative stress in the hippocampal tissue as represented by the elevated lipid peroxidation and NO synthesis and increased expression of iNOS. Furthermore, depleted levels of anti-oxidants, GSH, GR, GPx, SOD, and CAT also indicate that oxidative stress was induced in mice exposed to PTZ. Additionally, a state of neuroinflammation was recorded following the developed seizures. Moreover, neuronal apoptosis was recorded following the development of epileptic convulsions as confirmed by the elevated Bax and caspase-3 and the decreased Bcl2 protein. Moreover, AChE activity, DA, NE, 5-HT, brain-derived neurotrophic factor levels, and gene expression of Nrf2 have decreased in the hippocampal tissue of PTZ exposed mice. However, pre-treatment of mice with PACs protected against the generation of oxidative stress, apoptosis, and neuroinflammation in the PTZ exposed mice brain as the biomarkers for all these conditions was bought to control levels. In addition, the gene expression of Nrf2 was significantly upregulated following PACs treatment. These results suggest that PACs can ameliorate oxidative stress, neuroinflammation, and neuronal apoptosis by activating the Nrf2 signaling pathway in PTZ induced seizures in mice.
Collapse
Affiliation(s)
- Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saba Abdi
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hanadi M Alyami
- Specialized Dentistry Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
79
|
Franca AS, Oliveira LS. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022; 11:foods11142064. [PMID: 35885305 PMCID: PMC9316316 DOI: 10.3390/foods11142064] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Current estimates place the amount of spent coffee grounds annually generated worldwide in the 6 million ton figure, with the sources of spent coffee grounds being classified as domestic (i.e., household), commercial (i.e., coffee houses, cafeterias and restaurants), and industrial (i.e., soluble and instant coffee industries). The majority of the produced spent coffee grounds are currently being inappropriately destined for landfills or to a form of energy recovery (e.g., incineration) as a refuse-derived fuel. The disposal of spent coffee in landfills allows for its anaerobic degradation with consequent generation and emission of aggressive greenhouse gases such as methane and CO2, and energy recovery processes must be considered an end-of-life stage in the lifecycle of spent coffee grounds, as a way of delaying CO2 emissions and of avoiding emissions of toxic organic volatile compounds generated during combustion of this type of waste. Aside from these environmental issues, an aspect that should be considered is the inappropriate disposal of a product (SCG) that presents unique thermo-mechanical properties and textural characteristics and that is rich in a diversity of classes of compounds, such as polysaccharides, proteins, phenolics, lipids and alkaloids, which could be recovered and used in a diversity of applications, including food-related ones. Therefore, researchers worldwide are invested in studying a variety of possible applications for spent coffee grounds and products thereof, including (but not limited to) biofuels, catalysts, cosmetics, composite materials, feed and food ingredients. Hence, the aim of this essay was to present a comprehensive review of the recent literature on the proposals for utilization of spent coffee grounds in food-related applications, with focus on chemical composition of spent coffee, recovery of bioactive compounds, use as food ingredients and as components in the manufacture of composite materials that can be used in food applications, such as packaging.
Collapse
|
80
|
Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res Int 2022; 157:111268. [DOI: 10.1016/j.foodres.2022.111268] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/27/2022]
|
81
|
Alsuliam SM, Albadr NA, Almaiman SA, Al-Khalifah AS, Alkhaldy NS, Alshammari GM. Fenugreek Seed Galactomannan Aqueous and Extract Protects against Diabetic Nephropathy and Liver Damage by Targeting NF-κB and Keap1/Nrf2 Axis. TOXICS 2022; 10:toxics10070362. [PMID: 35878267 PMCID: PMC9319613 DOI: 10.3390/toxics10070362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
This investigation was conducted to test the potential of the galactomannan (F-GAL) and aqueous extract (FS-AE) of the Fenugreek seed aqueous to prevent liver and kidney damage extracts in streptozotocin (STZ)-induced T1DM in rats. Non-diabetic and diabetic rats received the normal saline as a vehicle or were treated with FS-EA or F-GAL at a final concentration of 500 mg/kg/each. Treatments with both drugs reduced fasting hyperglycemia and improved serum and hepatic lipid profiles in the control and diabetic rats. Additionally, F-GAL and FS-AE attenuated the associated reduction in the mass and structure of the islets of Langerhans in diabetic rats and improved the structure of the kidneys and livers. In association, they also reduced the generation of reactive oxygen species (ROS), lipid peroxides, factor (TNF-α), interleukin-6 (IL-6), and nuclear levels of NF-κB p65, and improved serum levels of ALT, AST, albumin, and creatinine. However, both treatments increased hepatic and renal superoxide dismutase (SOD) in the livers and kidneys of both the control and diabetic-treated rats, which coincided with a significant increase in transcription, translation, and nuclear localization of Nrf2. In conclusion, FS-AE and F-GAL are effective therapeutic options that may afford a possible treatment for T1DM by attenuating pancreatic damage, hyperglycemia, hyperlipidemia, and hepatic and renal damage.
Collapse
Affiliation(s)
- Sarah M. Alsuliam
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (S.A.A.); (A.S.A.-K.); (G.M.A.)
| | - Nawal A. Albadr
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (S.A.A.); (A.S.A.-K.); (G.M.A.)
- Correspondence:
| | - Salah A. Almaiman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (S.A.A.); (A.S.A.-K.); (G.M.A.)
| | - Abdullrahman S. Al-Khalifah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (S.A.A.); (A.S.A.-K.); (G.M.A.)
| | - Noorah S. Alkhaldy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (S.A.A.); (A.S.A.-K.); (G.M.A.)
| |
Collapse
|
82
|
Al-Kuraishy HM, Al-Gareeb AI, Alkazmi L, Habotta OA, Batiha GES. High-mobility group box 1 (HMGB1) in COVID-19: extrapolation of dangerous liaisons. Inflammopharmacology 2022; 30:811-820. [PMID: 35471628 PMCID: PMC9040700 DOI: 10.1007/s10787-022-00988-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
High-mobility group box 1 (HMGB1), a multifunctional nuclear protein, exists mainly within the nucleus of all mammal eukaryotic cells. It is actively secreted by the necrotic cells as a response to the inflammatory signaling pathway. HMGB1 binds to receptor ligands as RAGE, and TLR and becomes a pro-inflammatory cytokine with a robust capacity to trigger inflammatory response. It is a critical mediator of the pathogenesis of systemic inflammation in numerous inflammatory disorders. Release of HMGB1 is associated with different viral infections and strongly participates in the regulation of viral replication cycles. In COVID-19 era, high HMGB1 serum levels were observed in COVID-19 patients and linked with the disease severity, development of cytokine storm (CS), acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). SARS-CoV-2-induced cytolytic effect may encourage release of HMGB1 due to nuclear damage. Besides, HMGB1 activates release of pro-inflammatory cytokines from immune cells and up-regulation of angiotensin I-converting enzyme 2 (ACE2). Therefore, targeting of the HMGB1 pathway by anti-HMGB1 agents, such as heparin, resveratrol and metformin, may decrease COVID-19 severity. HMGB1 signaling pathway has noteworthy role in the pathogenesis of SARS-CoV-2 infections and linked with development of ALI and ARDS in COVID-19 patients. Different endogenous and exogenous agents may affect release and activation of HMGB1 pathway. Targeting of HMGB1-mediated TLR2/TLR4, RAGE and MAPK signaling, might be a new promising drug candidate against development of ALI and/or ARDS in severely affected COVID-19 patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
83
|
Abdulrahman MD, Zakariya AM, Hama HA, Hamad SW, Al-Rawi SS, Bradosty SW, Ibrahim AH. Ethnopharmacology, Biological Evaluation, and Chemical Composition of Ziziphus spina- christi (L.) Desf.: A Review. Adv Pharmacol Pharm Sci 2022; 2022:4495688. [PMID: 35677711 PMCID: PMC9168210 DOI: 10.1155/2022/4495688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Medicinal plants are the primary raw materials used in the production of medicinal products all over the world. As a result, more study on plants with therapeutic potential is required. The tropical tree Ziziphus spina belongs to the Rhamnaceae family. Biological reports and traditional applications including management of diabetes and treatment of malaria, digestive issues, typhoid, liver complaints, weakness, skin infections, urinary disorders, obesity, diarrhoea, and sleeplessness have all been treated with different parts of Z. spina all over the globe. The plant is identified as a rich source of diverse chemical compounds. This study is a comprehensive yet detailed review of Z. spina based on major findings from around the world regarding ethnopharmacology, biological evaluation, and chemical composition. Scopus, Web of Science, BioMed Central, ScienceDirect, PubMed, Springer Link, and Google Scholar were searched to find published articles. From the 186 research articles reviewed, we revealed the leaf extract to be significant against free radicals, microbes, parasites, inflammation-related cases, obesity, and cancer. Chemically, polyphenols/flavonoids were the most reported compounds with a composition of 66 compounds out of the total 193 compounds reported from different parts of the plant. However, the safety and efficacy of Z. spina have not been wholly assessed in humans, and further well-designed clinical trials are needed to corroborate preclinical findings. The mechanism of action of the leaf extract should be examined. The standard dose and safety of the leaf should be established.
Collapse
Affiliation(s)
- Mahmoud Dogara Abdulrahman
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ali Muhammad Zakariya
- Institute of Biological Sciences, University Malaya, Kuala Lumpur, Malaysia
- Department of Biological Sciences, Sule Lamido University Kafin Hausa, Jigawa State, Nigeria
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Saber W. Hamad
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
- Department of Field Crops, College of Agricultural Engineering Sciences, Salahaddin University, Erbil, Kurdistan Region, Iraq
| | - Sawsan S. Al-Rawi
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Sarwan W. Bradosty
- Department of Community Health, College of Health Technology, Cihan University, Erbil, Kurdistan Region, Iraq
| | - Ahmad H. Ibrahim
- Pharmacy Department, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
84
|
Othman MS, Khaled AM, Al-Bagawi AH, Fareid MA, Hameed RA, Zahra FAA, Moneim AEA. Echinops spinosus effect against diabetes and its hepatorenal complications: total extract and flavonoids fraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38606-38617. [PMID: 35083696 DOI: 10.1007/s11356-022-18824-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/20/2022] [Indexed: 04/16/2023]
Abstract
The perennial plant Echinops spinosus (ES) grows in the Hail area of Saudi Arabia, and its traditional formulations are often employed in folk medicine. The goal of this study is to identify the active components present in Hail Echinops spinosus and to investigate the anti-diabetic properties of both ES total extract (ESTE) and its high flavonoids fraction (ESHFF) in experimental diabetes induced by streptozotocin (STZ) injection in rats. Forty-two rats were divided into six groups. Diabetes was induced using STZ (55 mg/kg). Seven days after STZ administration, the diabetic animals were treated daily with ESTE, ESHFF, or metformin (MET) as a standard anti-diabetic drug for 28 days. Blood and tissues samples were collected for biochemical, molecular, and histological investigations. Both ESTE and ESHFF demonstrated anti-diabetic properties, as evidenced by lowering glucose levels and increasing the levels of insulin, insulin receptor expression rate, and glycogen synthesis. Additionally, ESTE as well as ESHFF alleviated diabetic complications in the kidneys and liver by decreasing oxidative stress, modulating inflammatory mediators, and suppressing the apoptotic cascade along with correcting diabetic dyslipidemia. It could be deduced that Hail ES extracts could play a role in the treatment of type 2 diabetes and diabetes-related lesions as well as oxidative damage in hepatic and renal tissues.
Collapse
Affiliation(s)
- Mohamed S Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Kingdom of Saudi Arabia.
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt.
| | - Azza M Khaled
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Kingdom of Saudi Arabia
- National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Amal H Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha'il, Hail, Kingdom of Saudi Arabia
| | - Mohamed A Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Kingdom of Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Reda A Hameed
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Fatama A Abu Zahra
- Medical Ain Shams Research Institute-Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
85
|
Ameliorative Effect of Ocimum forskolei Benth on Diabetic, Apoptotic, and Adipogenic Biomarkers of Diabetic Rats and 3T3-L1 Fibroblasts Assisted by In Silico Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092800. [PMID: 35566151 PMCID: PMC9101318 DOI: 10.3390/molecules27092800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a complicated condition that is accompanied by a plethora of metabolic symptoms, including disturbed serum glucose and lipid profiles. Several herbs are reputed as traditional medicine to improve DM. The current study was designed to explore the chemical composition and possible ameliorative effects of Ocimum forskolei on blood glucose and lipid profile in high-fat diet/streptozotocin-induced diabetic rats and in 3T3-L1 cell lines as a first report of its bioactivity. Histopathological study of pancreatic and adipose tissues was performed in control and treatment groups, along with quantification of glucose and lipid profiles and the assessment of NF-κB, cleaved caspase-3, BAX, and BCL2 markers in rat pancreatic tissue. Glucose uptake, adipogenic markers, DGAT1, CEBP/α, and PPARγ levels were evaluated in the 3T3-L1 cell line. Hesperidin was isolated from total methanol extract (TME). TME and hesperidin significantly controlled the glucose and lipid profile in DM rats. Glibenclamide was used as a positive control. Histopathological assessment showed that TME and hesperidin averted necrosis and infiltration in pancreatic tissues, and led to a substantial improvement in the cellular structure of adipose tissue. TME and hesperidin distinctly diminished the mRNA and protein expression of NF-κB, cleaved caspase-3, and BAX, and increased BCL2 expression (reflecting its protective and antiapoptotic actions). Interestingly, TME and hesperidin reduced glucose uptake and oxidative lipid accumulation in the 3T3-L1 cell line. TME and hesperidin reduced DGAT1, CEBP/α, and PPARγ mRNA and protein expression in 3T3-L1 cells. Moreover, docking studies supported the results via deep interaction of hesperidin with the tested biomarkers. Taken together, the current study demonstrates Ocimum forskolei and hesperidin as possible candidates for treating diabetes mellitus.
Collapse
|
86
|
Bastaki SMA, Amir N, Adeghate E, Ojha S. Lycopodium Mitigates Oxidative Stress and Inflammation in the Colonic Mucosa of Acetic Acid-Induced Colitis in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092774. [PMID: 35566122 PMCID: PMC9102450 DOI: 10.3390/molecules27092774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022]
Abstract
Inflammatory bowel diseases (IBDs) such as ulcerative colitis (UC) and Crohn’s disease (CD) are diseases of the gastrointestinal system involving genetic and environmental factors attributed to oxidative stress and inflammation. Targeting oxidative stress and inflammation by novel dietary compounds of natural origin convincingly appears to be one of the important therapeutic strategies to keep the disease in remission. As there is no permanent cure for IBD except for chronic long-term treatment or surgery, it is therefore imperative to investigate plant-based agents that are receiving attention for their therapeutic benefits to overcome the debilitating clinical conditions of IBD. Lycopodium (LYCO), a plant of tropical and subtropical origin and known by numerous names such as ground pine, club moss, or devil’s claw, has been popularly used for centuries in traditional medicine including Chinese and Indian medicines. In the present study, the effect of LYCO has been investigated in an acetic acid (AA)-induced colitis model in Wistar rats. LYCO was orally administered at the dose of 50 mg/kg/day either 3 days before or 30 min after the induction of IBD and continued for 7 days by intrarectal administration of AA. The changes in body weight and macroscopic and microscopic analysis of the colon of rats of different experimental groups were observed on days 0, 2, 4, and 7. The levels of myeloperoxidase (MPO), reduced glutathione (GSH), and malondialdehyde (MDA) were measured. AA caused a significant reduction in body weight and increased macroscopic and microscopic ulcer scores along with a significant decline in antioxidant enzymes, superoxide dismutase (SOD), and catalase and antioxidant substrate, glutathione (GSH). There was a concomitant increased formation of malondialdehyde (MDA), a marker of lipid peroxidation, and raised myeloperoxidase (MPO) activity, a marker of neutrophil activation. Treatment with LYCO significantly improved IBD-induced reduction in body weight, improved histology, inhibited MDA formation, and restored antioxidants along with reduced MPO activity. AA also caused the release of proinflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-23 (IL-23). Furthermore, AA also increased the levels of calprotectin, a protein released by neutrophils under inflammatory conditions of the gastrointestinal tract. LYCO treatment significantly reduced the release of calprotectin and proinflammatory cytokines. The results demonstrate that LYCO treatment has the potential to improve disease activity by inhibiting oxidative stress, lipid peroxidation, and inflammation along with histological preservation of colonic tissues.
Collapse
Affiliation(s)
- Salim M. A. Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.A.); (S.O.)
- Correspondence:
| | - Naheed Amir
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.A.); (S.O.)
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.A.); (S.O.)
| |
Collapse
|
87
|
Quero J, Ballesteros LF, Ferreira-Santos P, Velderrain-Rodriguez GR, Rocha CMR, Pereira RN, Teixeira JA, Martin-Belloso O, Osada J, Rodríguez-Yoldi MJ. Unveiling the Antioxidant Therapeutic Functionality of Sustainable Olive Pomace Active Ingredients. Antioxidants (Basel) 2022; 11:antiox11050828. [PMID: 35624692 PMCID: PMC9137791 DOI: 10.3390/antiox11050828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
Olive pomace (OP) is the main residue that results from olive oil production. OP is rich in bioactive compounds, including polyphenols, so its use in the treatments of diseases related to oxidative stress, such as cancer, could be considered. The present work aimed to study the biological properties of different OP extracts, obtained by ohmic heating-assisted extraction and conventional heating, using water and 50% ethanol, in the treatment and prevention of colorectal cancer through Caco-2 cell models. Additionally, an in-silico analysis was performed to identify the phenolic intestinal absorption and Caco-2 permeability. The extracts were chemically characterized, and it was found that the Ohmic-hydroethanolic (OH-EtOH) extract had the highest antiproliferative effect, probably due to its higher content of phenolic compounds. The OH-EtOH induced potential modifications in the mitochondrial membrane and led to apoptosis by cell cycle arrest in the G1/S phases with activation of p53 and caspase 3 proteins. In addition, this extract protected the intestine against oxidative stress (ROS) caused by H2O2. Therefore, the bioactive compounds present in OP and recovered by applying a green technology such as ohmic-heating, show promising potential to be used in food, nutraceutical, and biomedical applications, reducing this waste and facilitating the circular economy.
Collapse
Affiliation(s)
- Javier Quero
- Department of Pharmacology and Physiology, Forensic and Legal Medicine Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain;
| | - Lina F. Ballesteros
- CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.B.); (P.F.-S.); (C.M.R.R.); (R.N.P.); (J.A.T.)
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.B.); (P.F.-S.); (C.M.R.R.); (R.N.P.); (J.A.T.)
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Gustavo R. Velderrain-Rodriguez
- Alianza Latinoamericana de Nutricion Responsable Inc., 400 E Randolph St Suite 2305, Chicago, IL 60611, USA;
- Department of Food Technology, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain;
| | - Cristina M. R. Rocha
- CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.B.); (P.F.-S.); (C.M.R.R.); (R.N.P.); (J.A.T.)
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo N. Pereira
- CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.B.); (P.F.-S.); (C.M.R.R.); (R.N.P.); (J.A.T.)
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - José A. Teixeira
- CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.B.); (P.F.-S.); (C.M.R.R.); (R.N.P.); (J.A.T.)
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga Martin-Belloso
- Department of Food Technology, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain;
| | - Jesús Osada
- Department of Biochemistry and Molecular and Cell Biology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain;
- CIBERobn, ISCIII, 28029 Madrtid, Spain
- IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, Forensic and Legal Medicine Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain;
- CIBERobn, ISCIII, 28029 Madrtid, Spain
- IIS Aragón, IA2, 50013 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-761649
| |
Collapse
|
88
|
Molecular Mechanisms of Coffee on Prostate Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3254420. [PMID: 35496060 PMCID: PMC9054433 DOI: 10.1155/2022/3254420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common types of cancer among men, and coffee is associated with a reduced risk of developing PCa. Therefore, we aim to review possible coffee molecular mechanisms that contribute to PCa prevention. Coffee has an important antioxidant capacity that reduces oxidative stress, leading to a reduced mutation in cells. Beyond direct antioxidant activity, coffee stimulates phase II enzymatic activity, which is related to the detoxification of reactive metabolites. The anti-inflammatory effects of coffee reduce tissue damage related to PCa development. Coffee induces autophagy, regulates the NF-κB pathway, and reduces the expression of iNOS and inflammatory mediators, such as TNF-α, IL-6, IL-8, and CRP. Also, coffee modulates transcriptional factors and pathways. It has been shown that coffee increases testosterone and reduces sex hormone-binding globulin, estrogen, and prostate-specific antigen. Coffee also enhances insulin resistance and glucose metabolism. All these effects may contribute to protection against PCa development.
Collapse
|
89
|
Valorization of Onion Waste by Obtaining Extracts Rich in Phenolic Compounds and Feasibility of Its Therapeutic Use on Colon Cancer. Antioxidants (Basel) 2022; 11:antiox11040733. [PMID: 35453418 PMCID: PMC9032738 DOI: 10.3390/antiox11040733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, the total phenolic content, the antioxidant and antiproliferative activities of onion waste extracts were characterized. Some phenolic compounds present in the extracts were also identified and quantified by HPLC-DAD. Additionally, an in-silico analysis was performed to identify the phenolic compounds with the highest intestinal absorption and Caco-2 permeability. The onion extract possessed a high amount of phenolic compounds (177 ± 9 mg/g extract) and had an effective antioxidant capacity measured by ABTS, FRAP and DPPH assays. Regarding the antiproliferative activity, the onion extracts produced cell cycle arrest in the S phase with p53 activation, intrinsic apoptosis (mitochondrial membrane potential modification) and caspase 3 activation. Likewise, onion waste increased intracellular ROS with possible NF-kB activation causing a proteasome down regulation. In addition, the extracts protected the intestine against oxidative stress induced by H2O2. According to the in-silico analysis, these results could be related to the higher Caco-2 permeability to protocatechuic acid. Therefore, this study provides new insights regarding the potential use of these types of extract as functional ingredients with antioxidant and antiproliferative properties and as medicinal agents in diseases related to oxidative stress, such as cancer. In addition, its valorization would contribute to the circular economy.
Collapse
|
90
|
Zou Q, Feng J, Li T, Cheng G, Wang W, Rao G, He H, Li Y. Antioxidation and anti-inflammatory actions of the extract of Nitraria Tangutorum Bobr. fruits reduce the severity of ulcerative colitis in a dextran sulphate sodium-induced mice model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
91
|
Almeer RS, Alkahtani S, Alarifi S, Moneim AEA, Abdi S, Albasher G. Ziziphus spina-christi Leaf Extract Mitigates Mercuric Chloride-induced Cortical Damage in Rats. Comb Chem High Throughput Screen 2022; 25:103-113. [PMID: 33280592 DOI: 10.2174/1386207323666201204124412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/23/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mercuric chloride (HgCl2) severely impairs the central nervous system when humans are exposed to it. AIMS We investigated the neuroprotective efficiency of Ziziphus spina-christi leaf extract (ZSCLE) on HgCl2-mediated cortical deficits. METHODS Twenty-eight rats were distributed equally into four groups: the control, ZSCLE-treated (300 mg/kg), HgCl2-treated (0.4 mg/kg), and ZSCLE+HgCl2-treated groups. Animals received their treatments for 28 days. RESULTS Supplementation with ZSCLE after HgCl2 exposure prevented the deposition of mercury in the cortical slices. It also lowered malondialdehyde levels and nitrite and nitrate formation, elevated glutathione levels, activated its associated-antioxidant enzymes, glutathione reductase, and glutathione peroxidase, and upregulated the transcription of catalase and superoxide dismutase and their activities were accordingly increased. Moreover, ZSCLE activated the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 when compared with the HgCl2 group. Notably, post-treatment with ZSCLE increased the activity of acetylcholinesterase and ameliorated the histopathological changes associated with HgCl2 exposure. Furthermore, ZSCLE blocked cortical inflammation, as observed by the lowered mRNA expression and protein levels of interleukin-1 beta and tumor necrosis factor-alpha, as well as decreased mRNA expression of inducible nitric oxide synthase. In addition, ZSCLE decreased neuron loss by preventing apoptosis in the cortical tissue upon HgCl2 intoxication. CONCLUSION Based on the obtained findings, we suggest that ZSCLE supplementation could be applied as a neuroprotective agent to decrease neuron damage following HgCl2 toxicity.
Collapse
Affiliation(s)
- Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo,Egypt
| | - Saba Abdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| |
Collapse
|
92
|
El Azab EF, Mostafa HS. Geraniol ameliorates the progression of high fat‐diet/streptozotocin‐induced type 2 diabetes mellitus in rats via regulation of caspase‐3, Bcl‐2, and Bax expression. J Food Biochem 2022; 46:e14142. [DOI: 10.1111/jfbc.14142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Eman Fawzy El Azab
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences at Al Qurayyat Jouf University Al Qurayyat Saudi Arabia
- Biochemistry Department, Faculty of Science Alexandria University Alexandria Egypt
| | - Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture Cairo University Giza Egypt
| |
Collapse
|
93
|
Yusni Y, Yusuf H. The Effect of Green Coffee on Blood Pressure, Liver and Kidney Functions in Obese Model Rats. Open Access Maced J Med Sci 2022; 10:346-351. [DOI: 10.3889/oamjms.2022.8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND: The effect of green coffee (GC) on blood pressure (BP) is still debated, but GC is thought to improve liver and kidney function. AIM: This study aimed to analyze the effect of the GC intervention on BP, liver, and kidney functions in obese model rats. METHODS: The research was a pre-clinical trial of pretest-posttest with control group design. Animals were divided into four groups: obese rats (G1), obese rats and GC (G2), obese rats and physical exercise (PE) (G3), and a combination of interventions (PE+GC) (G4). Data analysis used an independent sample t-test and analysis of variance; (p < 0.05). RESULTS: There was a different effect of the GC, PE, and PE+GC intervention on BP (186.50 ± 3.45 vs. 91.33 ± 1.96 p = 0.001*; 189.17 ± 2.93 vs. 119.50 ± 3.73 p = 0.001*; 191.8 3 ± 2.64 vs. 98.83 ± 3.76 p = 0.001*) in obese rats. There was a significant difference in Serum Glutamic Oxaloacetic Transaminase (SGOT) (p=0.001*), Serum Glutamic Pyruvic Transaminase (SGPT) (p = 0.001*), Blood urea nitrogen (BUN) (p = 0.001*), and Creatinine (p = 0.001*) before and after the intervention in the three groups (G2, G3, and G4). SGOT, SGPT, and Creatinine levels decreased significantly after PE, GC, and PE+GC intervention. On the other hand, BUN levels decreased significantly after GC and its combination intervention. Meanwhile, in the control group and the intervention of PE, it increased significantly. CONCLUSIONS: GC is more effective in lowering BP without causing impaired liver and kidney function in obese rats.
Collapse
|
94
|
Rosinidin Flavonoid Ameliorates Hyperglycemia, Lipid Pathways and Proinflammatory Cytokines in Streptozotocin-Induced Diabetic Rats. Pharmaceutics 2022; 14:pharmaceutics14030547. [PMID: 35335923 PMCID: PMC8953600 DOI: 10.3390/pharmaceutics14030547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/08/2023] Open
Abstract
Diabetes is one of the world’s most important public health issues, impacting both public health and socioeconomic advancement; moreover, current pharmacotherapy is still insufficient. The natural flavonoid rosinidin has a long history of use in pharmaceuticals and nutritional supplements, but its role in diabetes has been unknown. The current study was intended to confirm the anti-diabetic activity of rosinidin in our laboratory setting, along with its mechanism. Streptozotocin (60 mg/kg, ip) treatment used to induce type II diabetes in rats and the test medication rosinidin was then administered orally (at doses of 10 mg/kg and 20 mg/kg) for biochemical and histopathological analysis. Treatment with rosinidin reduced negative consequences of diabetes. Rosinidin exerted a protective effect on a number of characteristics, including anti-diabetic responses (lower blood glucose, higher serum insulin and improved pancreatic function) and molecular mechanisms (favorable effects on lipid profiles, total protein, albumin, liver glycogen, proinflammatory cytokine, antioxidant and oxidative stress markers, AST, ALT and urea). Furthermore, the improved pancreatic architecture observed in tissues substantiated the favourable actions of rosinidin in STZ-induced diabetic rats.
Collapse
|
95
|
Coastal Vulnerability Assessment: A Case Study of the Nigerian Coastline. SUSTAINABILITY 2022. [DOI: 10.3390/su14042097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Coastal regions are one of the essential spots on the earth as they are hosts to various important ecosystems, natural resources and the increasing population. Based on their proximity to the seas, they are mainly affected by sea-level rise, which is one of the adverse effects of climate change. This has resulted in associated hazards, such as beach erosion, flooding, coastal inundation, habitat destruction, saltwater intrusion into ground water aquifers and ecosystem imbalance. This study quantifies and classifies the vulnerability of the Nigerian coastline to these threats using the analytical hierarchical approach. This involved calculating the coastal vulnerability index (CVI) employing physical and geomorphological variables, and socioeconomic indicators that characterized the coastline vulnerability. The Nigerian coast was divided into seventeen (17) segments based on geomorphic units. The different vulnerability variables were assigned ranks ranging from 1 to 5, with 5 indicating the highest and 1 indicating the lowest vulnerabilities. The geomorphological and physical parameters include coastal slope, bathymetry, geomorphology, wave height, mean tidal range, shoreline change rate and relative sea-level rise, while the socioeconomic parameters include population, cultural heritage, land use/land cover and road network. The calculated CVI values (Saaty method) ranged from 11.25 to 41.66 with a median value of 23.60. Based on Gornitz approach, the calculated measures ranged between 3.51–4.77 and 3.08–5.00 for PVI and SoVI, respectively. However, the aggregated coastal vulnerability index computed using this approach ranged from 3.29 to 4.70. The results obtained from both approaches showed that 59–65% of the entire Nigerian coastline is under moderate to high vulnerability to sea-level rise. Data indicted how the coastal populations are highly vulnerable to both physical–geomorphological and socioeconomic stressors. Coastal vulnerability maps, highlighting the physical–geomorphological and socioeconomic vulnerability status of Nigerian coastline were also generated. The information from this study will assist coastal planners in identifying vulnerable segments in the study area and subsequently aid decisions that would mitigate the predicted impacts in the region.
Collapse
|
96
|
Lonati E, Carrozzini T, Bruni I, Mena P, Botto L, Cazzaniga E, Del Rio D, Labra M, Palestini P, Bulbarelli A. Coffee-Derived Phenolic Compounds Activate Nrf2 Antioxidant Pathway in I/R Injury In Vitro Model: A Nutritional Approach Preventing Age Related-Damages. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031049. [PMID: 35164314 PMCID: PMC8839093 DOI: 10.3390/molecules27031049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
Abstract
Age-related injuries are often connected to alterations in redox homeostasis. The imbalance between free radical oxygen species and endogenous antioxidants defenses could be associated with a growing risk of transient ischemic attack and stroke. In this context, a daily supply of dietary antioxidants could counteract oxidative stress occurring during ischemia/reperfusion injury (I/R), preventing brain damage. Here we investigated the potential antioxidant properties of coffee-derived circulating metabolites and a coffee pulp phytoextract, testing their efficacy as ROS scavengers in an in vitro model of ischemia. Indeed, the coffee fruit is an important source of phenolic compounds, such as chlorogenic acids, present both in the brewed seed and in the discarded pulp. Therefore, rat brain endothelial cells, subjected to oxygen and glucose deprivation (OGD) and recovery (ogR) to mimic reperfusion, were pretreated or not with coffee by-products. The results indicate that, under OGD/ogR, the ROS accumulation was reduced by coffee by-product. Additionally, the coffee extract activated the Nrf2 antioxidant pathway via Erk and Akt kinases phosphorylation, as shown by increased Nrf2 and HO-1 protein levels. The data indicate that the daily intake of coffee by-products as a dietary food supplement represents a potential nutritional strategy to counteract aging.
Collapse
Affiliation(s)
- Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
| | - Tatiana Carrozzini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
| | - Ilaria Bruni
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (P.M.); (D.D.R.)
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (P.M.); (D.D.R.)
- School of Advanced Studies on Food and Nutrition, University of Parma, 43121 Parma, Italy
| | - Massimo Labra
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
- Correspondence: ; Tel.: +39-026-448-8221
| |
Collapse
|
97
|
he A, Yu H, Hu Y, Chen H, Li X, Shen J, Zhuang R, Chen Y, Richard SB, Luo M, Lv D. Honokiol improves endothelial function in type 2 diabetic rats via alleviating oxidative stress and insulin resistance. Biochem Biophys Res Commun 2022; 600:109-116. [DOI: 10.1016/j.bbrc.2022.02.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
|
98
|
Rout D, Dash UC, Kanhar S, Swain SK, Sahoo AK. Homalium zeylanicum attenuates streptozotocin-induced hyperglycemia and cellular stress in experimental rats via attenuation of oxidative stress imparts inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114649. [PMID: 34536517 DOI: 10.1016/j.jep.2021.114649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Homalium zeylanicum (Gardner) Benth (Salicaceae) leaves are being used as folklore medicine to treat diabetes by the local folk of Andhra Pradesh, India. The medicinal claim of this plant with hypoglycaemic effects was initially studied by the authors. Results demonstrated the important antioxidant activities of the hydroalcohol fraction of leaves of H. zeylanicum leaves (HAHZL) were positively correlated with phenols and flavonoids contents. AIM OF THE STUDY Based on the previous findings, additional research is needed to examine the efficacy of using HAHZL to treat hyperglycemia. We therefore investigated in vitro and in vivo glycemic response of HAHZL, and evaluation of possible mechanism of bioactive molecules in mitigating streptozotocin-induced cellular stress in experimental rats via attenuation of oxidative stress imparts inflammation. METHODS GC-MS/MS analysis of HAHZL was carried out to identify bioactive constituents. In vitro antidiabetic (α-glucosidase, α-amylase) and anti-inflammatory activities were investigated. HFD/low-STZ-prompted diabetic Wistar rats were administered with HAHZL (300 and 400 mg/kg; oral) for 28 days. Blood serum, oxidative stress, inflammation, DNA damage, and antidiabetic markers of pancreas and liver were determined. Histopathological studies of liver and pancreas were performed to assess the protective role of HAHZL. RESULTS GC-MS/MS study revealed 7 bioactive compounds e.g., Phenol, 4-ethenyl-, acetate (28.68%), hydroquinone (9.10%), n-hexadecanoic acid (0.55%), phytol (0.57%), arbutin (17.65%), Vitamin E (1.04%), β-Sitosterol (1.54%) which possess antioxidant, anti-inflammatory and anti-diabetic activities. HAHZL showed significant in vitro glycemic response as evidenced by the inhibition of α-amylase, and α-glucosidase activities. Lineweaver-Burk plot revealed that HAHZL exhibited competitive and mixed competitive inhibition towards α-amylase and α-glucosidase, respectively. HAHZL at 400 mg/kg modulated the pathophysiology associated with HFD/STZ-induced type2 diabetes mellitus and significantly (p < 0.001) improved antihyperglycemic (SG, SI, HOMA-IR, and HbA1C), antidyslipidemic (TC, HDL-C, LDL-C, and TG), antioxidative (MDA, SOD, CAT, GSH, and 8-OHdG) and anti-inflammatory (TNF-α, and CRP) markers in serum, pancreas and liver. In vitro and in vivo test results were corroborated by the improvement of pancreatic and hepatic tissue architecture in diabetic rats. CONCLUSION HAHZL bearing bioactive components phenol, 4-ethenyl-,acetate, hydroquinone, n-hexadecanoic acid, arbutin, phytol, vitamin E and β-sitosterol balanced glycemic level by normalising the levels of glycaemic indices, lipid profile, pancreas and liver functional markers in STZ-induced T2DM rats.
Collapse
Affiliation(s)
- Deeptimayee Rout
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Umesh Chandra Dash
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Satish Kanhar
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Sandeep Kumar Swain
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Atish Kumar Sahoo
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| |
Collapse
|
99
|
Liu J, Zhang Y, Ye T, Yu Q, Yu J, Yuan S, Gao X, Wan X, Zhang R, Han W, Zhang Y. Effect of Coffee against MPTP-Induced Motor Deficits and Neurodegeneration in Mice Via Regulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:184-195. [PMID: 35016506 DOI: 10.1021/acs.jafc.1c06998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanisms of coffee against Parkinson disease (PD) remained incompletely elucidated. Numerous studies suggested that gut microbiota played a crucial role in the pathogenesis of PD. Here, we explored the further mechanisms of coffee against PD via regulating gut microbiota. C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce a PD mouse model, then treated with coffee for 4 consecutive weeks. Behavioral tests consisting of the pole test and beam-walking test were conducted to evaluate the motor function of mice. The levels of tyrosine hydroxylase (TH) and α-synuclein (α-syn) were assessed for dopaminergic neuronal loss. The levels of occludin, glial fibrillary acidic protein (GFAP), Bcl-2, Bax, cleaved caspase-3, and cytochrome c (Cyt c) were detected. Moreover, microbial components were measured by 16s rRNA sequencing. Our results showed that coffee significantly improved the motor deficits and TH neuron loss, and reduced the level of α-syn in the MPTP-induced mice. Moreover, coffee increased the level of BBB tight junction protein occludin and reduced the level of astrocyte activation marker GFAP in the MPTP-induced mice. Furthermore, coffee significantly decreased the levels of proapoptotic proteins, including Bax, cleaved caspase-3, and cytochrome c, while it increased the level of antiapoptotic protein Bcl-2, consequently preventing MPTP-induced apoptotic cascade. Moreover, coffee improved MPTP-induced gut microbiota dysbiosis. These findings suggested that the neuroprotective effects of coffee on PD were involved in the regulation of gut microbiota, which might provide a novel option to elucidate the effects of coffee on PD.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tao Ye
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qingxia Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaheng Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shushu Yuan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinxin Gao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinxin Wan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weihua Han
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
100
|
Zhang L, Wen K, Zhang Z, Ma C, Zheng N. 3,4-Dihydroxyphenylethanol ameliorates lipopolysaccharide-induced septic cardiac injury in a murine model. Open Life Sci 2022; 16:1313-1320. [PMID: 35005242 PMCID: PMC8691377 DOI: 10.1515/biol-2021-0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
3,4-Dihydroxyphenylethanol (DOPET) is a polyphenol found in olive oil. The present study evaluated the protective role of DOPET on LPS provoked septic cardiac injury in a murine model. Four groups were used in the study (n = 3): control, LPS, DOPET alone, and DOPET + LPS. LPS (15 mg/kg; i.p.); they were used to induce cardiac sepsis. The cardiac markers like LDH, CK-MB, and troponin-T, as well as inflammatory cytokines like TNF-α and IL-6 were measured in the serum. The antioxidants and oxidative stress parameters were measured in cardiac tissues. RT-PCR and western blot methods were done to evaluate the expression of inflammatory mediators and apoptotic markers. DOPET significantly decreased the cardiac markers (LDH, CK-MB, and troponin-T) and TNF-α and IL-6 level in the serum. DOPET effectively reduced the levels of MDA and NO in LPS intoxicated rats. DOPET also increased the levels of antioxidants like SOD, CAT, GPx, and GSH in LPS intoxicated rats. The mRNA levels of TNF-α, IL-6, and NF-κB were significantly downregulated by DOPET in cardiac tissues of LPS rats. The protein expression of Bcl-2 was upregulated, and Bax and caspase-3 were downregulated by DOPET. DOPET effectively attenuates LPS-induced cardiac dysfunction through its antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Kun Wen
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Zhiqiang Zhang
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Chengen Ma
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Ni Zheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong Province, 250021, China
| |
Collapse
|