51
|
Li Z, Huang L, Luo Y, Yu B, Tian G. Effects and possible mechanisms of intermittent fasting on health and disease: a narrative review. Nutr Rev 2023; 81:1626-1635. [PMID: 36940184 DOI: 10.1093/nutrit/nuad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The imbalance between energy intake and expenditure in an environment of continuous food availability can lead to metabolic disturbances in the body and increase the risk of obesity and a range of chronic noncommunicable diseases. Intermittent fasting (IF) is one of the most popular nonpharmacological interventions to combat obesity and chronic noncommunicable diseases. The 3 most widely studied IF regimens are alternate-day fasting, time-restricted feeding, and the 5:2 diet. In rodents, IF helps optimize energy metabolism, prevent obesity, promote brain health, improve immune and reproductive function, and delay aging. In humans, IF's benefits are relevant for the aging global population and for increasing human life expectancy. However, the optimal model of IF remains unclear. In this review, the possible mechanisms of IF are summarized and its possible drawbacks are discussed on the basis of the results of existing research, which provide a new idea for nonpharmaceutical dietary intervention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Liansu Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
52
|
Höchsmann C, Yang S, Ordovás JM, Dorling JL, Champagne CM, Apolzan JW, Greenway FL, Cardel MI, Foster GD, Martin CK. The Personalized Nutrition Study (POINTS): evaluation of a genetically informed weight loss approach, a Randomized Clinical Trial. Nat Commun 2023; 14:6321. [PMID: 37813841 PMCID: PMC10562431 DOI: 10.1038/s41467-023-41969-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Weight loss (WL) differences between isocaloric high-carbohydrate and high-fat diets are generally small; however, individual WL varies within diet groups. Genotype patterns may modify diet effects, with carbohydrate-responsive genotypes losing more weight on high-carbohydrate diets (and vice versa for fat-responsive genotypes). We investigated whether 12-week WL (kg, primary outcome) differs between genotype-concordant and genotype-discordant diets. In this 12-week single-center WL trial, 145 participants with overweight/obesity were identified a priori as fat-responders or carbohydrate-responders based on their combined genotypes at ten genetic variants and randomized to a high-fat (n = 73) or high-carbohydrate diet (n = 72), yielding 4 groups: (1) fat-responders receiving high-fat diet, (2) fat-responders receiving high-carbohydrate diet, (3) carbohydrate-responders receiving high-fat diet, (4) carbohydrate-responders receiving high-carbohydrate diet. Dietitians delivered the WL intervention via 12 weekly diet-specific small group sessions. Outcome assessors were blind to diet assignment and genotype patterns. We included 122 participants (54.4 [SD:13.2] years, BMI 34.9 [SD:5.1] kg/m2, 84% women) in the analyses. Twelve-week WL did not differ between the genotype-concordant (-5.3 kg [SD:1.0]) and genotype-discordant diets (-4.8 kg [SD:1.1]; adjusted difference: -0.6 kg [95% CI: -2.1,0.9], p = 0.50). With the current ability to genotype participants as fat- or carbohydrate-responders, evidence does not support greater WL on genotype-concordant diets. ClinicalTrials identifier: NCT04145466.
Collapse
Affiliation(s)
- Christoph Höchsmann
- Department of Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | - Shengping Yang
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - James L Dorling
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life of Sciences, University of Glasgow, Glasgow, UK
| | | | - John W Apolzan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Michelle I Cardel
- WW International, Inc., New York, NY, USA
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Gary D Foster
- WW International, Inc., New York, NY, USA
- Center for Weight and Eating Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corby K Martin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
53
|
Melo DDS, Costa Pereira L, Santos CS, Mendes BF, Konig IFM, Garcia BCC, Queiroz IP, Moreno LG, Cassilhas RC, Esteves EA, Vieira ER, Magalhães FDC, Capettini LDSA, Sousa RALD, Sampaio KH, Dias Peixoto MF. Intense Caloric Restriction from Birth Prevents Cardiovascular Aging in Rats. Rejuvenation Res 2023; 26:194-205. [PMID: 37694594 DOI: 10.1089/rej.2023.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
We previously demonstrated that a 50% caloric restriction (CR) from birth improves several cardiometabolic risk factors in young rats. In this study, we investigated in middle-aged rats the consequences of a 50% CR from birth on cardiometabolic risk factors, heart function/morphology, ventricular arrhythmia, and fibrillation incidence, and cardiac intracellular proteins involved with redox status and cell survival. From birth to the age of 18 months, rats were divided into an Ad Libitum (AL18) group, which had free access to food, and a CR18 group, which had food limited to 50% of that consumed by the AL18. Resting metabolic rate, blood pressure, and heart rate were recorded, and oral glucose and intraperitoneal insulin tolerance tests were performed. Blood was collected for biochemical analyses, and visceral fat and liver were harvested and weighed. Hearts were harvested for cardiac function, histological, redox status, and western blot analyses. The 50% CR from birth potentially reduced several cardiometabolic risk factors in 18-month-old rats. Moreover, compared with AL18, the CR18 group showed a ∼50% increase in cardiac contractility and relaxation, nearly three to five times less incidence of ventricular arrhythmia and fibrillation, ∼18% lower cardiomyocyte diameter, and ∼60% lower cardiac fibrosis. CR18 hearts also improved biomarkers of antioxidant defense and cell survival. Collectively, these results reveal several metabolic and cardiac antiaging effects of a 50% CR from birth in middle-aged rats.
Collapse
Affiliation(s)
- Dirceu de Sousa Melo
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Liliane Costa Pereira
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Carina Sousa Santos
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Bruno Ferreira Mendes
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Bruna Caroline Chaves Garcia
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ilkilene Pinheiro Queiroz
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Lauane Gomes Moreno
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ricardo Cardoso Cassilhas
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Elizabethe Adriana Esteves
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Etel Rocha Vieira
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Flávio de Castro Magalhães
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Ricardo Augusto Leoni De Sousa
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Kinulpe Honorato Sampaio
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Marco Fabrício Dias Peixoto
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| |
Collapse
|
54
|
Cancemi G, Cicero N, Allegra A, Gangemi S. Effect of Diet and Oxidative Stress in the Pathogenesis of Lymphoproliferative Disorders. Antioxidants (Basel) 2023; 12:1674. [PMID: 37759977 PMCID: PMC10525385 DOI: 10.3390/antiox12091674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Lymphomas are a heterogeneous group of pathologies that result from clonal proliferation of lymphocytes. They are classified into Hodgkin lymphoma and non-Hodgkin lymphoma; the latter develops as a result of B, T, or NK cells undergoing malignant transformation. It is believed that diet can modulate cellular redox state and that oxidative stress is implicated in lymphomagenesis by acting on several biological mechanisms; in fact, oxidative stress can generate a state of chronic inflammation through the activation of various transcription factors, thereby increasing the production of proinflammatory cytokines and causing overstimulation of B lymphocytes in the production of antibodies and possible alterations in cellular DNA. The purpose of our work is to investigate the results of in vitro and in vivo studies on the possible interaction between lymphomas, oxidative stress, and diet. A variety of dietary regimens and substances introduced with the diet that may have antioxidant and antiproliferative effects were assessed. The possibility of using nutraceuticals as novel anticancer agents is discussed; although the use of natural substances in lymphoma therapy is an interesting field of study, further studies are needed to define the efficacy of different nutraceuticals before introducing them into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
55
|
Elias A, Padinjakara N, Lautenschlager NT. Effects of intermittent fasting on cognitive health and Alzheimer's disease. Nutr Rev 2023; 81:1225-1233. [PMID: 37043764 PMCID: PMC10413426 DOI: 10.1093/nutrit/nuad021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVE Caloric restriction by intermittent fasting produces several metabolic changes, such as increased insulin sensitivity and use of ketone bodies as energy sources. In humans, intermittent fasting has been studied in hypertension, diabetes, and related conditions, but, to date, not as a strategy to reduce the risk of emergent dementia. In this scoping review, the relevance of intermittent fasting as a potential preventive intervention for Alzheimer's dementia is explored. BACKGROUND The beneficial effects of calorie restriction have been documented in animals and humans. Decreased oxidative stress damage and attenuated inflammatory responses are associated with intermittent fasting. These changes have a favorable impact on the vascular endothelium and stress-induced cellular adaptation. RESULTS Physiological alterations associated with fasting have profound implications for pathological mechanisms associated with dementias, particularly Alzheimer's disease. Compared with ad libitum feeding, caloric restriction in animals was associated with a reduction in β-amyloid accumulation, which is the cardinal pathological marker of Alzheimer's disease. Animal studies have demonstrated synaptic adaptations in the hippocampus and enhanced cognitive function after fasting, consistent with these theoretical frameworks. Furthermore, vascular dysfunction plays a crucial role in Alzheimer's disease pathology, and intermittent fasting promotes vascular health. CONCLUSIONS These observations lead to a hypothesis that intermittent fasting over the years will potentially reverse or delay the pathological process in Alzheimer's disease.
Collapse
Affiliation(s)
- Alby Elias
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, North-Western Mental Health, Melbourne Health, Victoria, Australia
| | - Noushad Padinjakara
- Department of Endocrinology and Metabolic Medicine, South Warwickshire University NHS Foundation Trust, Coventry, United Kingdom
| | - Nicola T Lautenschlager
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, North-Western Mental Health, Melbourne Health, Victoria, Australia
| |
Collapse
|
56
|
Dent R, Harris N, van Walraven C. Validity of two weight prediction models for community-living patients participating in a weight loss program. Sci Rep 2023; 13:11629. [PMID: 37468655 DOI: 10.1038/s41598-023-38683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Models predicting individual body weights over time clarify patient expectations in weight loss programs. The accuracy of two commonly used weight prediction models in community living people is unclear. All eligible people entering a weight management program between 1992 and 2015 were included. Patients' diet was 1200 kcal/day for week 0 followed by 900 kcal/day for weeks 1-7 and were excluded from the analysis if they were nonadherent. We generated expected weights using the National Institutes of Health Body Weight Planner (NIH-BWP) and the Pennington Biomedical Research Center Weight Loss Predictor (PBRC-WLP). 3703 adherent people were included (mean age 46 years, 72.6% women, mean [SD] weight 262.3 pounds [54.2], mean [SD] BMI 42.4 [7.6]). Mean (SD) relative body weight differences (100*[observed-expected]/expected) for NIH-BWP and PBRC-WLP models was - 1.5% (3.8) and - 2.9% (3.2), respectively. At week 7, mean squared error with NIH-BWP (98.8, 83%CI 89.7-108.8) was significantly lower than that with PBRC-WLP (117.7, 83%CI 112.4-123.4). Notable variation in relative weight difference were seen (for NIH-BWP, 5th-95th percentile was - 6.2%, + 3.7%; Δ 9.9%). During the first 7 weeks of a weight loss program, both weight prediction models returned expected weights that were very close to observed values with the NIH-BWP being more accurate. However, notable variability between expected and observed weights in individual patients were seen. Clinicians can monitor patients in weight loss programs by comparing their progress with these data.
Collapse
Affiliation(s)
- Robert Dent
- Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Neil Harris
- Weight Management Clinic, The Ottawa Hospital, Ottawa, Canada
| | - Carl van Walraven
- Ottawa Hospital Research Institute, Institute for Clinical Evaluative Sciences, University of Ottawa, ASB1-003 1053, Carling Ave, Ottawa, ON, K1Y 4E9, Canada.
| |
Collapse
|
57
|
Chiaramonte A, Testi S, Pelosini C, Micheli C, Falaschi A, Ceccarini G, Santini F, Scarpato R. Oxidative and DNA damage in obese patients undergoing bariatric surgery: A one-year follow-up study. Mutat Res 2023; 827:111827. [PMID: 37352694 DOI: 10.1016/j.mrfmmm.2023.111827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
The pathogenesis of obesity and related comorbidities has long been associated with oxidative stress. The excess of adipose tissue contributes to the production of free radicals that sustain both a local and a systemic chronic inflammatory state, whereas its reduction can bring to an improvement in inflammation and oxidative stress. In our work, using the fluorescent lipid probe BODIPY® 581/591 C11 and the γH2AX foci assay, a well-known marker of DNA double strand breaks (DSB), we evaluated the extent of cell membrane oxidation and DNA damage in peripheral blood lymphocytes of normal weight (NW) controls and obese patients sampled before and after bariatric surgery. Compared to NW controls, we observed a marked increase in both the frequencies of oxidized cells or nuclei exhibiting phosphorylation of histone H2AX in preoperatory obese patients. After bariatric surgery, obese patients, resampled over one-year follow-up, improved oxidative damage and reduced the presence of DSB. In conclusion, the present study highlights the importance for obese patients undergoing bariatric surgery to also monitor these molecular markers during their postoperative follow-up.
Collapse
Affiliation(s)
- Anna Chiaramonte
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Serena Testi
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Caterina Pelosini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital, Pisa, Italy
| | - Consuelo Micheli
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Aurora Falaschi
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital, Pisa, Italy
| | - Roberto Scarpato
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy.
| |
Collapse
|
58
|
Dikalov SI, Gutor S, Dikalova AE. Pathological mechanisms of cigarette smoking, dietary, and sedentary lifestyle risks in vascular dysfunction: mitochondria as a common target of risk factors. Pflugers Arch 2023; 475:857-866. [PMID: 36995495 PMCID: PMC10911751 DOI: 10.1007/s00424-023-02806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
In the past century, the lifespan of the human population has dramatically increased to the 80 s, but it is hindered by a limited health span to the 60 s due to an epidemic increase in the cardiovascular disease which is a main cause of morbidity and mortality. We cannot underestimate the progress in understanding the major cardiovascular risk factors which include cigarette smoking, dietary, and sedentary lifestyle risks. Despite their clinical significance, these modifiable risk factors are still the major contributors to cardiovascular disease. It is, therefore, important to understand the specific molecular mechanisms behind their pathological effects to develop new therapies to improve the treatment of cardiovascular disease. In recent years, our group and others have made a progress in understanding how these risk factors can promote endothelial dysfunction, smooth muscle dysregulation, vascular inflammation, hypertension, lung, and heart diseases. These factors, despite differences in their nature, lead to stereotypical alterations in vascular metabolism and function. Interestingly, cigarette smoking has a tremendous impact on a very distant site from the initial epithelial exposure, namely circulation and vascular cells mediated by a variety of stable cigarette smoke components which promote vascular oxidative stress and alter vascular metabolism and function. Similarly, dietary and sedentary lifestyle risks facilitate vascular cell metabolic reprogramming promoting vascular oxidative stress and dysfunction. Mitochondria are critical in cellular metabolism, and in this work, we discuss a new concept that mitochondria are a common pathobiological target for these risk factors, and mitochondria-targeted treatments may have a therapeutic effect in the patients with cardiovascular disease.
Collapse
Affiliation(s)
- Sergey I Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2200 Pierce Ave, PRB 554, Nashville, TN, 37232, USA.
| | - Sergey Gutor
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2200 Pierce Ave, PRB 554, Nashville, TN, 37232, USA
| | - Anna E Dikalova
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2200 Pierce Ave, PRB 554, Nashville, TN, 37232, USA
| |
Collapse
|
59
|
Ahmed SI, Carbone S. Energy restriction or improvements in diet quality: identifying the best pathway for a longer and healthier life. Minerva Cardiol Angiol 2023:S2724-5683.23.06298-1. [PMID: 37310156 PMCID: PMC10716369 DOI: 10.23736/s2724-5683.23.06298-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Obesity is a major risk factor for chronic non-communicable diseases (NCDs) and it has increased to epidemic proportions. Unhealthy diet represents a modifiable risk factor for both obesity and NCDs, however, there is no universal dietary intervention to improve obesity-related NCDs and particularly to reduce the risk for major adverse cardiovascular events. Energy restriction (ER) and diet quality changes, with and without ER, have been widely investigated in preclinical and clinical studies, however, the potential underlying mechanisms driving the benefits of those dietary interventions remain largely unclear. ER affects multiple metabolic, physiological, genetic, and cellular adaptation pathways associated with prolonged lifespan, particularly in preclinical models, while these benefits remain to be established in humans. Moreover, the sustainability of ER and its implementation across the different diseases remains challenging. On the other hand, diet quality with improvements, with or without ER, has been associated with more favorable long-term metabolic and cardiovascular outcomes. This narrative review will describe the role of ER and/or diet quality improvements on the risk for NCDs. It will also discuss the potential mechanisms of action underlying the potential beneficial effects of those dietary approaches.
Collapse
Affiliation(s)
- Syed I Ahmed
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Salvatore Carbone
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, USA -
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
60
|
Abstract
The process of aging manifests from a highly interconnected network of biological cascades resulting in the degradation and breakdown of every living organism over time. This natural development increases risk for numerous diseases and can be debilitating. Academic and industrial investigators have long sought to impede, or potentially reverse, aging in the hopes of alleviating clinical burden, restoring functionality, and promoting longevity. Despite widespread investigation, identifying impactful therapeutics has been hindered by narrow experimental validation and the lack of rigorous study design. In this review, we explore the current understanding of the biological mechanisms of aging and how this understanding both informs and limits interpreting data from experimental models based on these mechanisms. We also discuss select therapeutic strategies that have yielded promising data in these model systems with potential clinical translation. Lastly, we propose a unifying approach needed to rigorously vet current and future therapeutics and guide evaluation toward efficacious therapies.
Collapse
Affiliation(s)
- Robert S Rosen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| |
Collapse
|
61
|
Sołtysik BK, Karolczak K, Kostka T, Stephenson SS, Watala C, Kostka J. Contribution of Physical Activity to the Oxidative and Antioxidant Potential in 60-65-Year-Old Seniors. Antioxidants (Basel) 2023; 12:1200. [PMID: 37371930 DOI: 10.3390/antiox12061200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Both acute exercise and regular physical activity (PA) are directly related to the redox system. However, at present, there are data suggesting both positive and negative relationships between the PA and oxidation. In addition, there is a limited number of publications differentiating the relationships between PA and numerous markers of plasma and platelets targets for the oxidative stress. In this study, in a population of 300 participants from central Poland (covering the age range between 60 and 65 years), PA was assessed as regards energy expenditure (PA-EE) and health-related behaviors (PA-HRB). Total antioxidant potential (TAS), total oxidative stress (TOS) and several other markers of an oxidative stress, monitored in platelet and plasma lipids and proteins, were then determined. The association of PA with oxidative stress was determined taking into the account basic confounders, such as age, sex and the set of the relevant cardiometabolic factors. In simple correlations, platelet lipid peroxides, free thiol and amino groups of platelet proteins, as well as the generation of superoxide anion radical, were inversely related with PA-EE. In multivariate analyses, apart from other cardiometabolic factors, a significant positive impact of PA-HRB was revealed for TOS (inverse relationship), while in the case of PA-EE, the effect was found to be positive (inverse association) for lipid peroxides and superoxide anion but negative (lower concentration) for free thiol and free amino groups in platelets proteins. Therefore, the impact of PA may be different on oxidative stress markers in platelets as compared to plasma proteins and also dissimilar on platelet lipids and proteins. These associations are more visible for platelets than plasma markers. For lipid oxidation, PA seems to have protective effect. In the case of platelets proteins, PA tends to act as pro-oxidative factor.
Collapse
Affiliation(s)
- Bartłomiej K Sołtysik
- Department of Geriatrics, Medical University of Lodz, Haller Square No. 1, 90-419 Łódź, Poland
| | - Kamil Karolczak
- Department of Hemostatic Disorders, Medical University of Lodz, Mazowiecka Street 6/8, 92-215 Łódź, Poland
| | - Tomasz Kostka
- Department of Geriatrics, Medical University of Lodz, Haller Square No. 1, 90-419 Łódź, Poland
| | - Serena S Stephenson
- Department of Geriatrics, Medical University of Lodz, Haller Square No. 1, 90-419 Łódź, Poland
| | - Cezary Watala
- Department of Hemostatic Disorders, Medical University of Lodz, Mazowiecka Street 6/8, 92-215 Łódź, Poland
| | - Joanna Kostka
- Department of Gerontology, Medical University of Lodz, Milionowa Street No. 14, 93-113 Łódź, Poland
| |
Collapse
|
62
|
Hooshiar SH, Yazdani A, Jafarnejad S. Alternate-day modified fasting diet improves weight loss, subjective sleep quality and daytime dysfunction in women with obesity or overweight: a randomized, controlled trial. Front Nutr 2023; 10:1174293. [PMID: 37275639 PMCID: PMC10233006 DOI: 10.3389/fnut.2023.1174293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
Background Both sleep time and quality can be associated with overweight or obesity. In obese people, visceral fat tissue develops, which results in an increment in the production of cytokines. The increased production of inflammatory cytokines can disturb the sleep/wake cycle. Therefore, weight loss by reducing fat tissue can improve sleep disorders. Intermittent fasting diets are popular and effective diets that can decrease body weight and improve anthropometric data and body composition. The present study aimed to evaluate the effect of Alternate-day Modified Fasting (ADMF) on sleep quality, body weight, and daytime sleepiness. Methods Classification of 56 obese or overweight women, based on age and body mass index (BMI), was done using stratified randomization. Then individuals were assigned to the ADMF group (intervention) or Daily Calorie Restriction (CR) group (control) using the random numbers table for 8 weeks. We measured the Pittsburgh sleep quality Index (PSQI), weight, BMI, and the Epworth sleepiness scale (ESS) as primary outcomes and assessed subjective sleep quality (SSQ), sleep latency, sleep disturbances, habitual sleep efficiency, daytime dysfunction, and sleep duration as secondary outcomes at baseline and after the study. Results Following an ADMF diet resulted in a greater decrease in weight (kg) [-5.23 (1.73) vs. -3.15 (0.88); P < 0.001] and BMI (kg/m2) [-2.05 (0.66) vs. -1.17 (0.34); P < 0.001] compared to CR. No significant differences were found in the changes of PSQI [-0.39 (1.43) vs. -0.45 (1.88); P = 0.73] and ESS [-0.22 (1.24) vs. -0.54 (1.67); P = 0.43] between two groups. Also, following the ADMF diet led to significant changes in SSQ [-0.69 (0.47) vs. -0.08 (0.40); P = <0.001], and daytime dysfunction [-0.65 (0.57) vs. 0.04 (0.75); P: 0.001] in compare with CR diet. Conclusion These results suggested that an ADMF could be a beneficial diet for controlling body weight and BMI. The ADMF diet didn't affect PSQI and ESS in women with overweight or obesity but significantly improved SSQ and daytime dysfunction. Clinical Trial Registration The Iranian Registry of Clinical Trials (IRCT20220522054958N3), https://www.irct.ir/trial/64510.
Collapse
Affiliation(s)
- Saeedeh Hosseini Hooshiar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Akram Yazdani
- Department of Biostatistics and Epidemiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
63
|
Spranger L, Weiner J, Bredow J, Zeitz U, Grittner U, Boschmann M, Dickmann S, Stobäus N, Schwartzenberg RJV, Brachs M, Spranger J, Mai K. Thrifty energy phenotype predicts weight regain in postmenopausal women with overweight or obesity and is related to FGFR1 signaling. Clin Nutr 2023; 42:559-567. [PMID: 36863292 DOI: 10.1016/j.clnu.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND&AIMS Long term improvement of body weight and metabolism is highly requested in obesity. The specific impact of weight loss associated temporary negative energy balance or modified body composition on metabolism and weight regain is unclear. METHODS We randomly assigned 80 post-menopausal women (BMI 33.9 (32.2-36.8)kg/m2) to an intervention (IG) or control group (CG). IG underwent a dietary three month-weight loss intervention followed by a four week-weight maintenance period without negative energy balance. The CG was instructed to keep their weight stable. Phenotyping was performed at baseline (M0), after weight loss (M3), the maintenance period (M4) and 24-month follow-up (M24). Co-primary outcomes were changes of insulin sensitivity (ISIClamp) and lean body mass (LBM). Energy metabolism and adipose gene expression were secondary endpoints. RESULTS Between March 2012 and July 2015, 479 subjects were screened for eligibility. 80 subjects were randomly assigned to IG (n = 40) or CG (n = 40). The total number of dropouts was 18 (IG: n = 13, CG: n = 5). LBM and ISIClamp were stable in the CG between M0 and M3, but were changed in the IG at M3 (LBM: -1.4 (95%CI -2.2-(-0.6)) kg and ISIClamp: +0.020 (95%CI 0.012-0.028) mg·kg-1·min-1/(mU·l-1)) (p < 0.01 and p < 0.05 for IG vs. CG, respectively). Effects on LBM, ISIClamp, FM and BMI were preserved until M4. Lower resting energy expenditure per LBM (REELBM) at M3 and stronger difference of REELBM between M3 and M4 (ΔREELBM-M3M4), which indicates a thrifty phenotype, were positively associated with FM regain at M24 (p = 0.022 and p = 0.044, respectively). Gene set enrichment analysis revealed a relationship of this phenotype to weight loss-induced adaption of adipose FGFR1 signaling. CONCLUSION Negative energy balance had no additional effect on insulin sensitivity. FGFR1 signaling might be involved in the adaption of energy expenditure to temporary negative energy balance, which indicates a thrifty phenotype susceptible to weight regain. TRIAL REGISTRATION ClinicalTrials.gov number: NCT01105143, https://clinicaltrials.gov/ct2/show/NCT01105143, date of registration: April 16th, 2010.
Collapse
Affiliation(s)
- Leonard Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Insitute of Health, 10117, Berlin, Germany
| | - January Weiner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics Berlin, 10178, Germany
| | - Josephine Bredow
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Insitute of Health, 10117, Berlin, Germany
| | - Ulrike Zeitz
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Insitute of Health, 10117, Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Michael Boschmann
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany; Experimental and Clinical Research Center (ECRC) - Charité - Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Sophia Dickmann
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Insitute of Health, 10117, Berlin, Germany; Charité Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, 10117, Berlin, Germany
| | - Nicole Stobäus
- Clinical Research Unit, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Reiner Jumpertz-von Schwartzenberg
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Insitute of Health, 10117, Berlin, Germany
| | - Maria Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Insitute of Health, 10117, Berlin, Germany; Charité Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, 10117, Berlin, Germany; Treamid Therapeutics GmbH, Muellerstr. 178, 13353, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Insitute of Health, 10117, Berlin, Germany; Charité Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, 10117, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Insitute of Health, 10117, Berlin, Germany; Charité Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, 10117, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| |
Collapse
|
64
|
Ma Y, Sun L, Mu Z. Effects of different weight loss dietary interventions on body mass index and glucose and lipid metabolism in obese patients. Medicine (Baltimore) 2023; 102:e33254. [PMID: 37000111 PMCID: PMC10063297 DOI: 10.1097/md.0000000000033254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 04/01/2023] Open
Abstract
To investigate the effects of different weight loss interventions on body mass index (BMI) and glucose and lipid metabolism in obese patients. Obese patients (n = 135) admitted to our hospital between December 2020 and August 2022 were divided into 3 groups, according to their diet patterns: calorie-restricted diet (CRD) group (n = 39), high-protein diet (HPD) group (n = 28), and 5 + 2 intermittent fasting (IF) group (n = 68). Body weight, body fat rate, BMI, hip circumference, and waist circumference were measured before and 60 days after implementation of the respective diet plan. Glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG), 2h postprandial blood glucose (2hPG), triglyceride (TG), total cholesterol, low-density lipoprotein, high-density lipoprotein, and adverse events were evaluated. Following the dietary intervention, the weight (P = .005 for CRD, P < .001 for HPD, and P = .001 for IF), body fat rate (P = .027 for CRD, P = .002 for HPD, and P = .011 for IF group), BMI (P = .017 for CRD, P < .001 for HPD, and P = .002 for IF group), hip circumference (P < .001 for CRD, P = .013 for HPD, and P = .032 for IF group), waist circumference (P = .005 for CRD, P < .001 for HPD, and P = .028 for IF group), HbA1c (P = .014 for CRD, P = .002 for HPD, and P = .029 for IF group), FBG (P = .017 for CRD, P < .001 for HPD, and P = .033 for IF group), and 2hPG (P = .009 for CRD, P = .001 for HPD, and P = .012 for IF group), were significantly decreased. TG (P = .007 for CRD, P < .001 for HPD, and P = .018 for IF group), TC (P = .029 for CRD, P = .013 for HPD, and P = .041 for IF group), LDL-C (P = .033 for CRD, P = .021 for HPD, and P = .042 for IF group), and LDL-C (P = .011 for CRD, P < .001 for HPD, and P = .027 for IF group) improved significantly in the 3 groups, when compared to that before treatment. The HPD had the best effect on reducing blood lipids, followed by the CRD; the effect of IF was slightly lesser. Short-term HPD, CRD, and IF can reduce the weight and body fat of overweight/obese individuals and improve blood lipid and blood sugar levels. The effect of HPD on weight loss, body fat, and blood lipid levels was greater than that of CRD or IF.
Collapse
Affiliation(s)
- Yahui Ma
- Department of Endocrine, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Lina Sun
- Department of Endocrine, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zhijing Mu
- Department of Endocrine, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
65
|
Ferk F, Mišík M, Ernst B, Prager G, Bichler C, Mejri D, Gerner C, Bileck A, Kundi M, Langie S, Holzmann K, Knasmueller S. Impact of Bariatric Surgery on the Stability of the Genetic Material, Oxidation, and Repair of DNA and Telomere Lengths. Antioxidants (Basel) 2023; 12:antiox12030760. [PMID: 36979008 PMCID: PMC10045389 DOI: 10.3390/antiox12030760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity causes genetic instability, which plays a key-role in the etiology of cancer and aging. We investigated the impact of bariatric surgery (BS) on DNA repair, oxidative DNA damage, telomere lengths, alterations of antioxidant enzymes and, selected proteins which reflect inflammation. The study was realized with BS patients (n = 35). DNA damage, base oxidation, BER, and NER were measured before and 1 month and 6 months after surgery with the single-cell gel electrophoresis technique. SOD and GPx were quantified spectrophotometrically, malondealdehyde (MDA) was quantified by HPLC. Telomere lengths were determined with qPCR, and plasma proteome profiling was performed with high-resolution mass spectrophotometry. Six months after the operations, reduction of body weight by 27.5% was observed. DNA damage decreased after this period, this effect was paralleled by reduced formation of oxidized DNA bases, a decline in the MDA levels and of BER and NER, and an increase in the telomere lengths. The activities of antioxidant enzymes were not altered. Clear downregulation of certain proteins (CRP, SAA1) which reflect inflammation and cancer risks was observed. Our findings show that BS causes reduced oxidative damage of DNA bases, possibly as a consequence of reduction of inflammation and lipid peroxidation, and indicate that the surgery has beneficial long-term health effects.
Collapse
Affiliation(s)
- Franziska Ferk
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Miroslav Mišík
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Benjamin Ernst
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Gerhard Prager
- Department of Surgery, Medical University Vienna, 1090 Vienna, Austria
| | - Christoph Bichler
- Department of Surgery, Medical University Vienna, 1090 Vienna, Austria
| | - Doris Mejri
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University and Medical University Vienna, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University and Medical University Vienna, 1090 Vienna, Austria
| | - Michael Kundi
- Department for Environmental Health, Center of Public Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Langie
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Klaus Holzmann
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Siegfried Knasmueller
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| |
Collapse
|
66
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
67
|
Grande de França NA, Rolland Y, Guyonnet S, de Souto Barreto P. The role of dietary strategies in the modulation of hallmarks of aging. Ageing Res Rev 2023; 87:101908. [PMID: 36905962 DOI: 10.1016/j.arr.2023.101908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The hallmarks of aging constitute an interconnected network of basic mechanisms that modulate aging and can be modulated by lifestyle factors, including dietary strategies. This narrative review aimed to summarize the evidence on promoting dietary restriction or adherence to specific dietary patterns on hallmarks of aging. Studies with preclinical models or humans were considered. Dietary restriction (DR), usually operationalized as a reduction in caloric intake, is the main strategy applied to study the axis diet-hallmarks of aging. DR has been shown to modulate mainly genomic instability, loss of proteostasis, deregulating nutrient sensing, cellular senescence, and altered intercellular communication. Much less evidence exists on the role of dietary patterns, with most of the studies evaluating the Mediterranean Diet and other similar plant-based diets, and the ketogenic diet. Potential benefits are described in genomic instability, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, and altered intercellular communication. Given the predominant place of food in human life, it is imperative to determine the impact of nutritional strategies on the modulation of lifespan and healthspan, considering applicability, long-term adherence, and side effects.
Collapse
Affiliation(s)
- Natasha A Grande de França
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France.
| | - Yves Rolland
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; Maintain Aging Researchteam, CERPOP, Université de Toulouse, Inserm, Université Paul Sabatier, Toulouse, France
| | - Sophie Guyonnet
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; Maintain Aging Researchteam, CERPOP, Université de Toulouse, Inserm, Université Paul Sabatier, Toulouse, France
| | - Philipe de Souto Barreto
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; Maintain Aging Researchteam, CERPOP, Université de Toulouse, Inserm, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
68
|
Mérian J, Ghezali L, Trenteseaux C, Duparc T, Beuzelin D, Bouguetoch V, Combes G, Sioufi N, Martinez LO, Najib S. Intermittent Fasting Resolves Dyslipidemia and Atherogenesis in Apolipoprotein E-Deficient Mice in a Diet-Dependent Manner, Irrespective of Sex. Cells 2023; 12:533. [PMID: 36831200 PMCID: PMC9953823 DOI: 10.3390/cells12040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
In humans and animal models, intermittent fasting (IF) interventions promote body weight loss, improve metabolic health, and are thought to lower cardiovascular disease risk. However, there is a paucity of reports on the relevance of such nutritional interventions in the context of dyslipidemia and atherosclerotic cardiovascular diseases. The present study assessed the metabolic and atheroprotective effects of intermittent fasting intervention (IF) in atherosclerosis-prone apolipoprotein E-deficient (Apoe-/-) mice. Groups of male and female Apoe-/- mice were fed a regular (chow) or atherogenic (high-fat, high-cholesterol, HFCD) diet for 4 months, either ad libitum or in an alternate-day fasting manner. The results show that IF intervention improved glucose and lipid metabolism independently of sex. However, IF only decreased body weight gain in males fed chow diet and differentially modulated adipose tissue parameters and liver steatosis in a diet composition-dependent manner. Finally, IF prevented spontaneous aortic atherosclerotic lesion formation in mice fed chow diet, irrespective of sex, but failed to reduce HFCD-diet-induced atherosclerosis. Overall, the current work indicates that IF interventions can efficiently improve glucose homeostasis and treat atherogenic dyslipidemia, but a degree of caution is warranted with regard to the individual sex and the composition of the dietary regimen.
Collapse
Affiliation(s)
- Jules Mérian
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Lamia Ghezali
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Charlotte Trenteseaux
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Thibaut Duparc
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Diane Beuzelin
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Vanessa Bouguetoch
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Guillaume Combes
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Nabil Sioufi
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Laurent O. Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Souad Najib
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| |
Collapse
|
69
|
Fleischman JY, Qi NR, Treutelaar MK, Britton SL, Koch LG, Li JZ, Burant CF. Intrinsic cardiorespiratory fitness modulates clinical and molecular response to caloric restriction. Mol Metab 2023; 68:101668. [PMID: 36642218 PMCID: PMC9938335 DOI: 10.1016/j.molmet.2023.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Caloric restriction (CR) is one extrinsic intervention that can improve metabolic health, and it shares many phenotypical parallels with intrinsic high cardiorespiratory fitness (CRF), including reduced adiposity, increased cardiometabolic health, and increased longevity. CRF is a highly heritable trait in humans and has been established in a genetic rat model selectively bred for high (HCR) and low (LCR) CRF, in which the HCR live longer and have reduced body weight compared to LCR. This study addresses whether the inherited high CRF phenotype occurs through similar mechanisms by which CR promotes health and longevity. METHODS We compared HCR and LCR male rats fed ad libitum (AL) or calorically restricted (CR) for multiple physiological, metabolic, and molecular traits, including running capacity at 2, 8, and 12 months; per-hour metabolic cage activity over daily cycles at 6 and 12 months; and plasma lipidomics, liver and muscle transcriptomics, and body composition after 12 months of treatment. RESULTS LCR-CR developed a physiological profile that mirrors the high-CRF phenotype in HCR-AL, including reduced adiposity and increased insulin sensitivity. HCR show higher spontaneous activity than LCR. Temporal modeling of hourly energy expenditure (EE) dynamics during the day, adjusted for body weight and hourly activity levels, suggest that CR has an EE-suppressing effect, and high-CRF has an EE-enhancing effect. Pathway analysis of gene transcripts indicates that HCR and LCR both show a response to CR that is similar in the muscle and different in the liver. CONCLUSIONS CR provides LCR a health-associated positive effect on physiological parameters that strongly resemble HCR. Analysis of whole-body EE and transcriptomics suggests that HCR and LCR show line-dependent responses to CR that may be accreditable to difference in genetic makeup. The results do not preclude the possibility that CRF and CR pathways may converge.
Collapse
Affiliation(s)
- Johanna Y Fleischman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nathan R Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Michigan Mouse Metabolic Phenotyping Center, University of Michigan, Ann Arbor, MI, USA
| | - Mary K Treutelaar
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven L Britton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Charles F Burant
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
70
|
Corbin KD, Carnero EA, Allerton TD, Tillner J, Bock CP, Luyet PP, Göbel B, Hall KD, Parsons SA, Ravussin E, Smith SR. Glucagon-like peptide-1/glucagon receptor agonism associates with reduced metabolic adaptation and higher fat oxidation: A randomized trial. Obesity (Silver Spring) 2023; 31:350-362. [PMID: 36695055 PMCID: PMC9881753 DOI: 10.1002/oby.23633] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE This study tested the hypothesis that treatment with the glucagon-like peptide-1/glucagon receptor agonist SAR425899 would lead to a smaller decrease in sleeping metabolic rate (SMR; kilocalories/day) than expected from the loss of lean and fat mass (metabolic adaptation). METHODS This Phase 1b, double-blind, randomized, placebo-controlled study was conducted at two centers in inpatient metabolic wards. Thirty-five healthy males and females with overweight and obesity (age = 36.5 ± 7.1 years) were randomized to a calorie-reduced diet (-1000 kcal/d) and escalating doses (0.06-0.2 mg/d) of SAR425899 (n = 17) or placebo (n = 18) for 19 days. SMR was measured by whole-room calorimetry. RESULTS Both groups lost weight (-3.68 ± 1.37 kg placebo; -4.83 ± 1.44 kg SAR425899). Those treated with SAR425899 lost more weight, fat mass, and fat free mass (p < 0.05) owing to a greater achieved energy deficit than planned. The SAR425899 group had a smaller reduction in body composition-adjusted SMR (p = 0.002) as compared with placebo, but not 24-hour energy expenditure. Fat oxidation and ketogenesis increased in both groups, with significantly greater increases with SAR425899 (p < 0.05). CONCLUSIONS SAR425899 led to reduced selective metabolic adaptation and increased lipid oxidation, which are believed to be beneficial for weight loss and weight-loss maintenance.
Collapse
Affiliation(s)
- Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, Florida, USA
| | - Elvis A Carnero
- AdventHealth Translational Research Institute, Orlando, Florida, USA
| | | | | | | | | | | | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Steven R Smith
- AdventHealth Translational Research Institute, Orlando, Florida, USA
| |
Collapse
|
71
|
Wang W, Liu Y, Li Y, Luo B, Lin Z, Chen K, Liu Y. Dietary patterns and cardiometabolic health: Clinical evidence and mechanism. MedComm (Beijing) 2023; 4:e212. [PMID: 36776765 PMCID: PMC9899878 DOI: 10.1002/mco2.212] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
For centuries, the search for nutritional interventions to underpin cardiovascular treatment and prevention guidelines has contributed to the rapid development of the field of dietary patterns and cardiometabolic disease (CMD). Numerous studies have demonstrated that healthy dietary patterns with emphasis on food-based recommendations are the gold standard for extending lifespan and reducing the risks of CMD and mortality. Healthy dietary patterns include various permutations of energy restriction, macronutrients, and food intake patterns such as calorie restriction, intermittent fasting, Mediterranean diet, plant-based diets, etc. Early implementation of healthy dietary patterns in patients with CMD is encouraged, but an understanding of the mechanisms by which these patterns trigger cardiometabolic benefits remains incomplete. Hence, this review examined several dietary patterns that may improve cardiometabolic health, including restrictive dietary patterns, regional dietary patterns, and diets based on controlled macronutrients and food groups, summarizing cutting-edge evidence and potential mechanisms for CMD prevention and treatment. Particularly, considering individual differences in responses to dietary composition and nutritional changes in organ tissue diversity, we highlighted the critical role of individual gut microbiota in the crosstalk between diet and CMD and recommend a more precise and dynamic nutritional strategy for CMD by developing dietary patterns based on individual gut microbiota profiles.
Collapse
Affiliation(s)
- Wenting Wang
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yanfei Liu
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yiwen Li
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Binyu Luo
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Zhixiu Lin
- Faculty of MedicineThe Chinese University of Hong KongHong Kong
| | - Keji Chen
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yue Liu
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
72
|
Du P, Wang H, Shi X, Zhang X, Zhu Y, Chen W, Zhang H, Huang Y. A comparative study to determine the effects of breed and feed restriction on glucose metabolism of chickens. ANIMAL NUTRITION 2023; 13:261-269. [PMID: 37168446 PMCID: PMC10164833 DOI: 10.1016/j.aninu.2023.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
The glucose metabolism of poultry draws wide attention as they have nearly twice the fasting blood glucose than that of mammals. To define the relationship between glucose metabolism and breed of chicken, the outcomes from different growth rate chickens showed that Arbor Acres (AA) broilers, a well-known fast-growing breed, had a lower fasting blood glucose concentration and glucose clearance rate when compared to Silky chickens, a Chinese traditional medicinal chicken with black skin and a slow growth rate. Moreover, AA broilers had a relatively slow rise in blood glucose in response to oral glucose solution than the Silky chickens on 21 and 42 d (P < 0.05), which is probably attributed to downregulated expression of pancreatic insulin (INS), and upregulated transcription of phosphoenolpyruvate carboxy kinase 1 (PCK1) and glucose transporter 2 (GLUT2) in the liver of AA broilers (P < 0.05). In response to feeding restriction from 7 to 21 d, both the fasting blood glucose and the response speed of AA broilers to oral glucose were increased on d 21 (P < 0.05), and the serum glucose concentrations after 3 weeks compensatory growth were improved by early feed restriction in AA broilers. Feed restriction could also upregulate the mRNA level of pancreatic INS on d 21 and 42, as well as decrease the expressions of PCK1, glucose-6-phosphatase catalytic (G6PC), and GLUT2 in the liver on d 21 (P < 0.05) when compared to the free feeding group. These results revealed that Silky chickens have a stronger capability to regulate glucose homeostasis than AA broilers, and feed restriction could improve the fasting blood glucose and the response to oral glucose of AA broilers.
Collapse
Affiliation(s)
- Pengfei Du
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Huanjie Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiuwen Shi
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yao Zhu
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
- Corresponding authors.
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Corresponding authors.
| |
Collapse
|
73
|
Weight Bias in Obstetrics. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2023. [DOI: 10.1007/s13669-023-00348-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
74
|
Hooshiar SH, Yazdani A, Jafarnejad S. Comparison of the effect of modified intermittent fasting and daily calorie restriction on sleep quality, anthropometric data, and body composition in women with obesity or overweight: study protocol of a randomized controlled trial. Trials 2023; 24:30. [PMID: 36647110 PMCID: PMC9843895 DOI: 10.1186/s13063-023-07070-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Sleep disturbances are common in nearly one-third of adults. Both low quality of sleep and sleep time could be related to increased obesity. An increase in visceral adipose tissue can result in the secretion of inflammatory cytokines. Inflammatory cytokines can lead to a disturbance of the sleep-wake rhythm. Therefore, weight loss may improve sleep quality and duration. Intermittent fasting diet as a popular diet reduces body weight and improves anthropometric indices. This study is performed to further investigate the effect of a modified intermittent fasting diet on sleep quality and anthropometric indices. METHODS This is an open-label randomized controlled trial to evaluate the effect of daily calorie restriction (control) and modified intermittent fasting (intervention) on sleep quality, anthropometric data, and body composition in women with obesity or overweight for 8 weeks. Fifty-six participants will be classified using stratified randomization based on body mass index (BMI) and age. Then, participants will be assigned to one of the two groups of intervention or control using the random numbers table. The sleep quality, daytime sleepiness, and insomnia will be evaluated by using the Pittsburgh Sleep Quality Index (PSQI), the Epworth Sleepiness Scale (ESS), and the Insomnia Severity Index respectively. The primary outcomes chosen for the study were as follows: the difference in sleep quality, daytime sleepiness, insomnia, BMI, fat-free mass (FFM), body fat mass, waist circumference, and waist-to-hip ratio from baseline to 8 weeks. Secondary outcomes chosen for the study were as follows: the difference in hip circumference, the visceral fat area, percent body fat, soft lean mass, skeletal muscle mass, extracellular water ratio, and total body water from baseline to 8 weeks. DISCUSSION This study will investigate the effect of intermittent fasting intervention compared with daily calorie restriction on sleep quality and anthropometric indices. The information gained will enhance our understanding of fasting interventions, which can be used to improve clinical dietary recommendations. The findings will help to disclose as yet the unknown relationship between diet and sleep quality. TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20220522054958N3. Registered on 8 July 2022. https://www.irct.ir/trial/64510 .
Collapse
Affiliation(s)
- Saeedeh Hosseini Hooshiar
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Akram Yazdani
- grid.444768.d0000 0004 0612 1049Department of Biostatistics and Epidemiology, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Sadegh Jafarnejad
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
75
|
Guo X, Su F, Gao Y, Tang L, Yu X, Zi J, Zhou Y, Wang H, Xue J, Wang X. Effects of dietary restriction on genome stability are sex and feeding regimen dependent. Food Funct 2023; 14:471-488. [PMID: 36519635 DOI: 10.1039/d2fo03138h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Preserving genome stability is essential to prevent aging and cancer. Dietary restriction (DR) is the most reproducible non-pharmacological way to improve health and extend lifespan in various species. Whether DR helps to preserve genome stability and whether this effect is altered by experimental variables remain unclear. Moreover, DR research relies heavily on experimental animals, making the development of reliable in vitro mimetics of great interest. Therefore, we tested the effects of sex and feeding regimen (time-restricted eating, alternate day fasting and calorie restriction) on genome stability in CF-1 mice and whether these effects can be recapitulated by cell culture paradigms. Here, we show that calorie restriction significantly decreases the spontaneous micronuclei (MN), a biomarker of genome instability, in bone marrow cells of females instead of males. Alternate day fasting significantly decreases cisplatin-induced MN in females instead of males. Unexpectedly, daily time-restricted eating significantly exacerbates cisplatin-induced MN in males but not in females. Additionally, we design several culture paradigms that are able to faithfully recapitulate the key effects of these DR regimens on genome stability. In particular, 30% reduction of serum, a mimetic of calorie restriction, exhibits a strong ability to decrease spontaneous and cisplatin-induced MN in immortalized human umbilical vein endothelial cells. We conclude that the effects of different DR regimens on genome stability are not universal and females from each diet regimen sustain a more stable genome than males. Our results provide novel insight into the understanding of how DR influences genome stability in a sex and regimen dependent way, and suggest that our in vitro DR mimetics could be adopted to study the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China. .,Yunnan Environmental Mutagen Society, Kunming 650500, Yunnan, China
| | - Fuping Su
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Yue Gao
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Liyan Tang
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Xixi Yu
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Jiangli Zi
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Yingshui Zhou
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Han Wang
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China. .,Yunnan Environmental Mutagen Society, Kunming 650500, Yunnan, China
| | - Jinglun Xue
- Yeda Institute of Gene and Cell Therapy, Taizhou 318000, Zhejiang, China
| | - Xu Wang
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China. .,Yunnan Environmental Mutagen Society, Kunming 650500, Yunnan, China.,Yeda Institute of Gene and Cell Therapy, Taizhou 318000, Zhejiang, China
| |
Collapse
|
76
|
Pérez-Rodríguez M, Huertas JR, Villalba JM, Casuso RA. Mitochondrial adaptations to calorie restriction and bariatric surgery in human skeletal muscle: a systematic review with meta-analysis. Metabolism 2023; 138:155336. [PMID: 36302454 DOI: 10.1016/j.metabol.2022.155336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We performed a meta-analysis to determine the changes induced by calorie restriction (CR) and bariatric surgery on human skeletal muscle mitochondria. METHODS A systematic search of Medline and Web of Science was conducted. Controlled trials exploring CR (≥14 days) and mitochondrial function and/or content assessment were included. Moreover, studies analyzing weight loss following gastric surgery were included for comparison purposes. Human muscle data from 28 studies assessing CR (520 muscle samples) and from 10 studies assessing bariatric surgery (155 muscle samples) were analyzed in a random effect meta-analysis with three a priori chosen covariates. MAIN RESULTS We report a decrease (p < 0.05) (mean (95 % CI)) in maximal mitochondrial state 3 respiration in response to CR (-0.44 (-0.85, -0.03)) but not in response to surgery (-0.33 (-1.18, 0.52)). No changes in mitochondrial content were reported after CR (-0.05 (-0.12, 0.13)) or in response to surgery (0.23 (-0.05, 0.52)). Moreover, data from CR subjects showed a reduction in complex IV (CIV) activity (-0.29 (-0.56, -0.03)) but not in CIV content (-0.21 (-0.63, 0.22)). Similar results were obtained when the length of the protocol, the initial body mass index, and the estimated energy deficit were included in the model as covariates. CONCLUSION The observation of reduced maximal mitochondrial state 3, uncoupled respiration, and CIV activity without altering mitochondrial content suggests that, in human skeletal muscle, CR mainly modulates intrinsic mitochondrial function.
Collapse
Affiliation(s)
- Miguel Pérez-Rodríguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, and ceiA3Campus of International Excellence in Agrifood, Spain
| | | | - José M Villalba
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, and ceiA3Campus of International Excellence in Agrifood, Spain
| | - Rafael A Casuso
- Department of Physiology, University of Granada, Spain; Department of Health Sciences, Universidad Loyola Andalucía, Spain.
| |
Collapse
|
77
|
Haghshenas L, Nabi-Afjadi M, Zalpoor H, Bakhtiyari M, Marotta F. Energy Restriction on Cellular and Molecular Mechanisms in Aging. EVIDENCE-BASED FUNCTIONAL FOODS FOR PREVENTION OF AGE-RELATED DISEASES 2023:297-323. [DOI: 10.1007/978-981-99-0534-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
78
|
Forte M, Rodolico D, Ameri P, Catalucci D, Chimenti C, Crotti L, Schirone L, Pingitore A, Torella D, Iacovone G, Valenti V, Schiattarella GG, Perrino C, Sciarretta S. Molecular mechanisms underlying the beneficial effects of exercise and dietary interventions in the prevention of cardiometabolic diseases. J Cardiovasc Med (Hagerstown) 2022; 24:e3-e14. [PMID: 36729582 DOI: 10.2459/jcm.0000000000001397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cardiometabolic diseases still represent a major cause of mortality worldwide. In addition to pharmacological approaches, lifestyle interventions can also be adopted for the prevention of these morbid conditions. Lifestyle changes include exercise and dietary restriction protocols, such as calorie restriction and intermittent fasting, which were shown to delay cardiovascular ageing and elicit health-promoting effects in preclinical models of cardiometabolic diseases. Beneficial effects are mediated by the restoration of multiple molecular mechanisms in heart and vessels that are compromised by metabolic stress. Exercise and dietary restriction rescue mitochondrial dysfunction, oxidative stress and inflammation. They also improve autophagy. The result of these effects is a marked improvement of vascular and heart function. In this review, we provide a comprehensive overview of the molecular mechanisms involved in the beneficial effects of exercise and dietary restriction in models of diabetes and obesity. We also discuss clinical studies and gap in animal-to-human translation.
Collapse
Affiliation(s)
- Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico.,Department of Internal Medicine, University of Genova, Genova
| | - Daniele Catalucci
- Humanitas Research Hospital, IRCCS, Rozzano.,National Research Council, Institute of Genetic and Biomedical Research - UOS, Milan
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital.,Department of Medicine and Surgery, Università Milano-Bicocca, Milan
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | - Annachiara Pingitore
- Department of General and Specialistic Surgery 'Paride Stefanini' Sapienza University of Rome
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro
| | | | | | - Gabriele G Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Sebastiano Sciarretta
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | | |
Collapse
|
79
|
Murphy A, Vyavahare S, Kumar S, Lee TJ, Sharma A, Adusumilli S, Hamrick M, Isales CM, Fulzele S. Dietary interventions and molecular mechanisms for healthy musculoskeletal aging. Biogerontology 2022; 23:681-698. [PMID: 35727468 DOI: 10.1007/s10522-022-09970-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Over the past decade, extensive efforts have focused on understanding age-associated diseases and how to prolong a healthy lifespan. The induction of dietary protocols such as caloric restriction (CR) and protein restriction (PR) has positively affected a healthy lifespan. These intervention ideas (nutritional protocols) have been the subject of human cohort studies and clinical trials to evaluate their effectiveness in alleviating age-related diseases (such as type II diabetes, cardiovascular disease, obesity, and musculoskeletal fragility) and promoting human longevity. This study summarizes the literature on the nutritional protocols, emphasizing their impacts on bone and muscle biology. In addition, we analyzed several CR studies using Gene Expression Omnibus (GEO) database and identified common transcriptome changes to understand the signaling pathway involved in musculoskeletal tissue. We identified nine novel common genes, out of which five were upregulated (Emc3, Fam134b, Fbxo30, Pip5k1a, and Retsat), and four were downregulated (Gstm2, Per2, Fam78a, and Sel1l3) with CR in muscles. Gene Ontology enrichment analysis revealed that CR regulates several signaling pathways (e.g., circadian gene regulation and rhythm, energy reserve metabolic process, thermogenesis) involved in energy metabolism. In conclusion, this study summarizes the beneficiary role of CR and identifies novel genes and signaling pathways involved in musculoskeletal biology.
Collapse
Affiliation(s)
- Andrew Murphy
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Sagar Vyavahare
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Sandeep Kumar
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | | | - Mark Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA.,Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA.,Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA. .,Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA. .,Center for Healthy Aging, Augusta University, Augusta, GA, USA.
| |
Collapse
|
80
|
Gerving C, Lasater R, Starling J, Ostendorf DM, Redman LM, Estabrooks C, Cummiskey K, Antonetti V, Thomas DM. Predicting energy intake in adults who are dieting and exercising. Int J Obes (Lond) 2022; 46:2095-2101. [PMID: 35987955 PMCID: PMC9691568 DOI: 10.1038/s41366-022-01205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND When a lifestyle intervention combines caloric restriction and increased physical activity energy expenditure (PAEE), there are two components of energy balance, energy intake (EI) and physical activity energy expenditure (PAEE), that are routinely misreported and expensive to measure. Energy balance models have successfully predicted EI if PAEE is known. Estimating EI from an energy balance model when PAEE is not known remains an open question. OBJECTIVE The objective was to evaluate the performance of an energy balance differential equation model to predict EI in an intervention that includes both calorie restriction and increases in PAEE. DESIGN The Antonetti energy balance model that predicts body weight trajectories during weight loss was solved and inverted to estimate EI during weight loss. Using data from a calorie restriction study that included interventions with and without prescribed PAEE, we tested the validity of the Antonetti weight predictions against measured weight and the Antonetti EI model against measured EI using the intake-balance method at 168 days. We then evaluated the predicted EI from the model against measured EI in a study that prescribed both calorie restriction and increased PAEE. RESULTS Compared with measured body weight at 168 days, the mean (±SD) model error was 1.30 ± 3.58 kg. Compared with measured EI at 168 days, the mean EI (±SD) model error in the intervention that prescribed calorie restriction and did not prescribe increased PAEE, was -84.9 ± 227.4 kcal/d. In the intervention that prescribed calorie restriction combined with increased PAEE, the mean (±SD) EI model error was -155.70 ± 205.70 kcal/d. CONCLUSION The validity of the newly developed EI model was supported by experimental observations and can be used to determine EI during weight loss.
Collapse
Affiliation(s)
- Corey Gerving
- Department of Physics and Nuclear Engineering, United States Military Academy, West Point, NY, 10996, USA
| | - Robert Lasater
- Department of Mathematical Sciences, United States Military Academy, West Point, NY, US
| | - James Starling
- Department of Mathematical Sciences, United States Military Academy, West Point, NY, US
| | - Danielle M Ostendorf
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Kevin Cummiskey
- Department of Mathematical Sciences, United States Military Academy, West Point, NY, US
| | - Vincent Antonetti
- Department of Mechanical Engineering, Manhattan College, New York City, NY, USA
| | - Diana M Thomas
- Department of Mathematical Sciences, United States Military Academy, West Point, NY, US.
| |
Collapse
|
81
|
Fang Z, Wang Z, Cao X, Wang ZM, Yu C, Ju W, Li D. Association between energy intake patterns and outcome in US heart failure patients. Front Cardiovasc Med 2022; 9:1019797. [PMID: 36440037 PMCID: PMC9681902 DOI: 10.3389/fcvm.2022.1019797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/19/2022] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The association between dietary energy patterns, calories, and the outcomes of heart failure (HF) is still unclear. OBJECTIVES To evaluate the proper energy intake patterns and daily calorie intake in patients with heart failure among US adults. METHODS The data were derived from the 2001-2014 National Health and Nutrition Examination Survey (NHANES). A calorie intake pattern variable was created using latent class analysis (LCA) based on the calorie ratio of three major nutrients. Cox proportional hazard regression models were used to evaluate the hazard ratios (HR) and 95% confidence intervals (CI) of the association between calorie intake and energy patterns. The primary endpoint was all-cause mortality. RESULTS Among 991 participants (mean age 67.3 ± 12.9 years; 55.7% men) who suffered from heart failure; the median calorie intake was 1,617 kcal/day [interquartile range (IQR): 1,222-2,154 kcal/day]. In the multivariable-adjusted model, moderate malnutrition was more frequent to death (HR: 2.15; 95% CI: 1.29-3.56). Low-carbohydrate pattern (LCP) and median-carbohydrate pattern (MCP) had lower risks of death compared to high-carbohydrate pattern (HCP) (LCP: HR: 0.76; 95% CI: 0.59-0.97; MCP: HR: 0.77; 95% CI: 0.60-0.98). No association between different amounts of calorie intake and all-cause mortality was found. There was an adjusted significant interaction between calorie intake and energy intake patterns (p = 0.019). There was a linear relationship between energy intake through HCP and all-cause mortality (p for non-linear = 0.557). A non-linear relationship between energy intake through MCP and all-cause mortality (p for non-linear = 0.008) was observed. CONCLUSION Both LCP and MCP, compared to HCP, were associated with better outcomes in the HF population. The relationship between energy intake and all-cause death may be influenced by energy intake patterns in HF patients.
Collapse
Affiliation(s)
- Zhang Fang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhe Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodi Cao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ze-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanchuan Yu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weizhu Ju
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dianfu Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
82
|
Yoon CY, Mason SM, Loth K, Jacobs DR. Adverse childhood experiences and disordered eating among middle-aged adults: Findings from the coronary artery risk development in young adults study. Prev Med 2022; 162:107124. [PMID: 35787840 DOI: 10.1016/j.ypmed.2022.107124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Adverse childhood experiences (ACEs) include childhood abuse, neglect, and household substance abuse. Childhood abuse is a risk factor for disordered eating (DEB). Less well established are associations of childhood neglect and household substance abuse with DEB, and little research has examined ACE associations with DEB in middle adulthood. The objective of this study was to examine associations between ACEs and DEBs among middle-aged adults and examine sex differences. ACEs prior to age 18 were retrospectively assessed in the Coronary Artery Risk Development in Young Adults study in 2000-2001 (N = 3340, ages 32 to 46). DEB outcomes (i.e., concerns about weight and shape, anxiety about eating or food, unhealthy weight control behaviors, chronic dieting, overeating, and binge eating) were assessed in 1995-1996 (ages 27 to 41). Modified Poisson regressions estimated risk ratios (RRs) for associations of a history of any ACE, each ACE, and cumulative ACEs with DEB outcomes. Among women, emotional abuse, physical neglect, and emotional neglect were each modestly associated with most DEBs (RRs = 1.21-1.35, 1.21-1.45, and 1.23-1.41 across DEBs, respectively) after adjustment for sociodemographic variables, BMI, and depressive symptoms. A cumulative ACE score was associated with all DEBs in a stepwise manner (p for trend ≤0.05) except concerns about weight and shape and overeating. Among men, emotional abuse was most consistently related to the majority of DEBs (RRs = 1.23-1.92); household substance abuse was modestly associated with overeating (RR = 1.26, 95% CI = 1.04-1.53). ACEs were cumulatively associated with unhealthy weight control behaviors, overeating, and binge eating (p for trend <0.01).
Collapse
Affiliation(s)
- Cynthia Y Yoon
- University of Minnesota, School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN 55454, USA; University of Houston, Department of Health and Human Performance, Houston, TX 77204, USA.
| | - Susan M Mason
- University of Minnesota, School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN 55454, USA
| | - Katie Loth
- University of Minnesota, Department of Family Medicine and Community Health, Minneapolis, MN 55454, USA
| | - David R Jacobs
- University of Minnesota, School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN 55454, USA
| |
Collapse
|
83
|
Bhasin S. Time-Restricted Eating to Improve Health-A Promising Idea in Need of Stronger Clinical Trial Evidence. JAMA Intern Med 2022; 182:963-964. [PMID: 35939306 DOI: 10.1001/jamainternmed.2022.3038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shalender Bhasin
- Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts.,Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Boston, Massachusetts.,Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
84
|
Ehrlicher SE, Chui TK, Clina JG, Ellison KM, Sayer RD. The Data Behind Popular Diets for Weight Loss. Med Clin North Am 2022; 106:739-766. [PMID: 36154698 DOI: 10.1016/j.mcna.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both scientific evidence and popular diet trends have sought to identify the ideal diet for weight loss with strategies focused on either restricting carbohydrates or fat. While there is a strong physiologic rationale for either carbohydrate restriction or fat restriction to achieve a calorie deficit needed for weight loss, evidence from randomized controlled trials suggest either type of diet is effective for weight loss. The level of adherence, rather than macronutrient content, is the driver of successful weight loss.
Collapse
Affiliation(s)
- Sarah E Ehrlicher
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 256, 1675 University Boulevard, Birmingham, AL 35294, USA.
| | - Tsz-Kiu Chui
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 630, 1675 University Blvd, Birmingham, AL 35294, USA
| | - Julianne G Clina
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 630, 1675 University Blvd, Birmingham, AL 35294, USA
| | - Katie M Ellison
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 630, 1675 University Blvd, Birmingham, AL 35294, USA
| | - R Drew Sayer
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 634, 1675 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
85
|
Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat Rev Cancer 2022; 22:452-466. [PMID: 35614234 DOI: 10.1038/s41568-022-00485-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells acquire distinct metabolic preferences based on their tissue of origin, genetic alterations and degree of interaction with systemic hormones and metabolites. These adaptations support the increased nutrient demand required for increased growth and proliferation. Diet is the major source of nutrients for tumours, yet dietary interventions lack robust evidence and are rarely prescribed by clinicians for the treatment of cancer. Well-controlled diet studies in patients with cancer are rare, and existing studies have been limited by nonspecific enrolment criteria that inappropriately grouped together subjects with disparate tumour and host metabolic profiles. This imprecision may have masked the efficacy of the intervention for appropriate candidates. Here, we review the metabolic alterations and key vulnerabilities that occur across multiple types of cancer. We describe how these vulnerabilities could potentially be targeted using dietary therapies including energy or macronutrient restriction and intermittent fasting regimens. We also discuss recent trials that highlight how dietary strategies may be combined with pharmacological therapies to treat some cancers, potentially ushering a path towards precision nutrition for cancer.
Collapse
Affiliation(s)
- Samuel R Taylor
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, NY, USA
| | - John N Falcone
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
86
|
Casper RC. Restlessness and an Increased Urge to Move (Drive for Activity) in Anorexia Nervosa May Strengthen Personal Motivation to Maintain Caloric Restriction and May Augment Body Awareness and Proprioception: A Lesson From Leptin Administration in Anorexia Nervosa. Front Psychol 2022; 13:885274. [PMID: 35959022 PMCID: PMC9359127 DOI: 10.3389/fpsyg.2022.885274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Anorexia nervosa (AN), a disorder of voluntary food restriction leading to severe weight loss in female adolescents, remains an enigma. In particular, the appropriation of the starved thin body into the self-concept in AN is a process insufficiently researched and still poorly understood. Healthy humans undergoing starvation experience a slowing of movements and avoid voluntary exercise. By contrast, AN tends to be not infrequently associated with voluntary, sometimes excessive and/or compulsive exercise. Such deliberate exercise, not reported in starvation, seems to be facilitated by an increased urge for movement and physical restlessness, particular to AN. The increased urge to move would reflect spontaneous daily activity, the energy expended for everything that is not sleeping, eating, or voluntary exercise. Our hypothesis is that the starvation-induced increased urge to move and restlessness may promote the development of AN. Reversal of the fasting state, by either high caloric food or by leptin administration, would be expected to reduce restlessness and the increased urge to move along with improvement in other symptoms in AN. This review explores the idea that such restless activation in AN, in itself and through accelerating body weight loss, might foster the integration of the starving body into the self-concept by (1) enhancing the person’s sense of self-control and sense of achievement and (2) through invigorating proprioception and through intensifying the perception of the changing body shape. (3) Tentative evidence from studies piloting leptin administration in chronic AN patients which support this hypothesis is reviewed. The findings show that short term administration of high doses of leptin indeed mitigated depressive feelings, inner tension, intrusive thoughts of food, and the increased urge to be physically active, easing the way to recovery, yet had little influence on the patients’ personal commitment to remain at a low weight. Full recovery then requires resolution of the individuals’ personal unresolved psychological conflicts through psychotherapy and frequently needs specialized treatment approaches to address psychiatric co-morbidities. AN might be conceptualized as a hereditary form of starvation resistance, facilitated by the effects of starvation on fitness allowing for an exceptionally intense personal commitment to perpetuate food restriction.
Collapse
|
87
|
Essential Amino Acids-Rich Diet Decreased Adipose Tissue Storage in Adult Mice: A Preliminary Histopathological Study. Nutrients 2022; 14:nu14142915. [PMID: 35889872 PMCID: PMC9316883 DOI: 10.3390/nu14142915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Excess body adipose tissue accumulation is a common and growing health problem caused by an unbalanced diet and/or junk food. Although the effects of dietary fat and glucose on lipid metabolism regulation are well known, those of essential amino acids (EAAs) have been poorly investigated. Our aim was to study the influence of a special diet containing all EAAs on retroperitoneal white adipose tissue (rpWAT) and interscapular brown adipose tissue (BAT) of mice. Methods: Two groups of male Balb/C mice were used. The first was fed with a standard diet. The second was fed with an EAAs-rich diet (EAARD). After 3 weeks, rpWAT and BAT were removed and prepared for subsequent immunohistochemical analysis. Results: EAARD, although consumed significantly less, moderately reduced body weight and BAT, but caused a massive reduction in rpWAT. Conversely, the triceps muscle increased in mass. In rpWAT, the size of adipocytes was very small, with increases in leptin, adiponectin and IL-6 immunostaining. In BAT, there was a reduction in lipid droplet size and a simultaneous increase in UCP-1 and SIRT-3. Conclusions: A diet containing a balanced mixture of free EAA may modulate body adiposity in mice, promoting increased thermogenesis.
Collapse
|
88
|
Dakic T, Jevdjovic T, Vujovic P, Mladenovic A. The Less We Eat, the Longer We Live: Can Caloric Restriction Help Us Become Centenarians? Int J Mol Sci 2022; 23:ijms23126546. [PMID: 35742989 PMCID: PMC9223351 DOI: 10.3390/ijms23126546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Striving for longevity is neither a recent human desire nor a novel scientific field. The first article on this topic was published in 1838, when the average human life expectancy was approximately 40 years. Although nowadays people on average live almost as twice as long, we still (and perhaps more than ever) look for new ways to extend our lifespan. During this seemingly endless journey of discovering efficient methods to prolong life, humans were enthusiastic regarding several approaches, one of which is caloric restriction (CR). Where does CR, initially considered universally beneficial for extending both lifespan and health span, stand today? Does a lifelong decrease in food consumption represent one of the secrets of centenarians’ long and healthy life? Do we still believe that if we eat less, we will live longer? This review aims to summarize the current literature on CR as a potential life-prolonging intervention in humans and discusses metabolic pathways that underlie this effect.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Aleksandra Mladenovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul.D. Stefana 142, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
89
|
Leisegang K. Oxidative Stress in Men with Obesity, Metabolic Syndrome and Type 2 Diabetes Mellitus: Mechanisms and Management of Reproductive Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:237-256. [PMID: 35641873 DOI: 10.1007/978-3-030-89340-8_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species (ROS) are critical physiological mediators of cellular function, including male fertility. When ROS exceed antioxidant regulation, oxidative stress occurs which is detrimental to cellular function. Oxidative stress has been found to be a central mediator of obesity, metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM), as well as with male infertility. Human studies have correlated testicular oxidative stress in obese males, and animal studies have further provided insight into potential mechanisms of action. Management of oxidative stress is not well defined. Appropriate nutrition and exercise can be recommended for all diabetic patients, and weight loss for obese patients with MetS and T2DM. Consideration of dietary supplements including micronutrients, antioxidants or medicinal herbs are recommended. Metformin may also offer benefits on testicular oxidative stress and fertility parameters. Significantly more research on causation, mechanisms, clinical assessments and appropriate management of infertility on obesity, MetS and T2DM is still required.
Collapse
Affiliation(s)
- Kristian Leisegang
- School of Natural Medicine, University of the Western Cape, Bellville, Cape Town, South Africa.
| |
Collapse
|
90
|
Koehler FC, Fu CY, Späth MR, Hoyer-Allo KJR, Bohl K, Göbel H, Lackmann JW, Grundmann F, Osterholt T, Gloistein C, Steiner JD, Antebi A, Benzing T, Schermer B, Schwarz G, Burst V, Müller RU. A systematic analysis of diet-induced nephroprotection reveals overlapping changes in cysteine catabolism. Transl Res 2022; 244:32-46. [PMID: 35189406 DOI: 10.1016/j.trsl.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/28/2023]
Abstract
Caloric Restriction (CR) extends lifespan and augments cellular stress-resistance from yeast to primates, making CR an attractive strategy for organ protection in the clinic. Translation of CR to patients is complex, due to problems regarding adherence, feasibility, and safety concerns in frail patients. Novel tailored dietary regimens, which modulate the dietary composition of macro- and micronutrients rather than reducing calorie intake promise similar protective effects and increased translatability. However, a direct head-to-head comparison to identify the most potent approach for organ protection, as well as overlapping metabolic consequences have not been performed. We systematically analyzed six dietary preconditioning protocols - fasting mimicking diet (FMD), ketogenic diet (KD), dietary restriction of branched chained amino acids (BCAA), two dietary regimens restricting sulfur-containing amino acids (SR80/100) and CR - in a rodent model of renal ischemia-reperfusion injury (IRI) to quantify diet-induced resilience in kidneys. Of the administered diets, FMD, SR80/100 and CR efficiently protect from kidney damage after IRI. Interestingly, these approaches show overlapping changes in oxidative and hydrogen sulfide (H2S)-dependent cysteine catabolism as a potential common mechanism of organ protection.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Chun-Yu Fu
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Osterholt
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Claas Gloistein
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Joachim D Steiner
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Günter Schwarz
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
91
|
Ožvald I, Božičević D, Duh L, Vinković Vrček I, Domijan AM, Milić M. Changes in anthropometric, biochemical, oxidative, and DNA damage parameters after 3-weeks-567-kcal-hospital-controlled-VLCD in severely obese patients with BMI ≥ 35 kg m -2. Clin Nutr ESPEN 2022; 49:319-327. [PMID: 35623833 DOI: 10.1016/j.clnesp.2022.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND & AIMS Severe obesity and its comorbidities relate to increased genomic instability/cancer risk. Obesity in Croatia is rapidly increasing, and long diets are sometimes the reason for obese to quit health improvement programs. A shorter diet with more strict calorie reduction could also lead to weight reduction and health improvements, but data are scarce. We tested for the first time if a very low-calorie diet (VLCD) can improve anthropometric, biochemical and genomic stability parameters in severely obese with BMI ≥ 35 kg m-2. METHODS 22 participants were chosen among those regularly attending the hospital for obesity control, with no other previous treatment for bodyweight reduction. Under 24 h medical surveillance, patients received 3-weeks-567-kcal-hospital-controlled-VLCD composed of 50-60% complex carbohydrates, 20-25% proteins, and 25-30% fat, with the attention to food carbo-glycemic index, in 3 meals freshly prepared in hospital. We analyzed changes in body weight, BMI, basal metabolism rate, waist-hip ratio, visceral fat level, body fat mass, percent body fat, skeletal muscle mass, basal metabolism, energy intake, lipid profile, thyroid hormones, TSH, and genomic instability (alkaline and oxidative FPG comet assay) before and on the last VLCD day. RESULTS Diet caused BMI reduction (in average 3-4 BMI units' loss), excessive weight loss (between 10 and 35%), significant weight loss (average 9 kg, range 4.8-14.4 kg) and a significant decrease in glucose, insulin, urea, cholesterol, HDL-c, LDL-c, oxidative (FPG) and DNA damage (alkaline comet assay) levels. CONCLUSIONS The diet can lead to ≥10% excessive weight loss, significant health, and genomic stability improvement, and keep severely obese interest in maintaining healthy habits. The study was registered at ClinicalTrials.gov as NCT05007171 (10.08.2021).
Collapse
Affiliation(s)
- Ivan Ožvald
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
| | - Dragan Božičević
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
| | - Lidija Duh
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
| | - Ivana Vinković Vrček
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health (IMROH), 10 001 Zagreb, Croatia
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health (IMROH), 10 001 Zagreb, Croatia.
| |
Collapse
|
92
|
Liu X, Jin Z, Summers S, Derous D, Li M, Li B, Li L, Speakman JR. Calorie restriction and calorie dilution have different impacts on body fat, metabolism, behavior, and hypothalamic gene expression. Cell Rep 2022; 39:110835. [PMID: 35584669 DOI: 10.1016/j.celrep.2022.110835] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/14/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Caloric restriction is a robust intervention to increase lifespan. Giving less food (calorie restriction [CR]) or allowing free access to a diluted diet with indigestible components (calorie dilution [CD]) are two methods to impose restriction. CD does not generate the same lifespan effect as CR. We compare responses of C57BL/6 mice with equivalent levels of CR and CD. The two groups have different responses in fat loss, circulating hormones, and metabolic rate. CR mice are hungrier, as assessed by behavioral assays. Although gene expression of Npy, Agrp, and Pomc do not differ between CR and CD groups, CR mice had a distinctive hypothalamic gene-expression profile with many genes related to starvation upregulated relative to CD. While both result in lower calorie intake, CR and CD are not equivalent procedures. Increased hunger under CR supports the hypothesis that hunger signaling is a key process mediating the benefits of CR.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC; Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg 85764, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Technische Universität München, Ismaningerstraße 22, 81675 München, Germany
| | - Zengguang Jin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Stephanie Summers
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC
| | - Davina Derous
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC
| | - Min Li
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC; CAS Center of Excellence in Animal Evolution and Genetics, Kunming, PRC.
| |
Collapse
|
93
|
Nutritional quality of calorie restricted diets in the CALERIE™ 1 trial. Exp Gerontol 2022; 165:111840. [PMID: 35643360 PMCID: PMC9624012 DOI: 10.1016/j.exger.2022.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim was to determine the nutritional adequacy of calorie restricted (CR) diets during CR interventions up to 12 months. METHODS The Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE™) phase 1 trial consisted of 3 single-site studies to test the feasibility and effectiveness of CR in adults without obesity. After baseline assessments, participants who were randomized to a CR intervention received education and training from registered dietitians on how to follow a healthful CR diet. Food diaries were completed at baseline and during the CR interventions (~6, 9, and 12 months) when participants were self-selecting CR diets. Diaries were analyzed for energy, macronutrients, fiber, 11 vitamins, and 9 minerals. Nutritional adequacy was defined by sex- and age-specific Estimated Average Requirement (EAR) or Adequate Intake (AI) criteria for each nutrient. Diet quality was evaluated using the PANDiet diet quality index. RESULTS Eighty-eight CR participants (67% women, age 40 ± 9 y, BMI 27.7 ± 1.5 kg/m2) were included in the analysis. Dietary intake of fiber and most vitamins and minerals increased during CR. More than 90% of participants achieved 100% of EAR or AI during CR for 2 of 4 macronutrients (carbohydrate and protein), 6 of 11 vitamins (A, B1, B2, B3, B6, B12), and 6 of 9 minerals assessed (copper, iron, phosphorus, selenium, sodium, zinc). Nutrients for which <90% of participants achieved adequacy included fiber, omega-3 fatty acids, vitamins B5, B9, C, E, and K, and the minerals calcium, magnesium, and potassium. The PANDiet diet quality index improved from 72.9 ± 6.0% at baseline to 75.7 ± 5.2% during CR (p < 0.0001). CONCLUSION Long-term, calorie-restricted diets were nutritionally equal or superior to baseline ad libitum diets among adults without obesity. Our results support modest calorie restriction as a safe strategy to promote healthy aging without compromising nutritional adequacy or diet quality.
Collapse
|
94
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
95
|
Rachakatla A, Kalashikam RR. Calorie Restriction-Regulated Molecular Pathways and Its Impact on Various Age Groups: An Overview. DNA Cell Biol 2022; 41:459-468. [PMID: 35451872 DOI: 10.1089/dna.2021.0922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Calorie restriction (CR) if planned properly with regular exercise at different ages can result in healthy weight loss. CR can also have different beneficial effects on improving lifespan and decreasing the age-associated diseases by regulating physiological, biochemical, and molecular markers. The different pathways regulated by CR include:(1) AMP-activated protein kinase (AMPK), which involves PGC-1α, SIRT1, and SIRT3. AMPK also effects myocyte enhancer factor 2 (MEF2), peroxisome proliferator-activated receptor delta, and peroxisome proliferator-activated receptor alpha, which are involved in mitochondrial biogenesis and lipid oxidation; (2) Forkhead box transcription factor's signaling is related to the DNA repair, lipid metabolism, protection of protein structure, autophagy, and resistance to oxidative stress; (3) Mammalian target of rapamycin (mTOR) signaling, which involves key factors, such as S6 protein kinase-1 (S6K1), mTOR complex-1 (mTORC1), and 4E-binding protein (4E-BP). Under CR conditions, AMPK activation and mTOR inhibition helps in the activation of Ulk1 complex along with the acetyltransferase Mec-17, which is necessary for autophagy; (4) Insulin-like growth factor-1 (IGF-1) pathway downregulation protects against cancer and slows the aging process; (5) Nuclear factor kappa B pathway downregulation decreases the inflammation; and (6) c-Jun N-terminal kinase and p38 kinase regulation as a response to the stress. The acute and chronic CR both shows antidepression and anxiolytic action by effecting ghrelin/GHS-R1a signaling. CR also regulates GSK3β kinase and protects against age-related brain atrophy. CR at young age may show many deleterious effects by effecting different mechanisms. Parental CR before or during conception will also affect the health and development of the offspring by causing many epigenetic modifications that show transgenerational transmission. Maternal CR is associated with intrauterine growth retardation effecting the offspring in their adulthood by developing different metabolic syndromes. The epigenetic changes with response to paternal food supply also linked to offspring health. CR at middle and old age provides a significant preventive impact against the development of age-associated diseases.
Collapse
|
96
|
Justice JN, Pajewski NM, Espeland MA, Brubaker P, Houston DK, Marcovina S, Nicklas BJ, Kritchevsky SB, Kitzman DW. Evaluation of a blood-based geroscience biomarker index in a randomized trial of caloric restriction and exercise in older adults with heart failure with preserved ejection fraction. GeroScience 2022; 44:983-995. [PMID: 35013909 PMCID: PMC9135899 DOI: 10.1007/s11357-021-00509-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Intermediate endpoints are needed to evaluate the effect of interventions targeting the biology of aging in clinical trials. A working group identified five blood-based biomarkers that may serve such a purpose as an integrated index. We evaluated the responsiveness of the panel to caloric restriction or aerobic exercise in the context of a randomized clinical trial conducted in patients with heart failure with preserved ejection fraction (HFpEF) with obese phenotype who were predominantly female. Obese HFpEF is highly prevalent in women, and is a geriatric syndrome whose disease pathology is driven by non-cardiac factors and shared drivers of aging. We measured serum Interleukin-6, TNF-α-receptor-I, growth differentiating factor-15, cystatin C, and N-terminal pro-b-type natriuretic peptide at baseline and after 20 weeks in older participants with stable obese HFpEF participating in a randomized, controlled, 2 × 2 factorial trial of caloric restriction and/or aerobic exercise. We calculated a composite biomarker index, summing baseline quintile scores for each biomarker, and analyzed the effect of the interventions on the index and individual biomarkers and their associations with changes in physical performance. This post hoc analysis included 88 randomized participants (71 women [81%]). The mean ± SD age was 66.6 ± 5.3 years, and body mass index (BMI) was 39.3 ± 6.3 kg/m2. Using mixed models, mean values of the biomarker index improved over 20 weeks with caloric restriction (- 0.82 [Formula: see text] 0.58 points, p = 0.05), but not with exercise (- 0.28 [Formula: see text] 0.59 points, p = [Formula: see text]), with no evidence of an interaction effect of CR [Formula: see text] EX [Formula: see text] time (p = 0.80) with adjustment for age, gender, and BMI. At baseline, the biomarker index was inversely correlated with 6-min walk distance, scores on the short physical performance battery, treadmill test peak workload and exercise time to exhaustion (all [Formula: see text] s = between - 0.21 and - 0.24). A reduction in the biomarker index was also associated with increased 4-m usual walk speed ([Formula: see text] s = - 0.31). Among older patients with chronic obese HFpEF, caloric restriction improved a biomarker index designed to reflect biological aging. Moreover, the index was associated with physical performance and exercise tolerance.
Collapse
Affiliation(s)
- Jamie N Justice
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Nicholas M Pajewski
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark A Espeland
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Peter Brubaker
- Department of Health and Exercise Science at Wake, Forest University in Winston-Salem, NC, USA
| | - Denise K Houston
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Barbara J Nicklas
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dalane W Kitzman
- Department of Internal Medicine, Section On Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
97
|
Mahmoud AS, E. Hassan AM, Ali AA, Hassan NM, Yousif AA, Elbashir FE, Omer A, Abdalla OM. Detection of Radiation-Induced DNA Damage in Breast Cancer Patients by Using Gamma H2AX Biomarker: A Possible Correlation with Their Body Mass Index. Genome Integr 2022; 13:1. [PMID: 35444787 PMCID: PMC9015078 DOI: 10.4103/genint.genint_1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/04/2022] Open
Abstract
Radiotherapy is one of the most important options for treating breast cancer in humans. The development of biomarkers to monitor radiosensitivity is scarce. The aim of this study is to investigate the γH2AX levels in the human blood samples 0.5 h after radiotherapy compared to the levels before radiotherapy in breast cancer patients in relation to their respective body mass index (BMI). Blood plasma samples were collected from a total of 20 breast cancer patients before and after radiotherapy to measure γH2AX levels with an antibody against γH2AX based on enzyme-linked immunosorbent assay technique. The median BMI of the patients was 30 kg/m2. γH2AX was differentially expressed in breast cancer patients before radiotherapy. γH2AX levels significantly increased in 14 patients after radiotherapy (P = 0.006), whereas γH2AX levels decreased in three patients after radiotherapy, and three patients were excluded. There was no correlation between γH2AX values after radiotherapy and BMI (P = 0.5, r = 0.1). Our results suggest that γH2AX can be used by ELISA technique to measure γH2AX in the blood plasma of breast cancer patients undergoing radiotherapy and can be considered a biomarker of radiosensitivity.
Collapse
Affiliation(s)
- Alkhansa S. Mahmoud
- Department of Radiobiology, Sudan Atomic Energy Commission, Khartoum, Sudan,Address for correspondence: Dr. Alkhansa S. Mahmoud, Department of Radiobiology, Sudan Atomic Energy Commission, Khartoum 11111, Sudan. E-mail:
| | - Ammar M. E. Hassan
- Department of Radiobiology, Sudan Atomic Energy Commission, Khartoum, Sudan
| | - Amna A. Ali
- Department of Radiobiology, Sudan Atomic Energy Commission, Khartoum, Sudan
| | - Nuha M. Hassan
- Department of Radiobiology, Sudan Atomic Energy Commission, Khartoum, Sudan
| | - Amna A. Yousif
- Department of Radiobiology, Sudan Atomic Energy Commission, Khartoum, Sudan
| | - Fawzia E. Elbashir
- Department of Medical Physics, National Cancer Institute, University of Gezira, Wad Medani, Sudan
| | - Ahmed Omer
- Radiation and Isotope Centre, Khartoum, Sudan
| | - Omer M. Abdalla
- Department of Radiobiology, Sudan Atomic Energy Commission, Khartoum, Sudan,Department of Biochemistry, Nile College, Khartoum, Sudan
| |
Collapse
|
98
|
Tacad DKM, Tovar AP, Richardson CE, Horn WF, Krishnan GP, Keim NL, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Peripheral Hormones. Adv Nutr 2022; 13:792-820. [PMID: 35191467 PMCID: PMC9156388 DOI: 10.1093/advances/nmac014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Calorie restriction (CR) is a common approach to inducing negative energy balance. Recently, time-restricted feeding (TRF), which involves consuming food within specific time windows during a 24-h day, has become popular owing to its relative ease of practice and potential to aid in achieving and maintaining a negative energy balance. TRF can be implemented intentionally with CR, or TRF might induce CR simply because of the time restriction. This review focuses on summarizing our current knowledge on how TRF and continuous CR affect gut peptides that influence satiety. Based on peer-reviewed studies, in response to CR there is an increase in the orexigenic hormone ghrelin and a reduction in fasting leptin and insulin. There is likely a reduction in glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and cholecystokinin (CCK), albeit the evidence for this is weak. After TRF, unlike CR, fasting ghrelin decreased in some TRF studies, whereas it showed no change in several others. Further, a reduction in fasting leptin, insulin, and GLP-1 has been observed. In conclusion, when other determinants of food intake are held equal, the peripheral satiety systems appear to be somewhat similarly affected by CR and TRF with regard to leptin, insulin, and GLP-1. But unlike CR, TRF did not appear to robustly increase ghrelin, suggesting different influences on appetite with a potential decrease of hunger after TRF when compared with CR. However, there are several established and novel gut peptides that have not been measured within the context of CR and TRF, and studies that have evaluated effects of TRF are often short-term, with nonuniform study designs and highly varying temporal eating patterns. More evidence and studies addressing these aspects are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Debra K M Tacad
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Ashley P Tovar
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | | | - William F Horn
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA
| | - Giri P Krishnan
- Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
99
|
Nielsen JL, Bakula D, Scheibye-Knudsen M. Clinical Trials Targeting Aging. FRONTIERS IN AGING 2022; 3:820215. [PMID: 35821843 PMCID: PMC9261384 DOI: 10.3389/fragi.2022.820215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
The risk of morbidity and mortality increases exponentially with age. Chronic inflammation, accumulation of DNA damage, dysfunctional mitochondria, and increased senescent cell load are factors contributing to this. Mechanistic investigations have revealed specific pathways and processes which, proposedly, cause age-related phenotypes such as frailty, reduced physical resilience, and multi-morbidity. Among promising treatments alleviating the consequences of aging are caloric restriction and pharmacologically targeting longevity pathways such as the mechanistic target of rapamycin (mTOR), sirtuins, and anti-apoptotic pathways in senescent cells. Regulation of these pathways and processes has revealed significant health- and lifespan extending results in animal models. Nevertheless, it remains unclear if similar results translate to humans. A requirement of translation are the development of age- and morbidity associated biomarkers as longitudinal trials are difficult and not feasible, practical, nor ethical when human life span is the endpoint. Current biomarkers and the results of anti-aging intervention studies in humans will be covered within this paper. The future of clinical trials targeting aging may be phase 2 and 3 studies with larger populations if safety and tolerability of investigated medication continues not to be a hurdle for further investigations.
Collapse
Affiliation(s)
| | | | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
100
|
Gálvez I, Navarro MC, Martín-Cordero L, Otero E, Hinchado MD, Ortega E. The Influence of Obesity and Weight Loss on the Bioregulation of Innate/Inflammatory Responses: Macrophages and Immunometabolism. Nutrients 2022; 14:nu14030612. [PMID: 35276970 PMCID: PMC8840693 DOI: 10.3390/nu14030612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is characterized by low-grade inflammation and more susceptibility to infection, particularly viral infections, as clearly demonstrated in COVID-19. In this context, immunometabolism and metabolic flexibility of macrophages play an important role. Since inflammation is an inherent part of the innate response, strategies for decreasing the inflammatory response must avoid immunocompromise the innate defenses against pathogen challenges. The concept “bioregulation of inflammatory/innate responses” was coined in the context of the effects of exercise on these responses, implying a reduction in excessive inflammatory response, together with the preservation or stimulation of the innate response, with good transitions between pro- and anti-inflammatory macrophages adapted to each individual’s inflammatory set-point in inflammatory diseases, particularly in obesity. The question now is whether these responses can be obtained in the context of weight loss by dietary interventions (low-fat diet or abandonment of the high-fat diet) in the absence of exercise, which can be especially relevant for obese individuals with difficulties exercising such as those suffering from persistent COVID-19. Results from recent studies are controversial and do not point to a clear anti-inflammatory effect of these dietary interventions, particularly in the adipose tissue. Further research focusing on the innate response is also necessary.
Collapse
Affiliation(s)
- Isabel Gálvez
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.C.N.); (L.M.-C.); (E.O.); (M.D.H.)
- Immunophysiology Research Group, Nursing Department, Faculty of Medicine and Health Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - María Carmen Navarro
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.C.N.); (L.M.-C.); (E.O.); (M.D.H.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Leticia Martín-Cordero
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.C.N.); (L.M.-C.); (E.O.); (M.D.H.)
- Immunophysiology Research Group, Nursing Department, University Center of Plasencia, University of Extremadura, 10600 Plasencia, Spain
| | - Eduardo Otero
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.C.N.); (L.M.-C.); (E.O.); (M.D.H.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - María Dolores Hinchado
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.C.N.); (L.M.-C.); (E.O.); (M.D.H.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Eduardo Ortega
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.C.N.); (L.M.-C.); (E.O.); (M.D.H.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-300
| |
Collapse
|