51
|
Barker-Haliski ML, Friedman D, French JA, White HS. Disease Modification in Epilepsy: From Animal Models to Clinical Applications. Drugs 2015; 75:749-67. [DOI: 10.1007/s40265-015-0395-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
52
|
Karacay B, Bonthius NE, Plume J, Bonthius DJ. Genetic absence of nNOS worsens fetal alcohol effects in mice. I: behavioral deficits. Alcohol Clin Exp Res 2015; 39:212-20. [PMID: 25684045 PMCID: PMC4331461 DOI: 10.1111/acer.12616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alcohol abuse during pregnancy often induces neuropsychological problems in the offspring, including learning disorders, attention deficits, and behavior problems, all of which are prominent components of fetal alcohol spectrum disorders (FASD). However, not all children who were exposed to alcohol in utero are equally affected by it. While some children have major deficits, others are spared. This unequal vulnerability is likely due largely to differences in fetal genetics. Some fetuses appear to have certain genotypes that make them much more prone to FASD. However, to date, no gene has been identified that worsens alcohol-induced brain dysfunction. Nitric oxide (NO) is a gaseous molecule that can protect developing neurons against alcohol-induced death. In the brain, NO is produced by neuronal nitric oxide synthase (nNOS). In this study, we examined whether homozygous mutation of the nNOS gene in mice worsens the behavioral deficits of developmental alcohol exposure. METHODS Wild-type and nNOS(-/-) mice received alcohol (0.0, 2.2, or 4.4 mg/g) daily over postnatal days (PDs) 4 to 9. Beginning on PD 85, the mice underwent a series of behavioral tests, including open field activity, the Morris water maze, and paired pulse inhibition. RESULTS For the wild-type mice, alcohol impaired performance only in the water maze. In contrast, for the nNOS(-/-) mice, alcohol impaired performance on all 3 tasks. Furthermore, the nNOS(-/-) mice were substantially more impaired than wild-type mice in their performance on all 3 of the behavioral tests and at both the low (2.2) and high (4.4) doses of alcohol. CONCLUSIONS Targeted disruption of the nNOS gene worsens the behavioral impact of developmental alcohol exposure and allows alcohol-induced learning problems to emerge that are not seen in wild type. This is the first demonstration that a specific genotype can interact with alcohol to worsen functional brain deficits in an animal model of FASD.
Collapse
Affiliation(s)
- Bahri Karacay
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, IA
| | - Nancy E. Bonthius
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, IA
| | - Jeffrey Plume
- Neuroscience Program, University of Iowa College of Medicine, Iowa City, IA
| | - Daniel J. Bonthius
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, IA
- Neuroscience Program, University of Iowa College of Medicine, Iowa City, IA
- Department of Neurology, University of Iowa College of Medicine, Iowa City, IA
| |
Collapse
|
53
|
Zhao Y, Xiao M, He W, Cai Z. Minocycline upregulates cyclic AMP response element binding protein and brain-derived neurotrophic factor in the hippocampus of cerebral ischemia rats and improves behavioral deficits. Neuropsychiatr Dis Treat 2015; 11:507-16. [PMID: 25750531 PMCID: PMC4348135 DOI: 10.2147/ndt.s73836] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND PURPOSE The cAMP response element binding protein (CREB) plays an important role in the mechanism of cognitive impairment and is also pivotal in the switch from short-term to long-term memory. Brain-derived neurotrophic factor (BDNF) seems a promising avenue in the treatment of cerebral ischemia injury since this neurotrophin could stimulate structural plasticity and repair cognitive impairment. Several findings have displayed that the dysregulation of the CREB-BDNF cascade has been involved in cognitive impairment. The aim of this study was to investigate the effect of cerebral ischemia on learning and memory as well as on the levels of CREB, phosphorylated CREB (pCREB), and BDNF, and to determine the effect of minocycline on CREB, pCREB, BDNF, and behavioral functional recovery after cerebral ischemia. METHODS The animal model was established by permanent bilateral occlusion of both common carotid arteries. Behavior was evaluated 5 days before decapitation with Morris water maze and open-field task. Four days after permanent bilateral occlusion of both common carotid arteries, minocycline was administered by douche via the stomach for 4 weeks. CREB and pCREB were examined by Western blotting, reverse transcription polymerase chain reaction, and immunohistochemistry. BDNF was measured by immunohistochemistry and Western blotting. RESULTS The model rats after minocycline treatment swam shorter distances than control rats before finding the platform (P=0.0007). The number of times the platform position was crossed for sham-operation rats was more than that of the model groups in the corresponding platform location (P=0.0021). The number of times the platform position was crossed for minocycline treatment animals was significantly increased compared to the model groups in the corresponding platform position (P=0.0016). CREB, pCREB, and BDNF were downregulated after permanent bilateral occlusion of both common carotid arteries in the model group. Minocycline increased the expression of CREB, pCREB, and BDNF, and improved cognitive suffered from impairment of permanent bilateral occlusion of both common carotid arteries. CONCLUSION Minocycline improved cognitive impairment from cerebral ischemia via enhancing CREB, pCREB, and BDNF activity in the hippocampus.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| |
Collapse
|
54
|
Mably AJ, Kanmert D, Mc Donald JM, Liu W, Caldarone BJ, Lemere CA, O'Nuallain B, Kosik KS, Walsh DM. Tau immunization: a cautionary tale? Neurobiol Aging 2014; 36:1316-32. [PMID: 25619661 DOI: 10.1016/j.neurobiolaging.2014.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/29/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
The amyloid β (Aβ)-protein and microtubule-associated protein, tau, are the major components of the amyloid plaques and neurofibrillary tangles that typify Alzheimer's disease (AD) pathology. As such both Aβ and tau have long been proposed as therapeutic targets. Immunotherapy, particularly targeting Aβ, is currently the most advanced clinical strategy for treating AD. However, several Aβ-directed clinical trials have failed, and there is concern that targeting this protein may not be useful. In contrast, there is a growing optimism that tau immunotherapy may prove more efficacious. Here, for the first time, we studied the effects of chronic administration of an anti-tau monoclonal antibody (5E2) in amyloid precursor protein transgenic mice. For our animal model, we chose the J20 mouse line because prior studies had shown that the cognitive deficits in these mice require expression of tau. Despite the fact that 5E2 was present and active in the brains of immunized mice and that this antibody appeared to engage with extracellular tau, 5E2-treatment did not recover age-dependent spatial reference memory deficits. These results indicate that the memory impairment evident in J20 mice is unlikely to be mediated by a form of extracellular tau recognized by 5E2. In addition to the lack of positive effect of anti-tau immunotherapy, we also documented a significant increase in mortality among J20 mice that received 5E2. Because both the J20 mice used here and tau transgenic mice used in prior tau immunotherapy trials are imperfect models of AD our results recommend extensive preclinical testing of anti-tau antibody-based therapies using multiple mouse models and a variety of different anti-tau antibodies.
Collapse
Affiliation(s)
- Alexandra J Mably
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Daniel Kanmert
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Jessica M Mc Donald
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Barbara J Caldarone
- Neurobehaviour Laboratory Core, Harvard NeuroDiscovery Center, Boston, MA, USA
| | - Cynthia A Lemere
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Brian O'Nuallain
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Kenneth S Kosik
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA.
| |
Collapse
|
55
|
Golani I, Tadmor H, Buonanno A, Kremer I, Shamir A. Disruption of the ErbB signaling in adolescence increases striatal dopamine levels and affects learning and hedonic-like behavior in the adult mouse. Eur Neuropsychopharmacol 2014; 24:1808-18. [PMID: 25451700 DOI: 10.1016/j.euroneuro.2014.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/07/2014] [Accepted: 09/24/2014] [Indexed: 11/15/2022]
Abstract
The ErbB signaling pathway has been genetically and functionally implicated in schizophrenia. Numerous findings support the dysregulation of Neuregulin (NRG) and epidermal growth factor (EGF) signaling in schizophrenia. However, it is unclear whether alterations of these pathways in the adult brain or during development are involved in the pathophysiology of schizophrenia. Herein we characterized the behavioral profile and molecular changes resulting from pharmacologically blocking the ErbB signaling pathway during a critical period in the development of decision making, planning, judgments, emotions, social cognition and cognitive skills, namely adolescence. We demonstrate that chronic administration of the pan-ErbB kinase inhibitor JNJ-28871063 (JNJ) to adolescent mice elevated striatal dopamine levels and reduced preference for sucrose without affecting locomotor activity and exploratory behavior. In adulthood, adolescent JNJ-treated mice continue to consume less sucrose and needed significantly more correct-response trials to reach the learning criterion during the discrimination phase of the T-maze reversal learning task than their saline-injected controls. In addition, JNJ mice exhibited deficit in reference memory but not in working memory as measured in the radial arm maze. Inhibition of the pathway during adolescence did not affect exploratory behavior and locomotor activity in the open field, social interaction, social memory, and reversal learning in adult mice. Our data suggest that alteration of ErbB signaling during adolescence resulted in changes in the dopaminergic systems that emerge in pathological learning and hedonic behavior in adulthood, and pinpoints the possible role of the pathway in the development of cognitive skills and motivated behavior.
Collapse
Affiliation(s)
- Idit Golani
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Hagar Tadmor
- Psychobiology Research Laboratory, Mazra Mental Health Center, Akko, Israel; Faculty of Medicine in the Galilee, Bar-Ilan University, Zefat, Israel
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Ilana Kremer
- Psychobiology Research Laboratory, Mazra Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazra Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
56
|
Xu K, Zhang Y, Wang Y, Ling P, Xie X, Jiang C, Zhang Z, Lian XY. Ginseng Rb fraction protects glia, neurons and cognitive function in a rat model of neurodegeneration. PLoS One 2014; 9:e101077. [PMID: 24971630 PMCID: PMC4074135 DOI: 10.1371/journal.pone.0101077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022] Open
Abstract
The loss and injury of neurons play an important role in the onset of various neurodegenerative diseases, while both microgliosis and astrocyte loss or dysfunction are significant causes of neuronal degeneration. Previous studies have suggested that an extract enriched panaxadiol saponins from ginseng has more neuroprotective potential than the total saponins of ginseng. The present study investigated whether a fraction of highly purified panaxadiol saponins (termed as Rb fraction) was protective for both glia and neurons, especially GABAergic interneurons, against kainic acid (KA)-induced excitotoxicity in rats. Rats received Rb fraction at 30 mg/kg (i.p.), 40 mg/kg (i.p. or saline followed 40 min later by an intracerebroventricular injection of KA. Acute hippocampal injury was determined at 48 h after KA, and impairment of hippocampus-dependent learning and memory as well as delayed neuronal injury was determined 16 to 21 days later. KA injection produced significant acute hippocampal injuries, including GAD67-positive GABAergic interneuron loss in CA1, paralbumin (PV)-positive GABAergic interneuron loss, pyramidal neuron degeneration and astrocyte damage accompanied with reactive microglia in both CA1 and CA3 regions of the hippocampus. There was also a delayed loss of GAD67-positive interneurons in CA1, CA3, hilus and dentate gyrus. Microgliosis also became more severe 21 days later. Accordingly, KA injection resulted in hippocampus-dependent spatial memory impairment. Interestingly, the pretreatment with Rb fraction at 30 or 40 mg/kg significantly protected the pyramidal neurons and GABAergic interneurons against KA-induced acute excitotoxicity and delayed injury. Rb fraction also prevented memory impairments and protected astrocytes from KA-induced acute excitotoxicity. Additionally, microglial activation, especially the delayed microgliosis, was inhibited by Rb fraction. Overall, this study demonstrated that Rb fraction protected both astrocytes and neurons, especially GABAergic interneurons, and maintained microglial homeostasis against KA-induced excitotoxicity. Therefore, Rb fraction has the potential to prevent and treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Kangning Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yufen Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Yan Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Peng Ling
- Anhui University of Chinese Medicine, Hefei, China
| | - Xin Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chenyao Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhizhen Zhang
- Ocean College, Zhejiang University, Hangzhou, China
- * E-mail: (XYL); (ZZZ)
| | - Xiao-Yuan Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (XYL); (ZZZ)
| |
Collapse
|
57
|
Morairty SR, Wilk AJ, Lincoln WU, Neylan TC, Kilduff TS. The hypocretin/orexin antagonist almorexant promotes sleep without impairment of performance in rats. Front Neurosci 2014; 8:3. [PMID: 24550767 PMCID: PMC3907703 DOI: 10.3389/fnins.2014.00003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/06/2014] [Indexed: 01/08/2023] Open
Abstract
The hypocretin receptor (HcrtR) antagonist almorexant (ALM) has potent hypnotic actions but little is known about neurocognitive performance in the presence of ALM. HcrtR antagonists are hypothesized to induce sleep by disfacilitation of wake-promoting systems whereas GABAA receptor modulators such as zolpidem (ZOL) induce sleep through general inhibition of neural activity. To test the hypothesis that less functional impairment results from HcrtR antagonist-induced sleep, we evaluated the performance of rats in the Morris Water Maze in the presence of ALM vs. ZOL. Performance in spatial reference memory (SRM) and spatial working memory (SWM) tasks were assessed during the dark period after equipotent sleep-promoting doses (100 mg/kg, po) following undisturbed and sleep deprivation (SD) conditions. ALM-treated rats were indistinguishable from vehicle (VEH)-treated rats for all SRM performance measures (distance traveled, latency to enter, time within, and number of entries into, the target quadrant) after both the undisturbed and 6 h SD conditions. In contrast, rats administered ZOL showed impairments in all parameters measured compared to VEH or ALM in the undisturbed conditions. Following SD, ZOL-treated rats also showed impairments in all measures. ALM-treated rats were similar to VEH-treated rats for all SWM measures (velocity, time to locate the platform and success rate at finding the platform within 60 s) after both the undisturbed and SD conditions. In contrast, ZOL-treated rats showed impairments in velocity and in the time to locate the platform. Importantly, ZOL rats only completed the task 23–50% of the time while ALM and VEH rats completed the task 79–100% of the time. Thus, following equipotent sleep-promoting doses, ZOL impaired rats in both memory tasks while ALM rats performed at levels comparable to VEH rats. These results are consistent with the hypothesis that less impairment results from HcrtR antagonism than from GABAA-induced inhibition.
Collapse
Affiliation(s)
- Stephen R Morairty
- SRI International, Center for Neuroscience, Biosciences Division Menlo Park, CA, USA
| | - Alan J Wilk
- SRI International, Center for Neuroscience, Biosciences Division Menlo Park, CA, USA
| | - Webster U Lincoln
- SRI International, Center for Neuroscience, Biosciences Division Menlo Park, CA, USA
| | - Thomas C Neylan
- Department of Psychiatry, SF VA Medical Center/NCIRE/University of California San Francisco, CA, USA
| | - Thomas S Kilduff
- SRI International, Center for Neuroscience, Biosciences Division Menlo Park, CA, USA
| |
Collapse
|
58
|
Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both β-amyloid production and clearance. J Neurosci 2013; 33:13138-49. [PMID: 23926267 DOI: 10.1523/jneurosci.4790-12.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) chiefly characterizes a progressively neurodegenerative disorder of the brain, and eventually leads to irreversible loss of intellectual abilities. The β-amyloid (Aβ)-induced neurodegeneration is believed to be the main pathological mechanism of AD, and Aβ production inhibition or its clearance promotion is one of the promising therapeutic strategies for anti-AD research. Here, we report that the natural product arctigenin from Arctium lappa (L.) can both inhibit Aβ production by suppressing β-site amyloid precursor protein cleavage enzyme 1 expression and promote Aβ clearance by enhancing autophagy through AKT/mTOR signaling inhibition and AMPK/Raptor pathway activation as investigated in cells and APP/PS1 transgenic AD model mice. Moreover, the results showing that treatment of arctigenin in mice highly decreased Aβ formation and senile plaques and efficiently ameliorated AD mouse memory impairment strongly highlight the potential of arctigenin in anti-AD drug discovery.
Collapse
|
59
|
Hu Y, Huang M, Wang P, Xu Q, Zhang B. Ucf-101 protects against cerebral oxidative injury and cognitive impairment in septic rat. Int Immunopharmacol 2013; 16:108-13. [DOI: 10.1016/j.intimp.2013.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/08/2013] [Accepted: 03/19/2013] [Indexed: 12/22/2022]
|
60
|
Yee BK, Singer P. A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia. Cell Tissue Res 2013; 354:221-46. [PMID: 23579553 DOI: 10.1007/s00441-013-1611-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/07/2013] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a chronic debilitating brain disorder characterized by a complex set of perceptual and behavioural symptoms that severely disrupt and undermine the patient's psychological well-being and quality of life. Since the exact disease mechanisms remain essentially unknown, holistic animal models are indispensable tools for any serious investigation into the neurobiology of schizophrenia, including the search for remedies, prevention of the disease and possible biological markers. This review provides some practical advice to those confronted with the task of evaluating their animal models for relevance to schizophrenia, a task that inevitably involves behavioural tests with animals. To a novice, this challenge not only is a technical one but also entails attention to interpretative issues concerning validity and translational power. Here, we attempt to offer some guidance to help overcome these obstacles by drawing on our experience of diverse animal models of schizophrenia based on genetics, strain difference, brain lesions, pharmacological induction and early life developmental manipulations. The review pays equal emphasis to the general (theoretical) considerations of experimental design and the illustration of the problems related to critical test parameters and the data analysis of selected exemplar behavioural tests. Finally, the individual differences of behavioural expression in relevant tests observed in wild-type animals might offer an alternative approach in order to explore the mechanism of schizophrenia-related behavioural dysfunction at the molecular, cellular and structural levels, all of which are of more immediate relevance to cell and tissue research.
Collapse
Affiliation(s)
- Benjamin K Yee
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, 1225 NE Second Avenue, Portland, OR 97232, USA,
| | | |
Collapse
|
61
|
O'Leary TP, Brown RE. Optimization of apparatus design and behavioral measures for the assessment of visuo-spatial learning and memory of mice on the Barnes maze. Learn Mem 2013; 20:85-96. [PMID: 23322557 DOI: 10.1101/lm.028076.112] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have previously shown that apparatus design can affect visual-spatial cue use and memory performance of mice on the Barnes maze. The present experiment extends these findings by determining the optimal behavioral measures and test procedure for analyzing visuo-spatial learning and memory in three different Barnes maze designs. Male and female C57BL/6J mice were trained with a stable or random escape hole location and the sensitivities (statistical power) of four commonly used measures of learning and three measures of memory to detect differences between these training procedures were compared on each maze design. A maze design with a large diameter and no wall was optimal, because mice showed a reliable use of extra-maze visual cues, visuo-spatial search strategies, and spatial memory. A maze design with a small diameter, surrounding wall, and intra-maze visual cues was the least sensitive for determining visuo-spatial learning and memory, because mice showed little evidence of extra-maze cue use. Errors, distance traveled, and hole deviation scores were more sensitive measures of learning than latency to find the escape hole. Measures based on locating the escape hole (primary measures) were more sensitive than measures based on entering the escape hole (total measures). Measures of memory had similar levels of sensitivity on each maze. This experiment demonstrates that both apparatus design and the behavioral measures used as indicators of learning and memory can influence the ability of the Barnes maze to detect visuo-spatial learning and memory impairments in mice.
Collapse
Affiliation(s)
- Timothy P O'Leary
- Psychology and Neuroscience Department, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | | |
Collapse
|
62
|
Thong-asa K, Chompoopong S, Tantisira MH, Tilokskulchai K. Reversible short-term and delayed long-term cognitive impairment induced by chronic mild cerebral hypoperfusion in rats. J Neural Transm (Vienna) 2012; 120:1225-35. [PMID: 23266788 DOI: 10.1007/s00702-012-0937-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 11/29/2012] [Indexed: 11/29/2022]
Abstract
Chronic cerebral hypoperfusion induced by aging in combination with vascular disorder potentially contributes to the development of vascular dementia. This study aimed to investigate the age-related changes in spatial performances in chronic mild cerebral hypoperfusion induced by permanent right common carotid artery occlusion (rCCAO) in rats. Four-month-old male Sprague-Dawley rats (n = 20) were randomly assigned into sham and rCCAO groups. Spatial performances of young adult rats (age 4-8 months) were evaluated repeatedly by the radial arm water maze at 6 days, and 1, 2 and 4 months after surgery. The spatial performance was re-assessed by the Morris water maze when the rats were 18 months old. The present results revealed that the rCCAO rats developed progressive deficit in spatial learning and memory, starting from day 6 and significant deficit was found at 2 months after rCCAO (p < 0.05). However, the spatial performance of the rCCAO rats was recovered at 4 months after surgery. Testing of the cognitive flexibility of the aged rCCAO rats (18 months old), indicated that the learning flexibility of the aged rCCAO rats was significantly impaired. This deficit was found in parallel with pronounced white matter damage in the corpus callosum and internal capsule and significant cell death in the dorsal hippocampus. Our results suggested that vascular risk insult in young adult rats resulted in spatial learning deficit which could be completely compensated later on. However, such previous vascular risk could be exacerbated by advancing age and subsequently lead to a deficit in cognitive flexibility with white matter damage and significant neuronal death in the dorsal hippocampus.
Collapse
Affiliation(s)
- Khwanjai Thong-asa
- Department of Biology, Faculty of Science, Kasetsart University, Bang Khen, Bangkok, 10900, Thailand
| | | | | | | |
Collapse
|
63
|
Hacquemand R, Jacquot L, Brand G. Postnatal exposure to predator odor (TMT) enhances spatial learning in mice adulthood. Behav Brain Res 2012; 229:113-7. [DOI: 10.1016/j.bbr.2011.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
|
64
|
Albarran-Zeckler RG, Brantley AF, Smith RG. Growth hormone secretagogue receptor (GHS-R1a) knockout mice exhibit improved spatial memory and deficits in contextual memory. Behav Brain Res 2012; 232:13-9. [PMID: 22484009 DOI: 10.1016/j.bbr.2012.03.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/22/2012] [Accepted: 03/11/2012] [Indexed: 02/06/2023]
Abstract
Although the hormone ghrelin is best known for its stimulatory effect on appetite and regulation of growth hormone release, it is also reported to have beneficial effects on learning and memory formation in mice. Nevertheless, controversy exists about whether endogenous ghrelin acts on its receptors in extra-hypothalamic areas of the brain. The ghrelin receptor (GHS-R1a) is co-expressed in neurons that express dopamine receptor type-1 (DRD1a) and type-2 (DRD2), and we have shown that a subset of GHS-R1a, which are not occupied by the agonist (apo-GHSR1a), heterodimerize with these two receptors to regulate dopamine signaling in vitro and in vivo. To determine the consequences of ghsr ablation on brain function, congenic ghsr -/- mice on the C57BL6/J background were subjected to a battery of behavioral tests. We show that the ghsr -/- mice exhibit normal balance, movement, coordination, and pain sensation, outperform ghsr +/+ mice in the Morris water maze, but show deficits in contextual fear conditioning.
Collapse
Affiliation(s)
- Rosie G Albarran-Zeckler
- The Scripps Research Institute, Florida, Department of Metabolism & Aging, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | | | |
Collapse
|
65
|
Hattiangady B, Shetty AK. Neural stem cell grafting in an animal model of chronic temporal lobe epilepsy. ACTA ACUST UNITED AC 2012; Chapter 2:Unit2D.7. [PMID: 21913169 DOI: 10.1002/9780470151808.sc02d07s18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neural stem cell (NSC) transplantation into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts ∼30% of mesial temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and induced pluripotent stem cells (iPSCs). However, to provide a comprehensive methodology involved in testing the efficacy of transplantation of NSCs in a rat model of chronic TLE, NSCs derived from the embryonic medial ganglionic eminence (MGE) are taken as an example in this unit. The topics comprise description of the required materials, reagents and equipment, and protocols for expanding MGE-NSCs in culture, generating chronically epileptic rats, the intrahippocampal grafting, post-grafting evaluation of the effects of NSC grafts on spontaneous recurrent seizures and cognitive impairments, analyses of the yield and the fate of graft-derived cells, and the effects of NSC grafts on the host hippocampus.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- Institute for Regenerative Medicine, Texas A&M Health Science Center Temple, TX, USA
| | | |
Collapse
|
66
|
O’Leary TP, Brown RE. The effects of apparatus design and test procedure on learning and memory performance of C57BL/6J mice on the Barnes maze. J Neurosci Methods 2012; 203:315-24. [DOI: 10.1016/j.jneumeth.2011.09.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/24/2011] [Accepted: 09/26/2011] [Indexed: 11/29/2022]
|
67
|
Abstract
Cognitive dysfunction is a core aspect of schizophrenia that constitutes a major obstacle toward reintegration of patients into society. Although multiple cognitive deficits are evident in schizophrenia patients, no medication is currently approved for their amelioration. Although consensus clinical test batteries have been developed for the assessment of putative cognition enhancers in patients with schizophrenia, parallel animal tests remain to be validated. Having no approved treatment for cognitive symptoms means no positive control can be used to examine pharmacological predictive validity of animal models. Thus, focus has been placed on animal paradigms that have demonstrable construct validity for the cognitive domain being assessed.This review describes the growing arsenal of animal paradigms under development that have putative construct validity to cognitive domains affected in schizophrenia. We discuss (1) the construct validity of the paradigms; (2) compounds developed to investigate putative treatment targets; and (3) manipulations used to first impair task performance. Focus is placed on the paradigm design, including how the use of multivariate assessments can provide evidence that main effects of treatment are not confounded by extraneous effects.
Collapse
|
68
|
Young JW, Meves JM, Tarantino IS, Caldwell S, Geyer MA. Delayed procedural learning in α7-nicotinic acetylcholine receptor knockout mice. GENES BRAIN AND BEHAVIOR 2011; 10:720-33. [PMID: 21679297 DOI: 10.1111/j.1601-183x.2011.00711.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The α7-nicotinic acetylcholine receptor (nAChR) has long been a procognitive therapeutic target to treat schizophrenia. Evidence on the role of this receptor in cognition has been lacking, however, in part due to the limited availability of suitable ligands. The behavior of α7-nAChR knockout (KO) mice has been examined previously, but cognitive assessments using tests with cross-species translatability have been limited to date. Here, we assessed the cognitive performance of α7-nAChR KO and wild-type (WT) littermate mice in the attentional set-shifting task of executive functioning, the radial arm maze test of spatial working memory span capacity and the novel object recognition test of short-term memory. The reward motivation of these mutants was assessed using the progressive ratio breakpoint test. In addition, we assessed the exploratory behavior and sensorimotor gating using the behavioral pattern monitor and prepulse inhibition, respectively. α7-nAChR KO mice exhibited normal set-shifting, but impaired procedural learning (rule acquisition) in multiple paradigms. Spatial span capacity, short-term memory, motivation for food, exploration and sensorimotor gating were all comparable to WT littermates. The data presented here support the notion that this receptor is important for such procedural learning, when patterns in the environment become clear and a rule is learned. In combination with the impaired attention observed previously in these mice, this finding suggests that agonist treatments should be examined in clinical studies of attention and procedural learning, perhaps in combination with cognitive behavioral therapy.
Collapse
Affiliation(s)
- J W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA.
| | | | | | | | | |
Collapse
|
69
|
Nelson DA, Singh SJ, Young AB, Tolbert MD, Bost KL. 3,4-Methylenedioxymethamphetamine (MDMA) alters acute gammaherpesvirus burden and limits interleukin 27 responses in a mouse model of viral infection. Drug Alcohol Depend 2011; 116:211-21. [PMID: 21269783 PMCID: PMC3105168 DOI: 10.1016/j.drugalcdep.2010.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/12/2010] [Accepted: 12/29/2010] [Indexed: 11/30/2022]
Abstract
AIMS To test whether 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") abuse might increase the susceptibility, or alter the immune response, to murine gammaherpesvirus 68 (HV-68) and/or bacterial lipopolysaccharide. METHODS Groups of experimental and control mice were subjected to three day binges of MDMA, and the effect of this drug abuse on acute and latent HV-68 viral burden were assessed. In vitro and in vivo studies were also performed to assess the MDMA effect on IL-27 expression in virally infected or LPS-exposed macrophages and dendritic cells, and latently infected animals, exposed to this drug of abuse. RESULTS Acute viral burden was significantly increased in MDMA-treated mice when compared to controls. However the latent viral burden, and physiological and behavioral responses were not altered in infected mice despite repeated bingeing with MDMA. MDMA could limit the IL-27 response of HV-68 infected or LPS-exposed macrophages and dendritic cells in vitro and in vivo, demonstrating the ability of this drug to alter normal cytokine responses in the context of a viral infection and/or a TLR4 agonist. CONCLUSION MDMA bingeing could alter the host's immune response resulting in greater acute viral replication and reductions in the production of the cytokine, IL-27 during immune responses.
Collapse
Affiliation(s)
- Daniel A. Nelson
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Sam J. Singh
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Amy B. Young
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Melanie D. Tolbert
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Kenneth L. Bost
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA,Corresponding author at: Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA. Tel: +1 704 687 8677; fax +1 704 687 3128
| |
Collapse
|
70
|
Rats exposed to isoflurane in utero during early gestation are behaviorally abnormal as adults. Anesthesiology 2011; 114:521-8. [PMID: 21307768 DOI: 10.1097/aln.0b013e318209aa71] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Preclinical evidence suggests that commonly used anesthetic agents induce long-lasting neurobehavioral changes when administered early in life, but there has been virtually no attention to the neurodevelopmental consequences for the fetus of maternal anesthesia. This study tested the hypothesis that fetal rats exposed to isoflurane during maternal anesthesia on gestational day 14, which corresponds to the second trimester in humans, would be behaviorally abnormal as adults. METHODS Timed, pregnant rats were randomly assigned on gestational day 14 to receive 1.4% isoflurane in 100% oxygen (n = 3) or 100% oxygen (n = 2) for 4 h. Beginning at 8 weeks of age, male offspring (N = 12-14 in control and anesthesia groups, respectively) were evaluated for spontaneous locomotor activity, hippocampal-dependent learning and memory (i.e., spontaneous alternations, novel object recognition, and radial arm maze), and anxiety (elevated plus maze). RESULTS Isoflurane anesthesia was physiologically well tolerated by the dams. Adult rats exposed prenatally to isoflurane were not different than controls on spontaneous locomotor activity, spontaneous alternations, or object recognition memory, but made more open arm entries on the elevated plus maze and took longer and made more errors of omission on the radial arm maze. CONCLUSIONS Rats exposed to isoflurane in utero at a time that corresponds to the second trimester in humans have impaired spatial memory acquisition and reduced anxiety, compared with controls. This suggests the fetal brain may be adversely affected by maternal anesthesia, and raises the possibility that vulnerability to deleterious neurodevelopmental effects of isoflurane begins much earlier in life than previously recognized.
Collapse
|
71
|
The impact of environmental enrichment in laboratory rats--behavioural and neurochemical aspects. Behav Brain Res 2011; 222:246-64. [PMID: 21504762 DOI: 10.1016/j.bbr.2011.04.002] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/28/2011] [Accepted: 04/03/2011] [Indexed: 12/13/2022]
Abstract
The provision of environmental enrichment (EE) for laboratory rats is recommended in European guidelines governing laboratory animal welfare. It is believed the EE implementation can improve animals' well-being and EE has been used to demonstrate learning and plasticity of the brain in response to the environment. This review suggests that the definition and duration of EE varies considerably across laboratories. Notwithstanding this, some EE protocols have revealed profound effects on brain neurochemistry and resulting behaviour, suggesting that EE can have the potential to significantly modify these parameters in rats. For this review, a literature search was conducted using PubMed and the search terms "Environmental Enrichment" and "rats". From the results of this search the most important variables for consideration in the implementation of EE are identified and summarised, and include cage size and housing density; rat age, sex and strain; duration of EE; the EE protocol and enrichment items employed; and the use of appropriate controls. The effects of EE in a number of behavioural tests and its effects on neurotransmitters, neurotrophic factors, stress hormones and neurogenesis and proliferation are outlined. The findings summarised in the present review show the range of EE protocols employed and their effects in tests of activity, learning and affect, as well neurochemical effects which mediate enhanced plasticity in the brain. EE, as is provided in many laboratories, may be of benefit to the animals, however it is important that future work aims to provide a better understanding of EE effects on research outcomes.
Collapse
|
72
|
Tarantino IS, Sharp RF, Geyer MA, Meves JM, Young JW. Working memory span capacity improved by a D2 but not D1 receptor family agonist. Behav Brain Res 2011; 219:181-8. [PMID: 21232557 DOI: 10.1016/j.bbr.2010.12.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/16/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
Abstract
Patients with schizophrenia exhibit poor working memory (WM). Although several subcomponents of WM can be measured, evidence suggests the primary subcomponent affected in schizophrenia is span capacity (WMC). Indeed, the NIMH-funded MATRICS initiative recommended assaying the WMC when assessing the efficacy of a putative therapeutic for FDA approval. Although dopamine D1 receptor agonists improve delay-dependent memory in animals, evidence for improvements in WMC due to dopamine D1 receptor activation is limited. In contrast, the dopamine D2-family agonist bromocriptine improves WMC in humans. The radial arm maze (RAM) can be used to assess WMC, although complications due to ceiling effects or strategy confounds have limited its use. We describe a 12-arm RAM protocol designed to assess whether the dopamine D1-family agonist SKF 38393 (0, 1, 3, and 10 mg/kg) or bromocriptine (0, 1, 3, and 10 mg/kg) could improve WMC in C57BL/6N mice (n=12) in cross-over designs. WMC increased and strategy usage decreased with training. The dopamine D1 agonist SKF 38393 had no effect on WMC or long-term memory. Bromocriptine decreased WMC errors, without affecting long-term memory, consistent with human studies. These data confirm that WMC can be measured in mice and reveal drug effects that are consistent with reported effects in humans. Future research is warranted to identify the subtype of the D2-family of receptors responsible for the observed improvement in WMC. Finally, this RAM procedure may prove useful in developing animal models of deficient WMC to further assess putative treatments for the cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Isadore S Tarantino
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States
| | | | | | | | | |
Collapse
|
73
|
Sharma S, Rakoczy S, Brown-Borg H. Assessment of spatial memory in mice. Life Sci 2010; 87:521-36. [PMID: 20837032 PMCID: PMC6457258 DOI: 10.1016/j.lfs.2010.09.004] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/09/2010] [Accepted: 09/04/2010] [Indexed: 11/17/2022]
Abstract
Improvements in health care have greatly increased life span in the United States. The focus is now shifting from physical well-being to improvement in mental well-being or maintenance of cognitive function in old age. It is known that elderly people suffer from cognitive impairment, even without neurodegeneration, as a part of 'normal aging'. This 'age-associated memory impairment' (AAMI), can have a devastating impact on the social and economic life of an individual as well as the society. Scientists have been experimenting to find methods to prevent the memory loss associated with aging. The major factor involved in these experiments is the use of animal models to assess hippocampal-based spatial memory. This review describes the different types of memory including hippocampal-based memory that is vulnerable to aging. A detailed overview of various behavioral paradigms used to assess spatial memory including the T-maze, radial maze, Morris water maze, Barnes maze and others is presented. The review also describes the molecular basis of memory in hippocampus called as 'long-term potentiation'. The advantages and limitations of the behavioral models in assessing memory and the link to the long-term potentiation are discussed. This review should assist investigators in choosing suitable methods to assess spatial memory in mice.
Collapse
Affiliation(s)
- Sunita Sharma
- University of North Dakota School of Medicine and Health Sciences,
Grand Forks, ND 58203, United States
| | - Sharlene Rakoczy
- University of North Dakota School of Medicine and Health Sciences,
Grand Forks, ND 58203, United States
| | - Holly Brown-Borg
- University of North Dakota School of Medicine and Health Sciences,
Grand Forks, ND 58203, United States
| |
Collapse
|
74
|
Burgos H, Castillo A, Flores O, Puentes G, Morgan C, Gatica A, Cofré C, Hernández A, Laurido C, Constandil L. Effect of modafinil on learning performance and neocortical long-term potentiation in rats. Brain Res Bull 2010; 83:238-44. [PMID: 20800665 DOI: 10.1016/j.brainresbull.2010.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 11/19/2022]
Abstract
Modafinil is a novel wake-promoting agent whose effects on cognitive performance have begun to be addressed at both preclinical and clinical level. The present study was designed to investigate in rats the effects of chronic modafinil administration on cognitive performance by evaluating: (i) working and reference memories in an Olton 4×4 maze, and (ii) learning of a complex operant conditioning task in a Skinner box. In addition, the effect of modafinil on the ability of the rat frontal cortex to develop long-term potentiation (LTP) was also studied. Chronic modafinil did not significantly modify working memory errors but decreased long-term memory errors on the Olton 4×4 maze, meaning that the drug may have a favourable profile on performance of visuo-spatial tasks (typically, a hippocampus-dependent task) when chronically administered. On the other hand, chronic modafinil resulted in a marked decrease of successful responses in a complex operant conditioning learning, which means that repeated administration of the drug influences negatively problem-solving abilities when confronting the rat to a sequencing task (typically, a prefrontal cortex-dependent task). In addition, in vivo electrophysiology showed that modafinil resulted in impaired capacity of the rat prefrontal cortex to develop LTP following tetanization. It is concluded that modafinil can improve the performance of spatial tasks that depend almost exclusively on hippocampal functioning, but not the performance in tasks including a temporal factor where the prefrontal cortex plays an important role. The fact that modafinil together with preventing operant conditioning learning was also able to block LTP induction in the prefrontal cortex, suggests that the drug could interfere some critical component required for LTP can be developed, thereby altering neuroplastic capabilities of the prefrontal cortex.
Collapse
|
75
|
Pyter LM, Cochrane SF, Ouwenga RL, Patel PN, Pineros V, Prendergast BJ. Mammary tumors induce select cognitive impairments. Brain Behav Immun 2010; 24:903-7. [PMID: 20188817 PMCID: PMC2902787 DOI: 10.1016/j.bbi.2010.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/19/2010] [Accepted: 02/21/2010] [Indexed: 12/23/2022] Open
Abstract
Cancer, in addition to many other chronic diseases, is associated with serious and problematic behavioral symptoms, including cognitive impairments. In humans, various factors likely contribute to cancer-associated cognitive deficits including disease awareness and chemotherapy; however, the endogenous biological factors arising from tumor development may also play a causal role. In the present study, rats with mammary tumors exhibited impaired spatial reference memory on a radial arm maze and amnesia for familiar objects in an object recognition memory test. In contrast, their performance in the Morris water maze and in fear conditioning tests was comparable to that of controls. These select cognitive impairments were accompanied by elevations in hippocampal interleukin-1beta mRNA expression, but were not associated with decreases in hippocampal brain-derived neurotrophic factor gene expression. Together the results indicate that peripheral tumors alone are sufficient to induce increases in hippocampal cytokine expression and select deficits in hippocampal-dependent memory tasks.
Collapse
Affiliation(s)
- Leah M Pyter
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Mathiasen JR, DiCamillo A. Novel Object Recognition in the Rat: A Facile Assay for Cognitive Function. ACTA ACUST UNITED AC 2010; Chapter 5:Unit 5.59. [PMID: 22294372 DOI: 10.1002/0471141755.ph0559s49] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Amy DiCamillo
- Discovery Research, Cephalon West Chester Pennsylvania
| |
Collapse
|
77
|
Kim JE, Choi JH, Kaang BK. Assessment of long-term working memory by a delayed nonmatch-to-place task using a T-maze. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768351003770798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
78
|
Aged wild-type littermates and APPswe+PS1/ΔE9 mice present similar deficits in associative learning and spatial memory independent of amyloid load. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0833-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
79
|
Peltonen I, Jalkanen AJ, Sinervä V, Puttonen KA, Männistö PT. Different effects of scopolamine and inhibition of prolyl oligopeptidase on mnemonic and motility functions of young and 8- to 9-month-old rats in the radial-arm maze. Basic Clin Pharmacol Toxicol 2009; 106:280-7. [PMID: 20041878 DOI: 10.1111/j.1742-7843.2009.00484.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prolyl oligopeptidase (POP) has been connected to memory and mood through regulation of the brain levels of its biologically active peptide substrates and phosphatidylinositol system. This is the first study in a radial-arm maze of the effects of a single dose of a novel potent prolyl oligopeptidase inhibitor, KYP-2047 (5 mg/kg, dissolved in 5% Tween 80), on memory and learning of scopolamine-treated (0.4 mg/kg, dissolved in saline) rats. Habituated (days 1 and 2) and trained (days 3-11) young (3 months) and old (8-9 months) male Wistar rats were given (i) saline + Tween, (ii) saline + KYP-2047, (iii) scopolamine + Tween or (iv) scopolamine + KYP-2047 30 min. prior to testing their memory. Food rewards located in four randomly chosen arms of the maze. The rat had 10 min. to find and eat the rewards. Time spent in the maze, visits to each arm and number of eaten rewards were measured. Old rats made generally more errors, spent more time and visited fewer arms per minute in the maze than young rats. The memory- and function-impairing effects of scopolamine were also seen more clearly in old than young rats. KYP-2047 had no or only a marginal effect on memory of either age group, but when given without scopolamine, it slightly increased the maze motility of young rats and decreased the motility of old rats. In a separate locomotor activity test, KYP-2047 enhanced the motility of young rats supporting a suggested role of POP in motor functions.
Collapse
Affiliation(s)
- Iida Peltonen
- Faculty of Pharmacy, Division of Pharmacology and Toxicology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
80
|
The impact of flavonoids on spatial memory in rodents: from behaviour to underlying hippocampal mechanisms. GENES AND NUTRITION 2009; 4:251-70. [PMID: 19727888 DOI: 10.1007/s12263-009-0137-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that a group of dietary-derived phytochemicals known as flavonoids are able to induce improvements in memory, learning and cognition. Flavonoids have been shown to modulate critical neuronal signalling pathways involved in processes of memory, and therefore are likely to affect synaptic plasticity and long-term potentiation mechanisms, widely considered to provide a basis for memory. Animal dietary supplementation studies have further shown that flavonoid-rich foods are able to reverse age-related spatial memory and spatial learning impairments. A more accurate understanding of how a particular spatial memory task works and of which aspects of memory and learning can be assessed in each case, are necessary for a correct interpretation of data relating to diet-cognition experiments. Further understanding of how specific behavioural tasks relate to the functioning of hippocampal circuitry during learning processes might be also elucidative of the specific observed memory improvements. The overall goal of this review is to give an overview of how the hippocampal circuitry operates as a memory system during behavioural tasks, which we believe will provide a new insight into the underlying mechanisms of the action of flavonoids on cognition.
Collapse
|
81
|
Upregulation of BACE1 and beta-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer's disease. Neurochem Res 2009; 34:1226-35. [PMID: 19123057 DOI: 10.1007/s11064-008-9899-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) increases the risk of Alzheimer disease (AD) through several biologically plausible pathways, but the relationship between CCH and the development of AD remains uncertain. To investigate expression of APP, BACE1 and A beta in the hippocampus of BCCAO rats and study pathophysiological mechanism of AD from CCH. CCH rat model was established by chronic bilateral common carotid artery occlusion (BCCAO). Behavior was evaluated after BCCAO with Morris water maze and open-field task. Expression of A beta was measured by enzyme linked immunosorbent assay (ELISA). beta-Amyloid precursor protein cleavage enzyme 1 (BACE1) and beta-amyloid precursor protein (APP) were tested by ELISA, Western blotting and RT-PCR. Cognitive impairment occurred with CCH by Morris water maze test and open-field task. The BACE1 and A beta level in BCCAO rats was more increased than sham-operation control rats (P < 0.01) but APP had no difference(P > 0.05). The expression of BACE1 and A beta has no inter-group difference in BCCAO rats (P > 0.05). The level of BACE1 and A beta had positive correlation with cognitive impairment (P < 0.01) while no correlation was observed between APP and cognitive impairment. Chronic cerebral ischemia contributes to cognitive impairment and vascular pathogenesis of Alzheimer's disease that chronic cerebral hypoperfusion increases BACE1 and A beta level in brain.
Collapse
|
82
|
Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006; 1:848-58. [PMID: 17406317 PMCID: PMC2895266 DOI: 10.1038/nprot.2006.116] [Citation(s) in RCA: 3220] [Impact Index Per Article: 169.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Morris water maze (MWM) is a test of spatial learning for rodents that relies on distal cues to navigate from start locations around the perimeter of an open swimming arena to locate a submerged escape platform. Spatial learning is assessed across repeated trials and reference memory is determined by preference for the platform area when the platform is absent. Reversal and shift trials enhance the detection of spatial impairments. Trial-dependent, latent and discrimination learning can be assessed using modifications of the basic protocol. Search-to-platform area determines the degree of reliance on spatial versus non-spatial strategies. Cued trials determine whether performance factors that are unrelated to place learning are present. Escape from water is relatively immune from activity or body mass differences, making it ideal for many experimental models. The MWM has proven to be a robust and reliable test that is strongly correlated with hippocampal synaptic plasticity and NMDA receptor function. We present protocols for performing variants of the MWM test, from which results can be obtained from individual animals in as few as 6 days.
Collapse
Affiliation(s)
- Charles V Vorhees
- Division of Neurology (MLC 7044), Cincinnati Children's Research Foundation and Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
83
|
Keller KA, Chu Y, Grider A, Coffield JA. Supplementation with L-histidine during dietary zinc repletion improves short-term memory in zinc-restricted young adult male rats. J Nutr 2000; 130:1633-40. [PMID: 10827222 DOI: 10.1093/jn/130.6.1633] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Zinc, an essential dietary element, modulates neurotransmission in brain regions associated with cognition. Cognitive dysfunction has been reported in offspring of female rats fed zinc-restricted diets during gestation and/or lactation. Studies on the cognitive effects of zinc restriction during young adulthood are limited. After a 3-wk period of dietary zinc restriction, male rats (71-75 d old) were repleted with zinc chloride alone, or zinc chloride supplemented with L-histidine, and short-term memory was measured using the Morris water maze. During restriction, zinc-restricted rats demonstrated significantly longer (86.0%) retrieval latencies than nonrestricted controls, and significantly lower liver (25.5%), bone (32.5%) and hippocampal (3.2%) zinc concentrations. During subsequent repletion, rats repleted with zinc chloride supplemented with L-histidine improved their retrieval latencies to the extent that they were no longer significantly different from controls by repletion d 3. This was associated with a return of hippocampal zinc concentrations to control values by repletion d 3. The mean retrieval escape latencies of the zinc chloride-repleted rats remained significantly prolonged (75.0%). Collectively, these data indicate the following: 1) feeding a zinc-restricted diet for 3 wk impairs short-term memory in young adult male rats, and 2) repletion with dietary zinc supplemented with L-histidine improves short-term memory function more efficiently than dietary zinc chloride alone. The latter point suggests that dietary zinc supplemented with L-histidine is more bioavailable to the brain than zinc provided as zinc chloride alone. These findings are important in that they highlight the importance of both dietary zinc formulation and the use of functional assessments in determining zinc nutriture.
Collapse
Affiliation(s)
- K A Keller
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
84
|
Lee B, English JA, Paul IA. LP-BM5 infection impairs spatial working memory in C57BL/6 mice in the Morris water maze. Brain Res 2000; 856:129-34. [PMID: 10677619 DOI: 10.1016/s0006-8993(99)02381-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies show that the LP-BM5 murine leukemia virus causes an acquired immunodeficiency syndrome in C57BL/6 mice (MAIDS) and impairs learning and memory without gross motor impairment. To assess spatial working memory impairment after LP-BM5 infection and the time course of this impairment, we tested mice in a modified working-memory version of the Morris water maze. Twenty mice were inoculated with LP-BM5; controls received medium (Minimum Essential Medium). In the test procedure, animals had two 1-min training sessions to learn the position of a randomly placed hidden platform. Thirty seconds after the second training session, animals were placed in the maze without the platform, and time and pathlength spent in each quadrant of the maze were measured. For 9 weeks after LP-BM5 infection, both groups showed preference for the target quadrant compared to the opposite quadrant. At 10 and 11 weeks after infection, the LP-BM5 virus infected mice lost this target quadrant preference. We conclude that LP-BM5 infection impaired spatial working memory in a modified working-memory version of the Morris water maze test in C57BL/6 mice at 10 and 11 weeks after virus infection.
Collapse
Affiliation(s)
- B Lee
- Department of Psychiatry, University of Mississippi Medical Center, Box 127, 2500 North State St., Jackson, MS, USA
| | | | | |
Collapse
|