51
|
Zhou G, Chen Y, Chen W, Wu H, Yu Y, Sun C, Hu B, Liu Y. Renal Clearable Catalytic 2D Au-Porphyrin Coordination Polymer Augmented Photothermal-Gas Synergistic Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206749. [PMID: 36599631 DOI: 10.1002/smll.202206749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
As a gasotransmitter, carbon monoxide (CO) possesses antitumor activity by reversing the Warburg effect at higher concentrations. The targeted delivery of carbon monoxide-releasing molecules (CORMs) using nanomaterials is an appealing option for CO administration, but how to maintain CO above the threshold concentration in tumor tissue remains a challenge. Herein, a nanozyme-catalyzed cascade reaction is proposed to promote CO release for high-efficacy photothermal therapy (PTT)-combined CO therapy of cancer. A gold-based porphyrinic coordination polymer nanosheet (Au0 -Por) is synthesized to serve as a carrier for CORM. It also possesses excellent glucose oxygenase-like activity owing to ultrasmall zero-valent gold atoms on the nanosheet. The catalytically generated H2 O2 can efficiently catalyze CORM decomposition, which enables in situ generation of sufficient CO for gas therapy. In vivo, the Au0 -Por nanosheets-enhanced photoacoustic imaging (PAI) and fluorescence imaging collectively demonstrate high tumor-targeting efficiency and nanomaterial retention. Proven to have augmented therapeutic efficacy, the nanoplatform can also be easily degraded and excreted through the kidney, indicating good biocompatibility. Thus, the application of rational designed Au0 -Por nanosheet with facile approach and biodegradable property to PAI-guided synergistic gas therapy can provide a strategy for the development of biocompatible and highly effective gaseous nanomedicine.
Collapse
Affiliation(s)
- Gaoxin Zhou
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Wenhao Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Hao Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Yu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Chunlong Sun
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, 256600, China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Liu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
52
|
Fang F, Wang S, Song Y, Sun M, Chen WC, Zhao D, Zhang J. Continuous Spatiotemporal Therapy of A Full-API Nanodrug via Multi-Step Tandem Endogenous Biosynthesis. Nat Commun 2023; 14:1660. [PMID: 36966149 PMCID: PMC10039359 DOI: 10.1038/s41467-023-37315-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023] Open
Abstract
Nanomedicine holds great promise to enhance cancer therapy. However, low active pharmaceutical ingredient (API) loading content, unpredictable drug release, and potential toxicity from excipients limit their translational capability. We herein report a full-API nanodrug composed of FDA-approved 5-aminolevulinic acid (ALA), human essential element Fe3+, and natural bioactive compound curcumin with an ideal API content and pH-responsive release profile for continuous spatiotemporal cancer therapy achieved by multi-step tandem endogenous biosynthesis. First, ALA enzymatically converts into photosensitizer protoporphyrin IX (PpIX). Afterward, multiple downstream products including carbon monoxide (CO), Fe2+, biliverdin (BV), and bilirubin (BR) are individually biosynthesized through the PpIX-heme-CO/Fe2+/BV-BR metabolic pathway, further cooperating with released Fe3+ and curcumin, ultimately eliciting mitochondria damage, membrane disruption, and intracytoplasmic injury. This work not only provides a paradigm for exploiting diversified metabolites for tumor suppression, but also presents a safe and efficient full-API nanodrug, facilitating the practical translation of nanodrugs.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Sa Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China.
| |
Collapse
|
53
|
Hou X, Yang X, Xu Y, Lin J, Zhang F, Duan X, Liu S, Liu J, Shen J, Shuai X, Cao Z. Manganese-doped mesoporous polydopamine nanoagent for T1–T2 magnetic resonance imaging and tumor therapy. NANO RESEARCH 2023; 16:2991-3003. [DOI: 10.1007/s12274-022-4877-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2025]
|
54
|
Zhou Y, Gao X, Lu Y, Zhang R, Lv K, Gong J, Feng J, Zhang H. A pH-Responsive Charge-Convertible Drug Delivery Nanocarrier for Precise Starvation and Chemo Synergistic Oncotherapy. Chempluschem 2023; 88:e202200394. [PMID: 36725346 DOI: 10.1002/cplu.202200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Indexed: 12/15/2022]
Abstract
A pH-responsive charge-convertible drug delivery nanocarrier (MSN-TPZ-GOx@ZnO@PAH-PEG-DMMA, abbreviated as MTGZ@PPD) was prepared, which could specifically release hypoxia-activated chemotherapeutic Tirapazamine (TPZ) and glucose oxidase (GOx) in the tumor site for precise starvation and chemo synergistic oncotherapy. Acid-responsive Schiff base structure modified mesoporous silica nanoparticles (MSN) co-load with GOx and TPZ, then link with ZnO quantum dots (QDs). PAH-PEG-DMMA (PPD) polymer makes MTGZ@PPD with biocompatibility and charge-convertible feature. MTGZ@PPD is negatively charged at physiological pH, and the charge reversal of PPD and acidolysis of the Schiff base structure under the acidic tumor microenvironment (TME) induce a positively charged surface, which could potentiate the cell internalization. ZnO QDs could decompose at acidic TME, achieving controllable drug release. GOx could starve the tumor cells and enhance hypoxia level, thus initiates the activation of TPZ to realize synergistic starvation therapy and chemotherapy. This intelligent MTGZ@PPD has shown great potential for starvation and chemo synergistic oncotherapy.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuan Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Lu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ruohao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kehong Lv
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jitong Gong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
55
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
56
|
Shi Y, Zhang C, Liu C, Ma X, Liu Z. Image-Guided Precision Treatments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:59-86. [PMID: 37460727 DOI: 10.1007/978-981-32-9902-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Chemotherapy, radiotherapy, and surgery are traditional cancer treatments, which usually produce unpredictable side effects and potential risks to normal healthy organs/tissues. Thus, safe and reliable treatment strategies are urgently required for maximized therapeutic efficiency to lesions and minimized risks to healthy regions. To this end, molecular imaging is responsible to undertake a specific targeting therapy. Besides that, the image guidance as a precision visualized approach for real-time in situ evaluations as well as an intraoperational navigation approach has earned attractive attention in the past decade. Along with the rapid development of multifunctional micro-/nanobiomaterials, versatile cutting-edge and advanced therapy strategies (e.g., thermal therapy, dynamic therapy, gas therapy, etc.) have been achieved and greatly contributed to the image-guided precision treatments in every aspect. Therefore, this chapter aims to discuss about both traditional and advanced cancer treatments and especially to elucidate the important roles that visualized medicine has been playing in the image-guided precision treatments.
Collapse
Affiliation(s)
- Yu Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chen Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chenxi Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xinyong Ma
- Division of Academic & Cultural Activities, Academic Divisions of the Chinese Academy of Sciences, Beijing, China
| | - Zhe Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
57
|
Huang H, Ali A, Liu Y, Xie H, Ullah S, Roy S, Song Z, Guo B, Xu J. Advances in image-guided drug delivery for antibacterial therapy. Adv Drug Deliv Rev 2023; 192:114634. [PMID: 36503884 DOI: 10.1016/j.addr.2022.114634] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The emergence of antibiotic-resistant bacterial strains is seriously endangering the global healthcare system. There is an urgent need for combining imaging with therapies to realize the real-time monitoring of pathological condition and treatment progress. It also provides guidance on exploring new medicines and enhance treatment strategies to overcome the antibiotic resistance of existing conventional antibiotics. In this review, we provide a thorough overview of the most advanced image-guided approaches for bacterial diagnosis (e.g., computed tomography imaging, magnetic resonance imaging, photoacoustic imaging, ultrasound imaging, fluorescence imaging, positron emission tomography, single photon emission computed tomography imaging, and multiple imaging), and therapies (e.g., photothermal therapy, photodynamic therapy, chemodynamic therapy, sonodynamic therapy, immunotherapy, and multiple therapies). This review focuses on how to design and fabricate photo-responsive materials for improved image-guided bacterial theranostics applications. We present a potential application of different image-guided modalities for both bacterial diagnosis and therapies with representative examples. Finally, we highlighted the current challenges and future perspectives image-guided approaches for future clinical translation of nano-theranostics in bacterial infections therapies. We envision that this review will provide for future development in image-guided systems for bacterial theranostics applications.
Collapse
Affiliation(s)
- Haiyan Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yi Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xie
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sana Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box: 33, PC: 616, Oman
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
58
|
Metal-phenolic networks with ferroptosis to deliver NIR-responsive CO for synergistic therapy. J Control Release 2022; 352:313-327. [PMID: 36272661 DOI: 10.1016/j.jconrel.2022.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
As an endogenous gasotransmitter, CO has achieved tremendous advances in cancer treatment through selectively killing cancer cells. However, the application of CO in tumor immunotherapy has not been reported and the tumor targeting delivery is still a tremendous challenge. Herein, thermosensitive boronic acid group-containing CO prodrug was synthesized and fabricated with tannic acid (TA) and iron (Fe) to form metal-phenolic networks, and then loaded with near-infrared (NIR) photothermal agent IR820 to form FeCO-IR820@FeIIITA for combinational therapy of CO and photothermal therapy. Ferroptosis can also be enhanced due to the Fe3+ incorporation. After TA reduced Fe3+ into Fe2+, Fe2+ might lead to intracellular Fenton reaction. Furthermore, in combination with CTLA-4 blockade immunotherapy, FeCO-IR820@FeIIITA remarkably inhibited breast tumor growth, suppressed the lung metastasis and improved the antitumor immune response. To summarize, FeCO-IR820@FeIIITA provides a potential novel option for CO/photothermal/immune synergistic therapy with enhanced ferroptosis through simple compositions and facile synthesis process.
Collapse
|
59
|
Lu Z, Acter S, Teo BM, Bishop AI, Tabor RF, Vidallon MLP. Mesoporous, anisotropic nanostructures from bioinspired polymeric catecholamine neurotransmitters and their potential application as photoacoustic imaging agents. J Mater Chem B 2022; 10:9662-9670. [PMID: 36382405 DOI: 10.1039/d2tb01756c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mesoporous polydopamine (PDA) nanobowls, which can be prepared using Pluronic® F-127, ammonia, and 1,3,5-trimethylbenzene (TMB), are one of the most studied anisotropic nanoparticle systems. However, only limited reports on polymerised analogues polynorepinephrine (PNE) and polyepinephrine (PEP) exist. Herein, we present modifications to a one-pot, soft template method, originally applied to make PDA nanobowls, to fabricate new shape-anisotropic nanoparticles (mesoporous nanospheres or "nano-golf balls" and nanobowls) using PNE and PEP for the first time. These modifications include the use of different oil phases (TMB, toluene and o-xylene) and ammonia concentrations to induce anisotropic growth of PDA, PNE, and PEP particles. Moreover, this work features the application of oddly shaped PDA, PNE, and PEP nanoparticles as intravascular photoacoustic imaging enhancers in Intralipid®-India ink-based tissue-mimicking phantoms. Photoacoustic imaging experiments showed that mesoporous nanobowls exhibit stronger enhancement, in comparison to their mesoporous nano-golf ball and nanoaggregate counterparts. The photoacoustic enhancement also followed the general trend PDA > PNE > PEP due to the differences in the rates of polymerisation of the monomers and the optical absorption of the resulting polymers. Lastly, about two- to four-fold enhancement in photoacoustic signals was observed for the mesoporous nanostructures, when compared to smooth nanospheres and their nano-aggregates. These results suggest that shape manipulation can aid in overcoming the inherently lower performance of PNE and PEP as photoacoustic imaging agents, compared to PDA. Since nanomaterials with mesoporous and anisotropic morphologies have significant, unexplored potential with emerging applications, these results set the groundwork for future studies on photoacoustically active oddly shaped PNE- and PEP-based nanosystems.
Collapse
Affiliation(s)
- Zhenzhen Lu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | - Shahinur Acter
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | | |
Collapse
|
60
|
Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Rethi L, Mutalik C, Rethi L, Chiang WH, Lee HL, Pan WY, Yang TS, Chiou JF, Chen YJ, Chuang EY, Lu LS. Molecularly Targeted Photothermal Ablation of Epidermal Growth Factor Receptor-Expressing Cancer Cells with a Polypyrrole-Iron Oxide-Afatinib Nanocomposite. Cancers (Basel) 2022; 14:cancers14205043. [PMID: 36291827 PMCID: PMC9599920 DOI: 10.3390/cancers14205043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary In this manuscript, we describe the design and synthesis of a nanocomposite containing afatinib, polypyrrole, and iron oxide (PIA-NC) to molecularly target epidermal growth factor receptor (EGFR)-overexpressing cancer cells for photothermal conversion. In addition to physical and chemical characterization, we also showed that PIA-NC induces selective reactive oxygen species surge and apoptosis in response to sublethal near-infrared light only in EGFR-overexpressing cancer cells, not in EGFR-negative fibroblasts. The work demonstrates the feasibility of photothermal therapy with cellular precision. Abstract Near-infrared–photothermal therapy (NIR-PTT) is a potential modality for cancer treatment. Directing photothermal effects specifically to cancer cells may enhance the therapeutic index for the best treatment outcome. While epithelial growth factor receptor (EGFR) is commonly overexpressed/genetically altered in human malignancy, it remains unknown whether targeting EGFR with tyrosine kinase inhibitor (TKI)-conjugated nanoparticles may direct NIR-PTT to cancers with cellular precision. In the present study, we tested this possibility through the fabrication of a polypyrrole–iron oxide–afatinib nanocomposite (PIA-NC). In the PIA-NC, a biocompatible and photothermally conductive polymer (polypyrrole) was conjugated to a TKI (afatinib) that binds to overexpressed wild-type EGFR without overt cytotoxicity. A Fenton catalyst (iron oxide) was further encapsulated in the NC to drive the intracellular ROS surge upon heat activation. Diverse physical and chemical characterization experiments were conducted. Particle internalization, cytotoxicity, ROS production, and apoptosis in EGFR-positive and -negative cell lines were investigated in the presence and absence of NIR. We found that the PIA-NCs were stable with a size of 243 nm and a zeta potential of +35 mV. These PIA-NCs were readily internalized close to the cell membrane by all types of cells used in the study. The Fourier transform infrared spectra showed 3295 cm−1 peaks; substantial O–H stretching was seen, with significant C=C stretching at 1637 cm−1; and a modest appearance of C–O–H bending at 1444 cm−1 confirmed the chemical conjugation of afatinib but not iron oxide to the NC. At a NIR-PTT energy level that has a minimal cytotoxic effect, PIA-NC significantly sensitizes EGFR-overexpressing A549 lung cancer cells to NIR-PTT-induced cytotoxicity at a rate of 70%, but in EGFR-negative 3T3 fibroblasts the rate was 30%. Within 1 min of NIR-PTT, a surge of intracellular ROS was found in PIA-NC-treated A549 cells. This was followed by early induction of cellular apoptosis for 54 ± 0.081% of A549 cells. The number of viable cells was less than a quarter of a percent. Viability levels of A549 cells that had been treated with NIR or PIA were only 50 ± 0.216% and 80 ± 0.216%, respectively. Only 10 ± 0.816% of NIH3T3 cells had undergone necrosis, meaning that 90 ± 0.124% were alive. Viability levels were 65 ± 0.081% and 81 ± 0.2%, respectively, when only NIR and PIA were used. PIA binding was effective against A549 cells but not against NIH3T3 cells. The outcome revealed that higher levels of NC + NIR exposure caused cancer cells to produce more ROS. In summary, our findings proved that a molecularly targeted NC provides an orchestrated platform for cancer cell-specific delivery of NIR-PTT. The geometric proximity design indicates a novel approach to minimizing the off-target biological effects of NIR-PTT. The potential of PIA-NC to be further developed into real-world application warrants further investigation.
Collapse
Affiliation(s)
- Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekha Rethi
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tze-Sen Yang
- Graduate Institute of Biomedical Opto Mechatronics, Taipei Medical University, Taipei 11031, Taiwan
- School of Dental Technology, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yin-Ju Chen
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, 111, Section 3, Xinglong Road, Wenshan District, Taipei 11696, Taiwan
- Correspondence: (E.-Y.C.); (L.-S.L.)
| | - Long-Sheng Lu
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (E.-Y.C.); (L.-S.L.)
| |
Collapse
|
62
|
Wang X, Li S, Wang S, Zheng S, Chen Z, Song H. Protein Binding Nanoparticles as an Integrated Platform for Cancer Diagnosis and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202453. [PMID: 35981878 PMCID: PMC9561793 DOI: 10.1002/advs.202202453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Smart nanomaterials constitute a new approach toward safer and more effective combined anti-cancer immunotherapy. In this study, polydopamine-multiprotein conjugates (DmPCs) that can be used for targeted delivery of multiple proteins to cells, realize imaging and combine the advantages of multiple treatment methods (photothermal therapy, chemodynamic therapy, and immunotherapy) can be synthesized and characterized. Proteins, as biological agents, are frequently used in this context, given their low toxicity in vivo. To overcome protein instability and short half-life in vivo, the use of several proteins in combination with selected nanomaterials to treat patients with melanoma is proposed. In addition to the synthesis and characterization of protein-bound nanoparticles, it is further demonstrated that several proteins can be efficiently delivered to tumor sites. DmPCs have a wide range of potential adaptability, which provides new opportunities for proteins in the field of treatment and imaging.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Molecular ScienceKey Laboratory of Combinatorial Biosynthesis and Drug DiscoveryWuhan UniversityWuhan430072China
| | - Shengbo Li
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Siqi Wang
- College of Chemistry and Molecular ScienceKey Laboratory of Combinatorial Biosynthesis and Drug DiscoveryWuhan UniversityWuhan430072China
| | - Shuo Zheng
- College of Chemistry and Molecular ScienceKey Laboratory of Combinatorial Biosynthesis and Drug DiscoveryWuhan UniversityWuhan430072China
| | - Zhenbing Chen
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Heng Song
- College of Chemistry and Molecular ScienceKey Laboratory of Combinatorial Biosynthesis and Drug DiscoveryWuhan UniversityWuhan430072China
| |
Collapse
|
63
|
Li Y, Pan Y, Chen C, Li Z, Du S, Luan X, Gao Y, Han X, Song Y. Multistage-Responsive Gene Editing to Sensitize Ion-Interference Enhanced Carbon Monoxide Gas Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204244. [PMID: 36055775 DOI: 10.1002/smll.202204244] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/11/2022] [Indexed: 06/15/2023]
Abstract
As a promising therapeutic modality targeting cancer, gas therapy still faces critical challenges, especially in enhancing therapeutic efficacy and avoiding gas poisoning risks. Here, a pH/glutathione (GSH) dual stimuli-responsive CRISPR/Cas9 gene-editing nanoplatform combined with calcium-enhanced CO gas therapy for precise anticancer therapy, is established. In the tumor microenvironment (TME), the fast biodegradation of the CaCO3 layer via pH-induced hydrolyzation allows glucose oxidase (GOx) to catalyze glucose for H2 O2 production, which further reacts with manganese carbonyl (MnCO) and achieves the precise release of CO gas. Simultaneously, in situ Ca2+ overload from CaCO3 degradation disturbs mitochondrial Ca2+ homeostasis, resulting in Ca2+ -driven reactive oxygen species (ROS) formation and subsequent mitochondrial apoptosis signaling pathway activation. Subsequently, by GSH-induced cleavage of a disulfide bond, the released Cas9/sgRNA (RNP) can achieve nuclear factor E2-related factor 2 (Nrf2) gene ablation to sensitize gas therapy by interfering with ROS signaling. This therapeutic modality endows codelivery of CRISPR, ions, and gas with smart control features, which demonstrates great potential for future clinical applications in precise nanomedicine.
Collapse
Affiliation(s)
- Yayao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Chao Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zekun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shiyu Du
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
64
|
Opoku‐Damoah Y, Zhang R, Ta HT, Xu ZP. Therapeutic gas-releasing nanomedicines with controlled release: Advances and perspectives. EXPLORATION (BEIJING, CHINA) 2022; 2:20210181. [PMID: 37325503 PMCID: PMC10190986 DOI: 10.1002/exp.20210181] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticle-based drug delivery has become one of the most popular approaches for maximising drug therapeutic potentials. With the notable improvements, a greater challenge hinges on the formulation of gasotransmitters with unique challenges that are not met in liquid and solid active ingredients. Gas molecules upon release from formulations for therapeutic purposes have not really been discussed extensively. Herein, we take a critical look at four key gasotransmitters, that is, carbon monoxide (CO), nitric oxide (NO), hydrogen sulphide (H2S) and sulphur dioxide (SO2), their possible modification into prodrugs known as gas-releasing molecules (GRMs), and their release from GRMs. Different nanosystems and their mediatory roles for efficient shuttling, targeting and release of these therapeutic gases are also reviewed extensively. This review thoroughly looks at the diverse ways in which these GRM prodrugs in delivery nanosystems are designed to respond to intrinsic and extrinsic stimuli for sustained release. In this review, we seek to provide a succinct summary for the development of therapeutic gases into potent prodrugs that can be adapted in nanomedicine for potential clinical use.
Collapse
Affiliation(s)
- Yaw Opoku‐Damoah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Hang T. Ta
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQueenslandAustralia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
65
|
Zhang J, Tong D, Song H, Ruan R, Sun Y, Lin Y, Wang J, Hou L, Dai J, Ding J, Yang H. Osteoimmunity-Regulating Biomimetically Hierarchical Scaffold for Augmented Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202044. [PMID: 35785450 DOI: 10.1002/adma.202202044] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/14/2022] [Indexed: 05/22/2023]
Abstract
Engineering a proper immune response following biomaterial implantation is essential to bone tissue regeneration. Herein, a biomimetically hierarchical scaffold composed of deferoxamine@poly(ε-caprolactone) nanoparticles (DFO@PCL NPs), manganese carbonyl (MnCO) nanosheets, gelatin methacryloyl hydrogel, and a polylactide/hydroxyapatite (HA) matrix is fabricated to augment bone repair by facilitating the balance of the immune system and bone metabolism. First, a 3D printed stiff scaffold with a well-organized gradient structure mimics the cortical and cancellous bone tissues; meanwhile, an inside infusion of a soft hydrogel further endows the scaffold with characteristics of the extracellular matrix. A Fenton-like reaction between MnCO and endogenous hydrogen peroxide generated at the implant-tissue site triggers continuous release of carbon monoxide and Mn2+ , thus significantly lessening inflammatory response by upregulating the M2 phenotype of macrophages, which also secretes vascular endothelial growth factor to induce vascular formation. Through activating the hypoxia-inducible factor-1α pathway, Mn2+ and DFO@PCL NP further promote angiogenesis. Moreover, DFO inhibits osteoclast differentiation and synergistically collaborates with the osteoinductive activity of HA. Based on amounts of data in vitro and in vivo, strong immunomodulatory, intensive angiogenic, weak osteoclastogenic, and superior osteogenic abilities of such an osteoimmunity-regulating scaffold present a profound effect on improving bone regeneration, which puts forward a worthy base and positive enlightenment for large-scale bone defect repair.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Dongmei Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Honghai Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
| | - Renjie Ruan
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Yifu Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Yandai Lin
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Linxi Hou
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Jiayong Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| |
Collapse
|
66
|
Chitosan/PLGA shell nanoparticles as Tylotoin delivery platform for advanced wound healing. Int J Biol Macromol 2022; 220:395-405. [DOI: 10.1016/j.ijbiomac.2022.07.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
|
67
|
Yang J, Zeng W, Fu X, Chen L, Yu X, Xu P, Huang W, Leng F, Yu C, Yang Z. Targeted intelligent mesoporous polydopamine nanosystems for multimodal synergistic tumor treatment. J Mater Chem B 2022; 10:5644-5654. [PMID: 35819133 DOI: 10.1039/d2tb00973k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Developing intelligent responsive platforms to carry out high-performance therapy is of great interest for the treatment of tumors and their metastases. However, effective drug loading, activity maintenance, off-target leakage, and response to collaborative therapy remain great challenges. Herein, a targeted intelligent responsive mesoporous polydopamine (MPDA) nanosystem was reported for use in gene-mediated photochemotherapy for synergistic tumor treatment. First, the MPDA was surface modified to maintain a positive charge near the surface and to impart active targeting. Then, gambogic acid (GA) was encapsulated in the MPDA, solidified by phase change materials (PCMs), and finally loaded with siRNA by electrostatic interactions to obtain the smart nanodelivery system (PPMD@GA/si). In vitro and in vivo experiments showed that it not only effectively avoids siRNA inactivation and accidental release of GA, but also possesses potential for targeted accumulation to tumor tissue and mild-temperature photothermal therapy and chemotherapy via near infrared (NIR) radiation. Additionally, the release of siRNA could also effectively inhibit tumor invasion and metastasis to realize multimodal synergistic therapy. Overall, our studies provide a promising idea for synergistic tumor and metastasis treatment based on vector construction.
Collapse
Affiliation(s)
- Jiaxin Yang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Weinan Zeng
- Orthopedic Research institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaoxue Fu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Lu Chen
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Xiaojuan Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Ping Xu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Wenyan Huang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Feng Leng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Zhangyou Yang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| |
Collapse
|
68
|
Fang Q, Liu S, Cui J, Zhao R, Han Q, Hou P, Li Y, Lv J, Zhang X, Luo Q, Wang X. Mesoporous Polydopamine Loaded Pirfenidone Target to Fibroblast Activation Protein for Pulmonary Fibrosis Therapy. Front Bioeng Biotechnol 2022; 10:920766. [PMID: 35957641 PMCID: PMC9363109 DOI: 10.3389/fbioe.2022.920766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Recently, fibroblast activation protein (FAP), an overexpressed transmembrane protein of activated fibroblast in pulmonary fibrosis, has been considered as the new target for diagnosing and treating pulmonary fibrosis. In this work, mesoporous polydopamine (MPDA), which is facile prepared and easily modified, is developed as a carrier to load antifibrosis drug pirfenidone (PFD) and linking FAP inhibitor (FAPI) to realize lesion-targeted drug delivery for pulmonary fibrosis therapy. We have found that PFD@MPDA-FAPI is well biocompatible and with good properties of antifibrosis, when ICG labels MPDA-FAPI, the accumulation of the nanodrug at the fibrosis lung in vivo can be observed by NIR imaging, and the antifibrosis properties of PFD@MPDA-FAPI in vivo were also better than those of pure PFD and PFD@MPDA; therefore, the easily produced and biocompatible nanodrug PFD@MPDA-FAPI developed in this study is promising for further clinical translations in pulmonary fibrosis antifibrosis therapy.
Collapse
Affiliation(s)
- Qi Fang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiangyu Cui
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Han
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Hou
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Youcai Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Lv
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyao Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qun Luo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
69
|
He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022; 186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
As a non-invasive imaging monitoring method, molecular imaging can provide the location and expression level of disease signature biomolecules in vivo, leading to early diagnosis of relevant diseases, improved treatment strategies, and accurate assessment of treating efficacy. In recent years, a variety of nanosized imaging probes have been developed and intensively investigated in fundamental/translational research and clinical practice. Meanwhile, as an interdisciplinary discipline, this field combines many subjects of chemistry, medicine, biology, radiology, and material science, etc. The successful molecular imaging not only requires advanced imaging equipment, but also the synthesis of efficient imaging probes. However, limited summary has been reported for recent advances of nanoprobes. In this paper, we summarized the recent progress of three common and main types of nanosized molecular imaging probes, including ultrasound (US) imaging nanoprobes, magnetic resonance imaging (MRI) nanoprobes, and computed tomography (CT) imaging nanoprobes. The applications of molecular imaging nanoprobes were discussed in details. Finally, we provided an outlook on the development of next generation molecular imaging nanoprobes.
Collapse
Affiliation(s)
- Haozhe He
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China
| | - Minwen Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonglai Lu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jun Wu
- PCFM Lab of Ministry of Education, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China.
| |
Collapse
|
70
|
Huang J, Li Y, Zhang L, Wang J, Xu Z, Kang Y, Xue P. A platinum nanourchin-based multi-enzymatic platform to disrupt mitochondrial function assisted by modulating the intracellular H2O2 homeostasis. Biomaterials 2022; 286:121572. [DOI: 10.1016/j.biomaterials.2022.121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 11/02/2022]
|
71
|
An injectable and biodegradable hydrogel incorporated with photoregulated NO generators to heal MRSA-infected wounds. Acta Biomater 2022; 146:107-118. [PMID: 35545186 DOI: 10.1016/j.actbio.2022.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023]
Abstract
The development of degradable hydrogel fillers with high antibacterial activity and wound-healing property is urgently needed for the treatment of infected wounds. Herein, an injectable, degradable, photoactivated antibacterial hydrogel (MPDA-BNN6@Gel) was developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration, MPDA-BNN6@Gel created local hyperthermia and released large quantities of NO gas to treat methicillin-resistant Staphylococcus aureus infection under the stimulation of an 808 nm laser. Experiments confirmed that the bacteria were eradicated through irreversible damage to the cell membrane, genetic metabolism, and material energy. Furthermore, in the absence of laser irradition, the fibrin and small amount of NO that originated from MPDA-BNN6@Gel promoted wound healing in vivo. This work indicates that MPDA-BNN6@Gel is a promising alternative for the treatment of infected wounds and provides a facile tactic to design a photoregulated bactericidal hydrogel for accelerating infected wound healing. STATEMENT OF SIGNIFICANCE: The development of a degradable hydrogel with high antibacterial activity and wound-healing property is an urgent need for the treatment of infected wounds. Herein, an injectable, degradable, and photo-activated antibacterial hydrogel (MPDA-BNN6@Gel) has been developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration of MPDA-BNN6@Gel, the MPDA-BNN6@Gel could generate local hyperthermia and release large quantities of NO gas to treat the methicillin-resistant Staphylococcus aureus infection under the irradiation of 808 nm laser. Furthermore, in the absence of a laser, the fibrin and a small amount of NO originating from MPDA-BNN6@Gel could promote wound healing in vivo.
Collapse
|
72
|
Meng Y, Zhu J, Ding J, Zhou W. Polyserotonin as a versatile coating with pH-responsive degradation for anti-tumor therapy. Chem Commun (Camb) 2022; 58:6713-6716. [PMID: 35593916 DOI: 10.1039/d2cc00083k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through self-polymerization of serotonin monomer, polyserotonin (PST) can coat on arbitrary surfaces with pH-responsive degradation, which was employed for nanoparticle coating and controlled drug release, achieving a robust anti-tumor effect when combined with its intrinsic photothermal effect.
Collapse
Affiliation(s)
- Yingcai Meng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.
| | - Jiaojiao Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
73
|
Li R, Hu X, Shang F, Wu W, Zhang H, Wang Y, Pan J, Shi S, Dong C. Treatment of triple negative breast cancer by near infrared light triggered mild temperature photothermal therapy combined with oxygen-independent cytotoxic free radicals. Acta Biomater 2022; 148:218-229. [DOI: 10.1016/j.actbio.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 11/01/2022]
|
74
|
Wang Y, Ge W, Ma Z, Ji G, Wang M, Zhou G, Wang X. Use of mesoporous polydopamine nanoparticles as a stable drug-release system alleviates inflammation in knee osteoarthritis. APL Bioeng 2022; 6:026101. [PMID: 35496642 PMCID: PMC9033307 DOI: 10.1063/5.0088447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis drugs are often short-acting; therefore, to enhance their efficacy, long-term, stable-release, drug-delivery systems are urgently needed. Mesoporous polydopamine (MPDA), a natural nanoparticle with excellent biocompatibility and a high loading capacity, synthesized via a self-aggregation-based method, is frequently used in tumor photothermal therapy. Here, we evaluated its efficiency as a sustained and controlled-release drug carrier and investigated its effectiveness in retarding drug clearance. To this end, we used MPDA as a controlled-release vector to design a drug-loaded microsphere system (RCGD423@MPDA) for osteoarthritis treatment, and thereafter, tested the efficacy of the system in a rat model of osteoarthritis. The results indicated that at an intermediate drug-loading dose, MPDA showed high drug retention. Furthermore, the microsphere system maintained controlled drug release for over 28 days. Our in vitro experiments also showed that drug delivery using this microsphere system inhibited apoptosis-related cartilage degeneration, whereas MPDA-only administration did not show obvious cartilage degradation improvement effect. Results from an in vivo osteoarthritis model also confirmed that drug delivery via this microsphere system inhibited cartilage damage and proteoglycan loss more effectively than the non-vectored drug treatment. These findings suggest that MPDA may be effective as a controlled-release carrier for inhibiting the overall progression of osteoarthritis. Moreover, they provide insights into the selection of drug-clearance retarding vectors, highlighting the applicability of MPDA in this regard.
Collapse
Affiliation(s)
- Yun Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Weiwen Ge
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai 200011, China
| | - Zhigui Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Xiansong Wang
- Authors to whom correspondence should be addressed: ; ; and
| |
Collapse
|
75
|
Liu W, Semcheddine F, Guo Z, Jiang H, Wang X. Glucose-Responsive ZIF-8 Nanocomposites for Targeted Cancer Therapy through Combining Starvation with Stimulus-Responsive Nitric Oxide Synergistic Treatment. ACS APPLIED BIO MATERIALS 2022; 5:2902-2912. [PMID: 35533346 DOI: 10.1021/acsabm.2c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With the rapid development of nanomedicine, low side effects and high-efficiency green antitumor approaches have attracted great attention. Herein, we report a strategy for the in situ synthesis of graphene oxide@zeolitic imidazolate framework-8 (GOx@ZIF-8) composite nanoparticles with high catalytic efficiency, under mild conditions by adding GOx molecules to the precursor of ZIF-8, and use them as a carrier to achieve efficient loading of l-Arg. In addition. folic-acid-conjugated bovine serum albumin (FA-BSA) has been used to engineer the surface of GOx@ZIF-8-l-Arg composite nanoparticles to enhance their specific recognition of tumor cells. With the high glucose level and low pH in the tumor intracellular environment, FA-BSA/GOx@ZIF-8-l-Arg rapidly consumed the intracellular glucose and produced H2O2, which profusely deteriorated the intracellular environment. Subsequently, a large amount of l-Arg was continuously released from the nanoparticles, reacting with H2O2 to continuously produce a high concentration of nitric oxide (NO), which further damaged the tumor cells. The FA-BSA/GOx@ZIF-8-l-Arg composite nanoparticles were cleverly designed to kill cancer cells efficiently through a starvation-NO synergistic process. This emerging green antitumor method has a promising application prospect in targeted therapy for the efficient clearance of cancers.
Collapse
Affiliation(s)
- Weiwei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Farouk Semcheddine
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zengchao Guo
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
76
|
Liu Y, Xu D, Liu Y, Zheng X, Zang J, Ye W, Zhao Y, He R, Ruan S, Zhang T, Dong H, Li Y, Li Y. Remotely boosting hyaluronidase activity to normalize the hypoxic immunosuppressive tumor microenvironment for photothermal immunotherapy. Biomaterials 2022; 284:121516. [DOI: 10.1016/j.biomaterials.2022.121516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/20/2022]
|
77
|
Chen L, Yang J, Fu X, Huang W, Yu X, Leng F, Yu C, Yang Z. A targeting mesoporous dopamine nanodrug platform with NIR responsiveness for atherosclerosis improvement. BIOMATERIALS ADVANCES 2022; 136:212775. [PMID: 35929293 DOI: 10.1016/j.bioadv.2022.212775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 05/27/2023]
Abstract
Atherosclerosis (AS), the formation of plaque lesions in the walls of arteries, causes many mortalities and morbidities worldwide. Currently, achieving site-specific delivery and controlled release at plaques is difficult. Herein, we implemented the strategy of constructing a bionic multifunctional nanoplatform (BM-NP) for targeting and improving plaques. BM-NPs were prepared based on probucol-loaded mesoporous polydopamine (MPDA) carriers and were coated with platelet membranes to impart bionic properties. In vitro experiments confirmed that BM-NPs, which respond to near-infrared (NIR) for drug release, remove reactive oxygen species (ROS), thereby reducing the level of oxidized low-density lipoprotein (ox-LDL) and ultimately helping to inhibit macrophage foaming. In vivo experiments proved that BM-NPs actively accumulated in plaques in the mouse right carotid artery (RCA) ligation model. During treatment, BM-NPs with NIR laser irradiation more effectively reduced the area of plaque deposition and slowed the thickening of the arterial wall intima. More importantly, BM-NPs showed the advantage of inhibiting the increase in triglyceride (TG) content in the body, and good biocompatibility. Hence, our research results indicate that intelligent BM-NPs can be used as a potential nanotherapy to precisely and synergistically improve AS.
Collapse
Affiliation(s)
- Lu Chen
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Jiaxin Yang
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Xiaoxue Fu
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Wenyan Huang
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Xiaojuan Yu
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Feng Leng
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Chao Yu
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China.
| | - Zhangyou Yang
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China.
| |
Collapse
|
78
|
Hu H, Liu X, Hong J, Ye N, Xiao C, Wang J, Li Z, Xu D. Mesoporous polydopamine-based multifunctional nanoparticles for enhanced cancer phototherapy. J Colloid Interface Sci 2022; 612:246-260. [PMID: 34995863 DOI: 10.1016/j.jcis.2021.12.172] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 01/10/2023]
Abstract
Cancer phototherapy has attracted increasing attention for its effectiveness, relatively low side effect, and noninvasiveness. The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has been shown to exhibit promising prospects in cancer treatment. However, the tumor hypoxia, high level of intracellular glutathione (GSH), and insufficient photosensitizer uptake significantly limit the PDT efficacy. In this work, we combine oxygen supply, GSH depletion, and tumor targeting in one nanoplatform, folate-decorated mesoporous polydopamine nanoparticles (FA-MPPD) co-loaded with new indocyanine green (IR-820) and perfluorooctane (PFO) (IR-820/PFO@FA-MPPD), to overcome the PDT resistance for enhanced cancer PDT/PTT. IR-820/PFO@FA-MPPD exhibit efficient singlet oxygen generation and photothermal effect under 808 nm laser irradiation, GSH-promoted IR-820 release, and efficient cellular uptake, resulting in high intracellular reactive oxygen species (ROS) level under 808 nm laser irradiation and strong photocytotoxicity in vitro. Following intratumoral injection, IR-820/PFO@FA-MPPD can relieve tumor hypoxia sustainably by PFO-mediated oxygen transport and deplete intracellular GSH by the Michael addition reaction, which boost the PDT effect and lead to the most potent antitumor effect upon 808 nm laser irradiation. The multifunctional IR-820/PFO@FA-MPPD developed in this work offer a relatively simple and effective strategy to potentiate PDT for efficient cancer phototherapy.
Collapse
Affiliation(s)
- Hang Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xin Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Hong
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Ningbing Ye
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, China.
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
79
|
Li T, Chen G, Xiao Z, Li B, Zhong H, Lin M, Cai Y, Huang J, Xie X, Shuai X. Surgical Tumor-Derived Photothermal Nanovaccine for Personalized Cancer Therapy and Prevention. NANO LETTERS 2022; 22:3095-3103. [PMID: 35357839 DOI: 10.1021/acs.nanolett.2c00500] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent breakthroughs in cell membrane-fabricated nanovaccine offer innovateive therapeutic options for preventing tumor metastasies and recurrence, yet the treatment of patient-specific solid tumor remained challenging owing to the immunosuppressive tumor microenvironment. Herein, we developed a personalized photothermal nanovaccine based on the surgical tumor-derived cell membranes (CMs) coating resiquimod (R848) loaded mesoporous polydopamine (MPDA) nanoparticles for targeting tumor photothermal immunotherapy and prevention. The fabricated photothermal nanovaccine MPDA-R848@CM (MR@C) demonstrates outstanding imaging-guided photothermal immunotherapy efficacy to eradicate solid tumors under near-IR laser irradiation and further inhibiting metastasis tumors by the resulted antitumor immunities, especially in combination with programmed death-ligand 1 antibody therapy (aPD-L1). Furthermore, from in vivo prophylactic testing results, it is confirmed that the 4T1 cells rechallenge can be prevented 100% in postsurgical tumor model after vaccination of the photothermal nanovaccine. Our work fabricates a personalized photothermal nanovaccine that possesses great potential for tumor-specific treatment and for preventing postoperative tumor recurrence.
Collapse
Affiliation(s)
- Tan Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Gengjia Chen
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zecong Xiao
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510275, China
| | - Bo Li
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Huihai Zhong
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yujun Cai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Huang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Yat-sen University, Guangzhou 510275, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
80
|
Wang Q, Qiu W, Li M, Li N, Li X, Qin X, Wang X, Yu J, Li F, Huang L, Wu D. Multifunctional hydrogel platform for biofilm scavenging and O 2 generating with photothermal effect on diabetic chronic wound healing. J Colloid Interface Sci 2022; 617:542-556. [PMID: 35303638 DOI: 10.1016/j.jcis.2022.03.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
Diabetic wound treatment remains a major challenge due to the difficulties of eliminating bacterial biofilm and relieving wound hypoxia. To address these issues simultaneously, a multifunctional Dex-SA-AEMA/MnO2/PDA (DSAMP) hydrogel platform was developed with excellent biocompatibility and porous structure. The hydrogel could absorb the exudate, maintain humidity and permeate oxygen, which was prepared by encapsulating polydopamine (PDA) and manganese dioxide (MnO2) into Dex-SA-AEMA (DSA) hydrogel by UV irradiation. With the addition of PDA, the DSAMP hydrogel was proved to eliminate the biofilm after NIR photodynamic therapy (PTT, 808 nm) irradiation at 54 °C. Furthermore, in order to mitigate hypoxia wound microenvironment, MnO2 nanoparticles were added to convert the endogenous hydrogen peroxide (H2O2) into oxygen (O2, 16 mg L-1). The diabetic wound in vivo treated by DSAMP hydrogel was completely healed on 14 days. It was revealed that the DSAMP hydrogel possessed a great potential as dressing for diabetic chronic wound healing.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Weiwang Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Mengna Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Na Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xueli Wang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - Liqian Huang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China.
| |
Collapse
|
81
|
Xiao J, Hai L, Li Y, Li H, Gong M, Wang Z, Tang Z, Deng L, He D. An Ultrasmall Fe 3 O 4 -Decorated Polydopamine Hybrid Nanozyme Enables Continuous Conversion of Oxygen into Toxic Hydroxyl Radical via GSH-Depleted Cascade Redox Reactions for Intensive Wound Disinfection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105465. [PMID: 34918449 DOI: 10.1002/smll.202105465] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/25/2021] [Indexed: 05/21/2023]
Abstract
Nanozyme-based chemodynamic therapy (CDT) for fighting bacterial infections faces several major obstacles including low hydrogen peroxide (H2 O2 ) level, over-expressed glutathione (GSH) in infected sites, and inevitable damage to healthy tissue with abundant nonlocalized nanozymes. Herein, a smart ultrasmall Fe3 O4 -decorated polydopamine (PDA/Fe3 O4 ) hybrid nanozyme is demonstrated that continuously converts oxygen into highly toxic hydroxyl radical (•OH) via GSH-depleted cascade redox reactions for CDT-mediated bacterial elimination and intensive wound disinfection. In this system, photonic hyperthermia of PDA/Fe3 O4 nanozymes can not only directly damage bacteria, but also improve the horseradish peroxidase-like activity of Fe3 O4 decorated for CDT. Surprisingly, through photothermal-enhanced cascade catalytic reactions, PDA/Fe3 O4 nanozymes can consume endogenous GSH for disrupting cellular redox homeostasis and simultaneously provide abundant H2 O2 for improving •OH generation, ultimately enhancing the antibacterial performance of CDT. Such PDA/Fe3 O4 can bind with bacterial cells, and reveals excellent antibacterial property against both Staphylococcus aureus and Escherichia coli. Most interestingly, PDA/Fe3 O4 nanozymes can be strongly retained in infected sites by an external magnet for localized long-term in vivo CDT and show minimal toxicity to healthy tissues and organs. This work presents an effective strategy to magnetically retain the therapeutic nanozymes in infected sites for highly efficient CDT with good biosafety.
Collapse
Affiliation(s)
- Jiayu Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences & Peking Union Medical College, Shenzhen, 518116, China
| | - Yaoyao Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Huan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Minhui Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zefeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zifeng Tang
- College of Art and Science, New York University, New York, NY, 10012, USA
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Dinggeng He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
82
|
Xu J, Zhang H, Zhang Y, Zhang X, Wang T, Hong S, Wei W, Zhao T, Fang W. Controllable synthesis of variable-sized magnetic nanocrystals self-assembled into porous nanostructures for enhanced cancer chemo-ferroptosis therapy and MR imaging. NANOSCALE ADVANCES 2022; 4:782-791. [PMID: 36131836 PMCID: PMC9419831 DOI: 10.1039/d1na00767j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/21/2021] [Indexed: 05/30/2023]
Abstract
Magnetic-based nanomaterials are promising for cancer diagnosis and treatment. Herein, we develop a self-assembled approach for the preparation of a porous magnetic nanosystem, DOX/Mn(0.25)-Fe3O4-III NPs, which can simultaneously achieve chemotherapy, ferroptosis therapy and MRI to improve the therapeutic efficacy. By tuning its porous structures, whole particle sizes and compositions, this nanosystem possesses both a high drug loading capacity and excellent Fenton reaction activity. Owing to the synergetic catalysis effect of iron and manganese ions, the Fenton catalytic activity of Mn(0.25)-Fe3O4-III NPs (K cat = 1.2209 × 10-2 min-1) was six times higher than that of pure porous Fe3O4 NPs (K cat = 1.9476 × 10-3 min-1), making them greatly advantageous in ferroptosis-inducing cancer therapy. Moreover, we found out that these Mn(0.25)-Fe3O4-III NPs show a pH-dependent Fenton reaction activity. At acidic tumorous pH, this nanosystem could catalyze H2O2 to produce the cytotoxic ˙OH to kill cancer cells, while in neutral physiological conditions it decomposed H2O2 into biosafe species (H2O and O2). In vivo studies demonstrated that DOX/Mn(0.25)-Fe3O4-III NPs exhibited a significant synergistic anticancer effect of combining chemotherapy and ferroptosis therapy and effective T2-weighted MRI with minimal side effects. Therefore, this porous magnetic nanoplatform has a great potential for combined diagnosis and therapy in future clinical applications.
Collapse
Affiliation(s)
- Jianxiang Xu
- School of Basic Medical Sciences, Anhui Medical University Hefei 230032 Anhui China wjfang812163.com
| | - Hanyuan Zhang
- Department of Orthopedics, Department of Sports Medicine and Arthroscopic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 China
| | - Yifei Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University Hefei 230061 China
| | - Xu Zhang
- School of Basic Medical Sciences, Anhui Medical University Hefei 230032 Anhui China wjfang812163.com
| | - Teng Wang
- School of Basic Medical Sciences, Anhui Medical University Hefei 230032 Anhui China wjfang812163.com
| | - Shi Hong
- School of Basic Medical Sciences, Anhui Medical University Hefei 230032 Anhui China wjfang812163.com
| | - Wenmei Wei
- School of Basic Medical Sciences, Anhui Medical University Hefei 230032 Anhui China wjfang812163.com
| | - Tingting Zhao
- School of Basic Medical Sciences, Anhui Medical University Hefei 230032 Anhui China wjfang812163.com
| | - Weijun Fang
- School of Basic Medical Sciences, Anhui Medical University Hefei 230032 Anhui China wjfang812163.com
| |
Collapse
|
83
|
Ren D, Williams GR, Zhang Y, Ren R, Lou J, Zhu LM. Mesoporous Doxorubicin-Loaded Polydopamine Nanoparticles Coated with a Platelet Membrane Suppress Tumor Growth in a Murine Model of Human Breast Cancer. ACS APPLIED BIO MATERIALS 2022; 5:123-133. [PMID: 35014822 DOI: 10.1021/acsabm.1c00926] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bringing together photothermal therapy and chemotherapy (photothermal-chemotherapy, PT-CT) is a highly promising clinical approach but requires the development of intelligent multifunctional delivery vectors. In this work, we prepared mesoporous polydopamine nanoparticles (MPDA NPs) loaded with the chemotherapeutic drug doxorubicin (DOX). These NPs were then coated with the platelet membrane (PLTM). The coated MPDA NPs are spherical and clearly mesoporous in structure. They have a particle size of approximately 184 nm and pore size of ca. 45 nm. The NPs are potent photothermal agents and efficient DOX carriers, with increased rates of drug release observed in vitro in conditions representative of the tumor microenvironment. The NPs are preferentially taken up by cancer cells but not by macrophage cells, and while cytocompatible with healthy cells are highly toxic to cancer cells. An in vivo murine model of human breast cancer revealed that the NPs can markedly slow the growth of a tumor (ca. 9-fold smaller after 14 days' treatment), have extended pharmacokinetics compared to free DOX (with DOX still detectable in the bloodstream after 24 h when the NPs are applied), and are highly targeted with minimal off-site effects on the heart, liver, spleen, kidney, and lungs.
Collapse
Affiliation(s)
- Dandan Ren
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Yanyan Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Rong Ren
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiadong Lou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
84
|
Sun P, Jiang X, Sun B, Wang H, Li J, Fan Q, Huang W. Electron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy. Biomaterials 2021; 280:121319. [PMID: 34923313 DOI: 10.1016/j.biomaterials.2021.121319] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
Designing conjugated polymers (CPs) with both efficient second near-infrared wavelength (NIR-II) fluorescence and NIR-II photothermal therapy performance remains a huge challenge, as the introduction of excessively strong electron donor and acceptor units significantly increase non-radiative decay. Herein, we describe an "electron acceptor density adjustment" strategy to address this problem, since a lower electron acceptor density in the conjugated polymer backbone can enhance the radiative rate constant and improve NIR-II fluorescence brightness. We used quaterthiophene (4T) with four repeated thiophene chain units and bithiophene (2 TC) modified with long alkyl side chains to reduce the electron acceptor density in the conjugated polymer backbone. The resultant 1064 nm absorption polymer, TTQ-2TC-4T displayed approximately 7.30-folds enhancement in NIR-II emission intensity compared to that of undoped TTQ-1T at the same mass concentration in toluene solution. Furthermore nanoparticles (TTQ-MnCO NPs) based on TTQ-2TC-4T and CO donors (Mn2(CO)10) were developed to realize NIR-II FI-guided 1064 nm laser-triggered NIR-II PTT/Gas synergistic therapy. The TTQ-MnCO NPs nanoparticles exhibited high photothermal conversion efficiency (η) of 44.43% at 1064 nm and high specific NIR-II fluorescence imaging of the cerebral vasculature of live mice. The in vivo results demonstrate that TTQ-MnCO NPs nanoparticles have excellent PTT/Gas synergistic therapeutic effects in MCF-7 tumor-bearing mice under 1064 nm laser irradiation. This study provides a new approach for optimizing both NIR-II fluorescence and NIR-II photothermal performance of NIR-II absorption conjugated polymers.
Collapse
Affiliation(s)
- Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xinyue Jiang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Bo Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hong Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jiewei Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| |
Collapse
|
85
|
Mo Z, Qiu M, Zhao K, Hu H, Xu Q, Cao J, Luo Y, Liu L, Xu Z, Yi C, Xiong Z, Liao G, Yang S. Multifunctional phototheranostic nanoplatform based on polydopamine-manganese dioxide-IR780 iodide for effective magnetic resonance imaging-guided synergistic photodynamic/photothermal therapy. J Colloid Interface Sci 2021; 611:193-204. [PMID: 34953455 DOI: 10.1016/j.jcis.2021.12.071] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/24/2022]
Abstract
Multifunctional phototheranostics combining diagnostic and therapeutic modalities may provide a revolutionary opportunity for cancer treatment. As a promising tumor phototheranostic molecule, IR780 iodide (IR780) shows excellent photodynamic and photothermal performance under near-infrared laser irradiation; however, its hydrophobicity and instability limit its further use in organisms. This work demonstrates the design and development of a multifunctional nanoplatform (PMIDA, referring to polydopamine (PDA)-manganese dioxide (MnO2)-IR780) for imaging-guided phototherapy. The good biocompatibility of PDA greatly improves the water solubility and photostability of IR780, and its excellent photothermal properties make PMIDA a dual photothermal therapy (PTT). MnO2-induced generation of oxygen in the tumor microenvironment improves the hypoxia effect and photodynamic therapy (PDT) of IR780. Moreover, Mn2+ serves as a decent T1-weighted magnetic resonance imaging (MRI) probe to guide treatment. Notably, in relevant cellular assays, PMIDA shows high photodynamic and photothermal effects contributing to the final therapeutic effect. The MRI-guided PDT/PTT synergistic therapy effect in vivo is demonstrated by precise tumor diagnosis and complete tumor elimination outcomes. Based on these experiments, PMIDA nanoparticles display promising effects in facilitating intravenous injection of IR780 and achieving magnetic resonance imaging (MRI)-guided phototheranostic efficacy for tumor treatment.
Collapse
Affiliation(s)
- Zhimin Mo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Mengjun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Kan Zhao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Han Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Jinguo Cao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Yuxuan Luo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Liping Liu
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China.
| | - Zhifan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
86
|
Photoacoustic image-guided corpus cavernosum intratunical injection of adipose stem cell-derived exosomes loaded polydopamine thermosensitive hydrogel for erectile dysfunction treatment. Bioact Mater 2021; 9:147-156. [PMID: 34820562 PMCID: PMC8586570 DOI: 10.1016/j.bioactmat.2021.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cell-derived exosomes (SC-EXO) was an emerging therapeutic agent in regenerative medicine. Intratunical injection of SC-EXO is considered as a prospective approach for erectile dysfunction (ED) treatment. However, high vascularization of cavernous body makes effective retention a major challenge for SC-EXO intratunical injection. In this study, a Polydopamine nanoparticles (PDNPs) incorporated poly (ethylene glycol)-poly(ε-caprolactone-co-lactide) (PDNPs-PELA) thermosensitive hydrogels were fabricated by a facile in situ polymerization for intratunical administration of adipose stem cell-derived exosomes (EXO). The hydrogels exhibited sol-gel transition at body temperature. Moreover, the in-situ polymerization of PDNPs using poly (ethylene glycol)-poly(ε-caprolactone-co-lactide) (PELA) block copolymer as a template was found to be more stable dispersion in the gel system. After being encapsulated into the hydrogel, EXO shows sustained release behavior within two weeks. In vivo animal experiments revealed that exosomes released from hydrogel lead to the healing of endothelial cells and neurons, increase of the cavity's pressure, thereby restoring the erectile function. In particular, since the PDNPs in thermosensitive gels have excellent photoacoustic performance, the hydrogel can be accurately delivered into the tunica albuginea by the guidance of real-time photoacoustic imaging. These results suggest that the as-prepared PDNPs-PELA has a promising future as an injectable exosome carrier for ED treatment. A temperature-sensitive hydrogel with photoacoustic activity was developed for intratunical injection by in-situ polymerization. •The exosomes encapsulated in the hydrogel can be slowly released and effectively restore damaged nerve and vascular endothelial cells. •The injection guided by photoacoustic images realizes accurate puncture and real-time filling detection of hydrogel in the corpus cavernosum.
Collapse
|
87
|
Zhu M, Shi Y, Shan Y, Guo J, Song X, Wu Y, Wu M, Lu Y, Chen W, Xu X, Tang L. Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. J Nanobiotechnology 2021; 19:387. [PMID: 34819084 PMCID: PMC8613963 DOI: 10.1186/s12951-021-01131-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Polydopamine (PDA), which is derived from marine mussels, has excellent potential in early diagnosis of diseases and targeted drug delivery owing to its good biocompatibility, biodegradability, and photothermal conversion. However, when used as a solid nanoparticle, the application of traditional PDA is restricted because of the low drug-loading and encapsulation efficiencies of hydrophobic drugs. Nevertheless, the emergence of mesoporous materials broaden our horizon. Mesoporous polydopamine (MPDA) has the characteristics of a porous structure, simple preparation process, low cost, high specific surface area, high light-to-heat conversion efficiency, and excellent biocompatibility, and therefore has gained considerable interest. This review provides an overview of the preparation methods and the latest applications of MPDA-based nanodrug delivery systems (chemotherapy combined with radiotherapy, photothermal therapy combined with chemotherapy, photothermal therapy combined with immunotherapy, photothermal therapy combined with photodynamic/chemodynamic therapy, and cancer theranostics). This review is expected to shed light on the multi-strategy antitumor therapy applications of MPDA-based nanodrug delivery systems. ![]()
Collapse
Affiliation(s)
- Menglu Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Yifan Shan
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Junyan Guo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Xuelong Song
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yuhua Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Miaolian Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yan Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Wei Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, 310004, Hangzhou, Zhejiang, People's Republic of China.
| | - Longguang Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China. .,International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China.
| |
Collapse
|
88
|
Zhao Y, Ouyang X, Peng Y, Peng S. Stimuli Responsive Nitric Oxide-Based Nanomedicine for Synergistic Therapy. Pharmaceutics 2021; 13:1917. [PMID: 34834332 PMCID: PMC8622285 DOI: 10.3390/pharmaceutics13111917] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
Gas therapy has received widespread attention from the medical community as an emerging and promising therapeutic approach to cancer treatment. Among all gas molecules, nitric oxide (NO) was the first one to be applied in the biomedical field for its intriguing properties and unique anti-tumor mechanisms which have become a research hotspot in recent years. Despite the great progress of NO in cancer therapy, the non-specific distribution of NO in vivo and its side effects on normal tissue at high concentrations have impaired its clinical application. Therefore, it is important to develop facile NO-based nanomedicines to achieve the on-demand release of NO in tumor tissue while avoiding the leakage of NO in normal tissue, which could enhance therapeutic efficacy and reduce side effects at the same time. In recent years, numerous studies have reported the design and development of NO-based nanomedicines which were triggered by exogenous stimulus (light, ultrasound, X-ray) or tumor endogenous signals (glutathione, weak acid, glucose). In this review, we summarized the design principles and release behaviors of NO-based nanomedicines upon various stimuli and their applications in synergistic cancer therapy. We also discuss the anti-tumor mechanisms of NO-based nanomedicines in vivo for enhanced cancer therapy. Moreover, we discuss the existing challenges and further perspectives in this field in the aim of furthering its development.
Collapse
Affiliation(s)
- Yijun Zhao
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Yongjun Peng
- The Department of Medical Imaging, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| |
Collapse
|
89
|
Li W, Zhou X, Liu S, Zhou J, Ding H, Gai S, Li R, Zhong L, Jiang H, Yang P. Biodegradable Nanocatalyst with Self-Supplying Fenton-like Ions and H 2O 2 for Catalytic Cascade-Amplified Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50760-50773. [PMID: 34672620 DOI: 10.1021/acsami.1c14598] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Therapeutic nanosystems triggered by a specific tumor microenvironment (TME) offer excellent safety and selectivity in the treatment of cancer by in situ conversion of a less toxic substance into effective anticarcinogens. However, the inherent antioxidant systems, hypoxic environment, and insufficient hydrogen peroxide (H2O2) in tumor cells severely limit their efficacy. Herein, a new strategy has been developed by loading the chemotherapy prodrug disulfiram (DSF) and coating glucose oxidase (GOD) on the surface of Cu/ZIF-8 nanospheres and finally encapsulating manganese dioxide (MnO2) nanoshells to achieve efficient DSF-based cancer chemotherapy and dual-enhanced chemodynamic therapy (CDT). In an acidic TME, the nanocatalyst can biodegrade rapidly and accelerate the release of internal active substances. The outer layer of MnO2 depletes glutathione (GSH) to destroy the reactive oxygen defensive mechanisms and achieves continuous oxygen generation, thus enhancing the catalytic efficiency of GOD to burst H2O2. Benefiting from the chelation reaction between the released Cu2+ and DSF, a large amount of cytotoxic CuET products is generated, and the Cu+ are concurrently released, thereby achieving efficient chemotherapy and satisfactory CDT efficacy. Furthermore, the release of Mn2+ can initiate magnetic resonance imaging signals for the tracking of the nanocatalyst.
Collapse
Affiliation(s)
- Wenting Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Xinglu Zhou
- Department of PET/CT Center, Harbin Medical University Cancer Hospital, Harbin 150081, China
- Department of Radiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Jialing Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lei Zhong
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China
| | - Huijie Jiang
- Department of Radiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
90
|
Facile fabrication of surface molecularly imprinted magnetic polydopamine for selective adsorption of fluoroquinolone from aqueous solutions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
91
|
Barrett JA, Li Z, Garcia JV, Wein E, Zheng D, Hunt C, Ngo L, Sepunaru L, Iretskii AV, Ford PC. Redox-mediated carbon monoxide release from a manganese carbonyl-implications for physiological CO delivery by CO releasing moieties. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211022. [PMID: 34804570 PMCID: PMC8580448 DOI: 10.1098/rsos.211022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
The dynamics of hydrogen peroxide reactions with metal carbonyls have received little attention. Given reports that therapeutic levels of carbon monoxide are released in hypoxic tumour cells upon manganese carbonyls reactions with endogenous H2O2, it is critical to assess the underlying CO release mechanism(s). In this context, a quantitative mechanistic investigation of the H2O2 oxidation of the water-soluble model complex fac-[Mn(CO)3(Br)(bpCO2)]2-, (A, bpCO2 2- = 2,2'-bipyridine-4,4'-dicarboxylate dianion) was undertaken under physiologically relevant conditions. Characterizing such pathways is essential to evaluating the viability of redox-mediated CO release as an anti-cancer strategy. The present experimental studies demonstrate that approximately 2.5 equivalents of CO are released upon H2O2 oxidation of A via pH-dependent kinetics that are first-order both in [A] and in [H2O2]. Density functional calculations were used to evaluate the key intermediates in the proposed reaction mechanisms. These pathways are discussed in terms of their relevance to physiological CO delivery by carbon monoxide releasing moieties.
Collapse
Affiliation(s)
- Jacob A. Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Zhi Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - John V. Garcia
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Emily Wein
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Dongyun Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Camden Hunt
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Loc Ngo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Alexei V. Iretskii
- Department of Chemistry and Environmental Sciences, Lake Superior State University, Sault Sainte Marie, MI 49783, USA
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
92
|
Light-activated nitric-oxide overproduction theranostic nanoplatform based on long-circulating biomimetic nanoerythrocyte for enhanced cancer gas therapy. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1045-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
93
|
Li Y, Liu Z, Zeng W, Wang Z, Liu C, Zeng N, Zhong K, Jiang D, Wu Y. A Novel H 2O 2 Generator for Tumor Chemotherapy-Enhanced CO Gas Therapy. Front Oncol 2021; 11:738567. [PMID: 34631573 PMCID: PMC8496405 DOI: 10.3389/fonc.2021.738567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023] Open
Abstract
Carbon monoxide (CO) gas therapy is a promising cancer treatment. However, gas delivery to the tumor site remains problematic. Proper tunable control of CO release in tumors is crucial to increasing the efficiency of CO treatment and reducing the risk of CO poisoning. To overcome such challenges, we designed ZCM, a novel stable nanotechnology delivery system comprising manganese carbonyl (MnCO) combined with anticancer drug camptothecin (CPT) loaded onto a zeolitic imidazole framework-8 (ZIF-8). After intravenous injection, ZCM gradually accumulates in cancerous tissues, decomposing in the acidic tumor microenvironment, releasing CPT and MnCO. CPT acts as a chemotherapy agent destroying tumors and producing copious H2O2. MnCO can react with the H2O2 to generate CO, powerfully damaging the tumor. Both in vitro and in vivo experiments indicate that the ZCM system is both safe and has excellent tumor inhibition properties. ZCM is a novel system for CO controlled release, with significant potential to improve future cancer therapy.
Collapse
Affiliation(s)
- Yang Li
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weng Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziqi Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Chunping Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keli Zhong
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Dazhen Jiang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
94
|
Huang S, Wu Y, Li C, Xu L, Huang J, Huang Y, Cheng W, Xue B, Zhang L, Liang S, Jin X, Zhu X, Xiong S, Su Y, Wang H. Tailoring morphologies of mesoporous polydopamine nanoparticles to deliver high-loading radioiodine for anaplastic thyroid carcinoma imaging and therapy. NANOSCALE 2021; 13:15021-15030. [PMID: 34533142 DOI: 10.1039/d1nr02892h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anaplastic thyroid carcinoma (ATC), as one of the most aggressive human malignancies, cannot be cured by 131iodine (131I) internal radiotherapy (RT) because the tumor cells cannot effectively take up 131I and are resistant to radiotherapy. In this study, a facile and simple method was proposed to synthesize mesoporous polydopamine nanoparticles (MPDA) and tailor their morphologies by component-adjusting Pluronic micelle-guided polymerization. Then, MPDA were used not only as nanocarriers to radiolabel 131I, but also as photothermal conversion agents for photothermal therapy (PTT) to promote RT. The iodine-labeling capacity and photothermal conversion efficiency of MPDA can be enhanced by optimizing their morphologies. It was found that MPDA NPs with a cerebroid pore channel structure (CPDA) showed the highest iodine-carrying capacity and a higher photothermal conversion efficiency as a result of their maximum specific surface area and unique morphology. In subsequent experiments in vitro and in vivo, our ATC animal models showed impressive therapeutic responses to CPDA-131I NPs because of the synergistic effect of PTT and RT. Additionally, CPDA-125I NPs can be utilized to obtain high-quality SPETC/CT images of tumors, which can guide clinical therapy for ATC. Considering their great biosafety, these radioiodine-labeled CPDA NPs may serve as a promising tool in combined therapy and diagnosis in ATC.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School, 1665 Kongjiang Road, Shanghai 200092, China.
| | - Yan Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Chao Li
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School, 1665 Kongjiang Road, Shanghai 200092, China.
| | - Li Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jie Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yu Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School, 1665 Kongjiang Road, Shanghai 200092, China.
| | - Bai Xue
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Linlin Zhang
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School, 1665 Kongjiang Road, Shanghai 200092, China.
| | - Sheng Liang
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School, 1665 Kongjiang Road, Shanghai 200092, China.
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Shuqiang Xiong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yue Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Hui Wang
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School, 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
95
|
Zhao Y, Liu Y, Wang Q, Liu J, Zhang S, Zhang T, Wang D, Wang Y, Jin L, Zhang H. Carambola-like Bi 2Te 3 superstructures with enhanced photoabsorption for highly efficient photothermal therapy in the second near-infrared biowindow. J Mater Chem B 2021; 9:7271-7277. [PMID: 34121105 DOI: 10.1039/d1tb00694k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Photothermal therapy (PTT) stimulated by light in the second near-infrared (NIR-II) biowindow shows great superiorities in the penetration ability of tissue and maximum permissible exposure (MPE). Exploring new photothermal agents with good optical absorbance in the NIR-II region is highly desirable for efficient cancer therapy. Herein, we successfully prepare carambola-like bismuth telluride (Bi2Te3) superstructures modified with PEGylated phospholipid (Bi2Te3@PEG) for CT imaging-guided PTT in the NIR-II biowindow. Attributing to their superstructures, Bi2Te3@PEG exhibited enhanced photoabsorption with higher photothermal conversion efficiency (55.3% for 1064 nm) compared with that of Bi2Te3 nanoparticles. Furthermore, the good X-ray attenuation capacity of Bi endows Bi2Te3@PEG with an outstanding performance as computed tomography (CT) contrast agents. Bi2Te3@PEG superstructures have been confirmed to effectively eliminate tumor in vitro and in vivo with negligible long-term toxicities, offering them great potential to act as theranostic platforms for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China
| | - Qishun Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jianhua Liu
- The second hospital of Jilin University, Changchun 130041, China.
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China.
| | - Tianqi Zhang
- The second hospital of Jilin University, Changchun 130041, China.
| | - Daguang Wang
- Department of Gastric and Colorectal Surgery, the First Hospital, Jilin University, Changchun 130021, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China.
| | - Longhai Jin
- The second hospital of Jilin University, Changchun 130041, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
96
|
Xiao X, Liang S, Zhao Y, Pang M, Ma P, Cheng Z, Lin J. Multifunctional carbon monoxide nanogenerator as immunogenic cell death drugs with enhanced antitumor immunity and antimetastatic effect. Biomaterials 2021; 277:121120. [PMID: 34508956 DOI: 10.1016/j.biomaterials.2021.121120] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The limited effect of immune checkpoint blockade (ICB) immunotherapy is subjected to the immuno-suppressive tumor microenvironment (TME). It is still a challenge to reverse the immune-suppressive state in clinical cancer therapy. Immunogenic cell death (ICD) is a way for inducing the therapeutical tumor immune system. In this work, carbon monoxide (CO) gas therapy is used to boost antitumor immunity for tumor control, metastasis and recurrence prevention. Briefly, CO2-g-C3N4-Au@ZIF-8@F127 (CCAZF) is proposed to integrate gas therapy and immunotherapy into a photocatalytic nanogenerator for overcoming the limitations of monotherapy. CCAZF exhibits a highly effective light-controllable release behavior of CO, which gradually aggravates the oxidative stress in tumor cells to induce ICD. With the induction of ICD, CO therapy enhances immune responses and enables efficient immune cells activated. When combined with ICB, CCAZF displays an enhanced immune effect, which mediates the regression of primary and distal tumors. This strategy of in-situ photocatalytic CO therapy furthest avoids the toxicity from CO leakage and provides a new method to design novel ICD inducers.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China
| | - Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China
| | - Yajie Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China
| | - Maolin Pang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China.
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
97
|
P S R, Alvi SB, Begum N, Veeresh B, Rengan AK. Self-Assembled Fluorosome-Polydopamine Complex for Efficient Tumor Targeting and Commingled Photodynamic/Photothermal Therapy of Triple-Negative Breast Cancer. Biomacromolecules 2021; 22:3926-3940. [PMID: 34383466 DOI: 10.1021/acs.biomac.1c00744] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Photodynamic/photothermal therapy (PDT/PTT) that deploys a near-infrared responsive nanosystem is emerging to be a promising modality in cancer treatment. It is highly desirable to have a multifunctional nanosystem that can be used for efficient tumor targeting and inhibiting metastasis/recurrence of cancer. In the current study, self-assembled chlorophyll-rich fluorosomes derived from Spinacia oleracea were developed. These fluorosomes were co-assembled on a polydopamine core, forming camouflaged nanoparticles (SPoD NPs). The SPoD NPs exhibited a commingled PDT/PTT (i.e., interdependent PTT and PDT) that inhibited both normoxic and hypoxic cancer cell growth. These nanoparticles showed stealth properties with enhanced physiological stability and passive tumor targeting. SPoD NPs also exhibited tumor suppression by synergistic PTT and PDT. It also prevented lung metastasis and splenomegaly in tumor-bearing Balb/c mice. Interestingly, treatment with SPoD NPs also caused the suppression of secondary tumors by eliciting an anti-tumor immune response. In conclusion, a co-assembled multifunctional nanosystem derived from S. oleracea showed enhanced stability and tumor-targeting efficacy, resulting in a commingled PDT/PTT effect.
Collapse
Affiliation(s)
- Rajalakshmi P S
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502285, India
| | - Syed Baseeruddin Alvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502285, India
| | - Nazia Begum
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Hyderabad, Telangana 500028, India
| | - Bantal Veeresh
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Hyderabad, Telangana 500028, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502285, India
| |
Collapse
|
98
|
Gong W, Xia C, He Q. Therapeutic gas delivery strategies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1744. [PMID: 34355863 DOI: 10.1002/wnan.1744] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
Gas molecules with pharmaceutical effects offer emerging solutions to diseases. In addition to traditional medical gases including O2 and NO, more gases such as H2 , H2 S, SO2 , and CO have recently been discovered to play important roles in various diseases. Though some issues need to be addressed before clinical application, the increasing attention to gas therapy clearly indicates the potentials of these gases for disease treatment. The most important and difficult part of developing gas therapy systems is to transport gas molecules of high diffusibility and penetrability to interesting targets. Given the particular importance of gas molecule delivery for gas therapy, distinguished strategies have been explored to improve gas delivery efficiency and controllable gas release. Here, we summarize the strategies of therapeutic gas delivery for gas therapy, including direct gas molecule delivery by chemical and physical absorption, inorganic/organic/hybrid gas prodrugs, and natural/artificial/hybrid catalyst delivery for gas generation. The advantages and shortcomings of these gas delivery strategies are analyzed. On this basis, intelligent gas delivery strategies and catalysts use in future gas therapy are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Wanjun Gong
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chao Xia
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
99
|
Opoku-Damoah Y, Zhang R, Ta HT, Xu ZP. Vitamin E-facilitated carbon monoxide pro-drug nanomedicine for efficient light-responsive combination cancer therapy. Biomater Sci 2021; 9:6086-6097. [PMID: 34346418 DOI: 10.1039/d1bm00941a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The quest to maximize therapeutic efficiency in cancer treatment requires innovative delivery nanoplatforms capable of employing different modules simultaneously. Combination therapy has proven to be one of the best anticancer strategies so far. Herein, we have developed a lipid-encapsulated nanoplatform that combines chemotherapy with photoresponsive gas therapy for colon cancer treatment. Carbon monoxide releasing molecules (CORMs) and vitamin E analogues (pure/pegylated α-tocopheryl succinate; α-TOS) were co-loaded into the lipid layer with core-shell upconversion nanoparticles (UCNPs), which converted 808 nm light to 360 nm photons to trigger CO release at the tumor site. This folic acid (FA)-targeting nanomedicine (Lipid/UCNP/CORM/α-TOS/FA: LUCTF) possessed a cancer-targeting ability and a light-triggered CO release ability for synergistic apoptosis of HCT116 cells via enhanced ROS generation and mitochondrial membrane breaking. In vivo data have confirmed the significantly enhanced therapeutic efficacy of LUCTF without any significant biosafety issues after intravenous administration. Thus, nanomedicine LUCTF represents a novel way for efficient cancer therapy via combining locally released CO and a compatible chemotherapeutic agent (e.g. α-TOS).
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. and School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia and Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
100
|
Yan P, Shu X, Zhong H, Chen P, Gong H, Han S, Tu Y, Shuai X, Li J, Liu LH, Wang P. A versatile nanoagent for multimodal imaging-guided photothermal and anti-inflammatory combination cancer therapy. Biomater Sci 2021; 9:5025-5034. [PMID: 34109950 DOI: 10.1039/d1bm00576f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photothermal therapy (PTT) has drawn great attention in cancer treatment because of its minimal invasiveness and high spatiotemporal selectivity, but it still encounters severe obstacles like heat-resistance, metastasis and recurrence. A key reason for the treatment failure is the highly inflammatory tumor microenvironment caused by hyperthermia. A simultaneous anti-inflammatory therapy alongside the PTT has great potential for overcoming the drawbacks of PTT; however, it has been less reported and further study is urgently needed. In addition, as many inorganic photothermal agents have no inherent imaging capability, diagnostic strategies should be introduced to help identify cancerous lesions and find the best treatment time period for PTT. Herein, we developed a versatile theranostic nanoagent (named T-lipos-CPAuNCs) for synergistic multimodal imaging-guided photothermal/anti-inflammatory cancer therapy. Perfluorohexane (PFH) loaded AuNCs and the anti-inflammatory drug celecoxib were encapsulated into the tumor-targeting cyclic Arg-Gly-Asp (cRGD) peptide modified liposomes to form T-lipos-CPAuNCs. The T-lipos-CPAuNCs accumulated in the tumor tissue and selectively targeted the cancer cells, and converted photo to thermal energy under near-infrared (NIR) laser irradiation to kill the cancer cells by PTT. The high temperature further accelerated the release of celecoxib to exert an anti-inflammatory effect, while on the other hand led to liquid to gas phase transition of PFH to facilitate ultrasound (US) imaging. The T-lipos-CPAuNCs also exhibited photoacoustic (PA) imaging capability. In vitro and in vivo experiments established that under the guidance of multimodal imaging, T-lipos-CPAuNCs significantly suppressed the tumor growth by PTT and prevented tumor metastasis with non-apparent tumor inflammation. The developed theranostic nanosystem (T-lipos-CPAuNCs) shows great potential for PA/US multimodal imaging guided photothermal/anti-inflammatory combination cancer therapy.
Collapse
Affiliation(s)
- Ping Yan
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Xian Shu
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Hao Zhong
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Peiling Chen
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Haiyan Gong
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Shisong Han
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yingfeng Tu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Li
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Li-Han Liu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Ping Wang
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| |
Collapse
|