51
|
Yang L, Lu M, Wu Y, Jiang Z, Chen ZH, Tang Y, Li Q. Target Design of Multinary Metal-Organic Frameworks for Near-Infrared Imaging and Chemodynamic Therapy. J Am Chem Soc 2023; 145:26169-26178. [PMID: 37988478 DOI: 10.1021/jacs.3c08611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Imaging-guided chemodynamic therapy is widely considered a promising modality for personalized and precision cancer treatment. Combining both imaging and chemodynamic functions in one system conventionally relies on the hybrid materials approach. However, the heterogeneous, ill-defined, and dissociative/disintegrative nature of the composites tends to complicate their action proceedings in biological environments and thus makes the treatment imprecise and ineffective. Herein, a strategy to employ two kinds of inorganic units with different functions─reactive oxygen species generation and characteristic emission─has achieved two single-crystalline metal-organic frameworks (MOFs), demonstrating the competency of reticular chemistry in creating multifunctional materials with atomic precision. The multinary MOFs could not only catalyze the transformation from H2O2 to hydroxyl radicals by utilizing the redox-active Cu-based units but also emit characteristic tissue-penetrating near-infrared luminescence brought by the Yb4 clusters in the scaffolds. Dual functions of MOF nanoparticles are further evidenced by pronounced cell imaging signals, elevated intracellular reactive oxygen species levels, significant cell apoptosis, and reduced cell viabilities when they are taken up by the HeLa cells. In vivo NIR imaging is demonstrated after the MOF nanoparticles are further functionalized. The independent yet interconnected modules in the intact MOFs could operate concurrently at the same cellular site, achieving a high spatiotemporal consistency. Overall, our work suggests a new method to effectively accommodate both imaging and therapy functions in one well-defined material for precise treatment.
Collapse
Affiliation(s)
- Lingyi Yang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Mingzhu Lu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Yichen Wu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhongwen Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Zi-Han Chen
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Yi Tang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Qiaowei Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
52
|
Zhao G, Liu Y, Pan J, Liu C, Hu Y, Gao Z, Zhuang X. Flexible nanofibrous membranes of dual metallic metal-organic framework with enhanced Lewis basic sites and high loading mass for efficient CO 2 capture. J Colloid Interface Sci 2023; 651:200-210. [PMID: 37542895 DOI: 10.1016/j.jcis.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Excessive CO2 emissions and the resultant global warming present significant environmental challenges, posing threats to human health and public safety. Metal-organic frameworks (MOFs), known for their high specific area and large porosity, hold the promise for CO2 capture. However, a major obstacle is the low loading mass of MOFs and the limited interface affinity and compatibility between MOFs and substrates. In this study, we present an electrospinning-assisted in-situ synthesis dual metallic framework strategy for preparing flexible Zn/Co-ZIF nanofibrous membranes (NFMs). This method achieves the high loading mass of MOFs and introduces abundant Lewis basic sites, thereby enhancing the CO2 adsorption. The dual metallic Zn/Co-ZIF NFMs exhibit remarkable features, including high MOF loading mass (70.23 wt%), high specific surface area (379.63 m2g-1), large porosity (92.34 %), high CO2 adsorption capacity (4.43 mmol/g), high CO2/N2 adsorption selectivity (37), and high CO2/CH4 adsorption selectivity (31). Moreover, the dual metallic Zn/Co-ZIF NFMs demonstrate robust structural stability and durability attributed to the excellent interface affinity between MOFs and NFMs, retaining 96.56 % of their initial capacity after 10 adsorption-desorption cycles. This work presents a prospective direction for developing flexible dual metallic MOF NFMs for the efficient capture of CO2.
Collapse
Affiliation(s)
- Guodong Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Ya Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Jingyu Pan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Chang Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yinghe Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Zhe Gao
- School of Textile Garment and Design, Changshu Institute of Technology, Changshu 215500, PR China.
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
53
|
Shanmugam M, Agamendran N, Sekar K, Natarajan TS. Metal-organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications. Phys Chem Chem Phys 2023; 25:30116-30144. [PMID: 37909363 DOI: 10.1039/d3cp04297a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The increasing energy demands in society and industrial sectors have inspired the search for alternative energy sources that are renewable and sustainable, also driving the development of clean energy storage and delivery systems. Various solid-state materials (e.g., oxides, sulphides, polymer and conductive nanomaterials, activated carbon and their composites) have been developed for energy production (water splitting-H2 production), gaseous fuel (H2 and CH4) storage and electrochemical energy storage (batteries and supercapacitors) applications. Nevertheless, the low surface area, pore volume and conductivity, and poor physical and chemical stability of the reported materials have resulted in higher requirements and challenges in the development of energy production and energy storage technologies. Thus, to overcome these issues, the development of metal-organic frameworks (MOFs) has attracted significant attention. MOFs are a class of porous materials with extremely high porosity and surface area, structural diversity, multifunctionality, and chemical and structural stability, and thus they can be used in a wide range of applications. In the present review, we precisely discuss the interesting properties of MOFs and the various methodologies for their synthesis, and also the future dependence on the valorization of solid waste for the recovery of metals and organic ligands for the synthesis of new classes of MOFs. Subsequently, the utilization of these interesting characteristics for energy production (water splitting), storage of gaseous fuels (H2 and CH4), and electrochemical storage (batteries and supercapacitors) applications are described. However, although MOFs are efficient materials with versatile uses, they still have many challenges, limiting their practical applications. Therefore, finally, we highlight the challenges associated with MOFs and show the way forward in overcoming them for the development of these highly porous materials with large-scale practical utility.
Collapse
Affiliation(s)
- Mariyappan Shanmugam
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Nithish Agamendran
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Karthikeyan Sekar
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Thillai Sivakumar Natarajan
- Environmental Science Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
54
|
Muthukumar D, Palakkal AS, Pillai RS. Prediction of the capture and utilization of atmospheric acidic gases by azo-based square-pillared fluorinated MOFs. Phys Chem Chem Phys 2023; 25:30458-30468. [PMID: 37921019 DOI: 10.1039/d3cp02365f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
More than the permissible limit of acidic gases like CO2, SO2, and NO2 in the atmosphere are responsible for the formation of acid rain, the greenhouse effect and many other undesirable environmental hazards. So, the capture and utilization of these gases are essential for mankind. Herein, we proposed an azo-based square pillared MOF, [Ni(MF5)(1,2-bis(4-pyridy)diazene)2]n, with the CUS metal site, i.e. M = Al/Fe, for the selective capture and conversion of acidic gas molecules into commodity chemicals such as cyclic carbonate, sulphite and nitrite. With the aid of Density Functional Theory (DFT), [Ni(MF5)(1,2-bis(4-pyridy)diazene)2]n has been optimized, and the specific force field is derived via guest-host interaction. The Grand Canonical Monte Carlo (GCMC) simulation has been used to explore the guest-host interactions over a wide range of pressures, and their respective stability under pre-humidification is evaluated. The adsorption prediction reveals that MFFIVE-Ni-apy have a higher adsorptive capacity (37.1 mmol g-1), and especially ALFFIVE-Ni-apy possesses a higher affinity towards guest molecules (CO2, SO2) rather than FEFFIVE-Ni-apy. Additionally, the adsorption of gases in the presence of humidity reveals that ALFFIVE-Ni-apy has an optimal adsorption capacity for all investigated acidic gases even at 38.5 RH%. The absorbed acidic gases on MFFIVE-Ni-apy were used for the theoretical investigations on cycloaddition with the aid of DFT as an application perspective of the toxic gases instead of expelling into atmosphere. The Climbing Image Nudged Elastic Band (CI-NEB) approach was used to discover the transition state in this scenario, in which the cycloaddition of adsorbed CO2, SO2, and NO2 gases with epoxides leads to the formation of cyclic carbonates, sulphites, and nitrates, respectively.
Collapse
Affiliation(s)
- D Muthukumar
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru 560 029, Karnataka, India
| | - Athulya S Palakkal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Renjith S Pillai
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru 560 029, Karnataka, India
- Analytical and Spectroscopy Division, ASCG/PCM, Vikram Sarabhai Space Center, Indian Space Research Organisation, Thiruvananthapuram, 695022, Kerala, India.
| |
Collapse
|
55
|
Khoo RH, Fiankor C, Yang S, Hu W, Yang C, Lu J, Morton MD, Zhang X, Liu Y, Huang J, Zhang J. Postsynthetic Modification of the Nonanuclear Node in a Zirconium Metal-Organic Framework for Photocatalytic Oxidation of Hydrocarbons. J Am Chem Soc 2023; 145:24052-24060. [PMID: 37880201 PMCID: PMC10636760 DOI: 10.1021/jacs.3c07237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Heterogeneous catalysis plays an indispensable role in chemical production and energy conversion. Incorporation of transition metals into metal oxides and zeolites is a common strategy to fine-tune the activity and selectivity of the resulting solid catalysts, as either the active center or promotor. Studying the underlying mechanism is however challenging. Decorating the metal-oxo clusters with transition metals in metal-organic frameworks (MOFs) via postsynthetic modification offers a rational approach to construct well-defined structural models for better understanding of the reaction mechanism. Therefore, it is important to expand the materials scope beyond the currently widely studied zirconium MOFs consisting of Zr6 nodes. In this work, we report the design and synthesis of a new (4,12)-connected Zr-MOF with ith topology that consists of rare Zr9 nodes. FeIII was further incorporated onto the Zr9 nodes of the framework, and the resulting MOF material exhibits significantly enhanced activity and selectivity toward the photocatalytic oxidation of toluene. This work demonstrates a delicate ligand design strategy to control the nuclearity of Zr-oxo clusters, which further dictates the number and binding sites of transition metals and the overall photocatalytic activity toward C-H activation. Our work paves the way for future exploration of the structure-activity study of catalysts using MOFs as the model system.
Collapse
Affiliation(s)
- Rebecca
Shu Hui Khoo
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Christian Fiankor
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Sizhuo Yang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Wenhui Hu
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Chongqing Yang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jingzhi Lu
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Martha D. Morton
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Xu Zhang
- Jiangsu
Engineering Laboratory for Environment Functional Materials, Jiangsu
Collaborative Innovation Center of Regional Modern Agriculture &
Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, No. 111 West Changjiang Road, Huaian, Jiangsu 223300, China
| | - Yi Liu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jier Huang
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jian Zhang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
56
|
Zhao RN, Zhu BW, Xu Y, Yu SF, Wang WJ, Liu DH, Hu JN. Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems. Carbohydr Polym 2023; 319:121198. [PMID: 37567724 DOI: 10.1016/j.carbpol.2023.121198] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Metal-organic frameworks (MOFs) are coordination compounds that possess an adjustable structure and controllable function. Despite their wide applications in various industries, the use of MOFs in the fields of food and biomedicine is limited mainly due to their potential biological toxicity. Researchers have thus focused on developing biocompatible MOFs to address this issue. Among them, cyclodextrin-based metal-organic frameworks (CD-MOFs) have emerged as a promising alternative. CD-MOFs are novel MOFs synthesized using naturally carbohydrate cyclodextrin and alkali metal cations, and possess renewable, non-toxic, and edible characteristics. Due to their high specific surface area, controllable porosity, great biocompatibility, CD-MOFs have been widely used in various delivery systems, such as encapsulation of nutraceuticals, flavors, and antibacterial agents. Although the field of CD-MOF materials is still in its early stages, they provide a promising direction for the development of MOF materials in the delivery field. This review describes classification and structural characteristics, followed by an introduction to formation mechanism and commonly used synthetic methods for CD-MOFs. Additionally, we discuss the status of the application of various delivery systems based on CD-MOFs. Finally, we address the challenges and prospects of CD-MOF materials, with the aim of providing new insights and ideas for their future development.
Collapse
Affiliation(s)
- Ru-Nan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Bei-Wei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Song-Feng Yu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Wen-Jun Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Dong-Hong Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Jiang-Ning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
57
|
Avila J, Corsini C, Correa CM, Rosenthal M, Padua A, Costa Gomes M. Porous Ionic Liquids Go Green. ACS NANO 2023; 17:19508-19513. [PMID: 37812175 DOI: 10.1021/acsnano.3c06343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
This Perspective points toward pathways to prepare porous ionic liquids using easily accessible materials, aiming for reduced environmental impact. We demonstrate that suspensions of porous solids are stable in eutectic mixtures, underscoring their potential for the preparation of porous ionic liquids. Porous ionic liquids retain the wide electrochemical window observed in their precursor pure ionic liquids, rendering them well-suited for green electrochemical reactions, particularly those involving gases whose solubility is enhanced in the porous suspensions. Moreover, their capacity as gas-rich media points to sustainable biomedical and pharmaceutical applications, provided nontoxic, biocompatible ionic liquids and porous solids are utilized.
Collapse
Affiliation(s)
- Jocasta Avila
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Chiara Corsini
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Cintia M Correa
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Martin Rosenthal
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
- Dual-Belgian-Beamline (DUBBLE), European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Agilio Padua
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Margarida Costa Gomes
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
58
|
Hu D, Miao S, Zhang P, Wu S, He YP, Meng Q. Boosting the catalysis of cesium phosphomolybdate encapsulated in hierarchical porous UiO-66 by microenvironment modulation for epoxidation of alkenes. Dalton Trans 2023; 52:14676-14685. [PMID: 37791565 DOI: 10.1039/d3dt02479b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH3, or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert-butyl hydroperoxide (t-BuOOH). CsPM@HP-UiO-66-2CH3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal-support interactions (SMSIs) between CsPM and HP-UiO-66-2CH3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH3.
Collapse
Affiliation(s)
- Dianwen Hu
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Songsong Miao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Pengfei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Siyuan Wu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu-Peng He
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qingwei Meng
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
59
|
Dai Y, Zhang G, Peng Y, Li Y, Chi H, Pang H. Recent progress in 1D MOFs and their applications in energy and environmental fields. Adv Colloid Interface Sci 2023; 321:103022. [PMID: 39491441 DOI: 10.1016/j.cis.2023.103022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
Metal organic frameworks (MOFs) are porous coordination polymers with adjustable nanostructure, high porosity and large surface areas. These features make MOFs, their derivates and composites all delivered remarkable potential in energy and environmental fields, such as rechargeable batteries, supercapacitors, catalysts, water purification and desalination, gas treatment, toxic matter degradation, etc. In particular, one-dimensional (1D) MOFs have generated extensive attention due to their unique 1D nanostructures. To prepare 1D MOF nanostructures, it is necessary to explore and enhance synthesis routes. In this review, the preparation of 1D MOF materials and their recent process applied in energy and environmental fields will be discussed. The relationship between MOFs' 1D morphologies and the properties in their applications will also be analyzed. Finally, we will also summary and make perspectives about the future development of 1D MOFs in fabrication and applications in energy and environmental fields.
Collapse
Affiliation(s)
- Yunyi Dai
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Guangxun Zhang
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yi Peng
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yuan Li
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Heng Chi
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
60
|
Liu H, Yao Y, Samorì P. Taming Multiscale Structural Complexity in Porous Skeletons: From Open Framework Materials to Micro/Nanoscaffold Architectures. SMALL METHODS 2023; 7:e2300468. [PMID: 37431215 DOI: 10.1002/smtd.202300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Recent developments in the design and synthesis of more and more sophisticated organic building blocks with controlled structures and physical properties, combined with the emergence of novel assembly modes and nanofabrication methods, make it possible to tailor unprecedented structurally complex porous systems with precise multiscale control over their architectures and functions. By tuning their porosity from the nanoscale to microscale, a wide range of functional materials can be assembled, including open frameworks and micro/nanoscaffold architectures. During the last two decades, significant progress is made on the generation and optimization of advanced porous systems, resulting in high-performance multifunctional scaffold materials and novel device configurations. In this perspective, a critical analysis is provided of the most effective methods for imparting controlled physical and chemical properties to multifunctional porous skeletons. The future research directions that underscore the role of skeleton structures with varying physical dimensions, from molecular-level open frameworks (<10 nm) to supramolecular scaffolds (10-100 nm) and micro/nano scaffolds (>100 nm), are discussed. The limitations, challenges, and opportunities for potential applications of these multifunctional and multidimensional material systems are also evaluated in particular by addressing the greatest challenges that the society has to face.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Yifan Yao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
61
|
Wu P, Zhao Y, Zhang X, Fan Y, Zhang S, Zhang W, Huo F. Opportunities and Challenges of Metal-Organic Framework Micro/Nano Reactors for Cascade Reactions. JACS AU 2023; 3:2413-2435. [PMID: 37772189 PMCID: PMC10523373 DOI: 10.1021/jacsau.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Building bridges among different types of catalysts to construct cascades is a highly worthwhile pursuit, such as chemo-, bio-, and chemo-bio cascade reactions. Cascade reactions can improve the reaction efficiency and selectivity while reducing steps of separation and purification, thereby promoting the development of "green chemistry". However, compatibility issues in cascade reactions pose significant constraints on the development of this field, particularly concerning the compatibility of diverse catalyst types, reaction conditions, and reaction rates. Metal-organic framework micro/nano reactors (MOF-MNRs) are porous crystalline materials formed by the self-assembly coordination of metal sites and organic ligands, possessing a periodic network structure. Due to the uniform pore size with the capability of controlling selective transfer of substances as well as protecting active substances and the organic-inorganic parts providing reactive microenvironment, MOF-MNRs have attracted significant attention in cascade reactions in recent years. In this Perspective, we first discuss how to address compatibility issues in cascade reactions using MOF-MNRs, including structural design and synthetic strategies. Then we summarize the research progress on MOF-MNRs in various cascade reactions. Finally, we analyze the challenges facing MOF-MNRs and potential breakthrough directions and opportunities for the future.
Collapse
Affiliation(s)
- Peng Wu
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yanhua Zhao
- Frontiers
Science Center for Flexible Electronics, Xi’an Institute of
Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials
& Engineering, Northwestern Polytechnical
University, 127 West
Youyi Road, Xi’an 710072, China
| | - Xinglong Zhang
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yun Fan
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Suoying Zhang
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Weina Zhang
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Fengwei Huo
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
62
|
Chafiq M, Chaouiki A, Ko YG. Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future. NANO-MICRO LETTERS 2023; 15:213. [PMID: 37736827 PMCID: PMC10516851 DOI: 10.1007/s40820-023-01180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 09/23/2023]
Abstract
Porous organic frameworks (POFs) have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials, both in their pristine state and when subjected to various chemical and structural modifications. Metal-organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties, such as high crystallinity, intrinsic porosity, unique structural regularity, diverse functionality, design flexibility, and outstanding stability. This review provides an overview of the state-of-the-art research on base-stable POFs, emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials. Thereafter, the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements. It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category.
Collapse
Affiliation(s)
- Maryam Chafiq
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abdelkarim Chaouiki
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Young Gun Ko
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
63
|
Zhang Y, Xia ZW, Shen LJ, Tang H, Luo XF, Li X, Xiao X. A 3D tetrathiafulvalene-based metal-organic framework with intramolecular charge transfer for efficient near-infrared photothermal conversion. Chem Commun (Camb) 2023; 59:11429-11432. [PMID: 37671497 DOI: 10.1039/d3cc03165a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The selection of metal centers can endow donor-metal-accepter (D-M-A) type MOFs with progressive framework dimensions. 3D Cd-based MOFs with intramolecular charge transfer caused by D-M-A exhibit a satisfactory photothermal conversion efficiency of 35.7%, with the temperature rapidly rising from 25 °C to 201 °C in 7 s under 808 nm laser irradiation.
Collapse
Affiliation(s)
- Yu Zhang
- College of Material Science and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Ningbo, 315211, China.
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Zi-Wei Xia
- College of Material Science and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Ningbo, 315211, China.
| | - Liang-Jun Shen
- College of Material Science and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Ningbo, 315211, China.
- Zhejiang Institute of Tianjin University, 201 Fenghua Road, Ningbo 315211, China
| | - Hao Tang
- College of Material Science and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Ningbo, 315211, China.
- Zhejiang Institute of Tianjin University, 201 Fenghua Road, Ningbo 315211, China
| | - Xu-Feng Luo
- College of Material Science and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Ningbo, 315211, China.
| | - Xing Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Xunwen Xiao
- College of Material Science and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Ningbo, 315211, China.
- Zhejiang Institute of Tianjin University, 201 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
64
|
Sui J, Gao ML, Qian B, Liu C, Pan Y, Meng Z, Yuan D, Jiang HL. Bioinspired microenvironment modulation of metal-organic framework-based catalysts for selective methane oxidation. Sci Bull (Beijing) 2023; 68:1886-1893. [PMID: 37544879 DOI: 10.1016/j.scib.2023.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Inspiration from natural enzymes enabling creationary catalyst design is appealing yet remains extremely challenging for selective methane (CH4) oxidation. This study presents the construction of a biomimetic catalyst platform for CH4 oxidation, which is constructed by incorporating Fe-porphyrin into a robust metal-organic framework, UiO-66, furnished with saturated monocarboxylic fatty acid bearing different long alkyl chains. The catalysts demonstrate the high efficiency in the CH4 to methanol (CH3OH) conversion at 50 °C. Moreover, the selectivity to CH3OH can be effectively regulated and promoted through a fine-tuned microenvironment by hydrophobic modification around the Fe-porphyrin. The long-chain fatty acids anchored on the Zr-oxo cluster of UiO-66 can not only tune the electronic state of the Fe sites to improve CH4 adsorption, but also restrict the amount of H2O2 around the Fe sites to reduce the overoxidation. This behavior resembles the microenvironment regulation in methane monooxygenase, resulting in high CH3OH selectivity.
Collapse
Affiliation(s)
- Jianfei Sui
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Liang Gao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bing Qian
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Zheng Meng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
65
|
Li W, Cui X, Chen Z. The screening of lipase inhibitors based on the metal-organic framework Zeolitic Imidazolate Framework-8-immobilized enzyme microreactor. J Chromatogr A 2023; 1706:464257. [PMID: 37531848 DOI: 10.1016/j.chroma.2023.464257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
An online capillary electrophoresis method based-lipase immobilized enzyme microreactor was developed for lipase kinetic study and inhibitor screening from compounds from natural products. Zeolitic Imidazolate Framework-8 (ZIF-8) has the advantages of large pore size, mild synthesis conditions and good biocompatibility. Lipase was immobilized on the inner wall of capillary with the help of the metal-organic framework ZIF-8. The results of electron microscopy showed that lipase could be aggregated and fixed on the inner wall of capillary by ZIF-8. After the experimental conditions including electrophoretic separation and enzymatic reaction were optimized, the baseline separation of substrate p-nitrophenyl acetate (pNPA) and product p-nitrophenol (pNP) was achieved within 3 min. The immobilized enzyme microreactor showed good repeatability and stability, and the determined Michaelis-Menten constant (Km) of lipase was 2.75 mM, which was lower than the kinetic constant determined in off-line reaction, indicating that the immobilized enzyme had a high affinity with the substrate. In addition, the IC50 value of the positive control compound orlistat on lipase inhibition was 7.26 nM, which was consistent with the literature. Then the inhibitory activity of 10 compounds from natural products on lipase was evaluated by the ZIF-8-IMER. Among them, 7 compounds including baicalein, luteolin, epicatechin gallic acid, and chlorogenic acid, had a certain inhibitory effect on lipase. The molecular docking technology proved the interaction between the enzyme and the screened inhibitor, which provides a new method for the screening of lipase inhibitors.
Collapse
Affiliation(s)
- Wen Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Xinyue Cui
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Zilin Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China.
| |
Collapse
|
66
|
Wang Q, Dong J, Li Z, Wang X, He Y, Chen B, Zhao D. Dual-Emitting Mixed-Lanthanide Metal-Organic Framework for Ratiometric and Quantitative Visual Detection of 2,6-Pyridine Dicarboxylic Acid. Inorg Chem 2023; 62:14439-14447. [PMID: 37595269 DOI: 10.1021/acs.inorgchem.3c02374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The detection of the major biomarker of Bacillus anthracis, 2,6-dipicolinic acid (DPA), has attracted great interest in recent years. In this work, mixed-lanthanide metal-organic frameworks (M'LnMOFs), TbxEu1-x-cppa (cppa = 5-(5-carboxypyridin-3-yl)isophthalic acid), with different Tb/Eu ratios, were solvothermally synthesized. The results reveal that ratiometric fluorescent probe [Tb0.533Eu0.467-(Hcppa)1.5(H2O)(DMF)]·3H2O is water and acid-base stable and exhibits excellent sensitivity (LOD = 2.286 μM), high selectivity, and fast response (<2 min) for the detection of DPA. Due to the blocked energy transfer from Tb3+ to Eu3+ and the inner filter effect upon the addition of DPA, the fluorescent probe shows a distinct color change from orange-red to green. Furthermore, the visual detection of DPA was realized by identifying the RGB values of MOF-based agarose hydrogel films via a smartphone, highlighting the practical application of the fluorescent probe for DPA detection under aqueous solution conditions.
Collapse
Affiliation(s)
- Qin Wang
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Jiangnan Dong
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Zhangjian Li
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xinyi Wang
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yabing He
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Banglin Chen
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Dian Zhao
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| |
Collapse
|
67
|
Wang S, Ai Z, Niu X, Yang W, Kang R, Lin Z, Waseem A, Jiao L, Jiang HL. Linker Engineering of Sandwich-Structured Metal-Organic Framework Composites for Optimized Photocatalytic H 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302512. [PMID: 37421606 DOI: 10.1002/adma.202302512] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
While the microenvironment around catalytic sites is recognized to be crucial in thermocatalysis, its roles in photocatalysis remain subtle. In this work, a series of sandwich-structured metal-organic framework (MOF) composites, UiO-66-NH2 @Pt@UiO-66-X (X means functional groups), is rationally constructed for visible-light photocatalytic H2 production. By varying the ─X groups of the UiO-66-X shell, the microenvironment of the Pt sites and photosensitive UiO-66-NH2 core can be simultaneously modulated. Significantly, the MOF composites with identical light absorption and Pt loading present distinctly different photocatalytic H2 production rates, following the ─X group sequence of ─H > ─Br > ─NA (naphthalene) > ─OCH3 > ─Cl > ─NO2 . UiO-66-NH2 @Pt@UiO-66-H demonstrates H2 production rate up to 2708.2 µmol g-1 h-1 , ≈222 times that of UiO-66-NH2 @Pt@UiO-66-NO2 . Mechanism investigations suggest that the variation of the ─X group can balance the charge separation of the UiO-66-NH2 core and the proton reduction ability of Pt, leading to an optimal activity of UiO-66-NH2 @Pt@UiO-66-H at the equilibrium point.
Collapse
Affiliation(s)
- Siyuan Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiwen Ai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinwei Niu
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Rong Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Long Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
68
|
Maleki S, Hashemi P, Adeli M. A simple and portable vacuum assisted headspace solid phase microextraction device coupled to gas chromatography based on covalent organic framework/metal organic framework hybrid for simultaneous analysis of volatile and semi-volatile compounds in soil. J Chromatogr A 2023; 1705:464195. [PMID: 37423076 DOI: 10.1016/j.chroma.2023.464195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Various microextraction methods have demonstrated a positive effect when assisted by vacuum. However, working with such systems is often laborious, they often require expensive and non-portable vacuum pumps, and may even suck off some sample vapor or solid particles during the evacuation process. To address these issues, a simple, and affordable vacuum-assisted headspace solid-phase microextraction (HS-SPME) device was developed in this study. The device, named In Syringe Vacuum-assisted HS-SPME (ISV-HS-SPME), utilizes an adjustable 40 mL glass syringe as a vacuum provider and sampling vessel. A new fiber coating, made from a hybrid of covalent triazine-based frameworks and metal-organic frameworks (COF/MOF), was prepared and characterized by Fourier transform infrared spectrometry, field emission scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis, and Brunauer-Emmett-Teller techniques for use in the ISV-HS-SPME. By optimizing parameters such as extraction temperature, extraction time, desorption temperature, desorption time, and, humidity using a simplex method, the ISV system was found to increase the extraction efficiency of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylenes (BTEX) in solid samples by up to 175%. The determinations were followed by GC-FID measurements. Compared to three commercially available fibers, the ISV-HS-SPME device with the COF/MOF (2DTP/MIL-101-Cr) fiber exhibited significantly higher peak areas for PAHs and BTEX. The linear dynamic ranges for BTEX and PAHs were 7.1-9000 ng g-1 and 0.23-9000 ng g-1, respectively, with limits of detection ranging from 2.1-5 ng g-1 for BTEX and 0.07-1.6 ng g-1 for PAHs. The relative standard deviation of the method was 2.6-7.8% for BTEX and 1.6-6.7% for PAHs. The ISV-HS-SPME was successfully used to simultaneously determine PAHs and BTEX in polluted soil samples with recoveries ranging from 80.4 to 108%.
Collapse
Affiliation(s)
- Sara Maleki
- Department of analytical chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Payman Hashemi
- Department of analytical chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran.
| | - Mohsen Adeli
- Department of analytical chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| |
Collapse
|
69
|
Yang Y, Ratsch M, Evans AM, Börjesson K. Layered 3D Covalent Organic Framework Films Based on Carbon-Carbon Bonds. J Am Chem Soc 2023; 145:18668-18675. [PMID: 37581382 PMCID: PMC10450803 DOI: 10.1021/jacs.3c06621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 08/16/2023]
Abstract
The development of covalent organic frameworks (COFs) during the past decades has led to a variety of promising applications within gas storage, catalysis, drug delivery, and sensing. Even though most described synthesis methods result in powdery COFs with uncontrolled grain size, several approaches to grow COF films have recently been explored. However, in all COFs so far presented, the isolated materials are chemically homogeneous, with all functionalities homogeneously distributed throughout the entire material. Strategies to synthetically manipulate the spatial distribution of functionalities in a single film would be game changing. Specifically, this would allow for the introduction of local functionalities and even consecutive functions in single frameworks, thus broadening their synthetic versatility and application potential. Here, we synthesize two 3D crystalline COF films. The frameworks, the ionic B-based and neutral C-based COFs, have similar unit cell parameters, which enables their epitaxial stacking in a layered 3D COF film. The film growth was monitored in real time using a quartz crystal microbalance, showing linear growth with respect to reaction time. The high degree of polymerization was confirmed by chemical analysis and vibrational spectroscopy. Their polycrystalline and anisotropic natures were confirmed with grazing incidence X-ray diffraction. We further expand the scope of the concept by making layered films from COF-300 and its iodinated derivative. Finally, the work presented here will pave the path for multifunctional COF films where concurrent functionalities are embedded in the same crystalline material.
Collapse
Affiliation(s)
- Yizhou Yang
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Martin Ratsch
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Austin M. Evans
- George
and Josephine Butler Polymer Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
70
|
Zhang Y, Jiang Y, Nafady A, Tang Z, Al-Enizi AM, Tan K, Ma S. Incorporation of Chiral Frustrated Lewis Pair into Metal-Organic Framework with Tailored Microenvironment for Heterogeneous Enantio- and Chemoselective Hydrogenation. ACS CENTRAL SCIENCE 2023; 9:1692-1701. [PMID: 37637733 PMCID: PMC10451035 DOI: 10.1021/acscentsci.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 08/29/2023]
Abstract
The development of efficient heterogeneous catalysts with multiselectivity (e.g., enantio- and chemoselectivity) has long been sought after but with limited progress being made so far. To achieve enantio- and chemoselectivity in a heterogeneous system, as inspired by enzymes, we illustrate herein an approach of creating an enzyme-mimic region (EMR) within the nanospace of a metal-organic framework (MOF) as exemplified in the context of incorporating a chiral frustrated Lewis pair (CFLP) into a MOF with a tailored pore environment. Due to the high density of the EMR featuring the active site of CFLP and auxiliary sites of the hydroxyl group/open metal site within the vicinity of CFLP, the resultant EMR@MOF demonstrated excellent catalysis performance in heterogeneous hydrogenation of α,β-unsaturated imines to afford chiral β-unsaturated amines with high yields and high enantio- and chemoselectivity. The role of the hydroxyl group/open metal site in regulating chemoselectivity was proved by the observation of a catalyst-substrate interaction experimentally, which was also rationalized by computational results. This work not only contributes a MOF as a new platform for multiselective catalysis but also opens a promising avenue to develop heterogeneous catalysts with multiselectivity for challenging yet important transformations.
Collapse
Affiliation(s)
- Yin Zhang
- Department
of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Yao Jiang
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, People’s Republic of China
| | - Ayman Nafady
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Zhiyong Tang
- National
Center for Nanoscience and Nanotechnology, No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People’s Republic of China
| | - Abdullah M. Al-Enizi
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Kui Tan
- Department
of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Shengqian Ma
- Department
of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
71
|
Choi E, Kwon O, Hoo Lee C, Woo Kim D. Metal-Organic Framework Membrane Hybridized with Graphitic Materials for Gas Separation. Chempluschem 2023; 88:e202300173. [PMID: 37525991 DOI: 10.1002/cplu.202300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Metal-organic frameworks (MOFs) are an exceptional class of crystalline materials that have been extensively used to fabricate membranes for various applications such as gas separation, ion transport, and desalination due to their well-defined pore structure, chemical features, and simple synthesis process. The incorporation of graphitic carbon materials in MOFs has garnered significant attention as it can provide abundant nucleation sites and modulate gas transport by influencing the orientation or rigidity of MOF crystals without changing their porous structure. This review insights of previous studies utilizing graphene, graphene oxide, carbon nanotubes, and graphene nanoribbons for MOF-based gas separation membranes, particularly focusing on polycrystalline MOF membrane hybridization with graphitic materials. We also briefly discuss the use of carbon/MOF hybrid materials for preparing mixed matrix membranes.
Collapse
Affiliation(s)
- Eunji Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50 Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ohchan Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50 Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, California, USA
| | - Choong Hoo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50 Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50 Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
72
|
Ding S, Chen L, Liao J, Huo Q, Wang Q, Tian G, Yin W. Harnessing Hafnium-Based Nanomaterials for Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300341. [PMID: 37029564 DOI: 10.1002/smll.202300341] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Indexed: 06/19/2023]
Abstract
With the rapid development of nanotechnology and nanomedicine, there are great interests in employing nanomaterials to improve the efficiency of disease diagnosis and treatment. The clinical translation of hafnium oxide (HfO2 ), commercially namedas NBTXR3, as a new kind of nanoradiosensitizer for radiotherapy (RT) of cancers has aroused extensive interest in researches on Hf-based nanomaterials for biomedical application. In the past 20 years, Hf-based nanomaterials have emerged as potential and important nanomedicine for computed tomography (CT)-involved bioimaging and RT-associated cancer treatment due to their excellent electronic structures and intrinsic physiochemical properties. In this review, a bibliometric analysis method is employed to summarize the progress on the synthesis technology of various Hf-based nanomaterials, including HfO2 , HfO2 -based compounds, and Hf-organic ligand coordination hybrids, such as metal-organic frameworks or nanoscaled coordination polymers. Moreover, current states in the application of Hf-based CT-involved contrasts for tissue imaging or cancer diagnosis are reviewed in detail. Importantly, the recent advances in Hf-based nanomaterials-mediated radiosensitization and synergistic RT with other current mainstream treatments are also generalized. Finally, current challenges and future perspectives of Hf-based nanomaterials with a view to maximize their great potential in the research of translational medicine are also discussed.
Collapse
Affiliation(s)
- Shuaishuai Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Lei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Liao
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Laboratory for Micro-sized Functional Materials, Department of Chemistry and College of Elementary Education, Capital Normal University, Beijing, 100048, P. R. China
| | - Qing Huo
- College of Biochemical and Engineering, Beijing Union University, Beijing, 100023, China
| | - Qiang Wang
- Laboratory for Micro-sized Functional Materials, Department of Chemistry and College of Elementary Education, Capital Normal University, Beijing, 100048, P. R. China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
73
|
Sharma I, Kaur J, Poonia G, Mehta SK, Kataria R. Nanoscale designing of metal organic framework moieties as efficient tools for environmental decontamination. NANOSCALE ADVANCES 2023; 5:3782-3802. [PMID: 37496632 PMCID: PMC10368002 DOI: 10.1039/d3na00169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Abstract
Environmental pollutants, being a major and detrimental component of the ecological imbalance, need to be controlled. Serious health issues can get intensified due to contaminants present in the air, water, and soil. Accurate and rapid monitoring of environmental pollutants is imperative for the detoxification of the environment and hence living beings. Metal-organic frameworks (MOFs) are a class of porous and highly diverse adsorbent materials with tunable surface area and diverse functionality. Similarly, the conversion of MOFs into nanoscale regime leads to the formation of nanometal-organic frameworks (NMOFs) with increased selectivity, sensitivity, detection ability, and portability. The present review majorly focuses on a variety of synthetic methods including the ex situ and in situ synthesis of MOF nanocomposites and direct synthesis of NMOFs. Furthermore, a variety of applications such as nanoabsorbent, nanocatalysts, and nanosensors for different dyes, antibiotics, toxic ions, gases, pesticides, etc., are described along with illustrations. An initiative is depicted hereby using nanostructures of MOFs to decontaminate hazardous environmental toxicants.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Jaspreet Kaur
- School of Basic Sciences, Indian Institute of Information Technology (IIIT) Una-177 209 India
| | - Gargi Poonia
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Surinder Kumar Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Ramesh Kataria
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| |
Collapse
|
74
|
Yu X, Gu J, Liu X, Chang Z, Liu Y. Exploring the Effect of Different Secondary Building Units as Lewis Acid Sites in MOF Materials for the CO 2 Cycloaddition Reaction. Inorg Chem 2023; 62:11518-11527. [PMID: 37437191 DOI: 10.1021/acs.inorgchem.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
In order to explore the catalytic effect of different Lewis acid sites (LASs) in the CO2 cycloaddition reaction, different secondary building units and N-rich organic ligand 4,4',4″-s-triazine-1,3,5-triyltri-p-aminobenzoate were assembled to construct six reported MOF materials: [Cu3(tatab)2(H2O)3]·8DMF·9H2O (1), [Cu3(tatab)2(H2O)3]·7.5H2O (2), [Zn4O(tatab)2]·3H2O·17DMF (3), [In3O(tatab)2(H2O)3](NO3)·15DMA (4), [Zr6O4(OH)7(tatab)(Htatab)3(H2O)3]·xGuest (5), and [Zr6O4(OH)4(tatab)4(H2O)3]·xGuest (6) (DMF = N,N-dimethylformamide, and DMA = N,N-dimethylacetamide). Large pore sizes of compound 2 enhance the concentration of substrates, and the multi-active sites inside its framework synergistically promote the process of the CO2 cycloaddition reaction. Such advantages endow compound 2 with the best catalytic performance among the six compounds and surpass many of the reported MOF-based catalysts. Meanwhile, the comparison of the catalytic efficiency indicated that Cu-paddlewheel and Zn4O display better catalytic performances than In3O and Zr6 cluster. The experiments investigate the catalytic effects of LAS types and prove that it is feasible to improve CO2 fixation property by introducing multi-active sites into MOFs.
Collapse
Affiliation(s)
- Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaming Gu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
75
|
Hu JJ, Xie KL, Xiong TZ, Wang MM, Wen HR, Peng Y, Liu SJ. Stable Europium(III) Metal-Organic Framework Demonstrating High Proton Conductivity and Fluorescence Detection of Tetracyclines. Inorg Chem 2023. [PMID: 37452746 DOI: 10.1021/acs.inorgchem.3c01468] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A europium(III) metal-organic framework (MOF), namely, {[[(CH3)2NH2]3Eu2(DTTP-2OH)2(HCOO)(H2O)]·4H2O}n (Eu-MOF, H4DTTP-2OH = 2',5'-dihydroxy-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid) has been assembled through solvothermal method. The Eu-MOF is a three-dimensional (3D) (4,4,8)-connected topological framework with binuclear Eu(III) clusters as secondary building units, in which a richly ordered hydrogen bonding network formed among the free H2O molecules, dimethylamine cations, and phenolic hydroxyl groups provides a potential pathway for proton conduction. The proton conductivity reaches the category of superionic conductors (σ > 10-4 S cm-1) at room temperature with a maximum conductivity of 1.91 × 10-3 S cm-1 at 60 °C and 98% RH. Moreover, it also can be used as a fluorescence sensor in aqueous solution with detection limits of 0.14 μM for tetracycline, 0.13 μM for oxytetracycline and 0.11 μM for doxycycline. These results pave new methods for constructing MOFs with high proton conductivity and responsive fluorescence.
Collapse
Affiliation(s)
- Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Kang-Le Xie
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Tian-Zheng Xiong
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Miao-Miao Wang
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
76
|
Lin YQ, Tian XM, Zhu BX, Chen DM, Huang C. Five Porous Complexes Constructed from a Racemic Ligand: Synthesis, Chiral Self-Assembly, Iodine Adsorption, and Desorption Properties. Inorg Chem 2023. [PMID: 37450691 DOI: 10.1021/acs.inorgchem.3c01646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Herein, a chiral bispyridyl ligand (L) was designed and synthesized using a Schiff base condensation reaction, followed by a 1,3-H shift. Five complexes, [Zn2L2(OAc)4] (1), {[CdLCl2(DMF)]·4H2O}n (2), [Cd2L2I4]·4H2O (3), {[CdL2(H2O)2](NO3)2·2CH3OH}n (4), and [Hg2L2Cl4]·2DMF (5), were synthesized and characterized upon its reaction with Zn(II), Cd(II), or Hg(II) ions, respectively. X-ray crystallography shows that the organic compound exists as a racemic ligand with equal amounts of its R- and S-isomers, and all of the synthesized complexes exhibit heterochiral self-assembly via a chiral self-discrimination process. Complexes 1, 3, and 5 exist as centrosymmetric binuclear metallamacrocycles, while complexes 2 and 4 exist as 1D looped-chain coordination polymers. Inspired by the assembled structures of the five complexes, I2 adsorption/desorption measurements for the complexes were carried out. The results show that complexes 1 and 5 exhibit good adsorption capacities toward I2 in n-hexane and in water, respectively.
Collapse
Affiliation(s)
- Yue-Qun Lin
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xiao-Mao Tian
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Bi-Xue Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Dong-Mei Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Chao Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
77
|
Xu ZM, Hu Z, Huang Y, Bao SJ, Niu Z, Lang JP, Al-Enizi AM, Nafady A, Ma S. Introducing Frustrated Lewis Pairs to Metal-Organic Framework for Selective Hydrogenation of N-Heterocycles. J Am Chem Soc 2023. [PMID: 37384612 DOI: 10.1021/jacs.3c04929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Hydrogenated nitrogen heterocyclic compounds play a critical role in the pharmaceutical, polymer, and agrochemical industries. Recent studies on partial hydrogenation of nitrogen heterocyclic compounds have focused on costly and toxic precious metal catalysts. As an important class of main-group catalysts, frustrated Lewis pairs (FLPs) have been widely applied in catalytic hydrogenation reactions. In principle, the combination of FLPs and metal-organic framework (MOF) is anticipated to efficiently enhance the recyclability performance of FLPs; however, the previously studied MOF-FLPs showed low reactivity in the hydrogenation of N-heterocycles compounds. Herein, we offer a novel P/B type MOF-FLP catalyst that was achieved via a solvent-assisted linker incorporation approach to boost catalytic hydrogenation reactions. Using hydrogen gas under moderate pressure, the proposed P/B type MOF-FLP can serve as a highly efficient heterogeneous catalyst for selective hydrogenation of quinoline and indole to tetrahydroquinoline and indoline-type drug compounds in high yield and excellent recyclability.
Collapse
Affiliation(s)
- Ze-Ming Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhuoyi Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yali Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Shu-Jin Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
78
|
Wen N, Li J, Zhang W, Li P, Yin X, Zhang W, Wang H, Tang B. Monitoring the Progression of Early Atherosclerosis Using a Fluorescence Nanoprobe for the Detection and Imaging of Phosphorylation and Glucose Levels. Angew Chem Int Ed Engl 2023; 62:e202302161. [PMID: 37072376 DOI: 10.1002/anie.202302161] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023]
Abstract
Monitoring the early stage of atherosclerosis (AS) without plaque formation is of great significance. Herein, we developed a metal organic framework (MOF)-based fluorescence nanoprobe to analyze the progression of AS by assessing the levels of protein phosphorylation and glucose in blood and tissue. The probe was prepared by post-modification of the MOF with iodine (I3 - )-rhodamine B (RhB) associate, which realizes the specific recognition of target object through the metal joint ZrIV and I3 - -RhB, respectively. We investigated different stages of target object changes in the early non-plaque stage of AS in blood. It was found that the levels of phosphate and glucose in the blood were higher than those of the normal mice. The results of two-photon images showed that early AS mice had higher levels of protein phosphorylation and glucose than that of the normal mice. The present study provides a suitable fluorescence tool for further revealing the pathogenesis and progression of AS.
Collapse
Affiliation(s)
- Ning Wen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jin Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
- Laoshan Laboratory, Qingdao, 266237, P. R. China
| |
Collapse
|
79
|
Cao J, Wang Q, Hu D, Li J, Qi A. Surface Properties of Fluorine-Functionalized Metal-Organic Frameworks Based on Inverse Gas Chromatography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37294901 DOI: 10.1021/acs.langmuir.3c00735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The introduction of the concept of surface properties can help us to better analyze the basic physicochemical property changes of metal-organic framework (MOF) materials before and after fluorine functional group treatment. In this study, several polar and nonpolar probes were selected to determine the surface properties, including surface-dispersive free energy, Lewis acid-base constants of Ni-MOF-74, and perfluoro carboxylic acid-modified Ni-MOF-74-Fn (n = 3, 5, and 7) in the range of 343.15-383.15 K by inverse gas chromatography (IGC). It was observed that the surface energy of the treated Ni-MOF-74-Fn showed a substantial decrease with the growth of the perfluorocarbon alkyl chains and the increase in surface roughness. In addition, Lewis acidic sites exposed by the Ni-MOF-74 material after adopting modification with fluorine functional groups increased with the increase of perfluorinated carboxylic acid chains, and their surface properties changed from amphiphilic acidic to strongly acidic. These results not only enrich the basic physical property data of Ni-MOF-74 but also provide more theoretical basis for the fluorinated functionalized custom-designed MOFs and enrich their applications in the fields of multiphase catalysis, gas adsorption, and chromatographic separation.
Collapse
Affiliation(s)
- Jingwen Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P.R. China
| | - Qiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P.R. China
| | - Dingkai Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P.R. China
| | - Jiaqiu Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P.R. China
| | - Aifei Qi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P.R. China
| |
Collapse
|
80
|
Yu S, Xu K, Wang Z, Zhang Z, Zhang Z. Bibliometric and visualized analysis of metal-organic frameworks in biomedical application. Front Bioeng Biotechnol 2023; 11:1190654. [PMID: 37234479 PMCID: PMC10206306 DOI: 10.3389/fbioe.2023.1190654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Metal-organic frameworks (MOFs) are hybrid materials composed of metal ions or clusters and organic ligands that spontaneously assemble via coordination bonds to create intramolecular pores, which have recently been widely used in biomedicine due to their porosity, structural, and functional diversity. They are used in biomedical applications, including biosensing, drug delivery, bioimaging, and antimicrobial activities. Our study aims to provide scholars with a comprehensive overview of the research situations, trends, and hotspots in biomedical applications of MOFs through a bibliometric analysis of publications from 2002 to 2022. Methods: On 19 January 2023, the Web of Science Core Collection was searched to review and analyze MOFs applications in the biomedical field. A total of 3,408 studies published between 2002 and 2022 were retrieved and examined, with information such as publication year, country/region, institution, author, journal, references, and keywords. Research hotspots were extracted and analyzed using the Bibliometrix R-package, VOSviewer, and CiteSpace. Results: We showed that researchers from 72 countries published articles on MOFs in biomedical applications, with China producing the most publications. The Chinese Academy of Science was the most prolific contributor to these publications among 2,209 institutions that made contributions. Reference co-citation analysis classifies references into 8 clusters: synergistic cancer therapy, efficient photodynamic therapy, metal-organic framework encapsulation, selective fluorescence, luminescent probes, drug delivery, enhanced photodynamic therapy, and metal-organic framework-based nanozymes. Keyword co-occurrence analysis divided keywords into 6 clusters: biosensors, photodynamic therapy, drug delivery, cancer therapy and bioimaging, nanoparticles, and antibacterial applications. Research frontier keywords were represented by chemodynamic therapy (2020-2022) and hydrogen peroxide (2020-2022). Conclusion: Using bibliometric methods and manual review, this review provides a systematic overview of research on MOFs in biomedical applications, filling an existing gap. The burst keyword analysis revealed that chemodynamic therapy and hydrogen peroxide are the prominent research frontiers and hot spots. MOFs can catalyze Fenton or Fenton-like reactions to generate hydroxyl radicals, making them promising materials for chemodynamic therapy. MOF-based biosensors can detect hydrogen peroxide in various biological samples for diagnosing diseases. MOFs have a wide range of research prospects for biomedical applications.
Collapse
Affiliation(s)
- Sanyang Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Kaihao Xu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhenhua Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Zhongti Zhang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
81
|
Wu W, Xu Y, Wang S, Pang Q, Liu S. Metal-organic rotaxane frameworks constructed from a cucurbit[8]uril-based ternary complex for the selective detection of antibiotics. Chem Commun (Camb) 2023; 59:5890-5893. [PMID: 37097118 DOI: 10.1039/d3cc00950e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein we report two 2D layered metal-organic rotaxane frameworks (MORFs), WUST-1 and WUST-2, constituted by a ternary host-guest complex based on cucurbit[8]uril (CB[8]) and an (E)-1-methyl-4-[4-(pyridin-4-yl)styryl] pyridinium (G1) ligand, and different metal ions and auxiliary linkers. Both MORFs are stable in water and highly fluorescence emissive, and can selectively sense nitrofurazone with low detection limits.
Collapse
Affiliation(s)
- Weijie Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yinghao Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shoujun Wang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Qingqing Pang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Simin Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
82
|
Han W, Ma X, Wang J, Leng F, Xie C, Jiang HL. Endowing Porphyrinic Metal-Organic Frameworks with High Stability by a Linker Desymmetrization Strategy. J Am Chem Soc 2023; 145:9665-9671. [PMID: 37083367 DOI: 10.1021/jacs.3c00957] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The fabricating of metal-organic frameworks (MOFs) that integrate high stability and functionality remains a long-term pursuit yet a great challenge. Herein, we develop a linker desymmetrization strategy to construct highly stable porphyrinic MOFs, namely, USTC-9 (USTC represents the University of Science and Technology of China), presenting the same topological structure as the well-known PCN-600 that readily loses crystallinity in air or upon conventional activation. For USTC-9, the involved porphyrinic linker (TmCPP-M) with carboxylate groups located in the meta-position presents a chair-shaped conformation with lower C2h symmetry than that (D4h) of the common porphyrinic carboxylate (TCPP) linker in PCN-600. As a result, the wrinkled and interlocked linker arrangements collectively contribute to the remarkable stability of USTC-9. Given the high stability and porosity as well as Lewis acidity, USTC-9(Fe) demonstrates its excellent performance toward catalytic CO2 cycloaddition with diverse epoxides at moderate temperature and atmospheric pressure.
Collapse
Affiliation(s)
- Wentao Han
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xing Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jingxue Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fucheng Leng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chenfan Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
83
|
Tian YB, Li QH, Wang Z, Gu ZG, Zhang J. Coordination-Induced Symmetry Breaking on Metal-Porphyrinic Framework Thin Films for Enhanced Nonlinear Optical Limiting. NANO LETTERS 2023; 23:3062-3069. [PMID: 36995141 DOI: 10.1021/acs.nanolett.3c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Structural asymmetry affecting the nonlinear optics (NLO) of metal-organic frameworks (MOFs) is very important in fundamentals and applications but is still a challenge. Herein we develop a series of indium-porphyrinic framework (InTCPP) thin films and provide the first study on the coordination-induced symmetry breaking on their third-order NLO. The continuous and oriented InTCPP(H2) thin films were grown on quartz substrates and then postcoordinated with different cations (Fe2+ or Fe3+Cl-) in InTCPP(H2) (named InTCPP(Fe2+) and InTCPP(Fe3+Cl-)). The third-order NLO results reveal the Fe2+ and Fe3+Cl- coordinated InTCPP thin films have substantially enhanced NLO performance. Moreover, InTCPP(Fe3+Cl-) thin films cause symmetry breaking of microstructures, resulting in a 3-fold increase in the nonlinear absorption coefficient (up to 6.35 × 10-6 m/W) compared to InTCPP(Fe2+). This work not only develops a series of nonlinear optical MOF thin films but also provides new insight into symmetry breaking on MOFs for nonlinear optoelectronic applications.
Collapse
Affiliation(s)
- Yi-Bo Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Zirui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| |
Collapse
|
84
|
Wan J, Zou JM, Zhou SJ, Pan FL, Hua F, Zhang YL, Nie JF, Zhang Y. A bimetallic (Ni/Co) metal-organic framework with excellent oxidase-like activity for colorimetric sensing of ascorbic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1819-1825. [PMID: 36961405 DOI: 10.1039/d2ay01927b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel nanozyme of bimetallic (Ni/Co) metal-organic framework (Ni/Co-MOF) was synthesized using a simultaneous precipitation and acid etching method with a zeolitic imidazolate framework ZIF-67 as the template. The as-synthesized Ni/Co-MOF catalyst presented a three-dimensional hollow nanocage structure and exhibited excellent intrinsic oxidase-like activity. It was demonstrated that Ni/Co-MOF could directly catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue product (oxidized TMB, oxTMB) in the absence of H2O2. The mechanisms and kinetics of this nanozyme activity were investigated, and it was determined that the catalytic activity of Ni/Co-MOF was closely related to temperature and solution pH. Owing to its strong reducibility, ascorbic acid (AA) could reduce oxTMB, and the blue color of the reaction mixture faded over time. Therefore, a novel colorimetric platform was constructed to detect AA based on the oxidase-like activity of Ni/Co-MOF. Under optimal conditions, the absorbance of ox-TMB at 652 nm decreased linearly over the 0.015-50 μM AA range with a detection limit of 0.004 μM.
Collapse
Affiliation(s)
- Jing Wan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Jian-Mei Zou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Shu-Jing Zhou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Feng-Lan Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Fei Hua
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Yu-Lan Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Jin-Fang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| |
Collapse
|
85
|
Zhao G, Li Z, Cheng B, Zhuang X, Lin T. Hierarchical Porous Metal Organic Framework Aerogel for Highly Efficient CO2 Adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
86
|
Wang Z, Zhang J, Yan L, Zhao B, Zheng L, Guo H, Yue Y, Han D, Chen X, Li R. A well-fabricated Ru@C material derived from Ru/Zn-MOF with high activity and stability in the hydrogenation of 4-chloronitrobenzene. Phys Chem Chem Phys 2023; 25:8556-8563. [PMID: 36883834 DOI: 10.1039/d2cp05986j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
4-Chloroaniline (4-CAN) plays an important role in chemical and industrial production. However, it remains a challenge to avoid the hydrogenation of the C-Cl bond in the synthesis process to improve selectivity under high activity conditions. In this study, we in situ fabricated ruthenium nanoparticles (Ru NPs) containing vacancies inserted into porous carbon (Ru@C-2) as a highly efficient catalyst for the catalytic hydrogenation of 4-chloronitrobenzene (4-CNB) with remarkable conversion (99.9%), selectivity (99.9%), and stability. Experiments and theoretical calculations indicate that the appropriate Ru vacancies affect the charge distribution of the Ru@C-2 catalyst, promote the electron transfer between the Ru metal and support, and increase the active sites of the Ru metal, thus facilitating the adsorption of 4-CNB and the desorption of 4-CAN to improve the activity and stability of the catalyst. This study can provide some enlightenment for the development of new 4-CNB hydrogenation catalysts.
Collapse
Affiliation(s)
- Zijian Wang
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Jiaxin Zhang
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Lele Yan
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Bo Zhao
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Lin Zheng
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Haoran Guo
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Yuxue Yue
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Deman Han
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Xianlang Chen
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Rongrong Li
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
87
|
Zhong Y, Liao P, Kang J, Liu Q, Wang S, Li S, Liu X, Li G. Locking Effect in Metal@MOF with Superior Stability for Highly Chemoselective Catalysis. J Am Chem Soc 2023; 145:4659-4666. [PMID: 36791392 DOI: 10.1021/jacs.2c12590] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Ultrasmall metal nanoparticles (NPs) show high catalytic activity in heterogeneous catalysis but are prone to reunion and loss during the catalytic process, resulting in low chemoselectivity and poor efficiency. Herein, a locking effect strategy is proposed to synthesize high-loading and ultrafine metal NPs in metal-organic frameworks (MOFs) for efficient chemoselective catalysis with high stability. Briefly, the MOF ZIF-90 with aldehyde groups cooperating with diamine chains via aldimine condensation was interlocked, which was employed to confine in situ formation of Au NPs, denoted as Au@L-ZIF-90. The optimized Au@La-ZIF-90 has highly dispersed Au NPs (2.60 ± 0.81 nm) with a loading amount around 22 wt % and shows a great performance toward 3-aminophenylacetylene (3-APA) from the selective hydrogenation of 3-nitrophenylacetylene (3-NPA) with a high yield (99%) and excellent durability (over 20 cycles), far superior to contrast catalysts without chains locking and other reported catalysts. In addition, experimental characterization and systematic density functional theory calculations further demonstrate that the locked MOF modulates the charge of Au nanoparticles, making them highly specific for nitro group hydrogenation to obtain 3-APA with high selectivity (99%). Furthermore, this locking effect strategy is also applicable to other metal nanoparticles confined in a variety of MOFs, and all of these catalysts locked with chains show great selectivity (≥90%) of 3-APA. The proposed strategy in this work provides a novel and universal method for precise control of the inherent activity of accessible metal nanoparticles with a programmable MOF microenvironment toward highly specific catalysis.
Collapse
Affiliation(s)
- Yicheng Zhong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Peisen Liao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Jiawei Kang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Qinglin Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Shihan Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Suisheng Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xianlong Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
88
|
Construction of new multi-cage-based MOFs using flexible triangular ligands for efficient gas adsorption and separation. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
89
|
Xu F, Liu C, Xun QN, Liu X, Xing WF, Pu C, Yao Y, Chen MJ, Chang GG. Metal-organic framework derived hierarchical ZnO nanosheets/CdS composites for high photocatalytic activity under solar radiation. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
90
|
Fang X, Lei S, Feng Z, Ou J. Conductive Polymers‐Confined Metal‐Organic Frameworks with Enhanced Activity for Highly Efficient Photocatalytic CO
2
Reduction. ChemElectroChem 2023. [DOI: 10.1002/celc.202201147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Xinzuo Fang
- Jiangsu University of Technology Changzhou 213001 P. R. China
| | - Sheng Lei
- Jiangsu University of Technology Changzhou 213001 P. R. China
| | - Zhiwei Feng
- Jiangsu University of Technology Changzhou 213001 P. R. China
| | - Junfei Ou
- Jiangsu University of Technology Changzhou 213001 P. R. China
| |
Collapse
|
91
|
Govindaraj M, Zhong SY, Lin CH, Chen JD. Metal and Ligand Effect on the Structural Diversity of Divalent Coordination Polymers with Mixed Ligands: Evaluation for Photodegradation. Molecules 2023; 28:molecules28052226. [PMID: 36903476 PMCID: PMC10004691 DOI: 10.3390/molecules28052226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Eight coordination polymers constructed from divalent metal salts, N,N'-bis(pyridin-3-ylmethyl)terephthalamide (L), and various dicarboxylic acids are reported, affording [Co(L)(5-ter-IPA)(H2O)2]n (5-tert-H2IPA = 5-tert-butylisophthalic acid), 1, {[Co(L)(5-NO2-IPA)]⋅2H2O}n (5-NO2-H2IPA = 5-nitroisophthalic acid), 2, {[Co(L)0.5(5-NH2-IPA)]⋅MeOH}n (5-NH2-H2IPA = 5-aminoisophthalic acid), 3, {[Co(L)(MBA)]⋅2H2O}n (H2MBA = diphenylmethane-4,4'-dicarboxylic acid), 4, {[Co(L)(SDA)]⋅H2O}n (H2SDA = 4,4-sulfonyldibenzoic acid), 5, {[Co2(L)2(1,4-NDC)2(H2O)2]⋅5H2O}n (1,4-H2NDC = naphthalene-1,4-dicarboxylic acid), 6, {[Cd(L)(1,4-NDC)(H2O)]⋅2H2O}n, 7, and {[Zn2(L)2(1,4-NDC)2]⋅2H2O}n, 8, which were structurally characterized by using single-crystal X-ray diffraction. The structural types of 1-8 are subject to the metal and ligand identities, showing a 2D layer with the hcb, a 3D framework with the pcu, a 2D layer with the sql, a polycatenation of 2-fold interpenetrated 2D layer with the sql, a 2-fold interpenetrated 2D layer with the 2,6L1, a 3D framework with the cds, a 2D layer with the 2,4L1, and a 2D layer with the (102⋅12)(10)2(4⋅10⋅124)(4) topologies, respectively. The investigation on the photodegradation of methylene blue (MB) by using complexes 1-3 reveals that the degradation efficiency may increase with increasing surface areas.
Collapse
Affiliation(s)
- Manivannan Govindaraj
- Department of Chemistry, Chung-Yuan Christian University, Chung Li, Taoyuan City 320, Taiwan
| | - Shih-Ying Zhong
- Department of Chemistry, Chung-Yuan Christian University, Chung Li, Taoyuan City 320, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
- Correspondence: (C.-H.L.); (J.-D.C.); Tel.: +886-3-265-3351 (J.-D. C.)
| | - Jhy-Der Chen
- Department of Chemistry, Chung-Yuan Christian University, Chung Li, Taoyuan City 320, Taiwan
- Correspondence: (C.-H.L.); (J.-D.C.); Tel.: +886-3-265-3351 (J.-D. C.)
| |
Collapse
|
92
|
Kang LL, Xing C, Jin YX, Xie LX, Li ZF, Li G. Two Dual-Function Zr/Hf-MOFs as High-Performance Proton Conductors and Amines Impedance Sensors. Inorg Chem 2023; 62:3036-3046. [PMID: 36757379 DOI: 10.1021/acs.inorgchem.2c03758] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In the field of sensing, finding high-performance amine molecular sensors has always been a challenging topic. Here, two highly stable 3D MOFs DUT-67(Hf) and DUT-67(Zr) with large specific surface areas and hierarchical pore structures were conveniently synthesized by solvothermal reaction of ZrCl4/HfCl4 with a simple organic ligand, 2,5-thiophene dicarboxylic acid (H2TDC) according to literature approach. By analyzing TGA data, it was found that the two MOFs have defects (unsaturated metal sites) that can interact with substrates (H2O and volatile amine gas), which is conducive to proton transfer and amine compound identification. Further experiments showed that at 100 °C and 98% relative humidity (RH), the optimized proton conductivities of DUT-67(Zr) and DUT-67(Hf) can reach the high values of 2.98 × 10-3 and 3.86 × 10-3 S cm-1, respectively. Moreover, the room temperature sensing characteristics of MOFs' to amine gases were evaluated at 68, 85 and 98% RHs, respectively. Impressively, the prepared MOFs-based sensors have the desired stability and higher sensitivity to amines. Under 68% RH, the detection limits of DUT-67(Zr) or DUT-67(Hf) for volatile amine gases were 0.5 (methylamine), 0.5 (dimethylamine) and 1 ppm (trimethylamine), and 0.5 (methylamine), 0.5 (dimethylamine) and 0.5 ppm (trimethylamine), respectively. As far as we know, this is the best performance of ammonia room temperature sensors in the past proton-conductive MOF sensors.
Collapse
Affiliation(s)
- Lu-Lu Kang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Chen Xing
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yi-Xin Jin
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Li-Xia Xie
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Zi-Feng Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
93
|
Li J, Huang S, Li Z, Zhao X, Ouyang B, Kan E, Zhao J, Zhang W. Bimetallic Organic Framework-Decorated Leaf-like 2D Nanosheets as Flexible Air Cathode for Rechargeable Zn-air Batteries. Chemistry 2023; 29:e202202992. [PMID: 36349874 DOI: 10.1002/chem.202202992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Exploring highly active and robust self-supporting air electrodes is the key for flexible Zn-air batteries (FZABs). Therefore, we report a novel 3D structural bimetal-based self-supporting electrode consisting of hybrid Cu, Co nanoparticles co-modified nitrogen-doped carbon nanosheets on carbon cloth (Cu, Co NPs@NCNSs/CC), which displays excellent electrochemical activity and durability of the oxygen reduction/evolution reaction (ORR/OER). The Cu, Co NPs@NCNSs/CC exhibits a half-wave potential of 0.863 V toward ORR and an overpotential of 225 mV at 10 mA cm-2 toward OER, owing to its exposed bimetallic sites accelerating the kinetic reaction. In addition, the density functional theory calculation proves that the synergistic effect of CuCo sites favors ORR and OER. Hence, the FZABs based on Cu, Co NPs@NCNSs/CC achieve a larger open-circuit potential (1.45 V), higher energy density (130.10 mW cm-2 ), and outstanding cycling stability. All remarkable results demonstrate valuable enlightenment for seeking advanced energy materials of portable and wearable electronics.
Collapse
Affiliation(s)
- Jiajia Li
- Province-Ministry Co-construction, Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, 071002, Baoding, Hebei, P. R. China
| | - Shuhong Huang
- Province-Ministry Co-construction, Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, 071002, Baoding, Hebei, P. R. China
| | - Zhiyong Li
- Province-Ministry Co-construction, Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, 071002, Baoding, Hebei, P. R. China
| | - Xiaohui Zhao
- Province-Ministry Co-construction, Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, 071002, Baoding, Hebei, P. R. China
| | - Bo Ouyang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, 210094, Nanjing, P. R China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, 210094, Nanjing, P. R China
| | - Jie Zhao
- Machine Vision Technology, Innovation Center of Hebei Province, College of Electronic and Information Engineering, Hebei University, 071002, Baoding, Hebei, P. R. China
| | - Wenming Zhang
- Province-Ministry Co-construction, Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, 071002, Baoding, Hebei, P. R. China
| |
Collapse
|
94
|
Starodubtseva AA, Zhigalenok YS, Maldybaev KM, Galeyeva AK, Trussov IA, Kurbatov AP. On electrochemistry of metal-organic framework Zn 2(EDTA)(H 2O). RSC Adv 2023; 13:4880-4889. [PMID: 36762083 PMCID: PMC9903352 DOI: 10.1039/d3ra00040k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Metal-organic compounds (MOFs) are a class of substances composed of metal ions or clusters coordinated to organic ligands to form one-, two-, or three-dimensional structures. Due to their high porosity, excellent adsorption and catalytic activity, as well as the possibility of simultaneous implementation of various charge accumulation mechanisms, they can be used as electrode materials for metal-ion batteries. However, a significant disadvantage is that most MOFs have a low electrical conductivity, and the production of conductive MOFs is a costly, time-consuming and technically difficult process. In this work, we developed a method for synthesizing the Zn2(EDTA)(H2O) MOF composite and studied the possibility of using it as an anode material for sodium-ion batteries based on aqueous electrolytes. The structure and morphology of the compound was studied using XRD, IR, TGA and SEM. Using cyclic voltammetry, the electrochemical characteristics of the organometallic framework in alkaline electrolytes 1, 10 M NaOH, as well as in saturated aqueous electrolyte NaClO4, were evaluated. It has been established that the studied compound does not give a satisfactory electrochemical response in aqueous electrolytes (both in alkaline and neutral media) due to the strong degradation of the electrode material, which is associated with the high solubility of this MOF representative. Cyclic voltammetric studies showed the presence of two redox processes due to the release of metallic zinc from an electrolyte solution, where two forms of zinc exist in equilibrium (the ZnEDTA complex and the free zinc cation). Therefore, we concluded, it is not possible to use this material as an anode for water-based sodium-ion batteries in contrary to a published research study.
Collapse
Affiliation(s)
- Alena A. Starodubtseva
- Center of Phisico-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National UniversityAlmaty010000Kazakhstan
| | - Yaroslav S. Zhigalenok
- Center of Phisico-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National UniversityAlmaty010000Kazakhstan
| | - Kairgali M. Maldybaev
- Center of Phisico-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National UniversityAlmaty010000Kazakhstan
| | - Alina K. Galeyeva
- Center of Phisico-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National UniversityAlmaty010000Kazakhstan
| | - Ivan A. Trussov
- Center of Phisico-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National UniversityAlmaty010000Kazakhstan,Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and TechnologyMoscow121205Russian Federation
| | - Andrey P. Kurbatov
- Center of Phisico-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National UniversityAlmaty010000Kazakhstan
| |
Collapse
|
95
|
Santibañez D, Mendizabal F. Understanding lead and mercury adsorption by post-synthetically modified linkers in UiO-66 MOF. A computational theoretical study. MOLECULAR SIMULATION 2023. [DOI: 10.1080/08927022.2023.2171073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel Santibañez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Mendizabal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
96
|
Jia C, He T, Wang GM. Zirconium-based metal-organic frameworks for fluorescent sensing. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
97
|
Xu H, Wu Y, Yang L, Rao Y, Wang J, Peng S, Li Q. Water-Harvesting Metal-Organic Frameworks with Gigantic Al 24 Units and their Deconstruction into Molecular Clusters. Angew Chem Int Ed Engl 2023; 62:e202217864. [PMID: 36479801 DOI: 10.1002/anie.202217864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
In contrast to the vast Al-oxo molecular cluster chemistry, Al-based building units for metal-organic framework (MOF) construction are limited in structural diversity and complexity. Synthesis of single crystalline MOFs based on this "hard" metal is further complicated by the poor reversibility of the Al-organic coordination linkages. Here, a strategy to employ two kinds of linkages with distinct strength-strong Al-carboxylate linkage and weak Cu-pyrazol N linkage-gives FDM-91 (FDM=Fudan Materials) with gigantic Al24 -based units. After replacing the weak moieties with organic linkers post-synthetically, two new stable MOFs with exceptional water harvesting capacity (up to 0.53 g g-1 ) and outstanding cycling performance are developed. Linkage-selective dissociation of FDM-91 further leads to the isolation of the Al24 molecular clusters. The versatile chemistry performed here to reinforce or deconstruct MOFs provides a new way to make important extended and discrete structures.
Collapse
Affiliation(s)
- Huoshu Xu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Yichen Wu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Lingyi Yang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Yin Rao
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Junyi Wang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Shuyin Peng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Qiaowei Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| |
Collapse
|
98
|
Song Q, Shi S, Liu B. Metal-Organic Framework-Based Colloidal Particle Synthesis, Assembly, and Application. Chempluschem 2023; 88:e202200396. [PMID: 36740571 DOI: 10.1002/cplu.202200396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Metal-organic frameworks (MOFs) assembled from metal nodes and organic ligands have received significant attention over the past two decades for their fascinating porous properties and broad applications. Colloidal MOFs (CMOFs) not only inherit the intrinsic properties of MOFs, but can also serve as building blocks for self-assembly to make functional materials. Compared to bulk MOFs, the colloidal size of CMOFs facilitates further manipulation of CMOF particles in a single or collective state in a liquid medium. The resulting crystalline order obtained by self-assembly in position and orientation can effectively improve performance. In this review, we summarize the latest developments of CMOFs in synthesis strategies, self-assembly methods, and related applications. Finally, we discuss future challenges and opportunities of CMOFs in synthesis and assembly, by which we hope that CMOFs can be further developed into new areas for a wider range of applications.
Collapse
Affiliation(s)
- Qing Song
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shang Shi
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
99
|
Ruthenium doped Cu-MOF as an Efficient Sensing Platform for the Voltammetric Detection of Ciprofloxacin. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
100
|
Zhang Q, Kong L, Wang Q, Wang H, Yang Y, Fu J, Zhang Y, Dong J, Zeng C, Liu H. A biotin-stabilized HKUST-1/ADM scaffold for facilitating MSC endothelial differentiation and vascularization in diabetic wound healing. Biomater Sci 2023; 11:854-872. [PMID: 36515094 DOI: 10.1039/d2bm01443b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inadequate angiogenesis in diabetic wound healing has been identified as one of the most difficult issues to treat. Copper ions (Cu2+) have been confirmed to stimulate angiogenesis; nevertheless, the rapid rise in non-physiological Cu2+ concentrations increases the danger of ion poisoning. For the first time, biotin was used to stabilize a copper-based metal-organic framework (HKUST-1) to change its hydrophobicity and achieve sustained release of Cu2+. The inability to offer a suitable area for the dynamic interaction between cells and growth factors still restricts the use of nanomaterials for the regeneration of injured skin in diabetes. Acellular dermal matrix (ADM) scaffolds are collagen fibers with natural spatial tissue that can create a biological "niche" for cell attachment and growth. In this study, biotin-stabilized HKUST-1 (B-HKUST-1) nanoparticles were modified with an ADM to form a novel scaffold (ADM-B-HKUST-1). Notably, Cu2+ and mesenchymal stem cells (MSCs) released by the composite scaffold may synergistically promote MSC adhesion, proliferation and endothelial differentiation by upregulating the expression of transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF) and alpha-smooth muscle actin (α-SMA). Overall, the ADM-B-HKUST1 scaffold combines the dual advantages of the sustained release of Cu2+ and creating a biological "niche" can provide a potential strategy for enhancing angiogenesis and promoting diabetic wound healing.
Collapse
Affiliation(s)
- Qiong Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Linghong Kong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Qi Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Hui Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Yongzhen Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Jinping Fu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Yue Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Jianyue Dong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China.,Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China.
| | - Hanping Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|