51
|
Comparative gene expression study of the chronic exposure to clozapine and haloperidol in rat frontal cortex. Schizophr Res 2012; 134:211-8. [PMID: 22154595 DOI: 10.1016/j.schres.2011.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/26/2022]
Abstract
Antipsychotic drugs (APDs) are effective in treating some of the positive and negative symptoms of schizophrenia. APDs take time to achieve a therapeutic effect which suggests that changes in gene expression are involved in their efficacy. We hypothesized that there would be altered expression of specific genes associated with the etiology or treatment of schizophrenia in frontal cortex of rats that received chronic treatment with a typical APD (haloperidol) vs. an atypical APD (clozapine). Rats were administered clozapine, haloperidol, or sterile saline intraperitoneally daily for 21days. Frontal cortices from clozapine-, haloperidol-, and saline-treated rats were dissected and subjected to microarray analysis. We observed a significant (1.5 fold, p<0.05) downregulation of 278 genes and upregulation of 73 genes in the clozapine-treated brains vs. controls and downregulation of 451 genes and upregulation of 115 genes in the haloperidol-treated brains vs. control. A total of 146 genes (130 downregulated and 16 upregulated) were significantly altered by both clozapine and haloperidol. These genes were classified by functional groups. qRT-PCR (quantitative real-time polymerase chain reaction) analysis verified the direction and magnitude of change for a group of nine genes significantly altered by clozapine and 11 genes significantly altered by haloperidol. Three genes verified by qRT-PCR were altered by both drugs: Bcl2-like 1 (Bcl2l1), catechol-O-methyltransferase (Comt), and opioid-binding protein/cell adhesion molecule-like (Opcml). Our results show that clozapine and haloperidol cause changes in levels of many important genes that may be involved in etiology and treatment of schizophrenia.
Collapse
|
52
|
Lee KW, Woon PS, Teo YY, Sim K. Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt? Neurosci Biobehav Rev 2011; 36:556-71. [PMID: 21946175 DOI: 10.1016/j.neubiorev.2011.09.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 09/03/2011] [Accepted: 09/13/2011] [Indexed: 12/29/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BPD) have high heritabilities and are clinically and genetically complex. Genome wide association studies (GWAS) and studies of copy number variations (CNV) in SZ and BPD have allowed probing of their underlying genetic risks. In this systematic review, we assess extant genetic signals from published GWAS and CNV studies of SZ and BPD up till March 2011. Risk genes associated with SZ at genome wide significance level (p value<7.2 × 10(-8)) include zinc finger binding protein 804A (ZNF804A), major histocompatibility (MHC) region on chromosome 6, neurogranin (NRGN) and transcription factor 4 (TCF4). Risk genes associated with BPD include ankyrin 3, node of Ranvier (ANK3), calcium channel, voltage dependent, L type, alpha 1C subunit (CACNA1C), diacylglycerol kinase eta (DGKH), gene locus on chromosome 16p12, and polybromo-1 (PBRM1) and very recently neurocan gene (NCAN). Possible common genes underlying psychosis include ZNF804A, CACNA1C, NRGN and PBRM1. The CNV studies suggest that whilst CNVs are found in both SZ and BPD, the large deletions and duplications are more likely found in SZ rather than BPD. The validation of any genetic signal is likely confounded by genetic and phenotypic heterogeneities which are influenced by epistatic, epigenetic and gene-environment interactions. There is a pressing need to better integrate the multiple research platforms including systems biology computational models, genomics, cross disorder phenotyping studies, transcriptomics, proteomics, metabolomics, neuroimaging and clinical correlations in order to get us closer to a more enlightened understanding of the genetic and biological basis underlying these potentially crippling conditions.
Collapse
Affiliation(s)
- Kok Wei Lee
- Institute of Mental Health/Woodbridge Hospital 10, Buangkok View, Singapore 539747, Singapore
| | | | | | | |
Collapse
|
53
|
Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D, Lachman HM. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One 2011; 6:e23356. [PMID: 21915259 PMCID: PMC3168439 DOI: 10.1371/journal.pone.0023356] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/12/2011] [Indexed: 02/01/2023] Open
Abstract
Genome-wide expression analysis using next generation sequencing (RNA-Seq) provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs) provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs), pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ), bipolar disorder (BD) and autism spectrum disorders (ASD) that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients.
Collapse
Affiliation(s)
- Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Abhishek Shah
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shahina Maqbool
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Herbert M. Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
54
|
Berretta S. Extracellular matrix abnormalities in schizophrenia. Neuropharmacology 2011; 62:1584-97. [PMID: 21856318 DOI: 10.1016/j.neuropharm.2011.08.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 02/06/2023]
Abstract
Emerging evidence points to the involvement of the brain extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Abnormalities affecting several ECM components, including Reelin and chondroitin sulfate proteoglycans (CSPGs), have been described in subjects with this disease. Solid evidence supports the involvement of Reelin, an ECM glycoprotein involved in corticogenesis, synaptic functions and glutamate NMDA receptor regulation, expressed prevalently in distinct populations of GABAergic neurons, which secrete it into the ECM. Marked changes of Reelin expression in SZ have typically been reported in association with GABA-related abnormalities in subjects with SZ and bipolar disorder. Recent findings from our group point to substantial abnormalities affecting CSPGs, a main ECM component, in the amygdala and entorhinal cortex of subjects with schizophrenia, but not bipolar disorder. Striking increases of glial cells expressing CSPGs were accompanied by reductions of perineuronal nets, CSPG- and Reelin-enriched ECM aggregates enveloping distinct neuronal populations. CSPGs developmental and adult functions, including neuronal migration, axon guidance, synaptic and neurotransmission regulation are highly relevant to the pathophysiology of SZ. Together with reports of anomalies affecting several other ECM components, these findings point to the ECM as a key component of the pathology of SZ. We propose that ECM abnormalities may contribute to several aspects of the pathophysiology of this disease, including disrupted connectivity and neuronal migration, synaptic anomalies and altered GABAergic, glutamatergic and dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| |
Collapse
|
55
|
Kas MJH, Krishnan V, Gould TD, Collier DA, Olivier B, Lesch KP, Domenici E, Fuchs E, Gross C, Castrén E. Advances in multidisciplinary and cross-species approaches to examine the neurobiology of psychiatric disorders. Eur Neuropsychopharmacol 2011; 21:532-44. [PMID: 21237620 DOI: 10.1016/j.euroneuro.2010.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/02/2010] [Accepted: 12/04/2010] [Indexed: 01/03/2023]
Abstract
Current approaches to dissect the molecular neurobiology of complex neuropsychiatric disorders such as schizophrenia and major depression have been rightly criticized for failing to provide benefits to patients. Improving the translational potential of our efforts will require the development and refinement of better disease models that consider a wide variety of contributing factors, such as genetic variation, gene-by-environment interactions, endophenotype or intermediate phenotype assessment, cross species analysis, sex differences, and developmental stages. During a targeted expert meeting of the European College of Neuropsychopharmacology (ECNP) in Istanbul, we addressed the opportunities and pitfalls of current translational animal models of psychiatric disorders and agreed on a series of core guidelines and recommendations that we believe will help guiding further research in this area.
Collapse
Affiliation(s)
- Martien J H Kas
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Sim K, Lee J, Subramaniam M, Liu JJ, Keefe R, Zhang XD, Lee TS, Chong SA. Integrated genetic and genomic approach in the SingaporeTranslational and Clinical Research in Psychosis Study: an overview. Early Interv Psychiatry 2011; 5:91-9. [PMID: 21535421 DOI: 10.1111/j.1751-7893.2011.00272.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIMS Schizophrenia is a severe mental disorder with onset frequently in adolescence and followed by a chronic and disabling course. Although the exact pathophysiology of this devastating disorder has not been clearly elucidated, a large part of it has been attributed to genetic influences. This article seeks to provide an overview on what our group has embarked on--to elucidate genetic risk factors for schizophrenia within the Chinese ethnic group. METHODS We plan to conduct an integrated approach to interrogate comprehensively the genome from different angles and in stages. The first stage involves a genome-wide association study of 1000 cases of schizophrenia-control pairs, with a follow-up replication study in another 1000 cases of schizophrenia and in 1000 controls, and combination analyses with groups from other places including China and Hong Kong. Other than the genome-wide association study, gene sequencing for purported candidate genes and copy number variation analysis will be performed. Neurocognitive intermediate phenotypes will be employed to deconstruct the complex schizophrenia phenotype in a bid to improve association findings. Promising leads from longitudinal gene and protein expression in ultra-high-risk subjects who develop psychosis and schizophrenia (in a parallel study) will be followed up as candidate genes and sequenced in the genetic analysis. Functional analysis forms the last stage of this integrated approach. CONCLUSION This integrated genetic and genomic approach will hopefully help in further characterizing and deepening our understanding of molecular pathophysiological mechanisms underlying schizophrenia.
Collapse
Affiliation(s)
- Kang Sim
- Department of General Psychiatry, Woodbridge Hospital/Institute of Mental Health Research Division, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Le-Niculescu H, Balaraman Y, Patel SD, Ayalew M, Gupta J, Kuczenski R, Shekhar A, Schork N, Geyer MA, Niculescu AB. Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms. Transl Psychiatry 2011; 1:e9. [PMID: 22832404 PMCID: PMC3309477 DOI: 10.1038/tp.2011.9] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anxiety disorders are prevalent and disabling yet understudied from a genetic standpoint, compared with other major psychiatric disorders such as bipolar disorder and schizophrenia. The fact that they are more common, diverse and perceived as embedded in normal life may explain this relative oversight. In addition, as for other psychiatric disorders, there are technical challenges related to the identification and validation of candidate genes and peripheral biomarkers. Human studies, particularly genetic ones, are susceptible to the issue of being underpowered, because of genetic heterogeneity, the effect of variable environmental exposure on gene expression, and difficulty of accrual of large, well phenotyped cohorts. Animal model gene expression studies, in a genetically homogeneous and experimentally tractable setting, can avoid artifacts and provide sensitivity of detection. Subsequent translational integration of the animal model datasets with human genetic and gene expression datasets can ensure cross-validatory power and specificity for illness. We have used a pharmacogenomic mouse model (involving treatments with an anxiogenic drug--yohimbine, and an anti-anxiety drug--diazepam) as a discovery engine for identification of anxiety candidate genes as well as potential blood biomarkers. Gene expression changes in key brain regions for anxiety (prefrontal cortex, amygdala and hippocampus) and blood were analyzed using a convergent functional genomics (CFG) approach, which integrates our new data with published human and animal model data, as a translational strategy of cross-matching and prioritizing findings. Our work identifies top candidate genes (such as FOS, GABBR1, NR4A2, DRD1, ADORA2A, QKI, RGS2, PTGDS, HSPA1B, DYNLL2, CCKBR and DBP), brain-blood biomarkers (such as FOS, QKI and HSPA1B), pathways (such as cAMP signaling) and mechanisms for anxiety disorders--notably signal transduction and reactivity to environment, with a prominent role for the hippocampus. Overall, this work complements our previous similar work (on bipolar mood disorders and schizophrenia) conducted over the last decade. It concludes our programmatic first pass mapping of the genomic landscape of the triad of major psychiatric disorder domains using CFG, and permitted us to uncover the significant genetic overlap between anxiety and these other major psychiatric disorders, notably the under-appreciated overlap with schizophrenia. PDE10A, TAC1 and other genes uncovered by our work provide a molecular basis for the frequently observed clinical co-morbidity and interdependence between anxiety and other major psychiatric disorders, and suggest schizo-anxiety as a possible new nosological domain.
Collapse
Affiliation(s)
- H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y Balaraman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M Ayalew
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA,Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - J Gupta
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Kuczenski
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - A Shekhar
- Indiana Clinical Translational Science Institute, Indianapolis, IN, USA
| | - N Schork
- Scripps Translational Science Institute, La Jolla, CA, USA
| | - M A Geyer
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA,Indianapolis VA Medical Center, Indianapolis, IN, USA,Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA. E-mail:
| |
Collapse
|
58
|
Le-Niculescu H, Case NJ, Hulvershorn L, Patel SD, Bowker D, Gupta J, Bell R, Edenberg HJ, Tsuang MT, Kuczenski R, Geyer MA, Rodd ZA, Niculescu AB. Convergent functional genomic studies of ω-3 fatty acids in stress reactivity, bipolar disorder and alcoholism. Transl Psychiatry 2011; 1:e4. [PMID: 22832392 PMCID: PMC3309466 DOI: 10.1038/tp.2011.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/24/2011] [Indexed: 12/28/2022] Open
Abstract
Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond.
Collapse
Affiliation(s)
- H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N J Case
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Hulvershorn
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - D Bowker
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Gupta
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M T Tsuang
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - R Kuczenski
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - M A Geyer
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
59
|
Wheeler HE, Kim SK. Genetics and genomics of human ageing. Philos Trans R Soc Lond B Biol Sci 2011; 366:43-50. [PMID: 21115529 DOI: 10.1098/rstb.2010.0259] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ageing in humans is typified by the decline of physiological functions in various organs and tissues leading to an increased probability of death. Some individuals delay, escape or survive much of this age-related decline and live past age 100. Studies comparing centenarians to average-aged individuals have found polymorphisms in genes that are associated with long life, including APOE and FOXOA3, which have been replicated many times. However, the associations found in humans account for small percentages of the variance in lifespan and many other gene associations have not been replicated in additional populations. Therefore, ageing is probably a highly polygenic trait. In humans, it is important to also consider differences in age-related decline that occur within and among tissues. Longitudinal data of age-related traits can be used in association studies to test for polymorphisms that predict how an individual will change over time. Transcriptional and genetic association studies of different tissues have revealed common and unique pathways involved in human ageing. Genomic convergence is a method that combines multiple types of functional genomic information such as transcriptional profiling, expression quantitative trait mapping and gene association. The genomic convergence approach has been used to implicate the gene MMP20 in human kidney ageing. New human genetics technologies are continually in development and may lead to additional breakthroughs in human ageing in the near future.
Collapse
Affiliation(s)
- Heather E Wheeler
- Department of Genetics, Stanford University Medical Center, Stanford, CA 94305, USA
| | | |
Collapse
|
60
|
Kurian SM, Le-Niculescu H, Patel SD, Bertram D, Davis J, Dike C, Yehyawi N, Lysaker P, Dustin J, Caligiuri M, Lohr J, Lahiri DK, Nurnberger JI, Faraone SV, Geyer MA, Tsuang MT, Schork NJ, Salomon DR, Niculescu AB. Identification of blood biomarkers for psychosis using convergent functional genomics. Mol Psychiatry 2011; 16:37-58. [PMID: 19935739 DOI: 10.1038/mp.2009.117] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are to date no objective clinical laboratory blood tests for psychotic disease states. We provide proof of principle for a convergent functional genomics (CFG) approach to help identify and prioritize blood biomarkers for two key psychotic symptoms, one sensory (hallucinations) and one cognitive (delusions). We used gene expression profiling in whole blood samples from patients with schizophrenia and related disorders, with phenotypic information collected at the time of blood draw, then cross-matched the data with other human and animal model lines of evidence. Topping our list of candidate blood biomarkers for hallucinations, we have four genes decreased in expression in high hallucinations states (Fn1, Rhobtb3, Aldh1l1, Mpp3), and three genes increased in high hallucinations states (Arhgef9, Phlda1, S100a6). All of these genes have prior evidence of differential expression in schizophrenia patients. At the top of our list of candidate blood biomarkers for delusions, we have 15 genes decreased in expression in high delusions states (such as Drd2, Apoe, Scamp1, Fn1, Idh1, Aldh1l1), and 16 genes increased in high delusions states (such as Nrg1, Egr1, Pvalb, Dctn1, Nmt1, Tob2). Twenty-five of these genes have prior evidence of differential expression in schizophrenia patients. Predictive scores, based on panels of top candidate biomarkers, show good sensitivity and negative predictive value for detecting high psychosis states in the original cohort as well as in three additional cohorts. These results have implications for the development of objective laboratory tests to measure illness severity and response to treatment in devastating disorders such as schizophrenia.
Collapse
Affiliation(s)
- S M Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Challenges and opportunities for drug discovery in psychiatric disorders: the drug hunters' perspective. Int J Neuropsychopharmacol 2010; 13:1269-84. [PMID: 20716397 DOI: 10.1017/s1461145710000866] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Innovation is essential for the identification of novel pharmacological therapies to meet the treatment needs of patients with psychiatric disorders. However, over the last 20 yr, in spite of major investments targets falling outside the classical aminergic mechanisms have shown diminished returns. The disappointments are traced to failures in the target identification and target validation effort, as reflected by the poor ability of current bioassays and animal models to predict efficacy and side-effects. Mismatch between disease biology and how psychiatric diseases are categorized has resulted in clinical trials of highly specific agents in heterogeneous patients, leading to variable treatment effects and failed studies. As drug hunters, one sees the opportunity to overhaul the pharmaceutical research and development (R&D) process. Improvements in both preclinical and clinical translational research need to be considered. Linking pharmacodynamic markers with disease biology should provide more predictive and innovative early clinical trials which in turn will increase the success rate of discovering new medicines. However, to exploit these exciting scientific discoveries, pharmaceutical companies need to question the conventional drug research and development model which is silo-driven, non-integrative across the confines of a company, non-disclosing across the pharmaceutical industry, and often independent from academia. This leads to huge redundancy in effort and lack of contextual learning in real time. Nevertheless, there are signs that drug discovery in the 21st century will see more intentional government, academic and industrial collaborations to overcome the above challenges that could eventually link mechanistic disease biology to segments of patients, affording them the benefits of rational and targeted therapy.
Collapse
|
62
|
Fatemi SH, Reutiman TJ, Folsom TD, Rooney RJ, Patel DH, Thuras PD. mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. J Autism Dev Disord 2010; 40:743-50. [PMID: 20066485 DOI: 10.1007/s10803-009-0924-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We have shown altered expression of gamma-aminobutyric acid A (GABA(A)) and gamma-aminobutyric acid B (GABA(B)) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3 GABA(A) subunits previously associated with autism (GABRalpha4; GABRalpha5; GABRbeta1). Three GABA receptor subunits demonstrated mRNA and protein level concordance in superior frontal cortex (GABRalpha4, GABRalpha5, GABRbeta1) and one demonstrated concordance in cerebellum (GABBetaR1). These results provide further evidence of impairment of GABAergic signaling in autism.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota School of Medicine, 420 Delaware St SE MMC 392, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
63
|
Patel SD, Le-Niculescu H, Koller DL, Green SD, Lahiri DK, McMahon FJ, Nurnberger JI, Niculescu AB. Coming to grips with complex disorders: genetic risk prediction in bipolar disorder using panels of genes identified through convergent functional genomics. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:850-77. [PMID: 20468069 DOI: 10.1002/ajmg.b.31087] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We previously proposed and provided proof of principle for the use of a complementary approach, convergent functional genomics (CFG), combining gene expression and genetic data, from human and animal model studies, as a way of mining the existing GWAS datasets for signals that are there already, but did not reach significance using a genetics-only approach [Le-Niculescu et al., 2009b]. CFG provides a fit-to-disease prioritization of genes that leads to generalizability in independent cohorts, and counterbalances the fit-to-cohort prioritization inherent in classic genetic-only approaches, which have been plagued by poor reproducibility across cohorts. We have now extended our previous work to include more datasets of GWAS, and more recent evidence from other lines of work. In essence our analysis is the most comprehensive integration of genetics and functional genomics to date in the field of bipolar disorder. Biological pathway analyses identified top canonical pathways, and epistatic interaction testing inside these pathways has identified genes that merit future follow-up as direct interactors (intra-pathway epistasis, INPEP). Moreover, we have put together a panel of best P-value single nucleotide polymorphisms (SNPs), based on the top candidate genes we identified. We have developed a genetic risk prediction score (GRPS) based on our panel, and demonstrate how in two independent test cohorts the GRPS differentiates between subjects with bipolar disorder and normal controls, in both European-American and African-American populations. Lastly, we describe a prototype of how such testing could be used to categorize disease risk in individuals and aid personalized medicine approaches, in psychiatry and beyond.
Collapse
Affiliation(s)
- S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Niculescu AB, Le-Niculescu H. The P-value illusion: how to improve (psychiatric) genetic studies. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:847-9. [PMID: 20301110 DOI: 10.1002/ajmg.b.31076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There is an emerging appreciation that genome-wide association studies (GWAS) have failed to live up to expectations and deliver major advances to date. A "surge" strategy, of pooling resources and increasing number of subjects tested, is underway. We argue that, while useful, it will not be enough by itself. Complementary approaches are needed to mine these large datasets. We describe a series of problems, opportunities, and offer a potential comprehensive solution.
Collapse
|
65
|
Niculescu AB, Schork NJ, Salomon DR. Mindscape: a convergent perspective on life, mind, consciousness and happiness. J Affect Disord 2010; 123:1-8. [PMID: 19595463 DOI: 10.1016/j.jad.2009.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/03/2009] [Accepted: 06/15/2009] [Indexed: 01/17/2023]
Abstract
What are mind, consciousness and happiness, in the fundamental context of life? We propose a convergent perspective (coupling evolutionary biology, genomics, neurobiology and clinical medicine) that could help us better understand what life, mind, consciousness and happiness are, as well as provides empirically testable practical implications.
Collapse
Affiliation(s)
- Alexander B Niculescu
- Indiana University School of Medicine, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, IN 46202-4887, USA.
| | | | | |
Collapse
|
66
|
Le Hellard S, Mühleisen TW, Djurovic S, Fernø J, Ouriaghi Z, Mattheisen M, Vasilescu C, Raeder MB, Hansen T, Strohmaier J, Georgi A, Brockschmidt FF, Melle I, Nenadic I, Sauer H, Rietschel M, Nöthen MM, Werge T, Andreassen OA, Cichon S, Steen VM. Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling cellular lipogenesis, are associated with schizophrenia in German and Scandinavian samples. Mol Psychiatry 2010; 15:463-72. [PMID: 18936756 DOI: 10.1038/mp.2008.110] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several studies have reported structural brain abnormalities, decreased myelination and oligodendrocyte dysfunction in schizophrenia. In the central nervous system, glia-derived de novo synthesized cholesterol is essential for both myelination and synaptogenesis. Previously, we demonstrated in glial cell lines that antipsychotic drugs induce the expression of genes involved in cholesterol and fatty acids biosynthesis through activation of the sterol regulatory element binding protein (SREBP) transcription factors, encoded by the sterol regulatory element binding transcription factor 1 (SREBF1) and sterol regulatory element binding transcription factor 2 (SREBF2) genes. Considering the importance of these factors in the lipid biosynthesis and their possible involvement in antipsychotic drug effects, we hypothesized that genetic variants of SREBF1 and/or SREBF2 could affect schizophrenia susceptibility. We therefore conducted a HapMap-based association study in a large German sample, and identified association between schizophrenia and five markers in SREBF1 and five markers in SREBF2. Follow-up studies in two independent samples of Danish and Norwegian origin (part of the Scandinavian collaboration of psychiatric etiology study, SCOPE) replicated the association for the five SREBF1 markers and for two markers in SREBF2. A combined analysis of all samples resulted in highly significant genotypic P-values of 9 x 10(-4) for SREBF1 (rs11868035, odd ration (OR)=1.26, 95% confidence interval (CI) (1.09-1.45)) and 4 x 10(-5) for SREBF2 (rs1057217, OR=1.39, 95% CI (1.19-1.63)). This finding strengthens the hypothesis that SREBP-controlled cholesterol biosynthesis is involved in the etiology of schizophrenia.
Collapse
Affiliation(s)
- S Le Hellard
- Department of Clinical Medicine, Bergen Mental Health Research Center, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Ikeda M, Tomita Y, Mouri A, Koga M, Okochi T, Yoshimura R, Yamanouchi Y, Kinoshita Y, Hashimoto R, Williams HJ, Takeda M, Nakamura J, Nabeshima T, Owen MJ, O'Donovan MC, Honda H, Arinami T, Ozaki N, Iwata N. Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches. Biol Psychiatry 2010; 67:263-9. [PMID: 19850283 DOI: 10.1016/j.biopsych.2009.08.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/29/2009] [Accepted: 08/19/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pharmacogenomic approaches based on genomewide sets of single nucleotide polymorphisms (SNPs) are now feasible and offer the potential to uncover variants that influence drug response. METHODS To detect potential predictor gene variants for risperidone response in schizophrenic subjects, we performed a convergent analysis based on 1) a genomewide (100K SNP) SNP pharmacogenetic study of risperidone response and 2) a global transcriptome study of genes with mRNA levels influenced by risperidone exposure in mouse prefrontal cortex. RESULTS Fourteen genes were highlighted as of potential relevance to risperidone activity in both studies: ATP2B2, HS3ST2, UNC5C, BAG3, PDE7B, PAICS, PTGFRN, NR3C2, ZBTB20, ST6GAL2, PIP5K1B, EPHA6, KCNH5, and AJAP1. The SNPs related to these genes that were associated in the pharmacogenetic study were further assessed for evidence for association with schizophrenia in up to three case-control series comprising 1564 cases and 3862 controls in total (Japanese [JPN] 1st and 2nd samples and UK sample). Of 14 SNPs tested, one (rs9389370) in PDE7B showed significant evidence for association with schizophrenia in a discovery sample (p(allele) = .026 in JPN_1st, two-tailed). This finding replicated in a joint analysis of two independent case-control samples (p(JPN_2nd+UK) = .008, one-tailed, uncorrected) and in all combined data sets (p(all) = .0014, two-tailed, uncorrected and p(all) = .018, two-tailed, Bonferroni correction). CONCLUSIONS We identified novel candidate genes for treatment response to risperidone and provide evidence that one of these additionally may confer susceptibility to schizophrenia. Specifically, PDE7B is an attractive candidate gene, although evidence from integrated methodology, including pharmacogenomics, pharmacotranscriptomic, and case-control association approaches.
Collapse
Affiliation(s)
- Masashi Ikeda
- MRC, Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
|
69
|
Xie C, Wang ZC, Liu XF, Yang MS. The common biological basis for common complex diseases: evidence from lipoprotein lipase gene. Eur J Hum Genet 2010; 18:3-7. [PMID: 19639021 PMCID: PMC2987160 DOI: 10.1038/ejhg.2009.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 05/19/2009] [Accepted: 06/26/2009] [Indexed: 11/08/2022] Open
Abstract
The lipoprotein lipase (LPL) gene encodes a rate-limiting enzyme protein that has a key role in the hydrolysis of triglycerides. Hypertriglyceridemia, one widely prevalent syndrome of LPL deficiency and dysfunction, may be a risk factor in the development of dyslipidemia, type II diabetes (T2D), essential hypertension (EH), coronary heart disease (CHD) and Alzheimer's disease (AD). Findings from earlier studies indicate that LPL may have a role in the pathology of these diseases and therefore is a common or shared biological basis for these common complex diseases. To examine this hypothesis, we reviewed articles on the molecular structure, expression and function of the LPL gene, and its potential role in the etiology of diseases. Evidence from these studies indicate that LPL dysfunction is involved in dyslipidemia, T2D, EH, CHD and AD; and support the hypothesis that there is a common or shared biological basis for these common complex diseases.
Collapse
Affiliation(s)
- Cui Xie
- Laboratory of Disorder Genes, School of Public Health, Chongqing University of Medical Sciences, Chongqing, People's Republic of China
| | - Zeng Chan Wang
- Laboratory of Disorder Genes, School of Public Health, Chongqing University of Medical Sciences, Chongqing, People's Republic of China
| | - Xiao Feng Liu
- Chongqing Medical University Library, Chongqing, People's Republic of China
| | - Mao Sheng Yang
- Laboratory of Disorder Genes, School of Public Health, Chongqing University of Medical Sciences, Chongqing, People's Republic of China
| |
Collapse
|
70
|
Niculescu AB, Le-Niculescu H. Convergent Functional Genomics: what we have learned and can learn about genes, pathways, and mechanisms. Neuropsychopharmacology 2010; 35:355-6. [PMID: 20010721 PMCID: PMC3055434 DOI: 10.1038/npp.2009.107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander B Niculescu
- Laboratory of Neurophenomics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Helen Le-Niculescu
- Laboratory of Neurophenomics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
71
|
McGrath CL, Glatt SJ, Sklar P, Le-Niculescu H, Kuczenski R, Doyle AE, Biederman J, Mick E, Faraone SV, Niculescu AB, Tsuang MT. Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry 2009; 9:70. [PMID: 19909500 PMCID: PMC2780413 DOI: 10.1186/1471-244x-9-70] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 11/12/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bipolar disorder, particularly in children, is characterized by rapid cycling and switching, making circadian clock genes plausible molecular underpinnings for bipolar disorder. We previously reported work establishing mice lacking the clock gene D-box binding protein (DBP) as a stress-reactive genetic animal model of bipolar disorder. Microarray studies revealed that expression of two closely related clock genes, RAR-related orphan receptors alpha (RORA) and beta (RORB), was altered in these mice. These retinoid-related receptors are involved in a number of pathways including neurogenesis, stress response, and modulation of circadian rhythms. Here we report association studies between bipolar disorder and single-nucleotide polymorphisms (SNPs) in RORA and RORB. METHODS We genotyped 355 RORA and RORB SNPs in a pediatric cohort consisting of a family-based sample of 153 trios and an independent, non-overlapping case-control sample of 152 cases and 140 controls. Bipolar disorder in children and adolescents is characterized by increased stress reactivity and frequent episodes of shorter duration; thus our cohort provides a potentially enriched sample for identifying genes involved in cycling and switching. RESULTS We report that four intronic RORB SNPs showed positive associations with the pediatric bipolar phenotype that survived Bonferroni correction for multiple comparisons in the case-control sample. Three RORB haplotype blocks implicating an additional 11 SNPs were also associated with the disease in the case-control sample. However, these significant associations were not replicated in the sample of trios. There was no evidence for association between pediatric bipolar disorder and any RORA SNPs or haplotype blocks after multiple-test correction. In addition, we found no strong evidence for association between the age-at-onset of bipolar disorder with any RORA or RORB SNPs. CONCLUSION Our findings suggest that clock genes in general and RORB in particular may be important candidates for further investigation in the search for the molecular basis of bipolar disorder.
Collapse
Affiliation(s)
- Casey L McGrath
- Department of Psychiatry, Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Stephen J Glatt
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Pamela Sklar
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Helen Le-Niculescu
- Laboratory of Neurophenomics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Alysa E Doyle
- Pediatric Psychopharmacology Unit, Massachusetts General Hospital; Psychiatric Psychopharmacology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Biederman
- Pediatric Psychopharmacology Unit, Massachusetts General Hospital; Psychiatric Psychopharmacology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric Mick
- Pediatric Psychopharmacology Unit, Massachusetts General Hospital; Psychiatric Psychopharmacology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen V Faraone
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexander B Niculescu
- Laboratory of Neurophenomics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ming T Tsuang
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
72
|
Association between myelin basic protein expression and left entorhinal cortex pre-alpha cell layer disorganization in schizophrenia. Brain Res 2009; 1301:126-34. [DOI: 10.1016/j.brainres.2009.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 11/19/2022]
|
73
|
Le Hellard S, Håvik B, Espeseth T, Breilid H, Løvlie R, Luciano M, Gow AJ, Harris SE, Starr JM, Wibrand K, Lundervold AJ, Porteous DJ, Bramham CR, Deary IJ, Reinvang I, Steen VM. Variants in doublecortin- and calmodulin kinase like 1, a gene up-regulated by BDNF, are associated with memory and general cognitive abilities. PLoS One 2009; 4:e7534. [PMID: 19844571 PMCID: PMC2760101 DOI: 10.1371/journal.pone.0007534] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/24/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human memory and general cognitive abilities are complex functions of high heritability and wide variability in the population. The brain-derived neurotrophic factor (BDNF) plays an important role in mammalian memory formation. METHODOLOGY / PRINCIPAL FINDING Based on the identification of genes markedly up-regulated during BDNF-induced synaptic consolidation in the hippocampus, we selected genetic variants that were tested in three independent samples, from Norway and Scotland, of adult individuals examined for cognitive abilities. In all samples, we show that markers in the doublecortin- and calmodulin kinase like 1 (DCLK1) gene, are significantly associated with general cognition (IQ scores) and verbal memory function, resisting multiple testing. DCLK1 is a complex gene with multiple transcripts which vary in expression and function. We show that the short variants are all up-regulated after BDNF treatment in the rat hippocampus, and that they are expressed in the adult human brain (mostly in cortices and hippocampus). We demonstrate that several of the associated variants are located in potential alternative promoter- and cis-regulatory elements of the gene and that they affect BDNF-mediated expression of short DCLK1 transcripts in a reporter system. CONCLUSION These data present DCLK1 as a functionally pertinent gene involved in human memory and cognitive functions.
Collapse
Affiliation(s)
- Stéphanie Le Hellard
- Bergen Mental Health Research Center, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Wheeler HE, Metter EJ, Tanaka T, Absher D, Higgins J, Zahn JM, Wilhelmy J, Davis RW, Singleton A, Myers RM, Ferrucci L, Kim SK. Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging. PLoS Genet 2009; 5:e1000685. [PMID: 19834535 PMCID: PMC2752811 DOI: 10.1371/journal.pgen.1000685] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/16/2009] [Indexed: 11/18/2022] Open
Abstract
Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL) mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR) using combined data from the Baltimore Longitudinal Study of Aging (BLSA) and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20) with kidney aging (uncorrected p = 3.6×10−5, empirical p = 0.01) that explains 1%–2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans. Although family studies have shown that genes play a role in longevity, it has proven difficult to identify the specific genetic variants involved. We developed a sequential transcriptional profiling and eQTL mapping approach to find genes associated with aging in the kidney. First, we used genome-wide transcriptional profiling to determine which genes change expression with age in kidney tissue. Next, we used two methods to determine which of these age-regulated genes contain SNPs that associate with expression level. The allele-specific expression method, which compares the mRNA levels of the two alleles within heterozygous individuals, was more sensitive than the total expression method. We tested the eQTLs for association with kidney aging in two populations. One gene that encodes an extracellular matrix protein, MMP20, significantly associated with kidney aging, providing the first gene association with kidney aging. Our approach of combining both expression and genotype data can be applied to any phenotype of interest to increase the power to find genetic associations.
Collapse
Affiliation(s)
- Heather E. Wheeler
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
| | - E. Jeffrey Metter
- Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
- Medstar Research Institute, Baltimore, Maryland, United States of America
| | - Toshiko Tanaka
- Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
- Medstar Research Institute, Baltimore, Maryland, United States of America
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - John Higgins
- Department of Pathology, Stanford University Medical Center, Stanford, California, United States of America
| | - Jacob M. Zahn
- Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Julie Wilhelmy
- Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Ronald W. Davis
- Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Luigi Ferrucci
- Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
- Medstar Research Institute, Baltimore, Maryland, United States of America
| | - Stuart K. Kim
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
75
|
Fatemi SH, Folsom TD, Reutiman TJ, Huang H, Oishi K, Mori S. Prenatal viral infection of mice at E16 causes changes in gene expression in hippocampi of the offspring. Eur Neuropsychopharmacol 2009; 19:648-53. [PMID: 19501487 PMCID: PMC2716397 DOI: 10.1016/j.euroneuro.2009.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/04/2009] [Accepted: 03/24/2009] [Indexed: 01/30/2023]
Abstract
The hippocampus governs memory formation and emotional regulation, and there is widespread evidence of hippocampal dysfunction in psychiatric disorders, including schizophrenia and autism. There is abundant evidence that prenatal viral infection may play a role in the development of these two disorders. In the current study, we have examined gene expression and structural changes of the hippocampi of exposed neonates following maternal infection at embryonic day (E) 16 (middle second trimester). We observed significant changes in gene expression in the offspring at postnatal day (P) 0 (birth), P14 (childhood), and P56 (adulthood), including a number of candidate genes for autism and schizophrenia. qRT-PCR verified the direction and magnitude of change for 5 of the genes from the microarray data set and revealed mRNA changes for additional genes associated with schizophrenia and autism. MRI revealed a decrease in hippocampal volume at P35 (adolescence). Our results demonstrate altered gene expression and reduced hippocampal volume in the offspring following prenatal viral infection at E16.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota School of Medicine, Minneapolis 55455, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Limbic and corpus callosum aberrations in adolescents with bipolar disorder: a tract-based spatial statistics analysis. Biol Psychiatry 2009; 66:238-44. [PMID: 19389661 DOI: 10.1016/j.biopsych.2009.02.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/17/2009] [Accepted: 02/22/2009] [Indexed: 12/28/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a common and debilitating condition, often beginning in adolescence. Converging evidence from genetic and neuroimaging studies indicates that white matter abnormalities may be involved in BD. In this study, we investigated white matter structure in adolescents with familial bipolar disorder using diffusion tensor imaging (DTI) and a whole brain analysis. METHODS We analyzed DTI images using tract-based spatial statistics (TBSS), a whole-brain voxel-by-voxel analysis, to investigate white matter structure in 21 adolescents with BD, who also were offspring of at least one parent with BD, and 18 age- and IQ-matched control subjects. Fractional anisotropy (FA; a measure of diffusion anisotropy), trace values (average diffusivity), and apparent diffusion coefficient (ADC; a measure of overall diffusivity) were used as variables in this analysis. In a post hoc analysis, we correlated between FA values, behavioral measures, and medication exposure. RESULTS Adolescents with BD had lower FA values than control subjects in the fornix, the left mid-posterior cingulate gyrus, throughout the corpus callosum, in fibers extending from the fornix to the thalamus, and in parietal and occipital corona radiata bilaterally. There were no significant between-group differences in trace or ADC values and no significant correlation between behavioral measures, medication exposure, and FA values. CONCLUSIONS Significant white matter tract alterations in adolescents with BD were observed in regions involved in emotional, behavioral, and cognitive regulation. These results suggest that alterations in white matter are present early in the course of disease in familial BD.
Collapse
|
77
|
Sun J, Jia P, Fanous AH, Webb BT, van den Oord EJCG, Chen X, Bukszar J, Kendler KS, Zhao Z. A multi-dimensional evidence-based candidate gene prioritization approach for complex diseases-schizophrenia as a case. ACTA ACUST UNITED AC 2009; 25:2595-6602. [PMID: 19602527 DOI: 10.1093/bioinformatics/btp428] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MOTIVATION During the past decade, we have seen an exponential growth of vast amounts of genetic data generated for complex disease studies. Currently, across a variety of complex biological problems, there is a strong trend towards the integration of data from multiple sources. So far, candidate gene prioritization approaches have been designed for specific purposes, by utilizing only some of the available sources of genetic studies, or by using a simple weight scheme. Specifically to psychiatric disorders, there has been no prioritization approach that fully utilizes all major sources of experimental data. RESULTS Here we present a multi-dimensional evidence-based candidate gene prioritization approach for complex diseases and demonstrate it in schizophrenia. In this approach, we first collect and curate genetic studies for schizophrenia from four major categories: association studies, linkage analyses, gene expression and literature search. Genes in these data sets are initially scored by category-specific scoring methods. Then, an optimal weight matrix is searched by a two-step procedure (core genes and unbiased P-values in independent genome-wide association studies). Finally, genes are prioritized by their combined scores using the optimal weight matrix. Our evaluation suggests this approach generates prioritized candidate genes that are promising for further analysis or replication. The approach can be applied to other complex diseases. AVAILABILITY The collected data, prioritized candidate genes, and gene prioritization tools are freely available at http://bioinfo.mc.vanderbilt.edu/SZGR/.
Collapse
Affiliation(s)
- Jingchun Sun
- Department of Biomedical Informatics and Department of Psychiatry, Vanderbilt University, Nashville, TN 37203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Fatemi SH, Folsom TD, Reutiman TJ, Abu-Odeh D, Mori S, Huang H, Oishi K. Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr Res 2009; 112:46-53. [PMID: 19487109 PMCID: PMC2735410 DOI: 10.1016/j.schres.2009.04.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 01/26/2023]
Abstract
Prenatal viral infection has been associated with the development of schizophrenia and autism. Our laboratory has previously shown that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) and late second trimester (E18) administration of influenza virus. We hypothesized that middle second trimester infection (E16) in mice may lead to a different pattern of brain gene expression and structural defects in the developing offspring. C57BL6 mice were infected on E16 with a sublethal dose of human influenza virus or sham-infected using vehicle solution. Male offspring of the infected mice were collected at P0, P14, P35, and P56, their brains removed and cerebella dissected and flash frozen. Microarray, DTI and MRI scanning, as well as qRT-PCR and SDS-PAGE and western blotting analyses were performed to detect differences in gene expression and brain atrophy. Expression of several genes associated with myelination, including Mbp, Mag, and Plp1 were found to be altered, as were protein levels of Mbp, Mag, and DM20. Brain imaging revealed significant atrophy in cerebellum at P14, reduced fractional anisotropy in white matter of the right internal capsule at P0, and increased fractional anisotropy in white matter in corpus callosum at P14 and right middle cerebellar peduncle at P56. We propose that maternal infection in mouse impacts myelination genes.
Collapse
Affiliation(s)
- S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
- Department of Pharmacology, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455
- Department of Neuroscience, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455
| | - Timothy D. Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Teri J. Reutiman
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Desiree Abu-Odeh
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Susumu Mori
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| | - Hao Huang
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| | - Kenichi Oishi
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| |
Collapse
|
79
|
Abstract
While multiple theories have been put forth regarding the origin of schizophrenia, by far the vast majority of evidence points to the neurodevelopmental model in which developmental insults as early as late first or early second trimester lead to the activation of pathologic neural circuits during adolescence or young adulthood leading to the emergence of positive or negative symptoms. In this report, we examine the evidence from brain pathology (enlargement of the cerebroventricular system, changes in gray and white matters, and abnormal laminar organization), genetics (changes in the normal expression of proteins that are involved in early migration of neurons and glia, cell proliferation, axonal outgrowth, synaptogenesis, and apoptosis), environmental factors (increased frequency of obstetric complications and increased rates of schizophrenic births due to prenatal viral or bacterial infections), and gene-environmental interactions (a disproportionate number of schizophrenia candidate genes are regulated by hypoxia, microdeletions and microduplications, the overrepresentation of pathogen-related genes among schizophrenia candidate genes) in support of the neurodevelopmental model. We relate the neurodevelopmental model to a number of findings about schizophrenia. Finally, we also examine alternate explanations of the origin of schizophrenia including the neurodegenerative model.
Collapse
|
80
|
Abstract
Schizophrenia is a severe brain disease that affects approximately 1% of the world's population. Extensive study into the indication of and causes of this disease has been ongoing for decades. Historical review of research into associated abnormalities and markers common in schizophrenic patients has demonstrated a correlation with potential microbial origins in the development of the disease. While infectious etiologies could be responsible for some cases of schizophrenia, no consistent use of anti-infective agents has been developed for its prevention or treatment. Elucidation of the mechanisms for infectious roots of schizophrenia may open new avenues for effective treatment.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research and Departments of Pharmacology and Neuroscience, University of Minnesota Medical School, USA.
| |
Collapse
|
81
|
Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT, McMahon FJ, Schork NJ, Nurnberger JI, Niculescu AB. Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:155-81. [PMID: 19025758 DOI: 10.1002/ajmg.b.30887] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Given the mounting convergent evidence implicating many more genes in complex disorders such as bipolar disorder than the small number identified unambiguously by the first-generation Genome-Wide Association studies (GWAS) to date, there is a strong need for improvements in methodology. One strategy is to include in the next generation GWAS larger numbers of subjects, and/or to pool independent studies into meta-analyses. We propose and provide proof of principle for the use of a complementary approach, convergent functional genomics (CFG), as a way of mining the existing GWAS datasets for signals that are there already, but did not reach significance using a genetics-only approach. With the CFG approach, the integration of genetics with genomics, of human and animal model data, and of multiple independent lines of evidence converging on the same genes offers a way of extracting signal from noise and prioritizing candidates. In essence our analysis is the most comprehensive integration of genetics and functional genomics to date in the field of bipolar disorder, yielding a series of novel (such as Klf12, Aldh1a1, A2bp1, Ak3l1, Rorb, Rora) and previously known (such as Bdnf, Arntl, Gsk3b, Disc1, Nrg1, Htr2a) candidate genes, blood biomarkers, as well as a comprehensive identification of pathways and mechanisms. These become prime targets for hypothesis driven follow-up studies, new drug development and personalized medicine approaches.
Collapse
Affiliation(s)
- H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ, Tsuang MT, Salomon DR, Nurnberger JI, Niculescu AB. Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 2009; 14:156-74. [PMID: 18301394 DOI: 10.1038/mp.2008.11] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There are to date no objective clinical laboratory blood tests for mood disorders. The current reliance on patient self-report of symptom severity and on the clinicians' impression is a rate-limiting step in effective treatment and new drug development. We propose, and provide proof of principle for, an approach to help identify blood biomarkers for mood state. We measured whole-genome gene expression differences in blood samples from subjects with bipolar disorder that had low mood vs those that had high mood at the time of the blood draw, and separately, changes in gene expression in brain and blood of a mouse pharmacogenomic model. We then integrated our human blood gene expression data with animal model gene expression data, human genetic linkage/association data and human postmortem brain data, an approach called convergent functional genomics, as a Bayesian strategy for cross-validating and prioritizing findings. Topping our list of candidate blood biomarker genes we have five genes involved in myelination (Mbp, Edg2, Mag, Pmp22 and Ugt8), and six genes involved in growth factor signaling (Fgfr1, Fzd3, Erbb3, Igfbp4, Igfbp6 and Ptprm). All of these genes have prior evidence of differential expression in human postmortem brains from mood disorder subjects. A predictive score developed based on a panel of 10 top candidate biomarkers (five for high mood and five for low mood) shows sensitivity and specificity for high mood and low mood states, in two independent cohorts. Our studies suggest that blood biomarkers may offer an unexpectedly informative window into brain functioning and disease state.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Phosphodiesterase-4A expression is reduced in cerebella of patients with bipolar disorder. Psychiatr Genet 2009; 18:282-8. [PMID: 19018233 DOI: 10.1097/ypg.0b013e3283060fb8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The cAMP-specific phosphodiesterase-4 (PDE4) gene family has four members (PDE4 A, B, C, and D) and is the target of several potential therapeutic inhibitors. Recently, PDE4A5 has been shown to bind with disrupted in schizophrenia 1 (DISC1), which has been identified as a risk factor for schizophrenia, bipolar disorder, and major depression. We sought to examine whether PDE4A5 expression was altered in cerebella of patients with schizophrenia, bipolar disorder, and major depression. METHODS We measured protein levels of PDE4A isoforms in cerebella of patients with schizophrenia, bipolar disorder, and major depression versus matched controls using sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting. RESULTS We observed that specific isoforms of PDE4A were reduced in cerebella of patients with bipolar disorder, whereas there was no change in patients with schizophrenia or major depression. CONCLUSION Our results are the first to show that PDE4A expression is altered in patients with bipolar disorder and provide potential new therapeutic avenues for treatment of this disorder.
Collapse
|
84
|
Altar CA, Hunt RA, Jurata LW, Webster MJ, Derby E, Gallagher P, Lemire A, Brockman J, Laeng P. Insulin, IGF-1, and muscarinic agonists modulate schizophrenia-associated genes in human neuroblastoma cells. Biol Psychiatry 2008; 64:1077-87. [PMID: 18973876 DOI: 10.1016/j.biopsych.2008.08.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 08/20/2008] [Accepted: 08/20/2008] [Indexed: 01/03/2023]
Abstract
BACKGROUND Genes associated with energy metabolism are decreased in schizophrenia brain and human and rodent diabetic skeletal muscle. These and other similarities between diabetes and schizophrenia suggest that an insulin signaling deficit may underlie schizophrenia. We determined with human SH-SY5Y neuroblastoma and astrocyte cell lines whether insulin or other molecules could modulate genes opposite to their change reported in schizophrenia brain. METHODS Both cell lines were treated with insulin, insulin-like growth factor (IGF)-1, IGF-2, or brain-derived neurotrophic factor (BDNF). Genes whose expression was found with microarrays to be changed by insulin in a reciprocal manner to their change in schizophrenia were used in a 16-gene miniarray to identify small molecules that might mimic insulin. RESULTS Insulin phosphorylated its receptor in the neuroblastoma cells but not in astrocytes and, like IGF-1, increased ERK1/2 and Akt phosphorylation. Insulin and IGF-1 increased the expression of genes decreased in schizophrenia, including those involved in mitochondrial functions, glucose and energy metabolism, hydrogen ion transport, and synaptic function. These gene effects were confirmed and shown to be dose related with the 16-gene miniarrays. Most of 1940 pharmacologically unique compounds failed to alter gene expression, with the exception of muscarinic agonists, which mimicked insulin and IGF-1, and which were blocked by the muscarinic antagonists atropine and telenzepine. CONCLUSIONS Stimulation of muscarinic and insulin/IGF-1 receptors alter genes associated with metabolic and synaptic functions in a manner reciprocal to their changes in schizophrenia. Pharmacologic activation of these receptors may normalize genomic alterations in schizophrenia and better address root causes of this disease.
Collapse
|
85
|
Pathways-based analyses of whole-genome association study data in bipolar disorder reveal genes mediating ion channel activity and synaptic neurotransmission. Hum Genet 2008; 125:63-79. [PMID: 19052778 DOI: 10.1007/s00439-008-0600-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/21/2008] [Indexed: 01/10/2023]
Abstract
Despite known heritability, the complex genetic architecture of bipolar disorder (likely including trait, locus and allelic heterogeneity, as well as genetic interactions) has confounded genetic discovery for many years. Even modern day whole genome association studies (WGAS) using over half a million common SNPs have implicated only a handful of genes at the genomewide level. Temporally coincident with this series of WGAS, a host of pathways-based analyses (PBAs) have emerged as novel computational approaches in the examination of large-scale datasets, but thus far rarely have been applied to WGAS data in psychiatric disorders. Here, we report a series of PBAs conducted using exploratory visual analysis, an analytic and visualization software tool for examining genomic data, to examine results from the National Institutes of Mental Health and Wellcome-Trust Case Control Consortium WGAS in bipolar disorder. Consistent with a host of prior linkage findings, some candidate gene association studies, and recent WGAS, our strongest findings suggest involvement of ion channel structural and regulatory genes, including voltage-gated ion channels and the broader ion channel group that comprises both voltage- and ligand-gated channels. Moreover, we found only modest overlap in the particular genes driving the significance of these gene sets across the analyses. This observation strongly suggests that variation in ion channel genes, as a class of genes, may contribute to the susceptibility of bipolar disorder and that heterogeneity may figure prominently in the genetic architecture of this susceptibility.
Collapse
|
86
|
Coregulation of genes in the mouse brain following treatment with clozapine, haloperidol, or olanzapine implicates altered potassium channel subunit expression in the mechanism of antipsychotic drug action. Psychiatr Genet 2008; 18:226-39. [PMID: 18797397 DOI: 10.1097/ypg.0b013e3283053019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Antipsychotic drugs are the most effective treatment for the psychotic symptoms of schizophrenia, yet their mechanism of action remains largely unknown. OBJECTIVES Earlier studies have shown gene expression changes in rodent brains after treatment with antipsychotic drugs. We aimed to further characterize these changes using whole-genome transcript profiling to explore coregulation of genes after multiple antipsychotic drug treatment studies. METHODS This study involved transcript profile analysis after 7-day treatment of inbred C57BL/6 mice with conventional (haloperidol) or atypical (clozapine or olanzapine) antipsychotic drugs. Microarray analysis was undertaken using whole-brain mRNA on Affymetrix 430v2 arrays, with quantitative reverse transcriptase-PCR used to confirm gene expression changes. Western blotting was also used to explore translation of gene dysregulation to protein changes and to explore anatomical specificity of such changes. MAIN RESULTS Thirteen genes showed verified regulation by multiple antipsychotic drugs - three genes significantly upregulated and 10 genes significantly downregulated by treatment. These genes encode proteins that function in various biological processes including neurogenesis, cell adhesion, and four genes are involved in voltage-gated ion channels: neural precursor cell developmentally downregulated gene 4 (Nedd4), Kv channel interacting protein 3 (KChip3), potassium voltage-gated channel, shaker-related subfamily, alpha1 (Kcna1) encoding Kv1.1 protein and beta1 (Kcnab1) encoding Kvbeta1 protein. The translation of these gene expression changes to protein dysregulation for Kv1.1, KCHIP3, and NEDD4 was confirmed by western blot, with regional protein analyses undertaken for Kv1.1 and KCHIP3. CONCLUSION These results suggest that transcriptional regulation of ion channels, crucial for neurotransmission, may play a role in mediating antipsychotic drug effects.
Collapse
|
87
|
Choi KH, Elashoff M, Higgs BW, Song J, Kim S, Sabunciyan S, Diglisic S, Yolken RH, Knable MB, Torrey EF, Webster MJ. Putative psychosis genes in the prefrontal cortex: combined analysis of gene expression microarrays. BMC Psychiatry 2008; 8:87. [PMID: 18992145 PMCID: PMC2585075 DOI: 10.1186/1471-244x-8-87] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 11/07/2008] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Recent studies have shown similarities between schizophrenia and bipolar disorder in phenotypes and in genotypes, and those studies have contributed to an ongoing re-evaluation of the traditional dichotomy between schizophrenia and bipolar disorder. Bipolar disorder with psychotic features may be closely related to schizophrenia and therefore, psychosis may be an alternative phenotype compared to the traditional diagnosis categories. METHODS We performed a cross-study analysis of 7 gene expression microarrays that include both psychosis and non-psychosis subjects. These studies include over 400 microarray samples (163 individual subjects) on 3 different Affymetrix microarray platforms. RESULTS We found that 110 transcripts are differentially regulated (p < 0.001) in psychosis after adjusting for confounding variables with a multiple regression model. Using a quantitative PCR, we validated a set of genes such as up-regulated metallothioneins (MT1E, MT1F, MT1H, MT1K, MT1X, MT2A and MT3) and down-regulated neuropeptides (SST, TAC1 and NPY) in the dorsolateral prefrontal cortex of psychosis patients. CONCLUSION This study demonstrates the advantages of cross-study analysis in detecting consensus changes in gene expression across multiple microarray studies. Differential gene expression between individuals with and without psychosis suggests that psychosis may be a useful phenotypic variable to complement the traditional diagnosis categories.
Collapse
Affiliation(s)
- Kwang Ho Choi
- Stanley Laboratory of Brain Research, 9800 Medical Center Dr. Bldg 2C, Rockville, MD 20850, USA.
| | | | | | - Jonathan Song
- Stanley Laboratory of Brain Research, 9800 Medical Center Dr. Bldg 2C, Rockville, MD 20850, USA
| | - Sanghyeon Kim
- Stanley Laboratory of Brain Research, 9800 Medical Center Dr. Bldg 2C, Rockville, MD 20850, USA
| | - Sarven Sabunciyan
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, School of Medicine, 600 North Wolfe Street, Blalock 1105, Baltimore, MD 21287, USA
| | - Suad Diglisic
- Stanley Laboratory of Brain Research, 9800 Medical Center Dr. Bldg 2C, Rockville, MD 20850, USA
| | - Robert H Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, School of Medicine, 600 North Wolfe Street, Blalock 1105, Baltimore, MD 21287, USA
| | - Michael B Knable
- Stanley Medical Research Institute, 8401 Connecticut Ave, Suite 200, Chevy Chase, MD 20815, USA
| | - E Fuller Torrey
- Stanley Medical Research Institute, 8401 Connecticut Ave, Suite 200, Chevy Chase, MD 20815, USA
| | - Maree J Webster
- Stanley Laboratory of Brain Research, 9800 Medical Center Dr. Bldg 2C, Rockville, MD 20850, USA
| |
Collapse
|
88
|
Lee KH, Yu DH, Lee YS. Gene expression profiling of rat cerebral cortex development using cDNA microarrays. Neurochem Res 2008; 34:1030-8. [PMID: 18987971 DOI: 10.1007/s11064-008-9867-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/04/2008] [Indexed: 02/07/2023]
Abstract
A large amount of genetic information is devoted to brain development. In this study, the cortical development in rats at eight developmental time points (four embryonic [E15, E16, E18, E20] and four postnatal [P0, P7, P14, P21]) was studied using a rat brain 10K cDNA microarray. Significant differential expression was observed in 467 of the 9,805 genes represented on the microarray. Two major Gene Ontology classes-cell differentiation and cell-cell signaling-were found to be important for cortical development. Genes for ribosomal proteins, heterogeneous nuclear ribonucleoproteins, and tubulin proteins were up-regulated in the embryonic stage, coincidently with extensive proliferation of neural precursor cells as the major component of the cerebral cortex. Genes related to neurogenesis, including neurite regeneration, neuron development, and synaptic transmission, were more active in adulthood, when the cerebral cortex reached maturity. The many developmentally modulated genes identified by this approach will facilitate further studies of cortical functions.
Collapse
Affiliation(s)
- Ki-Hwan Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, South Korea
| | | | | |
Collapse
|
89
|
Mudge J, Miller NA, Khrebtukova I, Lindquist IE, May GD, Huntley JJ, Luo S, Zhang L, van Velkinburgh JC, Farmer AD, Lewis S, Beavis WD, Schilkey FD, Virk SM, Black CF, Myers MK, Mader LC, Langley RJ, Utsey JP, Kim RW, Roberts RC, Khalsa SK, Garcia M, Ambriz-Griffith V, Harlan R, Czika W, Martin S, Wolfinger RD, Perrone-Bizzozero NI, Schroth GP, Kingsmore SF. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PLoS One 2008; 3:e3625. [PMID: 18985160 PMCID: PMC2576459 DOI: 10.1371/journal.pone.0003625] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/10/2008] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a common, disabling mental illness with high heritability but complex, poorly understood genetic etiology. As the first phase of a genomic convergence analysis of SCZ, we generated 16.7 billion nucleotides of short read, shotgun sequences of cDNA from post-mortem cerebellar cortices of 14 patients and six, matched controls. A rigorous analysis pipeline was developed for analysis of digital gene expression studies. Sequences aligned to approximately 33,200 transcripts in each sample, with average coverage of 450 reads per gene. Following adjustments for confounding clinical, sample and experimental sources of variation, 215 genes differed significantly in expression between cases and controls. Golgi apparatus, vesicular transport, membrane association, Zinc binding and regulation of transcription were over-represented among differentially expressed genes. Twenty three genes with altered expression and involvement in presynaptic vesicular transport, Golgi function and GABAergic neurotransmission define a unifying molecular hypothesis for dysfunction in cerebellar cortex in SCZ.
Collapse
Affiliation(s)
- Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Neil A. Miller
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | | | - Ingrid E. Lindquist
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Gregory D. May
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Jim J. Huntley
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Shujun Luo
- Illumina Inc., Hayward, California, United States of America
| | - Lu Zhang
- Illumina Inc., Hayward, California, United States of America
| | | | - Andrew D. Farmer
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Sharon Lewis
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - William D. Beavis
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Selene M. Virk
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - C. Forrest Black
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - M. Kathy Myers
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Lar C. Mader
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Ray J. Langley
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - John P. Utsey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Ryan W. Kim
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Rosalinda C. Roberts
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sat Kirpal Khalsa
- Northern New Mexico College, Española, New Mexico, United States of America
| | - Meredith Garcia
- Northern New Mexico College, Española, New Mexico, United States of America
| | | | - Richard Harlan
- Northern New Mexico College, Española, New Mexico, United States of America
| | - Wendy Czika
- SAS Institute, Cary, North Carolina, United States of America
| | - Stanton Martin
- SAS Institute, Cary, North Carolina, United States of America
| | | | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Gary P. Schroth
- Illumina Inc., Hayward, California, United States of America
| | - Stephen F. Kingsmore
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
90
|
Crespi B. Genomic imprinting in the development and evolution of psychotic spectrum conditions. Biol Rev Camb Philos Soc 2008; 83:441-493. [PMID: 18783362 DOI: 10.1111/j.1469-185x.2008.00050.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
I review and evaluate genetic and genomic evidence salient to the hypothesis that the development and evolution of psychotic spectrum conditions have been mediated in part by alterations of imprinted genes expressed in the brain. Evidence from the genetics and genomics of schizophrenia, bipolar disorder, major depression, Prader-Willi syndrome, Klinefelter syndrome, and other neurogenetic conditions support the hypothesis that the etiologies of psychotic spectrum conditions commonly involve genetic and epigenetic imbalances in the effects of imprinted genes, with a bias towards increased relative effects from imprinted genes with maternal expression or other genes favouring maternal interests. By contrast, autistic spectrum conditions, including Kanner autism, Asperger syndrome, Rett syndrome, Turner syndrome, Angelman syndrome, and Beckwith-Wiedemann syndrome, commonly engender increased relative effects from paternally expressed imprinted genes, or reduced effects from genes favouring maternal interests. Imprinted-gene effects on the etiologies of autistic and psychotic spectrum conditions parallel the diametric effects of imprinted genes in placental and foetal development, in that psychotic spectrum conditions tend to be associated with undergrowth and relatively-slow brain development, whereas some autistic spectrum conditions involve brain and body overgrowth, especially in foetal development and early childhood. An important role for imprinted genes in the etiologies of psychotic and autistic spectrum conditions is consistent with neurodevelopmental models of these disorders, and with predictions from the conflict theory of genomic imprinting.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser University, Burnaby BCV5A1S6, Canada.
| |
Collapse
|
91
|
Sun J, Kuo PH, Riley BP, Kendler KS, Zhao Z. Candidate genes for schizophrenia: a survey of association studies and gene ranking. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1173-81. [PMID: 18361404 DOI: 10.1002/ajmg.b.30743] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
More than 500 genes have been reported with positive or negative association with schizophrenia. The wealth of this information, along with the complex nature of psychiatric disorders, provides a challenging but also unique opportunity for the investigation of molecular and cellular mechanisms in schizophrenia. In this study, we performed a comprehensive survey of the published association studies collected in the SchizophreniaGene database. We observed over time a strong trend for increases in the number of published reports, the number of studied genes, and the sample size of the studies. We also examined the studies, genes, and sample sizes in different ethnic populations and the distribution of these association studies and their employed markers among these susceptibility genes. We then selected and ranked candidate genes using a combined odds ratio method. The evaluation of this candidate gene set against sets selected by other methods suggested its utility in follow-up association studies and in further bioinformatics analysis. We also examined the functional biases of the selected genes.
Collapse
Affiliation(s)
- Jingchun Sun
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
92
|
Skelley SL, Goldberg TE, Egan MF, Weinberger DR, Gold JM. Verbal and visual memory: characterizing the clinical and intermediate phenotype in schizophrenia. Schizophr Res 2008; 105:78-85. [PMID: 18617370 PMCID: PMC8478454 DOI: 10.1016/j.schres.2008.05.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 05/22/2008] [Accepted: 05/26/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Verbal and visual memory deficits are prominent trait markers for schizophrenia, with impairments also observed in first-degree relatives [Snitz, B.E., Macdonald, A.W., 3rd, & Carter, C.S. (2006). Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophr Bull, 32(1), 179-194]. It remains unclear whether deficits lie in encoding or savings, and whether the deficit is heritable. OBJECTIVE To determine which features of memory performance are impaired in both patients and their healthy siblings, possibly reflecting shared genetic effects. METHOD We tested episodic memory using Logical Memory (LM) and Visual Reproduction (VR) tasks of the Wechsler Memory Scale (Revised). Participants included patients with schizophrenia (n=162), their nonpsychotic siblings (n=146), and controls (n=205), recruited for the "CBDB/NIMH Sibling Study". We assessed immediate encoding and 30 minute and 24 hour delayed recall as well as savings scores for the "short delay" (immediate to 30 min) and "long delay" (30 min to 24 h) intervals. RESULTS We observed marked verbal recall deficits in both patients and siblings compared to controls for all stages (p<.0001). Only patients experienced significant verbal and visual savings deficits over short delays (p<.0001) as well as verbal deficits over long delays (p<.005). In siblings, no saving score difficulty was apparent for either measure. CONCLUSIONS Our results confirm shared impairment in verbal learning, but not memory, for both patients and siblings, therefore marking it as a potential schizophrenia-associated intermediate phenotype. The results implicate neural systems involved in immediate encoding and stabilization of memory representations in genetic risk for schizophrenia. In contrast, visual recall and savings impairments appear to be illness, i.e. state, deficits.
Collapse
Affiliation(s)
- Shayna L Skelley
- Clinical Brain Disorders Branch, 10 Center Drive, MSC 1379, National Institute of Mental Health/NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
93
|
Abstract
Bipolar illness is conceptualized as a polygenic condition. Based on candidate gene findings from the literature to date, up to 22% of the genetic risk in affected persons may be explained by six gene variants with an average allele frequency of 0.59 in cases and 0.54 in controls. The mean allele specific relative risk (ASRR) for these variants is 1.42 (range 1.1-1.8). Initial results from genome-wide association studies tend to confirm this estimate of effect size. Using the characteristics of these variants as a guide, a 30 allele model for bipolar illness is presented in which the modal affected person would carry 22 susceptibility variants, and the median unaffected person would carry 15. In a comparable model with 100 alleles, the modal affected person would carry 62 susceptibility variants compared with a median of 50 in unaffecteds. To the extent that common gene variants are associated with bipolar disorder they may be expected to also be widely distributed in the general population. As the neurobiology of replicated candidate genes is considered, models of potentially relevant biological pathways may be constructed.
Collapse
Affiliation(s)
- John I Nurnberger
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, IUMC/IPR, Indianapolis, IN 46202-4887, USA.
| |
Collapse
|
94
|
No association between the oligodendrocyte-related gene PLP1 and schizophrenia in the Japanese population. J Hum Genet 2008; 53:863-866. [PMID: 18604471 DOI: 10.1007/s10038-008-0318-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 06/21/2008] [Indexed: 10/21/2022]
Abstract
PLP1 is one of the major myelin-related genes. A large body of expression-based studies showed significantly lower levels of the PLP1 messenger ribonucleic acid (mRNA) transcripts in schizophrenia. Moreover, one family-based study identified a weak association signal in a male subset using 487 Chinese family trios. We carried out a population-based association study between PLP1 and schizophrenia in 1,640 subjects. Our data does not support genetic variation in close vicinity or within PLP1 locus as a susceptibility factor.
Collapse
|
95
|
The estrogen hypothesis of schizophrenia implicates glucose metabolism: association study in three independent samples. BMC MEDICAL GENETICS 2008; 9:39. [PMID: 18460190 PMCID: PMC2391158 DOI: 10.1186/1471-2350-9-39] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 05/06/2008] [Indexed: 11/22/2022]
Abstract
Background Schizophrenia is a highly heritable complex psychiatric disorder with an underlying pathophysiology that is still not well understood. Metaanalyses of schizophrenia linkage studies indicate numerous but rather large disease-associated genomic regions, whereas accumulating gene- and protein expression studies have indicated an equally large set of candidate genes that only partially overlap linkage genes. A thorough assessment, beyond the resolution of current GWA studies, of the disease risk conferred by the numerous schizophrenia candidate genes is a daunting and presently not feasible task. We undertook these challenges by using an established clinical paradigm, the estrogen hypothesis of schizophrenia, as the criterion to select candidates among the numerous genes experimentally implicated in schizophrenia. Bioinformatic tools were used to build and priorities the signaling networks implicated by the candidate genes resulting from the estrogen selection. We identified ten candidate genes using this approach that are all active in glucose metabolism and particularly in the glycolysis. Thus, we tested the hypothesis that variants of the glycolytic genes are associated with schizophrenia or at least with gender-associated aspects of the illness. Results We genotyped 185 SNPs in three independent case-control samples of Scandinavian origin (a total of 765 patients and 1274 control subjects). Variants of the mitogen-activated protein kinase 14 gene (MAPK14) and the phosphoenolpyruvate carboxykinase 1 (PCK1) and fructose-1,6-biphosphatase (FBP1) were nominal significantly associated with schizophrenia, and several haplotypes within enolase 2 gene (ENO2) consist of the same SNP allele having elevated risk of schizophrenia. Importantly, we find no evidence of stratification due to nationality or gender. Conclusion Several gene variants in the Glycolysis were associated with schizophrenia in three independent samples. However, the findings are weak and not resistant to correction for multiple testing, which may indicate that they are either spurious or may relate to a particular subtype or aspect of the illness.
Collapse
|
96
|
Bowden NA, Scott RJ, Tooney PA. Altered gene expression in the superior temporal gyrus in schizophrenia. BMC Genomics 2008; 9:199. [PMID: 18445270 PMCID: PMC2386488 DOI: 10.1186/1471-2164-9-199] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 04/29/2008] [Indexed: 11/29/2022] Open
Abstract
Background The superior temporal gyrus (STG), which encompasses the primary auditory cortex, is believed to be a major anatomical substrate for speech, language and communication. The STG connects to the limbic system (hippocampus and amygdala), the thalamus and neocortical association areas in the prefrontal cortex, all of which have been implicated in schizophrenia. Results To identify altered mRNA expression in the superior temporal gyrus (STG) in schizophrenia, oligonucleotide microarrays were used with RNA from postmortem STG tissue from 7 individuals with schizophrenia and 7 matched non-psychiatric controls. Overall, there was a trend towards down-regulation in gene expression, and altered expression of genes involved in neurotransmission, neurodevelopment, and presynaptic function was identified. To confirm altered expression identified by microarray analysis, the mRNA expression levels of four genes, IPLA2γ, PIK31R1, Lin-7b and ATBF1, were semi-quantitatively measured using relative real-time PCR. A number of genes with altered expression in the STG were also shown to have similar changes in expression as shown in our previous study of peripheral blood lymphocytes in schizophrenia. Conclusion This study has identified altered expression of genes in the STG involved in neurotransmission and neurodevelopment, and to a lesser extent presynaptic function, which further support the notion of these functions playing an integral role in the development of schizophrenia.
Collapse
Affiliation(s)
- Nikola A Bowden
- Neuroscience Institute of Schizophrenia and Allied Disorders, Sydney, NSW, Australia.
| | | | | |
Collapse
|
97
|
Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J, Rodd ZA, Paulus M, Geyer MA, Edenberg HJ, Glatt SJ, Faraone SV, Nurnberger JI, Kuczenski R, Tsuang MT, Niculescu AB. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:134-66. [PMID: 18247375 DOI: 10.1002/ajmg.b.30707] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We had previously identified the clock gene D-box binding protein (Dbp) as a potential candidate gene for bipolar disorder and for alcoholism, using a Convergent Functional Genomics (CFG) approach. Here we report that mice with a homozygous deletion of DBP have lower locomotor activity, blunted responses to stimulants, and gain less weight over time. In response to a chronic stress paradigm, these mice exhibit a diametric switch in these phenotypes. DBP knockout mice are also activated by sleep deprivation, similar to bipolar patients, and that activation is prevented by treatment with the mood stabilizer drug valproate. Moreover, these mice show increased alcohol intake following exposure to stress. Microarray studies of brain and blood reveal a pattern of gene expression changes that may explain the observed phenotypes. CFG analysis of the gene expression changes identified a series of novel candidate genes and blood biomarkers for bipolar disorder, alcoholism, and stress reactivity.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Schizophrenia, "Just the Facts": what we know in 2008 part 1: overview. Schizophr Res 2008; 100:4-19. [PMID: 18291627 DOI: 10.1016/j.schres.2008.01.022] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 01/28/2008] [Indexed: 01/06/2023]
Abstract
For every disorder, there is a set of established findings and accepted constructs upon which further understanding is built. The concept of schizophrenia as a disease entity has been with us for a little more than a century, although descriptions resembling this condition predate this conceptualization. In 1988, for the inaugural issue of Schizophrenia Research, at the invitation of the founding editors, a senior researcher, since deceased (RJ Wyatt) published a summary of generally accepted ideas about the disorder, which he termed "the facts" of schizophrenia. Ten years later, in conjunction with two of the authors (MSK, RT), he compiled a more extensive set of "facts" for the purpose of evaluating conceptual models or theoretical constructs developed to understand the nature of schizophrenia. On the 20th anniversary of this journal, we update and substantially expand our effort to periodically summarize the current body of information about schizophrenia. We compile a body of seventy-seven representative major findings and group them in terms of their specific relevance to schizophrenia -- etiologies, pathophysiology, clinical manifestations, and treatments. We rate each such "fact" on a 0-3 scale for measures of reproducibility, whether primary to schizophrenia, and durability over time. We also pose one or more critical questions with reference to each "fact", answers to which might help better elucidate the meaning of that finding for our understanding of schizophrenia. We intend to follow this paper with the submission to the journal of a series of topic-specific articles, critically reviewing the evidence.
Collapse
|
99
|
Marino MJ, Knutsen LJS, Williams M. Emerging Opportunities for Antipsychotic Drug Discovery in the Postgenomic Era. J Med Chem 2008; 51:1077-107. [PMID: 18198826 DOI: 10.1021/jm701094q] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Michael J. Marino
- Worldwide Discovery Research, Cephalon, Inc., 145 Brandywine Parkway, West Chester, Pennsylvania 19380
| | - Lars J. S. Knutsen
- Worldwide Discovery Research, Cephalon, Inc., 145 Brandywine Parkway, West Chester, Pennsylvania 19380
| | - Michael Williams
- Worldwide Discovery Research, Cephalon, Inc., 145 Brandywine Parkway, West Chester, Pennsylvania 19380
| |
Collapse
|
100
|
Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M, Ou J, Vernes SC, Fisher SE, Ren B, Geschwind DH. Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. Am J Hum Genet 2007; 81:1144-57. [PMID: 17999357 DOI: 10.1086/522237] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 08/01/2007] [Indexed: 12/15/2022] Open
Abstract
Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to explore the development of human language and speech. Here, we define FOXP2 targets in human basal ganglia (BG) and inferior frontal cortex (IFC) by use of chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and validate the functional regulation of targets in vitro. ChIP-chip identified 285 FOXP2 targets in fetal human brain; statistically significant overlap of targets in BG and IFC indicates a core set of 34 transcriptional targets of FOXP2. We identified targets specific to IFC or BG that were not observed in lung, suggesting important regional and tissue differences in FOXP2 activity. Many target genes are known to play critical roles in specific aspects of central nervous system patterning or development, such as neurite outgrowth, as well as plasticity. Subsets of the FOXP2 transcriptional targets are either under positive selection in humans or differentially expressed between human and chimpanzee brain. This is the first ChIP-chip study to use human brain tissue, making the FOXP2-target genes identified in these studies important to understanding the pathways regulating speech and language in the developing human brain. These data provide the first insight into the functional network of genes directly regulated by FOXP2 in human brain and by evolutionary comparisons, highlighting genes likely to be involved in the development of human higher-order cognitive processes.
Collapse
Affiliation(s)
- Elizabeth Spiteri
- Program in Neurogenetics, Department of Neurology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|