51
|
Yang G, Wang Y, Qiu Y. Advances in Organic Photoelectrochemical Synergistic Catalysis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
52
|
Wang Q, Zhang X, Wang P, Gao X, Zhang H, Lei A. Electrochemical
Palladium‐Catalyzed
Intramolecular C—H Amination of
2‐Amidobiaryls
for Synthesis of Carbazoles. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000407] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qingqing Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Xiaojing Zhang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Pan Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Xinlong Gao
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Heng Zhang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang Jiangxi 330022 China
| |
Collapse
|
53
|
Mandal A, Garai B, Dana S, Bera R, Baidya M. Cross-Dehydrogenative Coupling/Annulation of Arene Carboxylic Acids and Alkenes in Water with Ruthenium(II) Catalyst and Air. Chem Asian J 2020; 15:4009-4013. [PMID: 33090685 DOI: 10.1002/asia.202001087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Indexed: 12/29/2022]
Abstract
A cross-dehydrogenative coupling of arene carboxylic acids with olefins is reported with ruthenium(II) catalyst employing air and water as green oxidant and solvent, respectively. It offers a robust synthesis of valuable phthalide molecules. A one-pot sequential strategy is also disclosed to access Heck-type products that are apparently difficult to make directly from arene carboxylic acids.
Collapse
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Ratnadeep Bera
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| |
Collapse
|
54
|
Ye X, Wang C, Zhang S, Wei J, Shan C, Wojtas L, Xie Y, Shi X. Facilitating Ir-Catalyzed C-H Alkynylation with Electrochemistry: Anodic Oxidation-Induced Reductive Elimination. ACS Catal 2020; 10:11693-11699. [PMID: 38107025 PMCID: PMC10723742 DOI: 10.1021/acscatal.0c03207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An electrochemical approach in promoting directed C-H alkynylation with terminal alkyne via iridium catalysis is reported. This work employed anodic oxidation of Ir(III) intermediate (characterized by X-ray crystallography) to promote reductive elimination, giving the desired coupling products in good yields (up to 95%) without the addition of any other external oxidants. This transformation is suitable for various directing groups with H2 as the only by-product, which warrants a high atom economy and practical oxidative C-C bond formation under mild conditions.
Collapse
Affiliation(s)
- Xiaohan Ye
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Chenhuan Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Shuyao Zhang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Jingwen Wei
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P.R.China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
55
|
Yu S, Lv N, Hong C, Liu Z, Zhang Y. Rh-Catalyzed Annulation of Benzoic Acids, Formaldehyde, and Malonates via ortho-Hydroarylation to Indanones. Org Lett 2020; 22:8354-8358. [PMID: 33157567 DOI: 10.1021/acs.orglett.0c02986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A three-component reaction from readily available low-cost materials of benzoic acids, formaldehyde, and malonates for the preparation of indanones by rhodium catalysis is reported. The annulation is initiated by an ortho-hydroarylation of benzoic acids, and a Lewis acid is not required. The solvent has a significant influence to the reaction, and 2-substituted or nonsubstituted indanones are obtained by the change of solvent.
Collapse
Affiliation(s)
- Shuling Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ningning Lv
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chao Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
56
|
Kakiuchi F, Kochi T. New Strategy for Catalytic Oxidative C–H Functionalization: Efficient Combination of Transition-metal Catalyst and Electrochemical Oxidation. CHEM LETT 2020. [DOI: 10.1246/cl.200475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
57
|
Yang W, Li Y, Zhu J, Liu W, Ke J, He C. Lewis acid-assisted Ir(iii) reductive elimination enables construction of seven-membered-ring sulfoxides. Chem Sci 2020; 11:10149-10158. [PMID: 34094278 PMCID: PMC8162422 DOI: 10.1039/d0sc04180g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Iridium has played an important role in the evolution of C-H activation chemistry over the last half century owing to its high reactivity towards stoichiometric C-H bond cleavage; however, the use of Ir(iii) complexes in catalytic C-H functionalization/C-C bond formation appears to have fallen off significantly. The main problem lies in the reductive elimination step, as iridium has a tendency to form stable and catalytically inactive Ir(iii) species. Herein, with a rationally designed Lewis acid assisted oxidatively induced strategy, the sluggish Ir(iii) reductive elimination is successfully facilitated, enabling the facile C-C bond formation. The X-ray crystal structure of a silver salt adduct of iridacycle and DFT calculations demonstrate that the sulfoxide group acts as a key bridge connecting the Ir(iii) metal centre with the silver Lewis acid, which facilitates the reductive elimination of the Ir(iii) metallacycle. Further identification of oxidants was carried out by performing stoichiometric reactions, which enables the development of catalytic construction of various highly functionalized seven-membered-ring sulfoxides, that are of great interest in medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Wu Yang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| | - Yingzi Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| | - Jiefeng Zhu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| | - Wentan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| | - Jie Ke
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| | - Chuan He
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| |
Collapse
|
58
|
Sun K, Lei J, Liu Y, Liu B, Chen N. Electrochemically Enabled Intramolecular and Intermolecular Annulations of Alkynes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000876] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kai Sun
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Jia Lei
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Yingjie Liu
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Bing Liu
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Ning Chen
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| |
Collapse
|
59
|
Zhang S, Samanta RC, Del Vecchio A, Ackermann L. Evolution of High-Valent Nickela-Electrocatalyzed C-H Activation: From Cross(-Electrophile)-Couplings to Electrooxidative C-H Transformations. Chemistry 2020; 26:10936-10947. [PMID: 32329534 PMCID: PMC7497266 DOI: 10.1002/chem.202001318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Indexed: 12/19/2022]
Abstract
C-H activation has emerged as one of the most efficient tools for the formation of carbon-carbon and carbon-heteroatom bonds, avoiding the use of prefunctionalized materials. In spite of tremendous progress in the field, stoichiometric quantities of toxic and/or costly chemical redox reagents, such as silver(I) or copper(II) salts, are largely required for oxidative C-H activations. Recently, electrosynthesis has experienced a remarkable renaissance that enables the use of storable, safe and waste-free electric current as a redox equivalent. While major recent momentum was gained in electrocatalyzed C-H activations by 4d and 5d metals, user-friendly and inexpensive nickela-electrocatalysis has until recently proven elusive for oxidative C-H activations. Herein, the early developments of nickela-electrocatalyzed reductive cross-electrophile couplings as well as net-redox-neutral cross-couplings are first introduced. The focus of this Minireview is, however, the recent emergence of nickel-catalyzed electrooxidative C-H activations until April 2020.
Collapse
Affiliation(s)
- Shou‐Kun Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Ramesh C. Samanta
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Antonio Del Vecchio
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
60
|
Samanta RC, Struwe J, Ackermann L. Nickela-electrocatalyzed Mild C-H Alkylations at Room Temperature. Angew Chem Int Ed Engl 2020; 59:14154-14159. [PMID: 32324948 PMCID: PMC7496282 DOI: 10.1002/anie.202004958] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 11/15/2022]
Abstract
Direct alkylations of carboxylic acid derivatives are challenging and particularly nickel catalysis commonly requires high reaction temperatures and strong bases, translating into limited substrate scope. Herein, nickel-catalyzed C-H alkylations of unactivated 8-aminoquinoline amides have been realized under exceedingly mild conditions, namely at room temperature, with a mild base and a user-friendly electrochemical setup. This electrocatalyzed C-H alkylation displays high functional group tolerance and is applicable to both the primary and secondary alkylation. Based on detailed mechanistic studies, a nickel(II/III/I) catalytic manifold has been proposed.
Collapse
Affiliation(s)
- Ramesh C. Samanta
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
61
|
Dhawa U, Tian C, Wdowik T, Oliveira JCA, Hao J, Ackermann L. Enantioselective Pallada-Electrocatalyzed C-H Activation by Transient Directing Groups: Expedient Access to Helicenes. Angew Chem Int Ed Engl 2020; 59:13451-13457. [PMID: 32243685 PMCID: PMC7497116 DOI: 10.1002/anie.202003826] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Indexed: 01/05/2023]
Abstract
Asymmetric pallada-electrocatalyzed C-H olefinations were achieved through the synergistic cooperation with transient directing groups. The electrochemical, atroposelective C-H activations were realized with high position-, diastereo-, and enantio-control under mild reaction conditions to obtain highly enantiomerically-enriched biaryls and fluorinated N-C axially chiral scaffolds. Our strategy provided expedient access to, among others, novel chiral BINOLs, dicarboxylic acids and helicenes of value to asymmetric catalysis. Mechanistic studies by experiments and computation provided key insights into the catalyst's mode of action.
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Cong Tian
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Tomasz Wdowik
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Jiping Hao
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
62
|
Samanta RC, Meyer TH, Siewert I, Ackermann L. Renewable resources for sustainable metallaelectro-catalysed C-H activation. Chem Sci 2020; 11:8657-8670. [PMID: 34123124 PMCID: PMC8163351 DOI: 10.1039/d0sc03578e] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The necessity for more sustainable industrial chemical processes has internationally been agreed upon. During the last decade, the scientific community has responded to this urgent need by developing novel sustainable methodologies targeted at molecular transformations that not only produce reduced amounts of byproducts, but also by the use of cleaner and renewable energy sources. A prime example is the electrochemical functionalization of organic molecules, by which toxic and costly chemicals can be replaced by renewable electricity. Unrivalled levels of resource economy can thereby be achieved via the merger of metal-catalyzed C-H activation with electrosynthesis. This perspective aims at highlighting the most relevant advances in metallaelectro-catalysed C-H activations, with a particular focus on the use of green solvents and sustainable wind power and solar energy until June 2020.
Collapse
Affiliation(s)
- Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Inke Siewert
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
63
|
Gandeepan P, Finger LH, Meyer TH, Ackermann L. 3d metallaelectrocatalysis for resource economical syntheses. Chem Soc Rev 2020; 49:4254-4272. [PMID: 32458919 DOI: 10.1039/d0cs00149j] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Resource economy constitutes one of the key challenges for researchers and practitioners in academia and industries, in terms of rising demand for sustainable and green synthetic methodology. To achieve ideal levels of resource economy in molecular syntheses, novel avenues are required, which include, but are not limited to the use of naturally abundant, renewable feedstocks, solvents, metal catalysts, energy, and redox reagents. In this context, electrosyntheses create the unique possibility to replace stoichiometric amounts of oxidizing or reducing reagents as well as electron transfer events by electric current. Particularly, the merger of Earth-abundant 3d metal catalysis and electrooxidation has recently been recognized as an increasingly viable strategy to forge challenging C-C and C-heteroatom bonds for complex organic molecules in a sustainable fashion under mild reaction conditions. In this review, we highlight the key developments in 3d metallaelectrocatalysis in the context of resource economy in molecular syntheses until February 2020.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany. and Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| | - Lars H Finger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
| | - Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany. and Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany and Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
64
|
Samanta RC, Struwe J, Ackermann L. Nickelaelektrokatalysierte, milde C‐H‐Alkylierungen bei Raumtemperatur. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ramesh C. Samanta
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
- Woehler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
65
|
Dhawa U, Tian C, Wdowik T, Oliveira JCA, Hao J, Ackermann L. Enantioselektive Pallada‐elektrokatalysierte C‐H‐Aktivierung durch transiente dirigierende Gruppen: Ein nützlicher Zugang zu Helicenen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003826] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Cong Tian
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Tomasz Wdowik
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Jiping Hao
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
- Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
66
|
Liu X, Liu R, Qiu J, Cheng X, Li G. Chemical‐Reductant‐Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xu Liu
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
| | - Ruoyu Liu
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
| | - Jiaxing Qiu
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Zhejiang University of Technology Hangzhou 310032 China
| | - Guigen Li
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX USA
| |
Collapse
|
67
|
Liu X, Liu R, Qiu J, Cheng X, Li G. Chemical-Reductant-Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angew Chem Int Ed Engl 2020; 59:13962-13967. [PMID: 32394494 DOI: 10.1002/anie.202005765] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 12/20/2022]
Abstract
We report a method for the electrochemical deuteration of α,β-unsaturated carbonyl compounds under catalyst- and external-reductant-free conditions, with deuteration rates as high as 99 % and yields up to 91 % in 2 h. The use of graphite felt for both the cathode and the anode was key to ensuring chemoselectivity and high deuterium incorporation under neutral conditions without the need for an external reductant. This method has a number of advantages over previously reported deuteration reactions that use stoichiometric metallic reductants. Mechanistic experiments showed that O2 evolution at the anode not only eliminates the need for an external reductant but also regulates the pH of the reaction mixture, keeping it approximately neutral.
Collapse
Affiliation(s)
- Xu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Ruoyu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Jiaxing Qiu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China.,State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guigen Li
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
68
|
Yang L, Steinbock R, Scheremetjew A, Kuniyil R, Finger LH, Messinis AM, Ackermann L. Azaruthena(II)‐bicyclo[3.2.0]heptadien: Schlüsselintermediat für Ruthenaelektro(II/III/I)‐katalysierte Alkinanellierungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Long Yang
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Ralf Steinbock
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lars H. Finger
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Antonis M. Messinis
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
69
|
Dhawa U, Tian C, Li W, Ackermann L. Cobalta-Electrocatalyzed C–H Allylation with Unactivated Alkenes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01436] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Cong Tian
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Weizhao Li
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
70
|
Yang L, Steinbock R, Scheremetjew A, Kuniyil R, Finger LH, Messinis AM, Ackermann L. Azaruthena(II)-bicyclo[3.2.0]heptadiene: Key Intermediate for Ruthenaelectro(II/III/I)-catalyzed Alkyne Annulations. Angew Chem Int Ed Engl 2020; 59:11130-11135. [PMID: 32129528 DOI: 10.1002/anie.202000762] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/15/2022]
Abstract
A ruthenium-catalyzed electrochemical dehydrogenative annulation reaction of imidazoles with alkynes has been established, enabling the preparation of various bridgehead N-fused [5,6]-bicyclic heteroarenes through regioselective electrochemical C-H/N-H annulation without chemical metal oxidants. Novel azaruthenabicyclo[3.2.0]heptadienes were fully characterized and identified as key intermediates. Mechanistic studies are suggestive of an oxidatively induced reductive elimination pathway within a ruthenium(II/III) regime.
Collapse
Affiliation(s)
- Long Yang
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Ralf Steinbock
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Lars H Finger
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
71
|
Qiu Y, Scheremetjew A, Finger LH, Ackermann L. Electrophotocatalytic Undirected C-H Trifluoromethylations of (Het)Arenes. Chemistry 2020; 26:3241-3246. [PMID: 31875327 PMCID: PMC7155051 DOI: 10.1002/chem.201905774] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/31/2022]
Abstract
Electrophotochemistry has enabled arene C-H trifluoromethylation with the Langlois reagent CF3 SO2 Na under mild reaction conditions. The merger of electrosynthesis and photoredox catalysis provided a chemical oxidant-free approach for the generation of the CF3 radical. The electrophotochemistry was carried out in an operationally simple manner, setting the stage for challenging C-H trifluoromethylations of unactivated arenes and heteroarenes. The robust nature of the electrophotochemical manifold was reflected by a wide scope, including electron-rich and electron-deficient benzenes, as well as naturally occurring heteroarenes. Electrophotochemical C-H trifluoromethylation was further achieved in flow with a modular electro-flow-cell equipped with an in-operando monitoring unit for on-line flow-NMR spectroscopy, providing support for the single electron transfer processes.
Collapse
Affiliation(s)
- Youai Qiu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lars H. Finger
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
72
|
Duan Z, Zhang L, Zhang W, Lu L, Zeng L, Shi R, Lei A. Palladium-Catalyzed Electro-oxidative C–H Amination toward the Synthesis of Pyrido[1,2-a]benzimidazoles with Hydrogen Evolution. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00103] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhengli Duan
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Lin Zhang
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
| | - Wenxin Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Li Zeng
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Renyi Shi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
| |
Collapse
|
73
|
Listratova AV, Sbei N, Voskressensky LG. Catalytic Electrosynthesis of N
,O
-Heterocycles - Recent Advances. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anna V. Listratova
- Organic Chemistry Department; Peoples' Friendship University of Russia (RUDN University); 6 Miklukho-Maklaya St. 117198 Moscow Russian Federation
| | - Najoua Sbei
- Organic Chemistry Department; Peoples' Friendship University of Russia (RUDN University); 6 Miklukho-Maklaya St. 117198 Moscow Russian Federation
| | - Leonid G. Voskressensky
- Organic Chemistry Department; Peoples' Friendship University of Russia (RUDN University); 6 Miklukho-Maklaya St. 117198 Moscow Russian Federation
| |
Collapse
|
74
|
Jiao KJ, Xing YK, Yang QL, Qiu H, Mei TS. Site-Selective C-H Functionalization via Synergistic Use of Electrochemistry and Transition Metal Catalysis. Acc Chem Res 2020; 53:300-310. [PMID: 31939278 DOI: 10.1021/acs.accounts.9b00603] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrochemical synthesis of organic compounds has emerged as an attractive and environmentally benign alternative to conventional approaches for oxidation and reduction of organic compounds that utilizes electric current instead of chemical oxidants and reductants. As such, many useful transformations have been developed, including the Kolbe reaction, the Simons fluorination process, the Monsanto adiponitrile process, and the Shono oxidation, to name a few. Electrochemical C-H functionalization represents one of the most promising reaction types among many electrochemical transformations, since this process avoids prefunctionalization of substrates and provides novel retrosynthetic disconnections. However, site-selective anodic oxidation of C-H bonds is still a fundamental challenge due to the high oxidation potentials of C-H bonds compared to organic solvents and common functional groups. To overcome this issue, indirect electrolysis via the action of a mediator (a redox catalyst) is regularly employed, by which the selectivity can be controlled following reaction of said mediator with the substrate. Since the redox potentials of transition metal complexes can be easily tuned by modification of the ligand, the synergistic use of electrochemistry and transition metal catalysis to achieve site-selective C-H functionalization is an attractive strategy. In this Account, we summarize and contextualize our recent efforts toward transition metal-catalyzed electrochemical C-H functionalization proximal to a suitable directing group. We have developed C-H oxygenation, acylation, alkylation, and halogenation reactions in which a Pd(II) species is oxidized to a Pd(III) or Pd(IV) intermediate by anodic oxidation, followed by reductive elimination to form the corresponding C-O, C-C, and C-X bonds. Importantly, improved monofunctionalization selectivity is achieved in the Pd-catalyzed C(sp3)-H oxygenation compared to conventional approaches using PhI(OAc)2 as the chemical oxidant. Physical separators are sometimes used to prevent the electrochemical deposition of Pd black on the cathode resulting from reduction of high valent Pd species. We skirted this issue through the development a Cu-catalyzed electrochemical C(sp2)-H amination using n-Bu4NI as a redox cocatalyst in an undivided cell. In addition, we developed Ir-catalyzed electrochemical vinylic C-H functionalization of acrylic acids with alkynes in an undivided cell, affording various substituted α-pyrones in good to excellent yield. More importantly, chemical oxidants, including Ag2CO3, Cu(OAc)2, and PhI(OAc)2, resulted in much lower yields in the absence of electrical current under otherwise identical conditions. As elaborated below, progress in the area of electrochemical transition metal-catalyzed synthesis provides an effective platform for environmentally friendly and sustainable selective chemical transformations.
Collapse
Affiliation(s)
- Ke-Jin Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yi-Kang Xing
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qi-Liang Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hui Qiu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
75
|
Zhang S, Struwe J, Hu L, Ackermann L. Nickela-electrocatalyzed C-H Alkoxylation with Secondary Alcohols: Oxidation-Induced Reductive Elimination at Nickel(III). Angew Chem Int Ed Engl 2020; 59:3178-3183. [PMID: 31729814 PMCID: PMC7028089 DOI: 10.1002/anie.201913930] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 11/26/2022]
Abstract
Nickela-electrooxidative C-H alkoxylations with challenging secondary alcohols were accomplished in a fully dehydrogenative fashion, thereby avoiding stoichiometric chemical oxidants, with H2 as the only stoichiometric byproduct. The nickela-electrocatalyzed oxygenation proved viable with various (hetero)arenes, including naturally occurring secondary alcohols, without racemization. Detailed mechanistic investigation, including DFT calculations and cyclovoltammetric studies of a well-defined C-H activated nickel(III) intermediate, suggest an oxidation-induced reductive elimination at nickel(III).
Collapse
Affiliation(s)
- Shou‐Kun Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lianrui Hu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
76
|
Kong W, Shen Z, Finger LH, Ackermann L. Elektrochemischer Zugang zu aza‐polycyclischen aromatischen Kohlenwasserstoffen: Rhoda‐elektrokatalytische Domino‐Alkin‐Anellierungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Jun Kong
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Zhigao Shen
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lars H. Finger
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
77
|
Kong WJ, Shen Z, Finger LH, Ackermann L. Electrochemical Access to Aza-Polycyclic Aromatic Hydrocarbons: Rhoda-Electrocatalyzed Domino Alkyne Annulations. Angew Chem Int Ed Engl 2020; 59:5551-5556. [PMID: 31793169 PMCID: PMC7155118 DOI: 10.1002/anie.201914775] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 11/11/2022]
Abstract
Nitrogen-doped polycyclic aromatic hydrocarbons (aza-PAHs) have found broad applications in material sciences. Herein, a modular electrochemical synthesis of aza-PAHs was developed via a rhodium-catalyzed cascade C-H activation and alkyne annulation. A multifunctional O-methylamidoxime enabled the high chemo- and regioselectivity. The isolation of two key rhodacyclic intermediates made it possible to delineate the exact order of three C-H activation steps. In addition, the metalla-electrocatalyzed multiple C-H transformation is characterized by unique functional group tolerance, including highly reactive iodo and azido groups.
Collapse
Affiliation(s)
- Wei-Jun Kong
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Zhigao Shen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lars H Finger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
78
|
Abstract
To improve the efficacy of molecular syntheses, researchers wish to capitalize upon the selective modification of otherwise inert C-H bonds. The past two decades have witnessed considerable advances in coordination chemistry that have set the stage for transformative tools for C-H functionalizations. Particularly, oxidative C-H/C-H and C-H/Het-H transformations have gained major attention because they avoid all elements of substrate prefunctionalization. Despite considerable advances, oxidative C-H activations have been dominated by precious transition metal catalysts based on palladium, ruthenium, iridium, and rhodium, thus compromising the sustainable nature of the overall C-H activation approach. The same holds true for the predominant use of stoichiometric chemical oxidants for the regeneration of the active catalyst, prominently featuring hypervalent iodine(III), copper(II), and silver(I) oxidants. Thereby, stoichiometric quantities of undesired byproducts are generated, which are preventive for applications of C-H activation on scale. In contrast, the elegant merger of homogeneous metal-catalyzed C-H activation with molecular electrosynthesis bears the unique power to achieve outstanding levels of oxidant and resource economy. Thus, in contrast to classical electrosyntheses by substrate control, metalla-electrocatalysis holds huge and largely untapped potential for oxidative C-H activations with unmet site selectivities by means of catalyst control. While indirect electrolysis using precious palladium complexes has been realized, less toxic and less expensive base metal catalysts feature distinct beneficial assets toward sustainable resource economy. In this Account, I summarize the emergence of electrocatalyzed C-H activation by earth-abundant 3d base metals and beyond, with a topical focus on contributions from our laboratories through November 2019. Thus, cobalt electrocatalysis was identified as a particularly powerful platform for a wealth of C-H transformations, including C-H oxygenations and C-H nitrogenations as well as C-H activations with alkynes, alkenes, allenes, isocyanides, and carbon monoxide, among others. As complementary tools, catalysts based on nickel, copper, and very recently iron have been devised for metalla-electrocatalyzed C-H activations. Key to success were detailed mechanistic insights, prominently featuring oxidation-induced reductive elimination scenarios. Likewise, the development of methods that make use of weak O-coordination benefited from crucial insights into the catalyst's modes of action by experiment, in operando spectroscopy, and computation. Overall, metalla-electrocatalyzed C-H activations have thereby set the stage for molecular syntheses with unique levels of resource economy. These electrooxidative C-H transformations overall avoid the use of chemical oxidants and are frequently characterized by improved chemoselectivities. Hence, the ability to dial in the redox potential at the minimum level required for the desired transformation renders electrocatalysis an ideal platform for the functionalization of structurally complex molecules with sensitive functional groups. This strategy was, inter alia, successfully applied to scale-up by continuous flow and the step-economical assembly of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
79
|
Zhang S, Struwe J, Hu L, Ackermann L. Nickelaelektro‐katalysierte C‐H‐Alkoxylierung mit sekundären Alkoholen: oxidationsinduzierte reduktive Eliminierung an Nickel(III). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shou‐Kun Zhang
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lianrui Hu
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
80
|
Tan H, Khan R, Xu D, Zhou Y, Zhang X, Shi G, Fan B. Cobalt-catalyzed ring-opening addition of azabenzonorbornadienes via C(sp3)–H bond activation of 8-methylquinoline. Chem Commun (Camb) 2020; 56:12570-12573. [DOI: 10.1039/d0cc05374k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The first ring-opening addition of a benzylic C(sp3)–H bond to azabenzonorbornadienes is demonstrated.
Collapse
Affiliation(s)
- Heng Tan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Ruhima Khan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Dandan Xu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Yongyun Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Xuexin Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Guangrui Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| |
Collapse
|
81
|
Wild U, Hübner O, Himmel H. Redox-Active Guanidines in Proton-Coupled Electron-Transfer Reactions: Real Alternatives to Benzoquinones? Chemistry 2019; 25:15988-15992. [PMID: 31535741 PMCID: PMC7065378 DOI: 10.1002/chem.201903438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/24/2023]
Abstract
Guanidino-functionalized aromatics (GFAs) are readily available, stable organic redox-active compounds. In this work we apply one particular GFA compound, 1,2,4,5-tetrakis(tetramethylguanidino)benzene, in its oxidized form in a variety of oxidation/oxidative coupling reactions to demonstrate the scope of its proton-coupled electron transfer (PCET) reactivity. Addition of an excess of acid boosts its oxidation power, enabling the oxidative coupling of substrates with redox potentials of at least +0.77 V vs. Fc+ /Fc. The green recyclability by catalytic re-oxidation with dioxygen is also shown. Finally, a direct comparison indicates that GFAs are real alternatives to toxic halo- or cyano-substituted benzoquinones.
Collapse
Affiliation(s)
- Ute Wild
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Olaf Hübner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
82
|
Wang ZQ, Hou C, Zhong YF, Lu YX, Mo ZY, Pan YM, Tang HT. Electrochemically Enabled Double C-H Activation of Amides: Chemoselective Synthesis of Polycyclic Isoquinolinones. Org Lett 2019; 21:9841-9845. [PMID: 31829020 DOI: 10.1021/acs.orglett.9b03682] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We developed an electrochemically enabled dehydrogenative annulation reaction of amides and alkynes for the synthesis of antitumor polycyclic isoquinolinones through a double C-H activation route. No external oxidant is required in this reaction, and electricity is used for Ru catalyst circulation. The most remarkable feature of this reaction is the effective improvement of product regioselectivity under mild electrolytic conditions in comparison with previously set strong oxidant conditions.
Collapse
Affiliation(s)
- Zi-Qiang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Yuan-Fang Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Yu-Xuan Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Zu-Yu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|
83
|
Yang QL, Xing YK, Wang XY, Ma HX, Weng XJ, Yang X, Guo HM, Mei TS. Electrochemistry-Enabled Ir-Catalyzed Vinylic C-H Functionalization. J Am Chem Soc 2019; 141:18970-18976. [PMID: 31714747 DOI: 10.1021/jacs.9b11915] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synergistic use of electrochemistry and organometallic catalysis has emerged as a powerful tool for site-selective C-H functionalization, yet this type of transformation has thus far mainly been limited to arene C-H functionalization. Herein, we report the development of electrochemical vinylic C-H functionalization of acrylic acids with alkynes. In this reaction an iridium catalyst enables C-H/O-H functionalization for alkyne annulation, affording α-pyrones with good to excellent yields in an undivided cell. Preliminary mechanistic studies show that anodic oxidation is crucial for releasing the product and regeneration of an Ir(III) intermediate from a diene-Ir(I) complex, which is a coordinatively saturated, 18-electron complex. Importantly, common chemical oxidants such as Ag(I) or Cu(II) did not give significant amounts of the desired product in the absence of electrical current under otherwise identical conditions.
Collapse
Affiliation(s)
- Qi-Liang Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.,Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Yi-Kang Xing
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Xiang-Yang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Hong-Xing Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Xin-Jun Weng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Xiang Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| |
Collapse
|
84
|
Kong WJ, Finger LH, Messinis AM, Kuniyil R, Oliveira JCA, Ackermann L. Flow Rhodaelectro-Catalyzed Alkyne Annulations by Versatile C-H Activation: Mechanistic Support for Rhodium(III/IV). J Am Chem Soc 2019; 141:17198-17206. [PMID: 31549815 DOI: 10.1021/jacs.9b07763] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A flow-metallaelectro-catalyzed C-H activation was realized in terms of robust rhodaelectro-catalyzed alkyne annulations. To this end, a modular electro-flow cell with a porous graphite felt anode was designed to ensure efficient turnover. Thereby, a variety of C-H/N-H functionalizations proved amenable for alkyne annulations with high levels of regioselectivity and functional group tolerance, viable in both an inter- or intramolecular manner. The electro-flow C-H activation allowed easy scale up, while in-operando kinetic analysis was accomplished by online flow-NMR spectroscopy. Mechanistic studies suggest an oxidatively induced reductive elimination pathway on rhodium(III) in an electrocatalytic regime.
Collapse
Affiliation(s)
- Wei-Jun Kong
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Lars H Finger
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| |
Collapse
|
85
|
Dwivedi V, Kalsi D, Sundararaju B. Electrochemical‐/Photoredox Aspects of Transition Metal‐Catalyzed Directed C−H Bond Activation. ChemCatChem 2019. [DOI: 10.1002/cctc.201900680] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vikas Dwivedi
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur Uttar Pradesh 208 016 India
| | - Deepti Kalsi
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur Uttar Pradesh 208 016 India
| | - Basker Sundararaju
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur Uttar Pradesh 208 016 India
| |
Collapse
|
86
|
Zhang G, Hu Z, Bertoli G, Gooßen LJ. Iridium-Catalyzed Synthesis of Substituted Indanones from Aromatic Carboxylates and Unsaturated Ketones. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guodong Zhang
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Zhiyong Hu
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Giulia Bertoli
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Lukas J. Gooßen
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
87
|
Shi S, Chen CH, Chai Y, Zhang LT, Li JW, Liu B, Liu YJ, Zeng MH. Switchable Synthesis of Arylalkynes and Phthalides via Controllable Palladium-Catalyzed Alkynylation and Alkynylation-Annulation of Benzoic Acids with Bromoalkynes. J Org Chem 2019; 84:9161-9168. [PMID: 31262173 DOI: 10.1021/acs.joc.9b01102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A ligand-promoted palladium(II)-catalyzed synthesis of arylalkynes and phthalides from benzoic acids and bromoalkynes via carboxylate-assisted ortho-C-H activation is reported. A series of phthalides with various functional groups are prepared via ortho-alkynylation and alkynylation-annulation. Moreover, the key ortho-alkynylated products are also obtained by controlling the reaction conditions. In addition, heteroaryl acids could react smoothly to form the corresponding alkynylation and cyclization products.
Collapse
Affiliation(s)
- Shuai Shi
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Cui-Hong Chen
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Yun Chai
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Li-Ting Zhang
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Jia-Wei Li
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Bin Liu
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Yue-Jin Liu
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Ming-Hua Zeng
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China.,Department of Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , China
| |
Collapse
|
88
|
Tian C, Dhawa U, Scheremetjew A, Ackermann L. Cupraelectro-Catalyzed Alkyne Annulation: Evidence for Distinct C–H Alkynylation and Decarboxylative C–H/C–C Manifolds. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02348] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cong Tian
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
89
|
Mandal A, Mehta G, Dana S, Baidya M. Streamlined Ruthenium(II) Catalysis for One-Pot 2-fold Unsymmetrical C–H Olefination of (Hetero)Arenes. Org Lett 2019; 21:5879-5883. [DOI: 10.1021/acs.orglett.9b02008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Gunjan Mehta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
90
|
Sun C, Lian F, Xu K, Zeng C, Sun B. Electrochemical Synthesis of Allylamines via a Radical Trapping Sequence. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cao‐Cao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering Beijing Technology and Business University Beijing 100048 People's Republic of China
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering Beijing University of Technology Pingleyuan 100, Chaoyang District Beijing 100124 People's Republic of China
| | - Fei Lian
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering Beijing University of Technology Pingleyuan 100, Chaoyang District Beijing 100124 People's Republic of China
| | - Kun Xu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering Beijing University of Technology Pingleyuan 100, Chaoyang District Beijing 100124 People's Republic of China
| | - Cheng‐Chu Zeng
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering Beijing University of Technology Pingleyuan 100, Chaoyang District Beijing 100124 People's Republic of China
| | - Bao‐Guo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering Beijing Technology and Business University Beijing 100048 People's Republic of China
| |
Collapse
|
91
|
Sau SC, Mei R, Struwe J, Ackermann L. Cobaltaelectro-Catalyzed C-H Activation with Carbon Monoxide or Isocyanides. CHEMSUSCHEM 2019; 12:3023-3027. [PMID: 30897295 DOI: 10.1002/cssc.201900378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/12/2019] [Indexed: 05/10/2023]
Abstract
Electrochemical oxidative C-H/N-H activations with isocyanides have been realized with a versatile cobalt catalyst. The widely applicable cobalt catalysis manifold further enabled electrooxidative C-H/N-H carbonylations with carbon monoxide under ambient conditions. The C-H functionalizations were efficiently realized with ample scope and outstanding functional group tolerance in a user-friendly undivided cell setup.
Collapse
Affiliation(s)
- Samaresh Chandra Sau
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ruhuai Mei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
92
|
Luo MJ, Zhang TT, Cai FJ, Li JH, He DL. Decarboxylative [4+2] annulation of arylglyoxylic acids with internal alkynes using the anodic ruthenium catalysis. Chem Commun (Camb) 2019; 55:7251-7254. [PMID: 31168528 DOI: 10.1039/c9cc03210j] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new electrochemical decarboxylative [4+2] annulation of arylglyoxylic acids with internal alkynes involving C-H functionalization by means of a cooperative anode and ruthenium catalysis is presented. This reaction represents a mechanistically novel strategy as an ideal supplement to the decarboxylative [4+2] annulation methodology by employing an electrooxidative process to avoid the use of an additional external oxidizing reagent and utilizing H2O as the carboxyl oxygen atom source to be engaged in the synthesis of 1H-isochromen-1-ones.
Collapse
Affiliation(s)
- Mu-Jia Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China. and Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ting-Ting Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Fang-Jun Cai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China. and Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| |
Collapse
|
93
|
Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Recent Advances in Oxidative R 1-H/R 2-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. Chem Rev 2019; 119:6769-6787. [PMID: 31074264 DOI: 10.1021/acs.chemrev.9b00045] [Citation(s) in RCA: 445] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photo-/electrochemical catalyzed oxidative R1-H/R2-H cross-coupling with hydrogen evolution has become an increasingly important issue for molecular synthesis. The dream of construction of C-C/C-X bonds from readily available C-H/X-H with release of H2 can be facilely achieved without external chemical oxidants, providing a greener model for chemical bond formation. Given the great influence of these reactions in organic chemistry, we give a summary of the state of the art in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo/electrochemistry, and we hope this review will stimulate the development of a greener synthetic strategy in the near future.
Collapse
Affiliation(s)
- Huamin Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xinlong Gao
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zongchao Lv
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Takfaoui Abdelilah
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
94
|
Affiliation(s)
- Cong Tian
- Institut für Organische und Biomolekulare ChemieGeorg‐August‐Universität Göttingen Tammannstraße 2, 37077 Göttingen Germany
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare ChemieGeorg‐August‐Universität Göttingen Tammannstraße 2, 37077 Göttingen Germany
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg‐August‐Universität Göttingen Tammannstraße 2, 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg‐August‐Universität Göttingen Tammannstraße 2, 37077 Göttingen Germany
| |
Collapse
|
95
|
Liu D, Ma H, Fang P, Mei T. Nickel‐Catalyzed Thiolation of Aryl Halides and Heteroaryl Halides through Electrochemistry. Angew Chem Int Ed Engl 2019; 58:5033-5037. [DOI: 10.1002/anie.201900956] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| | - Hong‐Xing Ma
- School of Chemistry and Chemical EngineeringYancheng Institute of Technology Yancheng 224051 China
| | - Ping Fang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
96
|
Kong WJ, Finger LH, Oliveira JCA, Ackermann L. Rhodaelectrocatalysis for Annulative C-H Activation: Polycyclic Aromatic Hydrocarbons through Versatile Double Electrocatalysis. Angew Chem Int Ed Engl 2019; 58:6342-6346. [PMID: 30835907 DOI: 10.1002/anie.201901565] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 01/23/2023]
Abstract
Rapid access to structurally diversified polycyclic aromatic hydrocarbons (PAHs) in a controlled manner is of key significance in materials sciences. Herein, we describe a strategy featuring two distinct electrocatalytic C-H transformations for the synthesis of novel nonplanar PAHs. The combination of rhodaelectrooxidative C-H activation/[2+2+2] alkyne annulation of easily accessible boronic acids with electrocatalytic cyclodehydrogenation provided modular access to diversely substituted PAHs with electricity as a sustainable oxidant. The unique molecular topology as well as the photophysical and electronic properties of the thus obtained PAHs were fully analyzed. The unique power of this metallaelectrocatalysis method was demonstrated by the chemoselective assembly of synthetically useful iodo-substituted PAHs.
Collapse
Affiliation(s)
- Wei-Jun Kong
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Lars H Finger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
97
|
Meyer TH, Finger LH, Gandeepan P, Ackermann L. Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C H Activation. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
98
|
Kong W, Finger LH, Oliveira JCA, Ackermann L. Rhodaelectrocatalysis for Annulative C−H Activation: Polycyclic Aromatic Hydrocarbons through Versatile Double Electrocatalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei‐Jun Kong
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Lars H. Finger
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
99
|
Yang QL, Wang XY, Wang TL, Yang X, Liu D, Tong X, Wu XY, Mei TS. Palladium-Catalyzed Electrochemical C–H Bromination Using NH4Br as the Brominating Reagent. Org Lett 2019; 21:2645-2649. [DOI: 10.1021/acs.orglett.9b00629] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qi-Liang Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiang-Yang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Tong-Lin Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiang Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Dong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiaofeng Tong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
100
|
Liu D, Ma H, Fang P, Mei T. Nickel‐Catalyzed Thiolation of Aryl Halides and Heteroaryl Halides through Electrochemistry. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900956] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| | - Hong‐Xing Ma
- School of Chemistry and Chemical EngineeringYancheng Institute of Technology Yancheng 224051 China
| | - Ping Fang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|