51
|
Evaluation of Toll-like-receptor gene family variants as prognostic biomarkers in rheumatoid arthritis. Immunol Lett 2017; 187:35-40. [DOI: 10.1016/j.imlet.2017.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/06/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
|
52
|
Takagi M, Takakubo Y, Pajarinen J, Naganuma Y, Oki H, Maruyama M, Goodman SB. Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. J Orthop Translat 2017; 10:68-85. [PMID: 29130033 PMCID: PMC5676564 DOI: 10.1016/j.jot.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The innate immune sensors, Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), can recognize not only exogenous pathogen-associated molecular patterns (PAMPs), but also endogenous molecules created upon tissue injury, sterile inflammation, and degeneration. Endogenous ligands are called damage-associated molecular patterns (DAMPs), and include endogenous molecules released from activated and necrotic cells as well as damaged extracellular matrix. TLRs and NLRs can interact with various ligands derived from PAMPs and DAMPs, leading to activation and/or modulation of intracellular signalling pathways. Intensive research on the innate immune sensors, TLRs and NLRs, has brought new insights into the pathogenesis of not only various infectious and rheumatic diseases, but also aseptic foreign body granuloma and septic inflammation of failed total hip replacements (THRs). In this review, recent knowledge is summarized on the innate immune system, including TLRs and NLRs and their danger signals, with special reference to their possible role in the adverse local host response to THRs. Translational potential of this article: A clear understanding of the roles of Toll-like receptors and NOD-like receptors in aseptic and septic loosening of joint replacements will facilitate potential strategies to mitigate these events, thereby extending the longevity of implants in humans.
Collapse
Affiliation(s)
- Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Yuya Takakubo
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Yasushi Naganuma
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Hiroharu Oki
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan.,Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
53
|
Elshabrawy HA, Essani AE, Szekanecz Z, Fox DA, Shahrara S. TLRs, future potential therapeutic targets for RA. Autoimmun Rev 2016; 16:103-113. [PMID: 27988432 DOI: 10.1016/j.autrev.2016.12.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/27/2023]
Abstract
Toll like receptors (TLR)s have a central role in regulating innate immunity and in the last decade studies have begun to reveal their significance in potentiating autoimmune diseases such as rheumatoid arthritis (RA). Earlier investigations have highlighted the importance of TLR2 and TLR4 function in RA pathogenesis. In this review, we discuss the newer data that indicate roles for TLR5 and TLR7 in RA and its preclinical models. We evaluate the pathogenicity of TLRs in RA myeloid cells, synovial tissue fibroblasts, T cells, osteoclast progenitor cells and endothelial cells. These observations establish that ligation of TLRs can transform RA myeloid cells into M1 macrophages and that the inflammatory factors secreted from M1 and RA synovial tissue fibroblasts participate in TH-17 cell development. From the investigations conducted in RA preclinical models, we conclude that TLR-mediated inflammation can result in osteoclastic bone erosion by interconnecting the myeloid and TH-17 cell response to joint vascularization. In light of emerging unique aspects of TLR function, we summarize the novel approaches that are being tested to impair TLR activation in RA patients.
Collapse
Affiliation(s)
- Hatem A Elshabrawy
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA
| | - Abdul E Essani
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA
| | - Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Faculty of Medicine, Nagyerdei Str 98, Debrecen H-4004, Hungary
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiva Shahrara
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA.
| |
Collapse
|
54
|
Ahmad R, Kochumon S, Thomas R, Atizado V, Sindhu S. Increased adipose tissue expression of TLR8 in obese individuals with or without type-2 diabetes: significance in metabolic inflammation. JOURNAL OF INFLAMMATION-LONDON 2016; 13:38. [PMID: 27980459 PMCID: PMC5146894 DOI: 10.1186/s12950-016-0147-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022]
Abstract
Background The innate immune Toll-like receptors (TLRs) 2/4 are important players in chronic low-grade inflammation called metabolic inflammation in obesity and type-2 diabetes (T2D). While TLR2/4 expression changes associated with metabolic inflammation are known, the adipose tissue expression of endocytic TLR8, which is expressed by all major macrophage subsets, remain unclear. We, therefore, determined the TLR8 mRNA/protein expression in the adipose tissue samples from lean, overweight, and obese individuals with or without T2D. Methods Subcutaneous fat biopsy samples were collected from 49 non-diabetic (23 obese, 17 overweight, and nine lean) and 45 T2D (32 obese, ten overweight, and three lean) individuals. TLR8 gene expression was determined using real-time RT-PCR and TLR8 protein expression was assessed by both immunohistochemistry and confocal microscopy. The changes in TLR8 expression were compared with those of macrophage markers, proinflammatory cytokines/chemokines, and surface TLRs/adapter proteins. The data were analyzed using t-test/Mann-Whitney U-test, Pearson’s correlation, and multiple regression test. Results The data show that in obese non-diabetic/T2D individuals, TLR8 gene expression was significantly upregulated as compared with lean individuals which correlated with body mass index (BMI) and body fat percentage in non-diabetic population (P < 0.05). As expected, TLR8 adipose tissue protein expression in non-diabetic/T2D obese individuals was also higher than that of overweight/lean counterparts. In non-diabetic/T2D individuals, TLR8 gene expression associated (P < 0.05) with the expression of CD68, CD11c, CD86, and CD163 macrophage markers. Also, in these individuals, TLR8 gene expression correlated positively (P < 0.05) with adipose tissue expression of TNF-α, IL-18, and IL-8 as well as with systemic CRP levels (in non-diabetics). TLR8 expression was also associated with TLR4/TLR2 and MyD88 expression in the adipose tissue. Conclusions The elevated adipose tissue expression of TLR8 in obesity/T2D has consensus with inflammatory signatures and may thus represent an immune marker of metabolic inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12950-016-0147-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rasheed Ahmad
- Immunology & Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Shihab Kochumon
- Immunology & Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Reeby Thomas
- Immunology & Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Valerie Atizado
- Tissue Bank Core Facility, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Sardar Sindhu
- Immunology & Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman, 15462 Kuwait
| |
Collapse
|
55
|
Clavel C, Ceccato L, Anquetil F, Serre G, Sebbag M. Among human macrophages polarised to different phenotypes, the M-CSF-oriented cells present the highest pro-inflammatory response to the rheumatoid arthritis-specific immune complexes containing ACPA. Ann Rheum Dis 2016; 75:2184-2191. [PMID: 27009917 DOI: 10.1136/annrheumdis-2015-208887] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/08/2016] [Accepted: 03/03/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVES In the inflamed synovium of patients with rheumatoid arthritis (RA), autoantibodies to citrullinated proteins (ACPA) probably form immune complexes (IC) on deposits of citrullinated fibrin. We showed that in vitro such ACPA-IC activate a pro-inflammatory cytokine response in M-CSF-differentiated macrophages. Our objective was to evaluate how macrophage polarisation influences this response. METHODS CD14-positive monocytes from healthy donors were cultured in the presence of M-CSF, IFN-γ, interleukin (IL)-4 or IL-10. Expression of markers specific for polarised macrophages was analysed by flow cytometry. Their cytokine secretion was prompted by in vitro generated autoantibodies to citrullinated proteins immune complexes (ACPA-IC) and assayed in the culture supernatants. RESULTS IFN-γ-polarised cells exhibited high levels of CD64 and CD80. Low expression of CD14 and high expression of CD206 characterised the IL-4-polarised cells. Exposure to IL-10 or M-CSF raised the expression of CD14, CD32 and CD163. The two cell types lacked CD80 and exhibited similar expression of CD64, CD200R and CD206. In response to ACPA-IC, the secretion of IL-1β, IL-6 and IL-8 was similar among cells exposed to IFN-γ, IL-4 or IL-10. However, the later cells were associated with the highest IL-1Ra:IL-1β ratio and the lowest tumour necrosis factor (TNF)-α:IL-10 ratio. Conversely, M-CSF-exposed cells secreted the highest levels of pro-inflammatory cytokines, exhibited a high TNF-α:IL-10 ratio and the lowest IL-1Ra:IL-1β ratio. CONCLUSIONS Despite their phenotypic similarity, IL-10-polarised and M-CSF-polarised macrophages clearly differ in their cytokine response to ACPA-IC. M-CSF-polarised cells exhibit the highest pro-inflammatory potential. Since M-CSF is abundant in the RA synovium, therein it probably drives macrophages towards a strong pro-inflammatory cytokine response to the locally formed ACPA-IC.
Collapse
Affiliation(s)
- Cyril Clavel
- INSERM Unité 1056, Toulouse, France
- CNRS Unité Mixte de Recherche 5165, Toulouse, France
- Laboratory of Epidermis Differentiation and Rheumatoid Autoimmunity, Université de Toulouse, Université Paul Sabatier, Toulouse, France
- Laboratory of Cell Biology and Cytology, Centre Hospitalier Universitaire (CHU) de Toulouse, Institut Fédératif de Biologie, Toulouse, France
| | - Laurie Ceccato
- INSERM Unité 1056, Toulouse, France
- CNRS Unité Mixte de Recherche 5165, Toulouse, France
- Laboratory of Epidermis Differentiation and Rheumatoid Autoimmunity, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Florence Anquetil
- INSERM Unité 1056, Toulouse, France
- CNRS Unité Mixte de Recherche 5165, Toulouse, France
- Laboratory of Epidermis Differentiation and Rheumatoid Autoimmunity, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Guy Serre
- INSERM Unité 1056, Toulouse, France
- CNRS Unité Mixte de Recherche 5165, Toulouse, France
- Laboratory of Epidermis Differentiation and Rheumatoid Autoimmunity, Université de Toulouse, Université Paul Sabatier, Toulouse, France
- Laboratory of Cell Biology and Cytology, Centre Hospitalier Universitaire (CHU) de Toulouse, Institut Fédératif de Biologie, Toulouse, France
| | - Mireille Sebbag
- INSERM Unité 1056, Toulouse, France
- CNRS Unité Mixte de Recherche 5165, Toulouse, France
- Laboratory of Epidermis Differentiation and Rheumatoid Autoimmunity, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
56
|
Abstract
BACKGROUND Infliximab (IFX), an anti-tumour necrosis factor alpha (TNFα) monoclonal antibody, provides clinical benefits in treating Crohn's disease (CD) but its mechanisms of action are not fully elucidated. This study investigated blood monocyte repertoires and the acute effects of IFX infusion on monocyte subset phenotype and function in IFX-treated patients with CD. METHODS Monocytes and monocyte subsets were enumerated and phenotypically characterized by multicolor flow cytometry in freshly isolated blood from healthy controls (n = 21) and patients with CD treated with (IFX, n = 24) and without (non-IFX, n = 20) IFX. For the IFX-CD group, blood was sampled immediately before (tough-IFX) and after (peak-IFX) infusion. Monocyte responses to lipopolysaccharide were analyzed by whole-blood intracellular cytokine staining. RESULTS Non-IFX and IFX-CD patients had increased numbers of intermediate (CD14CD16) monocytes compared with healthy controls, whereas classical (CD14CD16) and nonclassical (CD14CD16) monocytes were numerically reduced in the IFX-CD group alone. In all groups, monocyte subsets expressed high surface levels of transmembrane (tm)TNFα. After IFX infusion, a significant reduction in monocyte numbers occurred. Post-IFX monocytopenia was proportionately greatest for classical and intermediate subsets, correlated with postinfusion IFX levels and was not associated with monocyte apoptosis. In contrast, lipopolysaccharide-induced production of TNFα and IL-12 by monocytes was significantly reduced in peak-IFX compared with trough-IFX blood samples. CONCLUSIONS Actively managed CD is associated with monocyte repertoire skewing suggestive of chronic inflammatory stimulation. Infused IFX acutely targets monocytes, likely by binding to tmTNFα, resulting in a non-apoptosis-related decline in circulating monocyte numbers and blunting of the inflammatory response of monocytes remaining in the blood.
Collapse
|
57
|
Zhou Z, Ding M, Huang L, Gilkeson G, Lang R, Jiang W. Toll-like receptor-mediated immune responses in intestinal macrophages; implications for mucosal immunity and autoimmune diseases. Clin Immunol 2016; 173:81-86. [PMID: 27620642 PMCID: PMC5148676 DOI: 10.1016/j.clim.2016.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Monocytes are precursors of macrophages and key players during inflammation and pathogen challenge in the periphery, whereas intestinal resident macrophages act as innate effector cells to engulf and clear bacteria, secrete cytokines, and maintain intestinal immunity and homeostasis. However, perturbation of toll-like receptor signaling pathway in intestinal macrophages has been associated with tolerance breakdown in autoimmune diseases. In the present review, we have summarized and discussed the role of toll-like receptor signals in human intestinal macrophages, and the role of human intestinal macrophages in keeping human intestinal immunity, homeostasis, and autoimmune diseases.
Collapse
Affiliation(s)
- Zejun Zhou
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA
| | - Miao Ding
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA
| | - Lei Huang
- The 302 Hospital of PLA, Treatment and Research Center for Infectious Diseases, Beijing 100039, China
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston 29425, SC, USA
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10020, China.
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston 29425, USA.
| |
Collapse
|
58
|
Hatterer E, Shang L, Simonet P, Herren S, Daubeuf B, Teixeira S, Reilly J, Elson G, Nelson R, Gabay C, Sokolove J, McInnes IB, Kosco-Vilbois M, Ferlin W, Monnet E, De Min C. A specific anti-citrullinated protein antibody profile identifies a group of rheumatoid arthritis patients with a toll-like receptor 4-mediated disease. Arthritis Res Ther 2016; 18:224. [PMID: 27716430 PMCID: PMC5053084 DOI: 10.1186/s13075-016-1128-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increased expression of toll-like receptor 4 (TLR4) and its endogenous ligands, is characteristic of rheumatoid arthritis (RA) synovitis. In this study, we evaluated how these TLR4 ligands may drive pathogenic processes and whether the fine profiling of anti-citrullinated protein antibodies (ACPA) based on their target specificity might provide a simple means to predict therapeutic benefit when neutralizing TLR4 in this disease. METHODS The capacity of RA synovial fluids (RASF) to stimulate cytokine production in monocytes from patients with RA was analyzed by ELISA. The presence of TLR4 activators in RASF was determined by measuring the levels of ACPA, ACPA subtypes with reactivity to specific citrullinated peptides and other TLR4 ligands. Neutralization of TLR4 signaling was investigated using NI-0101, a therapeutic antibody that targets TLR4. RESULTS RASF exhibited a heterogeneous capacity to induce production of proinflammatory cytokines by monocytes isolated from patients with RA. Such cytokine responses were significantly modified by TLR4 blockade achieved using NI-0101. The analysis of the content of RASF and matched sera demonstrated that ACPA fine specificities in patient samples predict cellular response to anti-TLR4 exposure in vitro. CONCLUSION TLR4 represents a possible therapeutic target in RA. Our study demonstrates that TLR4 inhibition in an ex vivo model of RA pathogenesis can significantly modulate cytokine release and does so in specific subgroups of RA patient-derived samples. It also suggests that ACPA fine profiling has the potential to identify RA patients with a predominantly TLR4-driven pathotype that could be used to predict preferential response to TLR4 antagonism.
Collapse
Affiliation(s)
- Eric Hatterer
- , NovImmune SA, 14 chemin des Aulx, 1228, Plan les Ouates, Switzerland.
| | - Limin Shang
- , NovImmune SA, 14 chemin des Aulx, 1228, Plan les Ouates, Switzerland
| | - Pierre Simonet
- , NovImmune SA, 14 chemin des Aulx, 1228, Plan les Ouates, Switzerland
| | - Suzanne Herren
- , NovImmune SA, 14 chemin des Aulx, 1228, Plan les Ouates, Switzerland
| | - Bruno Daubeuf
- , NovImmune SA, 14 chemin des Aulx, 1228, Plan les Ouates, Switzerland
| | | | - James Reilly
- University School of Medicine, Institute of infection, immunity and inflammation, 120 University Place, Glasgow, UK
| | - Greg Elson
- , NovImmune SA, 14 chemin des Aulx, 1228, Plan les Ouates, Switzerland.,Present Address: Glenmark Pharmaceuticals SA, 5 chemin de la Combeta, 2300, La-Chaux-de-Fonds, Switzerland
| | - Robert Nelson
- , NovImmune SA, 14 chemin des Aulx, 1228, Plan les Ouates, Switzerland
| | - Cem Gabay
- Geneva University Hospital, 26 avenue Beau-Sejour, 1211, Geneva, Switzerland
| | - Jeremy Sokolove
- Stanford University, 1000 Welch Rd Suite 203, Palo Alto, CA, USA
| | - Iain B McInnes
- University School of Medicine, Institute of infection, immunity and inflammation, 120 University Place, Glasgow, UK
| | | | - Walter Ferlin
- , NovImmune SA, 14 chemin des Aulx, 1228, Plan les Ouates, Switzerland
| | - Emmanuel Monnet
- , NovImmune SA, 14 chemin des Aulx, 1228, Plan les Ouates, Switzerland
| | - Cristina De Min
- , NovImmune SA, 14 chemin des Aulx, 1228, Plan les Ouates, Switzerland
| |
Collapse
|
59
|
Torices S, Julia A, Muñoz P, Varela I, Balsa A, Marsal S, Fernández-Nebro A, Blanco F, López-Hoyos M, Martinez-Taboada V, Fernández-Luna JL. A functional variant of TLR10 modifies the activity of NFkB and may help predict a worse prognosis in patients with rheumatoid arthritis. Arthritis Res Ther 2016; 18:221. [PMID: 27716427 PMCID: PMC5050569 DOI: 10.1186/s13075-016-1113-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Background Toll-like receptor (TLR) family members are key players in inflammation. TLR10 has been poorly studied in chronic inflammatory disorders, and its clinical relevance in rheumatoid arthritis (RA) is as yet unknown. We aimed at identifying TLR10 variants within all coding regions of the gene in patients with RA as well as studying their functional and clinical significance. Methods TLR10 gene variants were studied by performing sequencing of 66 patients with RA and 30 control subjects. A selected variant, I473T, was then analyzed in 1654 patients and 1702 healthy control subjects. The capacity of this TLR10 variant to modify the transcriptional activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) was determined by using a luciferase reporter assay and analyzing the expression of NFkB target genes by quantitative polymerase chain reaction. Differences between groups were analyzed by using the Mann-Whitney U test and the unpaired two-tailed Student’s t test. Results We detected ten missense variants in the TLR10 gene and focused on the I473T substitution based on allele frequencies and the predicted functional impact. I473T variant is not associated with susceptibility to RA, but it significantly correlates with erosive disease in patients seropositive for antibodies to citrullinated protein antigens (p = 0.017 in the total cohort and p = 0.0049 in female patients) and with a lower response to infliximab treatment as measured by the change in Disease Activity Score in 28 joints (p = 0.012) and by the European League Against Rheumatism criteria (p = 0.049). Functional studies showed that TLR10 reduced activation of the NFkB inflammatory pathway in hematopoietic cells, whereas the I473T variant lacked this inhibitory capacity. Consistently, after exposure to infliximab, cells expressing the I437T variant showed higher NFkB activity than cells carrying wild-type TLR10. Conclusions A TLR10 allelic variant, I473T, has impaired NFkB inhibitory activity and is highly associated with disease severity and low response to infliximab in patients with RA.
Collapse
Affiliation(s)
- Silvia Torices
- Servicio de Reumatología, Hospital Universitario Marques de Valdecilla-Instituto de Investigación Valdecilla (IDIVAL), Avenida Valdecilla s/n, 39008, Santander, Spain.,Unidad de Genética, Hospital Universitario Marques de Valdecilla-Instituto de Investigación Valdecilla (IDIVAL), Avenida Valdecilla s/n, 39008, Santander, Spain
| | - Antonio Julia
- Rheumatology Research Group, Vall d'Hebron Research Institute, 08035, Barcelona, Spain
| | - Pedro Muñoz
- Gerencia Atención Primaria, Servicio Cántabro de Salud, 39011, Santander, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, 39011, Santander, Spain
| | - Alejandro Balsa
- Servicio de Reumatología, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Sara Marsal
- Rheumatology Research Group, Vall d'Hebron Research Institute, 08035, Barcelona, Spain
| | - Antonio Fernández-Nebro
- Unidad de Reumatología, Instituto de Investigación Biomédica de Málaga, Hospital Universitario de Málaga, Universidad de Málaga, 29010, Málaga, Spain
| | - Francisco Blanco
- Departamento de Reumatología, Hospital Universitario A Coruña, 15006, A Coruña, Spain
| | - Marcos López-Hoyos
- Sección de Inmunología, Hospital Universitario Marques de Valdecilla-Instituto de Investigación Valdecilla (IDIVAL), Avenida Valdecilla s/n, 39008, Santander, Spain
| | - Víctor Martinez-Taboada
- Servicio de Reumatología, Hospital Universitario Marques de Valdecilla-Instituto de Investigación Valdecilla (IDIVAL), Avenida Valdecilla s/n, 39008, Santander, Spain.,Facultad de Medicina, Universidad de Cantabria, 39011, Santander, Spain
| | - Jose L Fernández-Luna
- Unidad de Genética, Hospital Universitario Marques de Valdecilla-Instituto de Investigación Valdecilla (IDIVAL), Avenida Valdecilla s/n, 39008, Santander, Spain.
| |
Collapse
|
60
|
Achek A, Yesudhas D, Choi S. Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res 2016; 39:1032-49. [PMID: 27515048 DOI: 10.1007/s12272-016-0806-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
The health of living organisms is constantly challenged by bacterial and viral threats. The recognition of pathogenic microorganisms by diverse receptors triggers a variety of host defense mechanisms, leading to their eradication. Toll-like receptors (TLRs), which are type I transmembrane proteins, recognize specific signatures of the invading microbes and activate a cascade of downstream signals inducing the secretion of inflammatory cytokines, chemokines, and type I interferons. The TLR response not only counteracts the pathogens but also initiates and shapes the adaptive immune response. Under normal conditions, inflammation is downregulated after the removal of the pathogen and cellular debris. However, a dysfunctional TLR-mediated response maintains a chronic inflammatory state and leads to local and systemic deleterious effects in host cells and tissues. Such inappropriate TLR response has been attributed to the development and progression of multiple diseases such as cancer, autoimmune, and inflammatory diseases. In this review, we discuss the emerging role of TLRs in the pathogenesis of inflammatory diseases and how targeting of TLRs offers a promising therapeutic strategy for the prevention and treatment of various inflammatory diseases. Additionally, we highlight a number of TLR-targeting agents that are in the developmental stage or in clinical trials.
Collapse
Affiliation(s)
- Asma Achek
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| |
Collapse
|
61
|
Connolly M, Rooney PR, McGarry T, Maratha AX, McCormick J, Miggin SM, Veale DJ, Fearon U. Acute serum amyloid A is an endogenous TLR2 ligand that mediates inflammatory and angiogenic mechanisms. Ann Rheum Dis 2016; 75:1392-8. [PMID: 26290589 DOI: 10.1136/annrheumdis-2015-207655] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/01/2015] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Acute-phase serum amyloid A (A-SAA) has cytokine-like properties and is expressed at sites of inflammation. We examined whether A-SAA-induced pro-inflammatory mechanisms are mediated through Toll-like receptor 2 (TLR2) in rheumatoid arthritis (RA). METHODS The effect of A-SAA on human embryonic kidney (HEK), TLR2 or TLR4 cells was quantified by nuclear factor (NF)-κB luciferase reporter assays. A-SAA-induced RASFC and dHMVEC function were performed in the presence of a specific neutralising anti-TLR2 mAb (OPN301) (1 μg/mL) and matched IgG isotype control Ab (1 μg/mL). Cell surface expression of intracellular adhesion molecule (ICAM)-1, chemokine expression, cell migration, invasion and angiogenesis were assessed by flow cytometry, ELISA, Matrigel invasion chambers and tube formation assays. MyD88 expression was assessed by real-time PCR and western blot. RESULTS A-SAA induced TLR2 activation through induction of NF-κB (p<0.05), but failed to induce NF-κB in HEK-TLR4 cells, confirming specificity for TLR2. A-SAA-induced proliferation, invasion and migration were significantly inhibited in the presence of anti-TLR2 (all p<0.05), with no significant effect observed for tumour necrosis factor-α-induced events. Additionally, A-SAA-induced ICAM-1, interleukin-8, monocyte chemoattractant protein-1, RANTES and GRO-α expression were significantly reduced in the presence of anti-TLR2 (all p<0.05), as was A-SAA induced angiogenesis (p<0.05). Finally, A-SAA induced MyD88 signalling in RASFC and dHMVEC (p<0.05). CONCLUSIONS A-SAA is an endogenous ligand for TLR2, inducing pro-inflammatory effects in RA. Blocking the A-SAA/TLR2 interaction may be a potential therapeutic intervention in RA.
Collapse
Affiliation(s)
- Mary Connolly
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre and Conway Institute of Biomolecular and Biomedical Research, Dublin 4, Ireland
| | - Peter R Rooney
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre and Conway Institute of Biomolecular and Biomedical Research, Dublin 4, Ireland
| | - Trudy McGarry
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre and Conway Institute of Biomolecular and Biomedical Research, Dublin 4, Ireland
| | - Ashwini X Maratha
- Department of Biology, Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Jennifer McCormick
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre and Conway Institute of Biomolecular and Biomedical Research, Dublin 4, Ireland
| | - Sinead M Miggin
- Department of Biology, Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Douglas J Veale
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre and Conway Institute of Biomolecular and Biomedical Research, Dublin 4, Ireland
| | - Ursula Fearon
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre and Conway Institute of Biomolecular and Biomedical Research, Dublin 4, Ireland
| |
Collapse
|
62
|
Flynn MG, McFarlin BK, Markofski MM. The Anti-Inflammatory Actions of Exercise Training. Am J Lifestyle Med 2016; 1:220-235. [PMID: 25431545 DOI: 10.1177/1559827607300283] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The list of diseases with a known inflammatory etiology is growing. Cardiovascular disease, osteoporosis, diabetes, geriatric cachexia, and Alzheimer's disease have all been shown to be linked to or exacerbated by aberrantly regulated inflammatory processes. Nevertheless, there is mounting evidence that those who are physically active, or who become physically active, have a reduction in biomarkers associated with chronic inflammation. There was strong early consensus that exercise-induced reductions in inflammation were explained by body mass index or body fatness, but recent studies provide support for the contention that exercise has body fat-independent anti-inflammatory effects. With few exceptions, the anti-inflammatory effects of exercise appear to occur regardless of age or the presence of chronic diseases. What remains unclear are the mechanisms by which exercise training induces these anti-inflammatory effects, but there are several intriguing possibilities, including release of endogenous products, such as heat shock proteins; selective reduction of visceral adipose tissue mass or reducing infiltration of adipocytes by macrophages; shift in immune cell phenotype; cross-tolerizing effects; or exercise-induced shifts in accessory proteins of toll-like receptor signaling. However, future research endeavors are likely to uncover additional potential mechanisms, and it could be some time before functional mechanisms are made clear. In summary, the potential anti-inflammatory influences of exercise training may provide a low-cost, readily available, and effective treatment for low-grade systemic inflammation and could contribute significantly to the positive effects of exercise training on chronic disease.
Collapse
Affiliation(s)
- Michael G Flynn
- Wastl Human Performance Lab, Department of Health and Kinesiology, Purdue University West Lafayette, Indiana (MGF, MMM) and the Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (BKM)
| | - Brian K McFarlin
- Wastl Human Performance Lab, Department of Health and Kinesiology, Purdue University West Lafayette, Indiana (MGF, MMM) and the Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (BKM)
| | - Melissa M Markofski
- Wastl Human Performance Lab, Department of Health and Kinesiology, Purdue University West Lafayette, Indiana (MGF, MMM) and the Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (BKM)
| |
Collapse
|
63
|
Yang Y, Zhang X, Zhang D, Li H, Ma L, Xuan M, Wang H, Yang R. Abnormal Distribution and Function of Monocyte Subsets in Patients With Primary Immune Thrombocytopenia. Clin Appl Thromb Hemost 2016; 23:786-792. [PMID: 27329949 DOI: 10.1177/1076029616652726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human monocytes are heterogeneous and play an important role in autoimmune diseases. However, the distribution and function of monocyte subsets remain unclear in primary immune thrombocytopenia (ITP). In this study, we determined the frequencies of monocyte subsets in 71 untreated patients with active ITP and 49 healthy controls by flow cytometry. Compared with controls, the frequency of nonclassical monocytes was significantly increased in patients with active ITP but decreased after complete remission. The intermediate subset was also increased in patients with active ITP and produced the highest levels of tumor necrosis factor α and interleukin 1β. Both the nonclassical and intermediate subsets were negatively correlated with the platelet counts. We further determined the correlation between monocyte subsets and the proliferation of platelet-autoreactive T cells. The purified monocyte subsets were cocultured with CD4+ T cells and autologous platelets. The nonclassical subset showed the highest capability of promoting platelet reactive T-cell proliferation and significantly promoted the secretion of interferon γ among the 3 subsets. In conclusion, the nonclassical and intermediate monocyte subsets are both expanded and play different roles in the pathogenesis of ITP.
Collapse
Affiliation(s)
- Yanhui Yang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xian Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Donglei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Li Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Min Xuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongmei Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
64
|
Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nat Rev Rheumatol 2016; 12:344-57. [PMID: 27170508 DOI: 10.1038/nrrheum.2016.61] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the past few years, new developments have been reported on the role of Toll-like receptors (TLRs) in chronic inflammation in rheumatic diseases. The inhibitory function of TLR10 has been demonstrated. Receptors that enhance the function of TLRs, and several TLR inhibitors, have been identified. In addition, the role of the microbiome and TLRs in the onset of rheumatic diseases has been reported. We review novel insights on the role of TLRs in several inflammatory joint diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme arthritis, with a focus on the signalling mechanisms mediated by the Toll-IL-1 receptor (TIR) domain, the exogenous and endogenous ligands of TLRs, and the current and future therapeutic strategies to target TLR signalling in rheumatic diseases.
Collapse
|
65
|
Amoruso A, Sola D, Rossi L, Obeng JA, Fresu LG, Sainaghi PP, Pirisi M, Brunelleschi S. Relation among anti-rheumatic drug therapy, CD14(+)CD16(+) blood monocytes and disease activity markers (DAS28 and US7 scores) in rheumatoid arthritis: A pilot study. Pharmacol Res 2016; 107:308-314. [PMID: 27045818 DOI: 10.1016/j.phrs.2016.03.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 01/01/2023]
Abstract
Circulating human monocytes, a functionally and phenotypically heterogeneous population, are emerging as fundamental cell types in rheumatoid arthritis (RA). The aim of this pilot study was to assess the correlation, if any, among anti-rheumatic drug therapy, circulating CD14(+)CD16(+) monocytes and validated clinical scales (e.g., DAS28 score and ultrasonography US7 score) of disease severity in RA. Thirty consecutive RA patients, either naïve or under disease-modifying anti-rheumatic drugs (DMARDs) or biological therapy, and 10 age-matched healthy volunteers, were enrolled. Monocytes were prepared from heparinized blood samples; surface expression of CD14 and CD16 was determined by flow cytometry. RA patients presented a significantly higher percentage of CD14(+)CD16(+) monocytes, as compared to healthy subjects. There was a good correlation between DAS28 clinical score and the ultrasound composite score US7 (r=0.66), as well as between both scores and the percentage of CD14(+)CD16(+) monocytes (r=0.43 and 0.47, respectively). Naïve RA patients had the highest expression (19.2±3.2%) of CD14(+)CD16(+) monocytes and elevated DAS28 score; patients on DMARDs presented a 7-fold increased expression of CD14(+)CD16(+) monocytes, relatively to healthy volunteers (2.1±1.4%), and an intermediate disease severity. The RA patients treated with biological therapy had a low percentage of CD14(+)CD16(+) monocytes (5.1±3.6%; p<0.01 vs naïve and DMARDs groups), similar to the one detected in healthy controls, and reduced US7 and DAS28 scores. Interestingly, for the same DAS28 score, monocytes isolated from RA patients on biological therapy had a lower CD16 expression than patients on DMARDs. Therefore, CD14(+)CD16(+) circulating blood monocytes may represent an appropriate biomarker to assess RA disease activity along with DAS28 and US7 scores. Together, these three parameters may represent a better indicator for evaluating therapy efficacy.
Collapse
Affiliation(s)
- Angela Amoruso
- Department of Health Sciences, School of Medicine, University of Eastern Piedmont, Via Solaroli, 17-28100 Novara, Italy
| | - Daniele Sola
- Department of Health Sciences, School of Medicine, University of Eastern Piedmont, Via Solaroli, 17-28100 Novara, Italy; Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Luca Rossi
- Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Joyce Afrakoma Obeng
- Department of Health Sciences, School of Medicine, University of Eastern Piedmont, Via Solaroli, 17-28100 Novara, Italy
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, University of Eastern Piedmont, Via Solaroli, 17-28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy; IRCAD, School of Medicine, Novara, Italy
| | - Mario Pirisi
- Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy; IRCAD, School of Medicine, Novara, Italy; Department of Translational Medicine, School of Medicine, University of Eastern Piedmont, Via Solaroli, 17-28100 Novara, Italy
| | - Sandra Brunelleschi
- Department of Health Sciences, School of Medicine, University of Eastern Piedmont, Via Solaroli, 17-28100 Novara, Italy; IRCAD, School of Medicine, Novara, Italy.
| |
Collapse
|
66
|
Protective effects of methanolic extract of Adhatoda vasica Nees leaf in collagen-induced arthritis by modulation of synovial toll-like receptor-2 expression and release of pro-inflammatory mediators. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016. [DOI: 10.1016/j.jnim.2015.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
67
|
Lacerte P, Brunet A, Egarnes B, Duchêne B, Brown JP, Gosselin J. Overexpression of TLR2 and TLR9 on monocyte subsets of active rheumatoid arthritis patients contributes to enhance responsiveness to TLR agonists. Arthritis Res Ther 2016; 18:10. [PMID: 26759164 PMCID: PMC4718023 DOI: 10.1186/s13075-015-0901-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Background Synovial infiltration of monocytes is commonly associated with inflammation in rheumatoid arthritis (RA). Toll-like receptors (TLRs) are innate sensors that recognize cell debris and microbial components in host, a process contributing to maintain chronic inflammation in RA. We assessed the expression levels of TLR2 and TLR9 in monocyte subsets of active RA patients and characterized their cytokine profiles in response to synthetic and viral TLR2 and TLR9 agonists, including Epstein-Barr virus (EBV) which is suspected to contribute to RA symptoms. Methods Prevalence of monocyte subsets CD14++ CD16−, CD14+ CD16+ and CD14low CD16++ was evaluated in blood and synovial fluids of active RA patients and levels of TLR2 and TLR9 in monocyte subsets were measured by flow cytometry. Enriched monocytes derived from RA patients and healthy donors were stimulated in vitro with synthetic TLR2 and TLR9 agonists and with EBV particles or viral DNA. Intracellular cytokine profiles were determined in respective monocyte subsets. Finally, the presence of EBV genome was evaluated by real-time PCR in blood and synovial monocytes of RA patients. Results Numbers of CD14+ CD16+ and CD14low CD16++ were found to increase in blood of RA patients compared to healthy controls, while all three subsets were detected in synovial fluids. TLR2 is abundantly expressed on blood and synovial CD14++ CD16− and CD14+ CD16+ monocytes from RA patients. Levels of TLR9 were increased on all three subsets of blood monocytes but markedly enhanced in monocytes isolated from synovial fluids. Compared to healthy controls, CD14++ CD16− monocytes of RA patients displayed an enlarged capacity to produce proinflammatory cytokines after stimulation with synthetic TLR2 and TLR9 agonists while both CD14++ CD16− and CD14+ CD16+ monocytes showed increased response to EBV stimulation. The presence of EBV genome was also detected in monocytes and neutrophils of a significant proportion of patients. Conclusion Patients with active RA show an increased expression of TLR2 and TLR9 on monocyte subsets and display higher production of inflammatory cytokines in response to TLR agonists. The presence of EBV genome in monocytes and neutrophils reinforces the suspected role of the virus in the exacerbation of RA symptoms.
Collapse
Affiliation(s)
- Patricia Lacerte
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada. .,Department of Molecular Medicine, Université Laval, Québec, QC, Canada.
| | - Alexandre Brunet
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada. .,Department of Molecular Medicine, Université Laval, Québec, QC, Canada.
| | - Benoit Egarnes
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada. .,Department of Molecular Medicine, Université Laval, Québec, QC, Canada.
| | - Benjamin Duchêne
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada. .,Department of Molecular Medicine, Université Laval, Québec, QC, Canada.
| | - Jacques P Brown
- Division of Rheumatology, Centre Hospitalier Universitaire de Québec, Université Laval (CHUL), Québec, QC, Canada. .,Infectious and Immune Diseases, Centre de recherche du CHU de Québec-Université Laval (CHUL), Québec, QC, Canada.
| | - Jean Gosselin
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada. .,Department of Molecular Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
68
|
Sacre S, Lo A, Gregory B, Stephens M, Chamberlain G, Stott P, Brennan F. Oligodeoxynucleotide inhibition of Toll-like receptors 3, 7, 8, and 9 suppresses cytokine production in a human rheumatoid arthritis model. Eur J Immunol 2015; 46:772-81. [PMID: 26593270 DOI: 10.1002/eji.201546123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/15/2015] [Accepted: 11/16/2015] [Indexed: 01/26/2023]
Abstract
Toll-like receptors (TLRs) are innate immune receptors that respond to both exogenous and endogenous stimuli and are suggested to contribute to the perpetuation of chronic inflammation associated with rheumatoid arthritis (RA). In particular, the endosomal TLRs 3, 7, 8, and 9 have more recently been postulated to be of importance in RA pathogenesis. In this study, pan inhibition of the endosomal TLRs by a phosphorothioate-modified inhibitory oligodeoxynucleotide (ODN) is demonstrated in primary human B cells, macrophages, and RA fibroblasts. Inhibition of TLR8 was of particular interest as TLR8 has been associated with RA pathogenesis in both human and murine arthritis models. ODN1411 competitively inhibited TLR8 signaling and was observed to directly bind to a purified TLR8 ectodomain, suggesting inhibition was through a direct interaction with the receptor. Addition of ODN1411 to human RA synovial membrane cultures significantly inhibited spontaneous cytokine production from these cultures, suggesting a potential role for one or more of the endosomal TLRs in inflammatory cytokine production in RA and the potential for inhibitory ODNs as novel therapies.
Collapse
Affiliation(s)
- Sandra Sacre
- Brighton and Sussex Medical School, Brighton, UK
| | - Alexandra Lo
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Oxford, UK
| | - Bernard Gregory
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Oxford, UK
| | | | | | - Philip Stott
- Department of Orthopaedics, Brighton and Sussex University Hospitals, Brighton, UK
| | - Fionula Brennan
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Oxford, UK
| |
Collapse
|
69
|
Roberts CA, Dickinson AK, Taams LS. The Interplay Between Monocytes/Macrophages and CD4(+) T Cell Subsets in Rheumatoid Arthritis. Front Immunol 2015; 6:571. [PMID: 26635790 PMCID: PMC4652039 DOI: 10.3389/fimmu.2015.00571] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by inflammation of the synovial lining (synovitis). The inflammation in the RA joint is associated with and driven by immune cell infiltration, synovial hyperproliferation, and excessive production of proinflammatory mediators, such as tumor necrosis factor α (TNFα), interferon γ (IFNγ), interleukin (IL)-1β, IL-6, and IL-17, eventually resulting in damage to the cartilage and underlying bone. The RA joint harbors a wide range of immune cell types, including monocytes, macrophages, and CD4(+) T cells (both proinflammatory and regulatory). The interplay between CD14(+) myeloid cells and CD4(+) T cells can significantly influence CD4(+) T cell function, and conversely, effector vs. regulatory CD4(+) T cell subsets can exert profound effects on monocyte/macrophage function. In this review, we will discuss how the interplay between CD4(+) T cells and monocytes/macrophages may contribute to the immunopathology of RA.
Collapse
Affiliation(s)
- Ceri A Roberts
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), Division of Immunology, Infection and Inflammatory Disease, King's College London , London , UK
| | - Abigail K Dickinson
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), Division of Immunology, Infection and Inflammatory Disease, King's College London , London , UK
| | - Leonie S Taams
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), Division of Immunology, Infection and Inflammatory Disease, King's College London , London , UK
| |
Collapse
|
70
|
Niizuma K, Tahara-Hanaoka S, Noguchi E, Shibuya A. Identification and Characterization of CD300H, a New Member of the Human CD300 Immunoreceptor Family. J Biol Chem 2015. [PMID: 26221034 DOI: 10.1074/jbc.m115.643361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recruitment of circulating monocytes and neutrophils to infection sites is essential for host defense against infections. Here, we identified a previously unannotated gene that encodes an immunoglobulin-like receptor, designated CD300H, which is located in the CD300 gene cluster. CD300H has a short cytoplasmic tail and associates with the signaling adaptor proteins, DAP12 and DAP10. CD300H is expressed on CD16(+) monocytes and myeloid dendritic cells. Ligation of CD300H on CD16(+) monocytes and myeloid dendritic cells with anti-CD300H monoclonal antibody induced the production of neutrophil chemoattractants. Interestingly, CD300H expression varied among healthy subjects, who could be classified into two groups according to "positive" and "negative" expression. Genomic sequence analysis revealed a single-nucleotide substitution (rs905709 (G → A)) at a splice donor site on intron 1 on either one or both alleles. The International HapMap Project database has demonstrated that homozygosity for the A allele of single nucleotide polymorphism (SNP) rs905709 ("negative" expression) is highly frequent in Han Chinese in Beijing, Japanese in Tokyo, and Europeans (A/A genotype frequencies 0.349, 0.167, and 0.138, respectively) but extremely rare in Sub-Saharan African populations. Together, these results suggest that CD300H may play an important role in innate immunity, at least in populations that carry the G/G or G/A genotype of CD300H.
Collapse
Affiliation(s)
- Kouta Niizuma
- From the Departments of Immunology and the Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoko Tahara-Hanaoka
- From the Departments of Immunology and the Center for Tsukuba Advanced Research Alliance (TARA), the Japan Science and Technology Agency, CREST, and
| | - Emiko Noguchi
- Medical Genetics, Faculty of Medicine, the Japan Science and Technology Agency, CREST, and
| | - Akira Shibuya
- From the Departments of Immunology and the Center for Tsukuba Advanced Research Alliance (TARA), the Japan Science and Technology Agency, CREST, and
| |
Collapse
|
71
|
Chalan P, Bijzet J, Huitema MG, Kroesen BJ, Brouwer E, Boots AMH. Expression of Lectin-Like Transcript 1, the Ligand for CD161, in Rheumatoid Arthritis. PLoS One 2015; 10:e0132436. [PMID: 26147876 PMCID: PMC4492745 DOI: 10.1371/journal.pone.0132436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/15/2015] [Indexed: 11/19/2022] Open
Abstract
Objectives Precursor Th17 lineage cells expressing CD161 are implicated in Rheumatoid Arthritis (RA) pathogenesis. CD4+CD161+ T-cells accumulate in RA joints and may acquire a non classical Th1 phenotype. The endogenous ligand for CD161 is lectin-like transcript 1 (LLT1). CD161/LLT1 ligation may co-stimulate T-cell IFN-γ production. We investigated the presence and identity of LLT1-expressing cells in RA synovial fluid (SF) and synovial tissue (ST). We also assessed levels of soluble LLT1 (sLLT1) in different phases of RA development. Methods Paired samples of peripheral blood mononuclear cells (MC) and SFMC (n = 14), digested ST cells (n = 4) and ST paraffin sections (n = 6) from late-stage RA were analyzed for LLT1 expression by flow cytometry and immunohistochemistry. sLLT1 was measured using a sandwich ELISA. Sera and SF from late-stage RA (n = 26), recently diagnosed RA patients (n = 39), seropositive arthralgia patients (SAP, n = 31), spondyloarthropathy patients (SpA, n = 26) and healthy controls (HC, n = 31) were assayed. Results In RA SF, LLT1 was expressed by a small proportion of monocytes. In RA ST, LLT1-expressing cells were detected in the lining, sublining layer and in areas with infiltrates. The LLT1 staining pattern overlapped with the CD68 staining pattern. FACS analysis of digested ST confirmed LLT1 expression by CD68+ cells. Elevated systemic sLLT1 was found in all patient groups. Conclusions In RA joints, LLT1 is expressed by cells of the monocyte/macrophage lineage. Serum levels of sLLT1 were increased in all patient groups (patients with early- and late-stage RA, seropositive arthralgia and spondyloarthropathy) when compared to healthy subjects.
Collapse
Affiliation(s)
- Paulina Chalan
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan Bijzet
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Minke G. Huitema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
72
|
Kassem A, Henning P, Lundberg P, Souza PPC, Lindholm C, Lerner UH. Porphyromonas gingivalis Stimulates Bone Resorption by Enhancing RANKL (Receptor Activator of NF-κB Ligand) through Activation of Toll-like Receptor 2 in Osteoblasts. J Biol Chem 2015; 290:20147-58. [PMID: 26085099 DOI: 10.1074/jbc.m115.655787] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 12/18/2022] Open
Abstract
Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease.
Collapse
Affiliation(s)
- Ali Kassem
- From the Department of Molecular Periodontology, Umeå University, 90187 Umeå, Sweden
| | - Petra Henning
- the Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition at Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Pernilla Lundberg
- From the Department of Molecular Periodontology, Umeå University, 90187 Umeå, Sweden
| | - Pedro P C Souza
- From the Department of Molecular Periodontology, Umeå University, 90187 Umeå, Sweden, the Department of Physiology and Pathology, Araraquara School of Dentistry, University Estudual Paulista (UNESP), Araraquara, Brazil 14801-903, and
| | - Catharina Lindholm
- the Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition at Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden, the Department of Rheumatology and Inflammation Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, 403 50 Gothenburg, Sweden
| | - Ulf H Lerner
- From the Department of Molecular Periodontology, Umeå University, 90187 Umeå, Sweden, the Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition at Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden,
| |
Collapse
|
73
|
McGarry T, Veale DJ, Gao W, Orr C, Fearon U, Connolly M. Toll-like receptor 2 (TLR2) induces migration and invasive mechanisms in rheumatoid arthritis. Arthritis Res Ther 2015; 17:153. [PMID: 26055925 PMCID: PMC4495696 DOI: 10.1186/s13075-015-0664-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/27/2015] [Indexed: 01/09/2023] Open
Abstract
Introduction This study investigates the role of Toll-like receptor 2 (TLR2) in the regulation of migratory and invasive mechanisms in rheumatoid arthritis (RA). Methods Invasion, migration, matrix metalloproteinase (MMP)-1, -3 and tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) expression, β-integrin binding, cytoskeletal rearrangement and Ras-related C3 botulinum toxin substrate 1 (Rac1) activation in response to a TLR2-ligand, Pam3CSK4 (1 μg/ml), in ex vivo RA synovial tissue explants, primary RA synovial fibroblasts (RASFC) and microvascular endothelial cells (HMVEC) were assessed by Transwell Matrigel™ invasion chambers, enzyme-linked immunosorbent assay (ELISA), multiplex adhesion binding assay, reverse transcription polymerase chain reaction (RT-PCR), F-actin immunofluorescent staining, matrigel synovial outgrowths, Rac1 pull-down assays/Western blot and zymography. β1-integrin expression in RA/control synovial tissue was assessed by immunohistology. The effect of Pam3CSK4 on cell migration, invasion, MMP-3 and Rac1 activation was examined in the presence or absence of anti-β1-integrin (10 μg/ml) or anti-IgG control (10 μg/ml). The effect of an anti-TLR-2 mAb (OPN301)(1 μg/ml) or immunoglobulin G (IgG) control (1 μg/ml) on RASFC migration and RA synovial tissue MMP activity was assessed by wound assays, ELISA and zymography. Results Pam3CSK4 significantly induced cell migration, invasion, MMP-1, MMP-3, MMP-2 and MMP-9 expression and induced the MMP-1/TIMP-3 and MMP-3/TIMP-3 ratio in RASFC and explants (p <0.05). β1-integrin expression was significantly higher in RA synovial tissue compared to controls (p <0.05). Pam3CSK4 specifically induced β1-integrin binding in RASFC (p <0.05), with no effect observed for β2-4, β6, αvβ5 or α5β1. Pam3CSK4 increased β1-integrin mRNA expression, Rac1 activation, RASFC outgrowths and altered cytoskeletal dynamic through induction of filopodia formation. Pam3CSK4-regulated cell migration and invasion processes, but not MMP-3, were inhibited in the presence of anti-β1-integrin (p <0.05), with no effect observed for anti-IgG control. Furthermore, anti-β1-integrin inhibited Pam3CSK4-induced Rac1 activation. Finally, blockade of TLR2 with OPN301 significantly decreased spontaneous release of MMP-3, MMP-2 and MMP-9 and increased TIMP-3 secretion from RA synovial explant cultures (p <0.05). Incubation of RASFC with OPN301 RA ex vivo conditioned media inhibited migration and invasion compared to IgG control. Conclusions TLR2 activation induces migrational and invasive mechanisms, which are critically involved in the pathogenesis of RA, suggesting TLR2 as a potential therapeutic target for the treatment of RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0664-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trudy McGarry
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Douglas J Veale
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Wei Gao
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Carl Orr
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ursula Fearon
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Mary Connolly
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
74
|
Traunecker E, Gardner R, Fonseca JE, Polido-Pereira J, Seitz M, Villiger PM, Iezzi G, Padovan E. Blocking of LFA-1 enhances expansion of Th17 cells induced by human CD14(+) CD16(++) nonclassical monocytes. Eur J Immunol 2015; 45:1414-25. [PMID: 25678252 DOI: 10.1002/eji.201445100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 01/07/2023]
Abstract
Among human peripheral blood (PB) monocyte (Mo) subsets, the classical CD14(++) CD16(-) (cMo) and intermediate CD14(++) CD16(+) (iMo) Mos are known to activate pathogenic Th17 responses, whereas the impact of nonclassical CD14(+) CD16(++) Mo (nMo) on T-cell activation has been largely neglected. The aim of this study was to obtain new mechanistic insights on the capacity of Mo subsets from healthy donors (HDs) to activate IL-17(+) T-cell responses in vitro, and assess whether this function was maintained or lost in states of chronic inflammation. When cocultured with autologous CD4(+) T cells in the absence of TLR-2/NOD2 agonists, PB nMos from HDs were more efficient stimulators of IL-17-producing T cells, as compared to cMo. These results could not be explained by differences in Mo lifespan and cytokine profiles. Notably, however, the blocking of LFA-1/ICAM-1 interaction resulted in a significant increase in the percentage of IL-17(+) T cells expanded in nMo/T-cell cocultures. As compared to HD, PB Mo subsets of patients with rheumatoid arthritis were hampered in their T-cell stimulatory capacity. Our new insights highlight the role of Mo subsets in modulating inflammatory T-cell responses and suggest that nMo could become a critical therapeutic target against IL-17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Emmanuel Traunecker
- Department of Biomedicine (DBM), Basel University Hospital, Basel, Switzerland
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular da Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Michael Seitz
- Universitätsklinik für Rheumatologie, Klinische Immunologie und Allergologie, Inselspital, Bern, Switzerland
| | - Peter M Villiger
- Universitätsklinik für Rheumatologie, Klinische Immunologie und Allergologie, Inselspital, Bern, Switzerland
| | - Giandomenica Iezzi
- Department of Biomedicine (DBM), Cancer Immunotherapy, Institute of Surgical Research (ICFS), Basel University Hospital, Basel, Switzerland
| | - Elisabetta Padovan
- Department of Biomedicine (DBM), Cancer Immunotherapy, Institute of Surgical Research (ICFS), Basel University Hospital, Basel, Switzerland
| |
Collapse
|
75
|
Inflammation-induced foam cell formation in chronic inflammatory disease. Immunol Cell Biol 2015; 93:683-93. [PMID: 25753272 DOI: 10.1038/icb.2015.26] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/21/2015] [Accepted: 02/04/2015] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is the leading cause of cardiovascular disease and is both a metabolic and inflammatory disease. Two models describe early events initiating atherosclerotic plaque formation, whereby foam cells form in response to hyperlipidaemia or inflammation-associated stimuli. Although these models are inextricably linked and not mutually exclusive, identifying the unique contribution of each in different disease settings remains an important question. Circulating monocytes are key mediators of atherogenesis in both models as precursors to lipid-laden foam cells formed in response to either excess lipid deposition in arteries, signalling via pattern-associated molecular patterns or a combination of the two. In this review, we assess the role of monocytes in each model and discuss how key steps in atherogenesis may be targeted to enhance clinical outcomes in patients with chronic inflammatory disease.
Collapse
|
76
|
Weldon AJ, Moldovan I, Cabling MG, Hernandez EA, Hsu S, Gonzalez J, Parra A, Benitez A, Daoud N, Colburn K, Payne KJ. Surface APRIL Is Elevated on Myeloid Cells and Is Associated with Disease Activity in Patients with Rheumatoid Arthritis. J Rheumatol 2015; 42:749-59. [PMID: 25729037 DOI: 10.3899/jrheum.140630] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To assess surface APRIL (a proliferation-inducing ligand; CD256) expression by circulating myeloid cells in rheumatoid arthritis (RA) and to determine its relationship to disease activity. METHODS Peripheral blood mononuclear cells (PBMC) and plasma were obtained from patients with RA and healthy donors. PBMC were stained for flow cytometry to detect surface APRIL and blood cell markers to identify circulating myeloid cell subsets. Based on CD14 and CD16 phenotypes, monocyte subsets described as classical (CD14+CD16-), intermediate (CD14+CD16+), and nonclassical (CD14loCD16+) were identified. Levels of surface APRIL expression were measured by flow cytometry and median fluorescence intensity was used for comparisons. Levels of soluble APRIL in the plasma were determined by ELISA. Disease activity was measured by the Disease Activity Score in 28 joints. RESULTS In patients with RA, total myeloid cells showed expression of surface APRIL that correlated with disease activity and with plasma APRIL levels observed in these patients. In healthy donors, classical monocytes were composed of > 80% of circulating monocytes. However, in patients with RA, the intermediate and nonclassical subsets were elevated and made up the majority of circulating monocytes. In contrast to healthy donors, where high levels of surface APRIL were only observed in nonclassical monocytes, patients with RA showed high levels of surface APRIL expression by all circulating monocyte subsets. CONCLUSION Surface APRIL is elevated in circulating myeloid cells in patients with RA where it is highly correlated with disease activity. Patients with RA also showed skewing of monocytes toward subsets associated with secretion of tumor necrosis factor-α and/or interleukin 1β.
Collapse
Affiliation(s)
- Abby Jones Weldon
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University.
| | - Ioana Moldovan
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Marven G Cabling
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Elvin A Hernandez
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Sheri Hsu
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Jennifer Gonzalez
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Andrea Parra
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Abigail Benitez
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Nasim Daoud
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Keith Colburn
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Kimberly J Payne
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| |
Collapse
|
77
|
Stansfield BK, Ingram DA. Clinical significance of monocyte heterogeneity. Clin Transl Med 2015; 4:5. [PMID: 25852821 PMCID: PMC4384980 DOI: 10.1186/s40169-014-0040-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022] Open
Abstract
Monocytes are primitive hematopoietic cells that primarily arise from the bone marrow, circulate in the peripheral blood and give rise to differentiated macrophages. Over the past two decades, considerable attention to monocyte diversity and macrophage polarization has provided contextual clues into the role of myelomonocytic derivatives in human disease. Until recently, human monocytes were subdivided based on expression of the surface marker CD16. "Classical" monocytes express surface markers denoted as CD14(++)CD16(-) and account for greater than 70% of total monocyte count, while "non-classical" monocytes express the CD16 antigen with low CD14 expression (CD14(+)CD16(++)). However, recognition of an intermediate population identified as CD14(++)CD16(+) supports the new paradigm that monocytes are a true heterogeneous population and careful identification of specific subpopulations is necessary for understanding monocyte function in human disease. Comparative studies of monocytes in mice have yielded more dichotomous results based on expression of the Ly6C antigen. In this review, we will discuss the use of monocyte subpopulations as biomarkers of human disease and summarize correlative studies in mice that may yield significant insight into the contribution of each subset to disease pathogenesis.
Collapse
Affiliation(s)
- Brian K Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine, Georgia Regents University, Augusta, Georgia ; Vascular Biology Center, Georgia Regents University, Augusta, Georgia ; Medical College of Georgia at Georgia Regents University, 1120 15th St, BIW-6033, Augusta, GA 30912 USA
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Georgia Regents University, Augusta, Georgia ; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana USA ; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 699 Riley Hospital Drive, RR208, Indianapolis, IN 46202 USA
| |
Collapse
|
78
|
Kobayashi T, Yoshie H. Host Responses in the Link Between Periodontitis and Rheumatoid Arthritis. CURRENT ORAL HEALTH REPORTS 2015; 2:1-8. [PMID: 25657893 PMCID: PMC4312392 DOI: 10.1007/s40496-014-0039-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Periodontitis and rheumatoid arthritis (RA) are common chronic inflammatory conditions and share many clinical and pathologic features. There is evidence to suggest that similar profiles of cytokine genotypes and their coding proteins are involved in the pathogenesis of periodontitis and RA. In particular, constitutive overproduction of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), has been implicated to play a pathologic role in the two inflammatory diseases. Results from studies with animal and human subjects have suggested an improvement of periodontal inflammatory condition after treatment with TNF-α inhibitors. Likewise, IL-6 receptor inhibition therapy has been suggested to have an effect on control of periodontal inflammation in patients with RA. In the present review, we provide an overview of studies showing the pathological role of cytokines in the linkage between periodontitis and RA, and further summarize the current studies assessing the effect of cytokine targeted therapy on periodontal condition.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514 Japan
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514 Japan
| | - Hiromasa Yoshie
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514 Japan
| |
Collapse
|
79
|
Papanikolaou IC, Boki KA, Giamarellos-Bourboulis EJ, Kotsaki A, Kagouridis K, Karagiannidis N, Polychronopoulos VS. Innate immunity alterations in idiopathic interstitial pneumonias and rheumatoid arthritis-associated interstitial lung diseases. Immunol Lett 2014; 163:179-86. [PMID: 25540922 DOI: 10.1016/j.imlet.2014.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND This is a prospective cohort study elucidating innate immunity in idiopathic pulmonary fibrosis (IPF), cryptogenic organizing pneumonia (COP), rheumatoid arthritis-associated usual interstitial pneumonia (RA-UIP) and RA-associated non specific interstitial pneumonia (RA-NSIP). METHODS 23 IPF subjects, 9 COP subjects, 5 RA-UIP subjects, 8 RA-NSIP subjects were enrolled. 10 subjects were excluded. 19 healthy subjects served as controls. Blood and bronchoalveolar lavage (BAL) were obtained. Natural killer (NK) and NKT cells, NK cells apoptosis and the expression of triggering receptor expressed on myeloid cells type 1 (TREM-1) were assessed. Tumor necrosis factor-α (TNF-α) production was measured in cell cultures after stimulation with lipopolysaccharide endotoxin (LPS) and Pam3CysSK3, and in BAL. Surface expression of Toll-like receptors (TLR) 2 and 4 on peripheral blood monocytes (PBMC's) and circulating NK cells was also assessed. RESULTS RA-NSIP had low blood NKs, marginally insignificant (p=0.07). These NKs poorly produced TNF-α after LPS stimulation. TLR's expression on NK cells was similar throughout disease groups and controls. PBMC's mainly from IPF patients exhibited low TNF-α production after LPS stimulation but not after Pam3CysSK3 stimulation, while TLR4 expression on PBMC's was found normal in all study groups. TLR2 expression on PBMC's was increased in IPF, but mainly in COP, RA-UIP and RA-NSIP (p=0.015). TREM-1 expression was significant on COP monocytes and on COP neutrophils versus controls. RA-NSIP monocytes also exhibited TREM-1 expression (p=0.07). Decreased TNF-α concentration in BAL was finally observed in IPF and RA-UIP. CONCLUSIONS Innate immunity in the lungs and the peripheral circulation in IPF and RA-UIP are similar and more fibrotic than in RA-NSIP which is characterized by NK cell depletion and dysfunction. TREM-1 and TLR's likely affect patterns of inflammation in various interstitial lung diseases.
Collapse
Affiliation(s)
- Ilias C Papanikolaou
- 3rd Pulmonary Department, Sismanoglion General Hospital, Sismanogliou 1, 15126 Attica, Greece.
| | - Kyriaki A Boki
- Rheumatology Department, Sismanoglion General Hospital, Sismanogliou 1, 15126 Attica, Greece.
| | | | - Antigoni Kotsaki
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Rimini 1, 12462 Attica, Greece.
| | - Konstantinos Kagouridis
- 3rd Pulmonary Department, Sismanoglion General Hospital, Sismanogliou 1, 15126 Attica, Greece.
| | - Napoleon Karagiannidis
- 3rd Pulmonary Department, Sismanoglion General Hospital, Sismanogliou 1, 15126 Attica, Greece.
| | | |
Collapse
|
80
|
Rong MY, Wang CH, Wu ZB, Zeng W, Zheng ZH, Han Q, Jia JF, Li XY, Zhu P. Platelets induce a proinflammatory phenotype in monocytes via the CD147 pathway in rheumatoid arthritis. Arthritis Res Ther 2014; 16:478. [PMID: 25404518 PMCID: PMC4298113 DOI: 10.1186/s13075-014-0478-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 10/23/2014] [Indexed: 12/29/2022] Open
Abstract
Introduction Activated platelets exert a proinflammatory action that can be largely ascribed to their ability to interact with monocytes. However, the mechanisms that promote dynamic changes in monocyte subsets in rheumatoid arthritis (RA) have not been clearly identified. The aim of this study was to determine whether platelet activation and the consequent formation of monocyte-platelet aggregates (MPA) might induce a proinflammatory phenotype in circulating monocytes in RA. Methods The surface phenotype of platelets and the frequencies of monocyte subpopulations in the peripheral blood of RA patients were determined using flow cytometry. Platelets were sorted and co-cultured with monocytes. In addition, monocyte activation was assessed by measuring the nuclear factor kappa B (NF-κB) pathway. The disease activity was evaluated using the 28-joint disease activity score. Results Platelet activation, circulating intermediate monocytes (Mon2) and MPA formation were significantly elevated in RA, especially in those with active disease status. Furthermore, Mon2 monocytes showed higher CD147 expression and responded to direct cell contact with activated platelets with higher cytokine production and matrix metallopeptidase 9 (MMP-9) secretion, which increased the expression of CD147. After the addition of specific antibodies for CD147, those effects were abolished. Furthermore, the NF-κB-driven inflammatory pathway may be involved in this process. Conclusions These findings indicate an important role of platelet activation and the consequent formation of MPA in the generation of the proinflammatory cytokine milieu and for the promotion and maintenance of the pathogenically relevant Mon2 monocyte compartment in RA, which is likely to play an important role in the pathogenesis of autoimmunity.
Collapse
|
81
|
Toh ML, Bonnefoy JY, Accart N, Cochin S, Pohle S, Haegel H, De Meyer M, Zemmour C, Preville X, Guillen C, Thioudellet C, Ancian P, Lux A, Sehnert B, Nimmerjahn F, Voll RE, Schett G. Bone- and Cartilage-Protective Effects of a Monoclonal Antibody Against Colony-Stimulating Factor 1 Receptor in Experimental Arthritis. Arthritis Rheumatol 2014; 66:2989-3000. [DOI: 10.1002/art.38624] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/06/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | | | - Sandy Pohle
- University of Erlangen-Nuremberg; Erlangen Germany
| | | | | | | | | | | | | | | | - Anja Lux
- University of Erlangen-Nuremberg; Erlangen Germany
| | | | | | | | - Georg Schett
- University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
82
|
Yoon BR, Yoo SJ, Choi YH, Chung YH, Kim J, Yoo IS, Kang SW, Lee WW. Functional phenotype of synovial monocytes modulating inflammatory T-cell responses in rheumatoid arthritis (RA). PLoS One 2014; 9:e109775. [PMID: 25329467 PMCID: PMC4201467 DOI: 10.1371/journal.pone.0109775] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/11/2014] [Indexed: 12/29/2022] Open
Abstract
Monocytes function as crucial innate effectors in the pathogenesis of chronic inflammatory diseases, including autoimmunity, as well as in the inflammatory response against infectious pathogens. Human monocytes are heterogeneous and can be classified into three distinct subsets based on CD14 and CD16 expression. Although accumulating evidence suggests distinct functions of monocyte subsets in inflammatory conditions, their pathogenic roles in autoimmune diseases remain unclear. Thus, we investigated the phenotypic and functional characteristics of monocytes derived from synovial fluid and peripheral blood in RA patients in order to explore the pathogenic roles of these cells. In RA patients, CD14+CD16+, but not CD14dimCD16+, monocytes are predominantly expanded in synovial fluid and, to a lesser degree, in peripheral blood. Expression of co-signaling molecules of the B7 family, specifically CD80 and CD276, was markedly elevated on synovial monocytes, while peripheral monocytes of RA and healthy controls did not express these molecules without stimulation. To explore how synovial monocytes might gain these unique properties in the inflammatory milieu of the synovial fluid, peripheral monocytes were exposed to various stimuli. CD16 expression on CD14+ monocytes was clearly induced by TGF-β, although co-treatment with IL-1β, TNF-α, or IL-6 did not result in any additive effects. In contrast, TLR stimulation with LPS or zymosan significantly downregulated CD16 expression such that the CD14+CD16+ monocyte subset could not be identified. Furthermore, treatment of monocytes with IFN-γ resulted in the induction of CD80 and HLA-DR expression even in the presence of TGF-β. An in vitro assay clearly showed that synovial monocytes possess the unique capability to promote Th1 as well as Th17 responses of autologous peripheral CD4 memory T cells. Our findings suggest that the cytokine milieu of the synovial fluid shapes the unique features of synovial monocytes as well as their cardinal role in shaping inflammatory T-cell responses in RA.
Collapse
Affiliation(s)
- Bo Ruem Yoon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Su-Jin Yoo
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejon, Korea
| | - Yeon ho Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yeon-Ho Chung
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Jinhyun Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejon, Korea
| | - In Seol Yoo
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejon, Korea
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejon, Korea
- * E-mail: (WWL); (SWK)
| | - Won-Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (WWL); (SWK)
| |
Collapse
|
83
|
Kondelkova K, Krejsek J, Borska L, Fiala Z, Hamakova K, Ettler K, Andrys C. Membrane and soluble Toll-like receptor 2 in patients with psoriasis treated by Goeckerman therapy. Int J Dermatol 2014; 53:e512-7. [PMID: 25266302 DOI: 10.1111/ijd.12381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Toll-like receptor (TLR) 2 belongs to the large TLR receptor family comprised of at least 10 members with different roles in innate immunity. Psoriasis is recognized as a T-cell driven immune-mediated systemic inflammatory disease with a skin manifestation. An effective therapeutic approach to treat psoriasis is Goeckerman therapy (GT). The aim of this study was to assess both the kinetics of the expression of TLR2 on blood cells and the concentration of soluble (s)TLR2 in serum of patients with psoriasis and to examine the effect of GT on both TLR2 expression and sTLR2 level. METHODS Both membrane and sTLR2 were determined in 20 patients and 20 healthy controls. sTLR2 was evaluated by enzyme-linked immunosorbent assay. Flow cytometry method was used to determine the expression of membrane TLR2 of monocytes and granulocytes. RESULTS The serum level of sTLR2 was significantly lower (P < 0.0001) in patients both before and after GT compared to the control group. Compared to the membrane expression of TLR2 on monocytes of healthy blood donors, TLR2 expression was significantly higher in patients both before and after GT (P = 0.0001). Similarly, TLR2 expression on granulocytes was significantly higher in patients both before (P = 0.0061) and after (P < 0.0001) therapy than in control. CONCLUSIONS Membrane and soluble TLR2 may be involved in the pathogenesis of psoriasis. Both remained unchanged by GT.
Collapse
Affiliation(s)
- Katerina Kondelkova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
84
|
Kim SJ, Chen Z, Chamberlain ND, Essani AB, Volin MV, Amin MA, Volkov S, Gravallese EM, Arami S, Swedler W, Lane NE, Mehta A, Sweiss N, Shahrara S. Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. THE JOURNAL OF IMMUNOLOGY 2014; 193:3902-13. [PMID: 25200955 DOI: 10.4049/jimmunol.1302998] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our aim was to examine the impact of TLR5 ligation in rheumatoid arthritis (RA) and experimental arthritis pathology. Studies were conducted to investigate the role of TLR5 ligation on RA and mouse myeloid cell chemotaxis or osteoclast formation, and in addition, to uncover the significance of TNF-α function in TLR5-mediated pathogenesis. Next, the in vivo mechanism of action was determined in collagen-induced arthritis (CIA) and local joint TLR5 ligation models. Last, to evaluate the importance of TLR5 function in RA, we used anti-TLR5 Ab therapy in CIA mice. We show that TLR5 agonist, flagellin, can promote monocyte infiltration and osteoclast maturation directly through myeloid TLR5 ligation and indirectly via TNF-α production from RA and mouse cells. These two identified TLR5 functions are potentiated by TNF-α, because inhibition of both pathways can more strongly impair RA synovial fluid-driven monocyte migration and osteoclast differentiation compared with each factor alone. In preclinical studies, flagellin postonset treatment in CIA and local TLR5 ligation in vivo provoke homing and osteoclastic development of myeloid cells, which are associated with the TNF-α cascade. Conversely, CIA joint inflammation and bone erosion are alleviated when TLR5 function is blocked. We found that TLR5 and TNF-α pathways are interconnected, because TNF-α is produced by TLR5 ligation in RA myeloid cells, and anti-TNF-α therapy can markedly suppress TLR5 expression in RA monocytes. Our novel findings demonstrate that a direct and an indirect mechanism are involved in TLR5-driven RA inflammation and bone destruction.
Collapse
Affiliation(s)
- Seung-Jae Kim
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Zhenlong Chen
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Nathan D Chamberlain
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Abdul B Essani
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Chicago College of Osteopathic Medicine, Downers Grove, IL 60515
| | - M Asif Amin
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Suncica Volkov
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Ellen M Gravallese
- Department of Medicine, University of Massachusetts Memorial Medical Center and University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Shiva Arami
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - William Swedler
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Nancy E Lane
- University of California Davis Medical Center, Sacramento, CA 95817
| | - Anjali Mehta
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Nadera Sweiss
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Shiva Shahrara
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612;
| |
Collapse
|
85
|
Prince LR, Maxwell NC, Gill SK, Dockrell DH, Sabroe I, McGreal EP, Kotecha S, Whyte MK. Macrophage phenotype is associated with disease severity in preterm infants with chronic lung disease. PLoS One 2014; 9:e103059. [PMID: 25115925 PMCID: PMC4130498 DOI: 10.1371/journal.pone.0103059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The etiology of persistent lung inflammation in preterm infants with chronic lung disease of prematurity (CLD) is poorly characterized, hampering efforts to stratify prognosis and treatment. Airway macrophages are important innate immune cells with roles in both the induction and resolution of tissue inflammation. OBJECTIVES To investigate airway innate immune cellular phenotypes in preterm infants with respiratory distress syndrome (RDS) or CLD. METHODS Bronchoalveolar lavage (BAL) fluid was obtained from term and preterm infants requiring mechanical ventilation. BAL cells were phenotyped by flow cytometry. RESULTS Preterm birth was associated with an increase in the proportion of non-classical CD14(+)/CD16(+) monocytes on the day of delivery (58.9 ± 5.8% of total mononuclear cells in preterm vs 33.0 ± 6.1% in term infants, p = 0.02). Infants with RDS were born with significantly more CD36(+) macrophages compared with the CLD group (70.3 ± 5.3% in RDS vs 37.6 ± 8.9% in control, p = 0.02). At day 3, infants born at a low gestational age are more likely to have greater numbers of CD14(+) mononuclear phagocytes in the airway (p = 0.03), but fewer of these cells are functionally polarized as assessed by HLA-DR (p = 0.05) or CD36 (p = 0.05) positivity, suggesting increased recruitment of monocytes or a failure to mature these cells in the lung. CONCLUSIONS These findings suggest that macrophage polarization may be affected by gestational maturity, that more immature macrophage phenotypes may be associated with the progression of RDS to CLD and that phenotyping mononuclear cells in BAL could predict disease outcome.
Collapse
Affiliation(s)
- Lynne R. Prince
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
- * E-mail:
| | - Nicola C. Maxwell
- Department of Child Health, Cardiff University, Cardiff, United Kingdom
| | - Sharonjit K. Gill
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - David H. Dockrell
- Academic Unit of Immunology and Infectious Disease, Department of Infection and Immunity, University of Sheffield, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Ian Sabroe
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Eamon P. McGreal
- Department of Child Health, Cardiff University, Cardiff, United Kingdom
| | - Sailesh Kotecha
- Department of Child Health, Cardiff University, Cardiff, United Kingdom
| | - Moira K. Whyte
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| |
Collapse
|
86
|
N-(2-hydroxy phenyl) acetamide: a novel suppressor of Toll-like receptors (TLR-2 and TLR-4) in adjuvant-induced arthritic rats. Mol Cell Biochem 2014; 394:67-75. [DOI: 10.1007/s11010-014-2082-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/03/2014] [Indexed: 01/09/2023]
|
87
|
Tono T, Aihara S, Hoshiyama T, Arinuma Y, Nagai T, Hirohata S. Effects of anti-IL-6 receptor antibody on human monocytes. Mod Rheumatol 2014; 25:79-84. [PMID: 24842475 DOI: 10.3109/14397595.2014.914016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To explore the effects of anti-IL-6 receptor antibody, tocilizumab on function of human monocytes. METHODS Monocytes from healthy donors were cultured in the presence of staphylococcal enterotoxin B (SEB) with pharmacologically attainable concentrations of tocilizumab or control IgG. The expression of IL-6 mRNA was determined using quantitative RT-PCR. The expression of CD80 and CD86 and the induction of apoptosis of monocytes were measured using flow cytometry. RESULTS Tocilizumab promoted apoptosis of SEB-stimulated monocytes. The induction of apoptosis of monocytes by tocilizumab were reversed by addition of IgG, but not IgG F(ab')₂ fragments. Tocilizumab significantly suppressed the expression of CD80, but not that of CD86, on SEB- stimulated monocytes. Finally, tocilizumab significantly suppressed the expression of mRNA for IL-6 of monocytes stimulated with SEB. CONCLUSIONS These results demonstrate that one of the mechanism of action of tocilizumab involves the induction of apoptosis of monocytes, which requires interaction with Fc receptor on monocytes. Moreover, the data also indicate that tocilizumab inhibit IL-6 production of monocytes at mRNA levels.
Collapse
Affiliation(s)
- Toshihiro Tono
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine , Kanagawa , Japan
| | | | | | | | | | | |
Collapse
|
88
|
Asquith DL, Ballantine LE, Nijjar JS, Makdasy MK, Patel S, Wright PB, Reilly JH, Kerr S, Kurowska-Stolarska M, Gracie JA, McInnes IB. The liver X receptor pathway is highly upregulated in rheumatoid arthritis synovial macrophages and potentiates TLR-driven cytokine release. Ann Rheum Dis 2013; 72:2024-31. [PMID: 23434566 DOI: 10.1136/annrheumdis-2012-202872] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Macrophages are central to the inflammatory processes driving rheumatoid arthritis (RA) synovitis. The molecular pathways that are induced in synovial macrophages and thereby promote RA disease pathology remain poorly understood. METHODS We used microarray to characterise the transcriptome of synovial fluid (SF) macrophages compared with matched peripheral blood monocytes from patients with RA (n=8). RESULTS Using in silico pathway mapping, we found that pathways downstream of the cholesterol activated liver X receptors (LXRs) and those associated with Toll-like receptor (TLR) signalling were upregulated in SF macrophages. Macrophage differentiation and tumour necrosis factor α promoted the expression of LXRα. Furthermore, in functional studies we demonstrated that activation of LXRs significantly augmented TLR-driven cytokine and chemokine secretion. CONCLUSIONS The LXR pathway is the most upregulated pathway in RA synovial macrophages and activation of LXRs by ligands present within SF augments TLR-driven cytokine secretion. Since the natural agonists of LXRs arise from cholesterol metabolism, this provides a novel mechanism that can promote RA synovitis.
Collapse
Affiliation(s)
- Darren Lee Asquith
- Department of Immunology, Infection and Inflammation, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, , Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Li X, Xu T, Wang Y, Huang C, Li J. Toll-like receptor (TLR)-3: a potent driving force behind rheumatoid arthritis. Clin Rheumatol 2013; 33:291-2. [PMID: 24258070 DOI: 10.1007/s10067-013-2418-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/23/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaofeng Li
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, 230032, Anhui Province, China
| | | | | | | | | |
Collapse
|
90
|
Kim SJ, Chen Z, Chamberlain ND, Volin MV, Swedler W, Volkov S, Sweiss N, Shahrara S. Angiogenesis in rheumatoid arthritis is fostered directly by toll-like receptor 5 ligation and indirectly through interleukin-17 induction. ACTA ACUST UNITED AC 2013; 65:2024-36. [PMID: 23666857 DOI: 10.1002/art.37992] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/23/2013] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To examine the impact of Toll-like receptor 5 (TLR-5) on endothelial cell function in rheumatoid arthritis (RA) and vascularization in collagen-induced arthritis (CIA). METHODS Endothelial cell migration and tube formation assays were used to demonstrate the direct role of TLR-5 ligation in angiogenesis. Mice with CIA were treated with the TLR-5 agonist flagellin to document the effect of TLR-5 ligation in RA pathology. Vascularization in CIA was determined by immunohistochemical analysis and determination of cytokine levels in ankle joints. Spleen Th17 cells and joint interleukin-17 (IL-17) were quantified by fluorescence-activated cell sorting analysis and enzyme-linked immunosorbent assay. The development of Th17 cells induced by TLR-5 ligation was validated in RA peripheral blood mononuclear cells. RESULTS Ligation of TLR-5 to endogenous ligands expressed in RA synovial fluid contributed to endothelial cell infiltration and tube formation. Furthermore, treatment with flagellin after the onset of CIA exacerbated joint inflammation; in contrast, inflammation in control mice remained at a plateau phase. We showed that TLR-5-enhanced disease severity was attributable to Th17 cell differentiation and joint vascularization in CIA. Examination of the underlying mechanism using RA peripheral blood mononuclear cells documented that ligation of TLR-5 in myeloid cells and production of Th17-promoting cytokines were necessary for Th17 cell polarization. Additionally, we demonstrated that blockade of the IL-17 cascade markedly reduced endothelial cell migration activated by flagellin-conditioned medium, suggesting that TLR-5 ligation can mediate RA angiogenesis either directly by attracting endothelial cells or indirectly by fostering Th17 cell development. CONCLUSION Our data demonstrate a novel role for TLR-5 in RA angiogenesis; thus, TLR-5 may be a promising new target for RA treatment.
Collapse
|
91
|
Abstract
Accumulative evidence demonstrates the crucial role of evolutionary conserved Toll-like receptors (TLRs) in identifying microbial or viral compounds. TLRs are also able to recognise endogenous molecules which are released upon cell damage or stress and have been shown to play a key role in numerous autoimmune diseases including systemic sclerosis (SSc). A classic feature of SSc, is vascular injury manifested as Raynaud's phenomenon and ischaemia of the skin, resulting in the release of endogenous TLR ligands during inflammation and local tissue damage. These locally released TLR ligands bind TLRs possibly complexed to autoantibodies, and initiate intracellular signalling pathways and may be one of the mechanisms that initiate and drive autoimmunity and subsequent fibrosis. Activation of the immune system results in interferon (IFN) sensitive gene transcription. There is also an IFN gene signature in SSc peripheral blood. TLRs may represent the link between immune activation, common in SSc, and tissue fibrosis. Therefore, a better understanding of the mechanisms of TLR-mediated pathogenesis and therapies targeting individual TLRs, may provide a more specific approach of treating multi-systemic autoimmune diseases. This review aims to integrate the current knowledge of TLR function in the autoimmune disorders with particular emphasis on SSc. We suggest the TLR system as a new therapeutic target.
Collapse
|
92
|
Cui YW, Kawano Y, Shi N, Masaki K, Isobe N, Yonekawa T, Matsushita T, Tateishi T, Yamasaki R, Murai H, Kira JI. Alterations in chemokine receptor expressions on peripheral blood monocytes in multiple sclerosis and neuromyelitis optica. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/cen3.12039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yi Wen Cui
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka; Japan
| | - Yuji Kawano
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka; Japan
| | - Nan Shi
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka; Japan
| | - Katsuhisa Masaki
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka; Japan
| | - Noriko Isobe
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka; Japan
| | - Tomomi Yonekawa
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka; Japan
| | - Takuya Matsushita
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka; Japan
| | - Takahisa Tateishi
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka; Japan
| | - Ryo Yamasaki
- Department of Neurological Therapeutics; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka; Japan
| | - Hiroyuki Murai
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka; Japan
| | - Jun-ichi Kira
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka; Japan
| |
Collapse
|
93
|
Reduced frequency of a CD14+ CD16+ monocyte subset with high Toll-like receptor 4 expression in cord blood compared to adult blood contributes to lipopolysaccharide hyporesponsiveness in newborns. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:962-71. [PMID: 23595503 DOI: 10.1128/cvi.00609-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human innate immune response to pathogens is not fully effective and mature until well into childhood, as exemplified by various responses to Toll-like receptor (TLR) agonists in newborns compared to adults. To better understand the mechanistic basis for this age-related difference in innate immunity, we compared tumor necrosis factor alpha (TNF-α) production by monocytes from cord blood (CB) and adult blood (AB) in response to LAM (lipoarabinomannan from Mycobacterium tuberculosis, a TLR2 ligand) and LPS (lipopolysaccharide from Escherichia coli, a TLR4 ligand). LPS or LAM-induced TNF-α production was 5 to 18 times higher in AB than in CB monocytes, whereas interleukin-1α (IL-1α) stimulated similar levels of TNF-α in both groups, suggesting that decreased responses to LPS or LAM in CB are unlikely to be due to differences in the MyD88-dependent signaling pathway. This impaired signaling was attributable, in part, to lower functional TLR4 expression, especially on CD14(+) CD16(+) monocytes, which are the primary cell subset for LPS-induced TNF-α production. Importantly, the frequency of CD14(+) CD16(+) monocytes in CB was 2.5-fold lower than in AB (P < 0.01). CB from Kenyan newborns sensitized to parasite antigens in utero had more CD14(+) CD16(+) monocytes (P = 0.02) and produced higher levels of TNF-α in response to LPS (P = 0.004) than CB from unsensitized Kenyan or North American newborns. Thus, a reduced CD14(+) CD16(+) activated/differentiated monocyte subset and a correspondingly lower level of functional TLR4 on monocytes contributes to the relatively low TNF-α response to LPS observed in immunologically naive newborns compared to the response in adults.
Collapse
|
94
|
Matsubara T, Kanto T, Kuroda S, Yoshio S, Higashitani K, Kakita N, Miyazaki M, Sakakibara M, Hiramatsu N, Kasahara A, Tomimaru Y, Tomokuni A, Nagano H, Hayashi N, Takehara T. TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology 2013; 57:1416-25. [PMID: 22815256 DOI: 10.1002/hep.25965] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/13/2012] [Indexed: 12/13/2022]
Abstract
UNLABELLED Angiogenesis is a critical step in the development and progression of hepatocellular carcinoma (HCC). Myeloid lineage cells, such as macrophages and monocytes, have been reported to regulate angiogenesis in mouse tumor models. TIE2, a receptor of angiopoietins, conveys pro-angiogenic signals and identifies a monocyte/macrophage subset with pro-angiogenic activity. Here, we analyzed the occurrence and kinetics of TIE2-expressing monocytes/macrophages (TEMs) in HCC patients. This study enrolled 168 HCV-infected patients including 89 with HCC. We examined the frequency of TEMs, as defined as CD14+CD16+TIE2+ cells, in the peripheral blood and liver. The localization of TEMs in the liver was determined by immunofluorescence staining. Micro-vessel density in the liver was measured by counting CD34+ vascular structures. We found that the frequency of circulating TEMs was significantly higher in HCC than non-HCC patients, while being higher in the liver than in the blood. In patients who underwent local radio-ablation or resection of HCC, the frequency of TEMs dynamically changed in the blood in parallel with HCC recurrence. Most TEMs were identified in the perivascular areas of tumor tissue. A significant positive correlation was observed between micro-vessel density in HCC and frequency of TEMs in the blood or tumors, suggesting that TEMs are involved in HCC angiogenesis. Receiver operating characteristic analyses revealed the superiority of TEM frequency to AFP, PIVKA-II and ANG-2 serum levels as diagnostic marker for HCC. CONCLUSION TEMs increase in patients with HCC and their frequency changes with the therapeutic response or recurrence. We thus suggest that TEM frequency can be used as a diagnostic marker for HCC, potentially reflecting angiogenesis in the liver.
Collapse
Affiliation(s)
- Tokuhiro Matsubara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Chamberlain ND, Kim SJ, Vila OM, Volin MV, Volkov S, Pope RM, Arami S, Mandelin AM, Shahrara S. Ligation of TLR7 by rheumatoid arthritis synovial fluid single strand RNA induces transcription of TNFα in monocytes. Ann Rheum Dis 2013; 72:418-26. [PMID: 22730373 PMCID: PMC4281889 DOI: 10.1136/annrheumdis-2011-201203] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of the study was to characterise the expression, regulation and pathogenic role of toll-like receptor 7 (TLR7) and TLR8 in rheumatoid arthritis (RA). METHODS Expression of TLR7 and TLR8 was demonstrated in RA, osteoarthritis (OA) and normal (NL) synovial tissues (STs) employing immunohistochemistry. The authors next examined the mechanism by which TLR7 and TLR8 ligation mediates proinflammatory response by Western blot analysis and ELISA. Expression of TLR7 and TLR8 in RA monocytes was correlated to disease activity score (DAS28) and tumour necrosis factor α (TNFα) levels. Further, the effect of TLR7 ligation in RA monocytes was determined on synovial fluid (SF)-mediated TNFα transcription. RESULTS TLR7/8 are predominately expressed in RA ST lining and sublining macrophages. The authors show that NF-κB and/or PI3K pathways are essential for TLR7/8 induction of proinflammatory factors in RA peripheral blood (PB)-differentiated macrophages. Expression of TLR7 in RA monocytes shows a strong correlation with DAS28 and TNFα levels. By contrast, expression of TLR8 in these cells does not correlate with DAS28, TLR7 or TNFα levels. The authors further demonstrate that RNA from RA SF, but not RA or NL plasma, could modulate TNFα transcription from RA monocytes that can be downregulated by antagonising TLR7 ligation or degradation of single stand (ss) RNA. Thus, ssRNA present in RA SF may function as a potential endogenous ligand for TLR7. CONCLUSIONS These results suggest that expression of TLR7, but not TLR8, may be a predictor for RA disease activity and anti-TNFα responsiveness, and targeting TLR7 may suppress chronic progression of RA.
Collapse
Affiliation(s)
- Nathan D. Chamberlain
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612
| | - Seung-jae Kim
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612
| | - Olga M. Vila
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612
| | - Michael V. Volin
- Department of Microbiology & Immunology, Midwestern University, Chicago College of Osteopathic Medicine, Downers Grove, IL 60515
| | - Suncica Volkov
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612
| | - Richard M. Pope
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Shiva Arami
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612
| | - Arthur M. Mandelin
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Shiva Shahrara
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612
| |
Collapse
|
96
|
Inflammatory immune cell responses and Toll-like receptor expression in synovial tissues in rheumatoid arthritis patients treated with biologics or DMARDs. Clin Rheumatol 2013; 32:853-61. [PMID: 23397147 DOI: 10.1007/s10067-013-2209-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 05/31/2012] [Accepted: 01/30/2013] [Indexed: 01/20/2023]
Abstract
Biologic antirheumatic drugs (BIO) have been reported to be potent therapeutic agents in the prevention of inflammatory joint destruction in rheumatoid arthritis (RA). The aim of this study was to investigate the immune-inflammatory cells, including Toll-like receptor (TLR)-equipped cells, in synovial tissue samples from RA patients on BIO compared to patients, who are only on conventional disease-modifying antirheumatic drug (DMARD). We analyzed immune-inflammatory cells in RA synovitis in patients of BIO group (n = 20) or DMARD group (n = 20). The grading scores of synovitis was 1.7 and 1.8 in each BIO and DMARD group and correlated best with the CD3(+) T (r = 0.71/0.70, p < 0.05) and CD20(+) B (r = 0.80/0.84, p < 0.05) cells in the both groups, but less well with the CD68(+) macrophages and S-100(+) dendritic cells (DCs). Interestingly, both T (116 vs. 242, p < 0.05) and B (80 vs. 142, p < 0.05) cell counts were lower in the BIO than in the DMARD group, whereas macrophage and DC counts did not differ. In contrast, the C-reactive protein (CRP) and disease activity score DAS28-CRP did not show clear-cut correlations with the inflammatory grade of the synovitis (r range, 0-0.35). Similar numbers of cells immunoreactive for TLR-1 to TLR-6 and TLR-9 were found in synovitis in both groups. Patients clinically responding to biologics might still have the potential of moderate/severe local joint inflammation, composed in particular of and possibly driven by the autoinflammatory TLR(+) cells.
Collapse
|
97
|
Huang QQ, Pope RM. The role of glycoprotein 96 in the persistent inflammation of rheumatoid arthritis. Arch Biochem Biophys 2012; 530:1-6. [PMID: 23257071 DOI: 10.1016/j.abb.2012.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 12/29/2022]
Abstract
The 96-kDa glycoprotein (gp96) is an endoplasmic reticulum (ER) resident molecular chaperone. Under physiologic conditions, gp96 facilitates the transport of toll-like receptors (TLRs) to cell or endosomal membranes. Under pathologic circumstances such as rheumatoid arthritis, gp96 translocates to the cell surface and extracellular space, serving as an endogenous danger signal promoting TLR signaling. Macrophages play a central role in regulating innate and adaptive immunity, and are the major source of proinflammatory cytokines and chemokines in rheumatoid arthritis (RA). Macrophage numbers in the sublining of RA synovial tissue correlate with clinical response. This review focuses on the recent findings that implicate gp96 induced macrophage activation mediated through TLR signaling in the pathogenesis of RA and provides insights concerning the targeting gp96 and the TLR signaling pathway as therapeutic approaches for patients with RA and possibly other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron, McGaw M220, Chicago, IL 60611, USA.
| | | |
Collapse
|
98
|
Increased toll-like receptor 2 expression in peptidoglycan-treated blood monocytes is associated with insulin resistance in patients with nondiabetic rheumatoid arthritis. Mediators Inflamm 2012; 2012:690525. [PMID: 23213270 PMCID: PMC3508588 DOI: 10.1155/2012/690525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/25/2012] [Indexed: 01/05/2023] Open
Abstract
The close relationship between increased TLR-2 expression in blood monocytes and insulin resistance in RA patients is shown in this study. Traditional risk factors for metabolic disorders, including the waist circumstance, body mass index (BMI), triglyceride (TG), and ratio of TG to high density lipoprotein (HDL) cholesterol, were closely correlated with HOMA (homoeostasis model assessment) index in patients with nondiabetic RA. Expressions of TLR2 in peripheral blood monocytes, following stimulation with peptidoglycan which is known as a TLR2 agonist, were closely correlated with the HOMA index, TNF-α, and IL-6 concentrations. Accordingly, TLR-2 receptor and its related inflammatory cytokines could be potential therapeutic targets in managing insulin resistance in RA patients.
Collapse
|
99
|
Wong KL, Yeap WH, Tai JJY, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol Res 2012; 53:41-57. [PMID: 22430559 DOI: 10.1007/s12026-012-8297-3] [Citation(s) in RCA: 507] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human blood monocytes are heterogeneous and conventionally subdivided into two subsets based on CD16 expression. Recently, the official nomenclature subdivides monocytes into three subsets, the additional subset arising from the segregation of the CD16+ monocytes into two based on relative expression of CD14. Recent whole genome analysis reveal that specialized functions and phenotypes can be attributed to these newly defined monocyte subsets. In this review, we discuss these recent results, and also the description and utility of this new segregation in several disease conditions. We also discuss alternative markers for segregating the monocyte subsets, for example using Tie-2 and slan, which do not necessarily follow the official method of segregating monocyte subsets based on relative CD14 and CD16 expressions.
Collapse
Affiliation(s)
- Kok Loon Wong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04/04 Immunos, Biopolis, Singapore
| | | | | | | | | | | |
Collapse
|
100
|
Wang D, Yuan F, Wang L, Wei W. Paeoniflorin inhibits function and down-regulates HLA-DR and CD80 expression of human peripheral blood monocytes stimulated by RhIL-1β. Int Immunopharmacol 2012; 14:172-8. [DOI: 10.1016/j.intimp.2012.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/13/2012] [Accepted: 07/10/2012] [Indexed: 12/21/2022]
|