51
|
Tan J, Wu B, Chen T, Fan C, Zhao J, Xiong C, Feng C, Xiao R, Ding C, Tang W, Zhang A. Synthesis and Pharmacological Evaluation of Tetrahydro-γ-carboline Derivatives as Potent Anti-inflammatory Agents Targeting Cyclic GMP-AMP Synthase. J Med Chem 2021; 64:7667-7690. [PMID: 34044539 DOI: 10.1021/acs.jmedchem.1c00398] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activation of cyclic GMP-AMP synthase (cGAS) by double-stranded DNA is implicated in the pathogenesis of many hyperinflammatory and autoimmune diseases, and the cGAS-targeting small molecule has emerged as a novel therapeutic strategy for treating these diseases. However, the currently reported cGAS inhibitors are far beyond maturity, barely demonstrating in vivo efficacy. Inspired by the structural novelty of compound 5 (G140), we conducted a structural optimization on both its side chain and the central tricyclic core, leading to several subseries of compounds, including those unexpectedly cyclized complex ones. Compound 25 bearing an N-glycylglycinoyl side chain was identified as the most potent one with cellular IC50 values of 1.38 and 11.4 μM for h- and m-cGAS, respectively. Mechanistic studies confirmed its direct targeting of cGAS. Further, compound 25 showed superior in vivo anti-inflammatory effects in the lipopolysaccharide-induced mouse model. The encouraging result of compound 25 provides solid evidence for further pursuit of cGAS-targeting inhibitors as a new anti-inflammatory treatment.
Collapse
Affiliation(s)
- Jing Tan
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wu
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Chen
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Fan
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannan Zhao
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chaodong Xiong
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlan Feng
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoxuan Xiao
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyong Ding
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Tang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
52
|
Wang X, Liu Y, Han X, Zou G, Zhu W, Shen H, Liu H. Small molecule approaches to treat autoimmune and inflammatory diseases (Part II): Nucleic acid sensing antagonists and inhibitors. Bioorg Med Chem Lett 2021; 44:128101. [PMID: 33984476 DOI: 10.1016/j.bmcl.2021.128101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Nucleic acid sensing pathways play an important role in the innate immune system, protecting hosts against infections. However, a large body of evidence supports a close association between aberrant activation of those pathways and autoimmune and inflammatory diseases. Part II of the digest series on small molecule approaches to autoimmune and inflammatory diseases concentrates on recent advances with respect to small molecule antagonists or inhibitors of the nucleic acid sensing pathways, including endosomal TLRs, NLRP3 inflammasome and cGAS-STING.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Yafei Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Xingchun Han
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Ge Zou
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Wei Zhu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Hong Shen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Haixia Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China.
| |
Collapse
|
53
|
Yu Q, Chu L, Li Y, Wang Q, Zhu J, Wang C, Cui S. miR-23a/b suppress cGAS-mediated innate and autoimmunity. Cell Mol Immunol 2021; 18:1235-1248. [PMID: 33767433 PMCID: PMC8093233 DOI: 10.1038/s41423-021-00668-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/01/2021] [Indexed: 02/01/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS), a key sensor of intracellular DNA, is essential for eliciting innate immunity against infection, whereas aberrant activation of cGAS by endogenous DNA promotes severe autoimmune diseases. However, it is largely unknown how cGAS expression is regulated during pathogen infection and autoimmunity. Here, we report that during herpes simplex virus type 1 (HSV-1) infection, two microRNAs (miR-23a and miR-23b) whose levels significantly decrease due to their interaction with the lncRNA Oasl2-209 directly regulate the expression of cGAS. Overexpression of miR-23a/b markedly dampens cytosolic DNA-induced innate immune responses, whereas inhibition of miR-23a/b enhances these responses. Mice treated with miR-23a/b agomirs exhibit increased susceptibility to HSV-1 infection. Moreover, cGAS is significantly upregulated in the Trex1-/- mouse autoimmune disease model. Administration of miR-23a/b blunts self DNA-induced autoinflammatory responses in Trex1-/- mice. Collectively, our study not only reveals a novel regulatory mechanism of cGAS expression by miRNAs but also identifies a potential therapy for cGAS-related autoimmune diseases.
Collapse
Affiliation(s)
- Qiuya Yu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lei Chu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yongxing Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Shufang Cui
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
54
|
Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct Target Ther 2021; 6:170. [PMID: 33927185 PMCID: PMC8085147 DOI: 10.1038/s41392-021-00554-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Sensing invasive cytosolic DNA is an integral component of innate immunity. cGAS was identified in 2013 as the major cytosolic DNA sensor that binds dsDNA to catalyze the synthesis of a special asymmetric cyclic-dinucleotide, 2'3'-cGAMP, as the secondary messenger to bind and activate STING for subsequent production of type I interferons and other immune-modulatory genes. Hyperactivation of cGAS signaling contributes to autoimmune diseases but serves as an adjuvant for anticancer immune therapy. On the other hand, inactivation of cGAS signaling causes deficiency to sense and clear the viral and bacterial infection and creates a tumor-prone immune microenvironment to facilitate tumor evasion of immune surveillance. Thus, cGAS activation is tightly controlled. In this review, we summarize up-to-date multilayers of regulatory mechanisms governing cGAS activation, including cGAS pre- and post-translational regulations, cGAS-binding proteins, and additional cGAS regulators such as ions and small molecules. We will also reveal the pathophysiological function of cGAS and its product cGAMP in human diseases. We hope to provide an up-to-date review for recent research advances of cGAS biology and cGAS-targeted therapies for human diseases.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
55
|
Chu L, Li C, Li Y, Yu Q, Yu H, Li C, Meng W, Zhu J, Wang Q, Wang C, Cui S. Perillaldehyde Inhibition of cGAS Reduces dsDNA-Induced Interferon Response. Front Immunol 2021; 12:655637. [PMID: 33968056 PMCID: PMC8100446 DOI: 10.3389/fimmu.2021.655637] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS), serving as a primary sensor of intracellular DNA, is essential to initiate anti-microbial innate immunity. Inappropriate activation of cGAS by self-DNA promotes severe autoinflammatory diseases such as Aicardi-Goutières syndrome (AGS); thus, inhibition of cGAS may provide therapeutic benefit in anti-autoimmunity. Here we report that perillaldehyde (PAH), a natural monoterpenoid compound derived from Perilla frutescens, suppresses cytosolic-DNA-induced innate immune responses by inhibiting cGAS activity. Mice treated with PAH are more susceptible to herpes simplex virus type 1 (HSV-1) infection. Moreover, administration with PAH markedly ameliorates self-DNA-induced autoinflammatory responses in a mouse model of AGS. Collectively, our study reveals that PAH can effectively inhibit cGAS-STING signaling and could be developed toward the treatment of cGAS-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Lei Chu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chenhui Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yongxing Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qiuya Yu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Huansha Yu
- Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunhui Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wei Meng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shufang Cui
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
56
|
Hemphill WO, Simpson SR, Liu M, Salsbury FR, Hollis T, Grayson JM, Perrino FW. TREX1 as a Novel Immunotherapeutic Target. Front Immunol 2021; 12:660184. [PMID: 33868310 PMCID: PMC8047136 DOI: 10.3389/fimmu.2021.660184] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in the TREX1 3' → 5' exonuclease are associated with a spectrum of autoimmune disease phenotypes in humans and mice. Failure to degrade DNA activates the cGAS-STING DNA-sensing pathway signaling a type-I interferon (IFN) response that ultimately drives immune system activation. TREX1 and the cGAS-STING DNA-sensing pathway have also been implicated in the tumor microenvironment, where TREX1 is proposed to degrade tumor-derived DNA that would otherwise activate cGAS-STING. If tumor-derived DNA were not degraded, the cGAS-STING pathway would be activated to promote IFN-dependent antitumor immunity. Thus, we hypothesize TREX1 exonuclease inhibition as a novel immunotherapeutic strategy. We present data demonstrating antitumor immunity in the TREX1 D18N mouse model and discuss theory surrounding the best strategy for TREX1 inhibition. Potential complications of TREX1 inhibition as a therapeutic strategy are also discussed.
Collapse
Affiliation(s)
- Wayne O. Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sean R. Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | - Thomas Hollis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jason M. Grayson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fred W. Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
57
|
McWhirter SM, Jefferies CA. Nucleic Acid Sensors as Therapeutic Targets for Human Disease. Immunity 2021; 53:78-97. [PMID: 32668230 DOI: 10.1016/j.immuni.2020.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Innate immune sensors that detect nucleic acids are attractive targets for therapeutic intervention because of their diverse roles in many disease processes. In detecting RNA and DNA from either self or non-self, nucleic acid sensors mediate the pathogenesis of many autoimmune and inflammatory conditions. Despite promising pre-clinical data and investigational use in the clinic, relatively few drugs targeting nucleic acid sensors are approved for therapeutic use. Nevertheless, there is growing appreciation for the untapped potential of nucleic acid sensors as therapeutic targets, driven by the need for better therapies for cancer, infectious diseases, and autoimmune disorders. This review highlights the diverse mechanisms by which nucleic acid sensors are activated and exert their biological effects in the context of various disease settings. We discuss current therapeutic strategies utilizing agonists and antagonists targeting nucleic acid sensors to treat infectious disease, cancer, and autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
| | - Caroline A Jefferies
- Department of Biomedical Sciences and Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
58
|
Exploring insights of hydroxychloroquine, a controversial drug in Covid-19: An update. Food Chem Toxicol 2021; 151:112106. [PMID: 33722600 PMCID: PMC7959684 DOI: 10.1016/j.fct.2021.112106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 12/29/2022]
Abstract
The review summarizes chloroquine (CQ) and its safer derivative hydroxychloroquine (HCQ) and its utility in Covid-19. Recently this well-established drug made its way back to the headlines during the SARS-CoV-2 pandemic. This led to an upsurge in the scientific arena with multiple research and review articles along with expert opinions and commentaries. The HCQ has received mixed judgements so far about its efficacy to be used in Covid-19 patients in a limited trial conducted all across the Globe. The purpose of our article is to put forth the history, pharmacodynamics, and pharmacokinetics, along with the existing studies favouring and disapproving the role of HCQ in the treatment of Covid-19. We grouped HCQ use at three stages, this includes HCQ for i. prophylactic use by asymptomatic health workers or peoples at higher risk; ii. patients having mild symptoms; iii. patients with extreme symptoms. The review critically discusses the underlying plausible reasons and mechanisms exploring HCQ in prophylactic management or treatment of SARS-CoV-2. Furthermore, we have critically analysed the reported pharmacokinetic parameters and compiled the proponent, opponent, or neutral opinions on the use of HCQ in Covid-19. Authors discretion is to conduct more studies considering the optimal dosing regimen and pharmacokinetics assessment.
Collapse
|
59
|
Apel F, Andreeva L, Knackstedt LS, Streeck R, Frese CK, Goosmann C, Hopfner KP, Zychlinsky A. The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Sci Signal 2021; 14:14/673/eaax7942. [PMID: 33688080 DOI: 10.1126/scisignal.aax7942] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophil extracellular traps (NETs) are structures consisting of chromatin and antimicrobial molecules that are released by neutrophils during a form of regulated cell death called NETosis. NETs trap invading pathogens, promote coagulation, and activate myeloid cells to produce type I interferons (IFNs), proinflammatory cytokines that regulate the immune system. Here, we showed that macrophages and other myeloid cells phagocytosed NETs. Once in phagosomes, NETs translocated to the cytosol, where the DNA backbones of these structures activated the innate immune sensor cyclic GMP-AMP synthase (cGAS) and induced type I IFN production. The NET-associated serine protease neutrophil elastase (NE) mediated the activation of this pathway. We showed that NET induction in mice treated with the lectin concanavalin A, a model of autoimmune hepatitis, resulted in cGAS-dependent stimulation of an IFN response, suggesting that NETs activated cGAS in vivo. Thus, our findings suggest that cGAS is a sensor of NETs, mediating immune cell activation during infection.
Collapse
Affiliation(s)
- Falko Apel
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| | - Liudmila Andreeva
- Gene Center, Ludwig-Maximillians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lorenz Sebastian Knackstedt
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany.,T-Knife GmbH, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Robert Streeck
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Karl Frese
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Goosmann
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| | - Karl-Peter Hopfner
- Gene Center, Ludwig-Maximillians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Arturo Zychlinsky
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany. .,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
60
|
Verrier ER, Langevin C. Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase (cGAS), a Multifaceted Platform of Intracellular DNA Sensing. Front Immunol 2021; 12:637399. [PMID: 33708225 PMCID: PMC7940176 DOI: 10.3389/fimmu.2021.637399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Innate immune pathways are the first line of cellular defense against pathogen infections ranging from bacteria to Metazoa. These pathways are activated following the recognition of pathogen associated molecular patterns (PAMPs) by membrane and cytosolic pattern recognition receptors. In addition, some of these cellular sensors can also recognize endogenous danger-associated molecular patterns (DAMPs) arising from damaged or dying cells and triggering innate immune responses. Among the cytosolic nucleic acid sensors, the cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS) plays an essential role in the activation of the type I interferon (IFNs) response and the production of pro-inflammatory cytokines. Indeed, upon nucleic acid binding, cGAS synthesizes cGAMP, a second messenger mediating the activation of the STING signaling pathway. The functional conservation of the cGAS-STING pathway during evolution highlights its importance in host cellular surveillance against pathogen infections. Apart from their functions in immunity, cGAS and STING also play major roles in nuclear functions and tumor development. Therefore, cGAS-STING is now considered as an attractive target to identify novel biomarkers and design therapeutics for auto-inflammatory and autoimmune disorders as well as infectious diseases and cancer. Here, we review the current knowledge about the structure of cGAS and the evolution from bacteria to Metazoa and present its main functions in defense against pathogens and cancer, in connection with STING. The advantages and limitations of in vivo models relevant for studying the cGAS-STING pathway will be discussed for the notion of species specificity and in the context of their integration into therapeutic screening assays targeting cGAG and/or STING.
Collapse
Affiliation(s)
- Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | | |
Collapse
|
61
|
Abstract
The cGAS-STING signalling pathway has emerged as a key mediator of inflammation in the settings of infection, cellular stress and tissue damage. Underlying this broad involvement of the cGAS-STING pathway is its capacity to sense and regulate the cellular response towards microbial and host-derived DNAs, which serve as ubiquitous danger-associated molecules. Insights into the structural and molecular biology of the cGAS-STING pathway have enabled the development of selective small-molecule inhibitors with the potential to target the cGAS-STING axis in a number of inflammatory diseases in humans. Here, we outline the principal elements of the cGAS-STING signalling cascade and discuss the general mechanisms underlying the association of cGAS-STING activity with various autoinflammatory, autoimmune and degenerative diseases. Finally, we outline the chemical nature of recently developed cGAS and STING antagonists and summarize their potential clinical applications.
Collapse
|
62
|
Cazzato S, Omenetti A, Ravaglia C, Poletti V. Lung involvement in monogenic interferonopathies. Eur Respir Rev 2020; 29:200001. [PMID: 33328278 PMCID: PMC9489100 DOI: 10.1183/16000617.0001-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Monogenic type I interferonopathies are inherited heterogeneous disorders characterised by early onset of systemic and organ specific inflammation, associated with constitutive activation of type I interferons (IFNs). In the last few years, several clinical reports identified the lung as one of the key target organs of IFN-mediated inflammation. The major pulmonary patterns described comprise children's interstitial lung diseases (including diffuse alveolar haemorrhages) and pulmonary arterial hypertension but diagnosis may be challenging. Respiratory symptoms may be either mild or absent at disease onset and variably associated with systemic or organ specific inflammation. In addition, associated extrapulmonary clinical features may precede lung function impairment by years, and patients may display severe/endstage lung involvement, although this may be clinically hidden during the long-term disease course. Conversely, a few cases of atypical severe lung involvement at onset have been reported without clinically manifested extrapulmonary signs. Hence, a multidisciplinary approach involving pulmonologists, paediatricians and rheumatologists should always be considered when a monogenic interferonopathy is suspected. Pulmonologists should also be aware of the main pattern of presentation to allow prompt diagnosis and a targeted therapeutic strategy. In this regard, promising therapeutic strategies rely on Janus kinase-1/2 (JAK-1/2) inhibitors blocking the type I IFN-mediated intracellular cascade.
Collapse
Affiliation(s)
- Salvatore Cazzato
- Pediatric Unit, Dept of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
- Joint first authors
| | - Alessia Omenetti
- Pediatric Unit, Dept of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
- Joint first authors
| | - Claudia Ravaglia
- Dept of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
| | - Venerino Poletti
- Dept of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Dept of Respiratory Diseases & Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
63
|
Hertzog J, Rehwinkel J. Regulation and inhibition of the DNA sensor cGAS. EMBO Rep 2020; 21:e51345. [PMID: 33155371 PMCID: PMC7726805 DOI: 10.15252/embr.202051345] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous sensing of nucleic acids is essential for host defence against invading pathogens by inducing antiviral and inflammatory cytokines. cGAS has emerged in recent years as a non-redundant DNA sensor important for detection of many viruses and bacteria. Upon binding to DNA, cGAS synthesises the cyclic dinucleotide 2'3'-cGAMP that binds to the adaptor protein STING and thereby triggers IRF3- and NFκB-dependent transcription. In addition to infection, the pathophysiology of an ever-increasing number of sterile inflammatory conditions in humans involves the recognition of DNA through cGAS. Consequently, the cGAS/STING signalling axis has emerged as an attractive target for pharmacological modulation. However, the development of cGAS and STING inhibitors has just begun and a need for specific and effective compounds persists. In this review, we focus on cGAS and explore how its activation by immunostimulatory DNA is regulated by cellular mechanisms, viral immune modulators and small molecules. We further use our knowledge of cGAS modulation by cells and viruses to conceptualise potential new ways of pharmacological cGAS targeting.
Collapse
Affiliation(s)
- Jonny Hertzog
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Jan Rehwinkel
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
64
|
Small molecules targeting the innate immune cGAS‒STING‒TBK1 signaling pathway. Acta Pharm Sin B 2020; 10:2272-2298. [PMID: 33354501 PMCID: PMC7745059 DOI: 10.1016/j.apsb.2020.03.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple cancer immunotherapies including chimeric antigen receptor T cell and immune checkpoint inhibitors (ICIs) have been successfully developed to treat various cancers by motivating the adaptive anti-tumor immunity. Particularly, the checkpoint blockade approach has achieved great clinic success as evidenced by several U.S. Food and Drug Administration (FDA)-approved anti-programmed death receptor 1/ligand 1 or anti-cytotoxic T lymphocyte associated protein 4 antibodies. However, the majority of cancers have low clinical response rates to these ICIs due to poor tumor immunogenicity. Indeed, the cyclic guanosine monophosphate-adenosine monophosphate synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS‒STING‒TBK1) axis is now appreciated as the major signaling pathway in innate immune response across different species. Aberrant signaling of this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection and cancers. In this perspective, we provide an updated review on the latest progress on the development of small molecule modulators targeting the cGAS‒STING‒TBK1 signaling pathway and their preclinical and clinical use as a new immune stimulatory therapy. Meanwhile, highlights on the clinical candidates, limitations and challenges, as well as future directions in this field are also discussed. Further, small molecule inhibitors targeting this signaling axis and their potential therapeutic use for various indications are discussed as well.
Collapse
Key Words
- ABZI, amidobenzimidazole
- ACMA, 9-amino-6-chloro-2-methoxyacridine
- AMP, adenosine monophosphate
- ATP, adenosine triphosphate
- Anti-tumor
- BNBC, 6-bromo-N-(naphthalen-1-yl)benzo[d][1,3]dioxole-5-carboxamide
- CBD, cyclic dinucleotide-binding domain
- CDA, cyclic diadenosine monophosphate (c-di-AMP)
- CDG, cyclic diguanosine monophosphate (c-di-GMP)
- CDN, cyclic dinucleotide
- CMA, 10-carboxymethyl-9-acridanone
- CTD, C-terminal domain
- CTLA-4, cytotoxic T lymphocyte associated protein 4
- CTT, C-terminal tail
- CXCL, chemokine (C-X-C motif) ligand
- DC50, concentration for 50% degradation
- DCs, dendritic cells
- DMXAA, 5,6-dimethylxanthenone-4-acetic acid
- DSDP, dispiro diketopiperzine
- EM, cryo-electron microscopy
- ENPP1, ecto-nucleotide pyrophosphatase/phosphodiesterase
- ER, endoplasmic reticulum
- FAA, flavone-8-acetic acid
- FDA, U.S. Food and Drug Administration
- FP, fluorescence polarization
- GMP, guanosine monophosphate
- GTP, guanosine triphosphate
- HCQ, hydrochloroquine
- HTS, high throughput screening
- ICI, immune checkpoint inhibitor
- IKK, IκB kinase
- IO, immune-oncology
- IRF3, interferon regulatory factor 3
- ISG, interferon stimulated gene
- ITC, isothermal titration calorimetry
- Immunotherapy
- KD, kinase domain
- LBD, ligand-binding domain
- MDCK, Madin–Darby canine kidney
- MG, Mangostin
- MI, maximum induction
- MLK, mixed lineage kinase
- MinEC5×, minimum effective concentration for inducing 5-fold luciferase activity
- NF-κB, nuclear factor-κB
- Ntase, nucleotidyl transferase
- PBMCs, peripheral-blood mononuclear cells
- PD-1, programmed death receptor 1
- PD-L1, programmed death ligand 1
- PDE, phosphodiesterases
- PDK1, 3-phosphoinositide-dependent protein kinase 1
- PPi, pyrophosphoric acid
- PROTACs, proteolysis targeting chimeras
- PRRs, pattern recognition receptors
- QC, quinacrine
- SAR, structure–activity relationship
- SDD, scaffold and dimerization domain
- STAT, signal transducer and activator of transcription
- STING
- STING, stimulator of interferon genes
- Small molecule modulators
- TBK1
- TBK1, TANK-binding kinase 1
- THIQCs, tetrahydroisoquinolone acetic acids
- TNFRSF, tumor necrosis factor receptor superfamily
- ULD, ubiquitin-like domain
- VHL, von Hippel–Lindau
- cAIMP, cyclic adenosine-inosine monophosphate
- cGAMP, cyclic guanosine monophosphate-adenosine monophosphate
- cGAS
- cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase
- dsDNA, double-stranded DNA
- i.t., intratumoral
Collapse
|
65
|
Molecular effects and retinopathy induced by hydroxychloroquine during SARS-CoV-2 therapy: Role of CYP450 isoforms and epigenetic modulations. Eur J Pharmacol 2020; 886:173454. [PMID: 32763298 PMCID: PMC7402235 DOI: 10.1016/j.ejphar.2020.173454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 01/07/2023]
Abstract
Antimalaria drugs such as chloroquine (CQ) and hydroxychloroquine (HCQ) have been administered to several inflammatory diseases including rheumatoid arthritis and systemic lupus erythematosus, and infectious diseases such as acquired immune deficiency syndrome and influenza. Recently, several patients infected with novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were given HCQ, and showed a discrepant response. HCQ inhibits SARS-CoV-2 cell entry, and inflammatory cascade by interfering with lysosomal and endosomal activities, and autophagy, impeding virus-membrane fusion, and inhibiting cytokine production resulted from inflammatory pathways activation. Despite ongoing administration of HCQ in a wide spectrum of disorders, there are some reports about several side effects, especially retinopathy in some patients treated with HCQ. Cytochrome P450 (CYP450) and its isoforms are the main metabolizers of HCQ and CQ. Pharmacokinetic properties of CYP enzymes are influenced by CYP polymorphism, non-coding RNAs, and epigenetic mechanisms such as DNA methylation, and histone acetylation. Accumulating evidence about side effects of HCQ in some patients raise the possibility that different response of patients to HCQ might be due to difference in their genome. Therefore, CYP450 genotyping especially for CYP2D6 might be helpful to refine HCQ dosage. Also, regular control of retina should be considered for patients under HCQ treatment. The major focus of the present review is to discuss about the pharmacokinetic and pharmacodynamic properties of CQ and HCQ that may be influenced by epigenetic mechanisms, and consequently cause several side effects especially retinopathy during SARS-CoV-2 therapy.
Collapse
|
66
|
Liu K, Lan Y, Li X, Li M, Cui L, Luo H, Luo L. Development of small molecule inhibitors/agonists targeting STING for disease. Biomed Pharmacother 2020; 132:110945. [PMID: 33254439 DOI: 10.1016/j.biopha.2020.110945] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/07/2023] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) -stimulator of interferon genes (STING) signaling pathway is the primary immune response pathway in the cytoplasm. Pharmacological regulation of the STING pathway has good characteristics in both structure and function, which plays a significant role in the immunotherapy of autoimmune diseases, autoinflammatory diseases, and cancer. In this review, we summarized the activation of STING signaling pathway, the STING-related diseases, the development principle and the latest progress of inhibitors and agonists targeting STING. Our review demonstrates that STING signal pathway is a promising drug target, providing effective clues and correct guidance for the discovery of novel small molecule inhibitors/agonists that targeted STING for cancer, autoimmune, and inflammatory diseases.
Collapse
Affiliation(s)
- Kaifeng Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Yongqi Lan
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaoling Li
- Animal Experiment Center of Guangdong Medical University, Zhanjiang, 524023, China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
67
|
Thierry AR, Roch B. Neutrophil Extracellular Traps and By-Products Play a Key Role in COVID-19: Pathogenesis, Risk Factors, and Therapy. J Clin Med 2020; 9:E2942. [PMID: 32933031 PMCID: PMC7565044 DOI: 10.3390/jcm9092942] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding of the pathogenesis of the coronavirus disease-2019 (COVID-19) remains incomplete, particularly in respect to the multi-organ dysfunction it may cause. We were the first to report the analogous biological and physiological features of COVID-19 pathogenesis and the harmful amplification loop between inflammation and tissue damage induced by the dysregulation of neutrophil extracellular traps (NETs) formation. Given the rapid evolution of this disease, the nature of its symptoms, and its potential lethality, we hypothesize that COVID-19 progresses under just such an amplifier loop, leading to a massive, uncontrolled inflammation process. Here, we describe in-depth the correlations of COVID-19 symptoms and biological features with those where uncontrolled NET formation is implicated in various sterile or infectious diseases. General clinical conditions, as well as numerous pathological and biological features, are analogous with NETs deleterious effects. Among NETs by-products implicated in COVID-19 pathogenesis, one of the most significant appears to be elastase, in accelerating virus entry and inducing hypertension, thrombosis and vasculitis. We postulate that severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) may evade innate immune response, causing uncontrolled NETs formation and multi-organ failure. In addition, we point to indicators that NETS-associated diseases are COVID-19 risk factors. Acknowledging that neutrophils are the principal origin of extracellular and circulating DNA release, we nonetheless, explain why targeting NETs rather than neutrophils themselves may in practice be a better strategy. This paper also offers an in-depth review of NET formation, function and pathogenic dysregulation, as well as of current and prospective future therapies to control NETopathies. As such, it enables us also to suggest new therapeutic strategies to fight COVID-19. In combination with or independent of the latest tested approaches, we propose the evaluation, in the short term, of treatments with DNase-1, with the anti-diabetic Metformin, or with drugs targeting elastase (i.e., Silvelestat). With a longer perspective, we also advocate a significant increase in research on the development of toll-like receptors (TLR) and C-type lectin-like receptors (CLEC) inhibitors, NET-inhibitory peptides, and on anti-IL-26 therapies.
Collapse
Affiliation(s)
- Alain R. Thierry
- Research Institute of Cancerology of Montpellier, INSERM U1194, IRCM, ICM, Montpellier University, F-34298 Montpellier, France
| | - Benoit Roch
- Respiratory Medicine, University Hospital of Montpellier, Montpellier University, F-34298 Montpellier, France;
| |
Collapse
|
68
|
Satarker S, Ahuja T, Banerjee M, E VB, Dogra S, Agarwal T, Nampoothiri M. Hydroxychloroquine in COVID-19: Potential Mechanism of Action Against SARS-CoV-2. CURRENT PHARMACOLOGY REPORTS 2020; 6:203-211. [PMID: 32864299 PMCID: PMC7443392 DOI: 10.1007/s40495-020-00231-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The rapid spread of virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has turned out to be a global emergency. Symptoms of this viral infection, coronavirus disease 2019 (COVID-19), include mild infections of the upper respiratory tract, viral pneumonia, respiratory failure, multiple organ failure and death. Till date, no drugs have been discovered to treat COVID-19 patients, and therefore, a considerable amount of interest has been shown in repurposing the existing drugs. RECENT FINDINGS Out of these drugs, chloroquine (CQ) and hydroxychloroquine (HCQ) have demonstrated positive results indicating a potential antiviral role against SARS-CoV-2. Its mechanism of action (MOA) includes the interference in the endocytic pathway, blockade of sialic acid receptors, restriction of pH mediated spike (S) protein cleavage at the angiotensin-converting enzyme 2 (ACE2) binding site and prevention of cytokine storm. Unfortunately, its adverse effects like gastrointestinal complications, retinopathy and QT interval prolongation are evident in treated COVID-19 patients. Yet, multiple clinical trials have been employed in several countries to evaluate its ability in turning into a needed drug in this pandemic. SUMMARY This review attempts to summarize the MOA of CQ/HCQ and its side effects. The existing literature hints that till date, the role of CQ/HCQ in COVID-19 may be sceptical, and further studies are warranted for obtaining a therapeutic option that could be effectively used across the world to rise out from this pandemic.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Tejas Ahuja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Madhuparna Banerjee
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Shagun Dogra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Tushar Agarwal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| |
Collapse
|
69
|
Celastrol ameliorates autoimmune disorders in Trex1-deficient mice. Biochem Pharmacol 2020; 178:114090. [DOI: 10.1016/j.bcp.2020.114090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
|
70
|
Liao Y, Cheng J, Kong X, Li S, Li X, Zhang M, Zhang H, Yang T, Dong Y, Li J, Xu Y, Yuan Z. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Am J Cancer Res 2020; 10:9644-9662. [PMID: 32863951 PMCID: PMC7449914 DOI: 10.7150/thno.47651] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] Open
Abstract
Rationale: It is known that neuroinflammation plays a critical and detrimental role in the development of cerebral ischemia/reperfusion (I/R), but the regulation of the cyclic GMP-AMP synthase (cGAS)-mediated innate immune response in I/R-induced neuroinflammation is largely unexplored. This study aimed to investigate the function and regulatory mechanism of cGAS in I/R-induced neuroinflammation and brain injury, and to identify possible strategies for the treatment of ischemic stroke. Methods: To demonstrate that microglial histone deacetylase 3 (HDAC3) regulates the microglial cGAS-stimulator of interferon genes (cGAS-STING) pathway and is involved in I/R-induced neuroinflammation and brain injury, a series of cell biological, molecular, and biochemical approaches were utilized. These approaches include transient middle cerebral artery occlusion (tMCAO), real-time polymerase chain reaction (PCR), RNA sequencing, western blot, co-immunoprecipitation, chromosome-immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), dual-luciferase reporter assay, immunohistochemistry, and confocal imaging. Results: The microglial cGAS- STING pathway was activated by mitochondrial DNA, which promoted the formation of a pro-inflammatory microenvironment. In addition, we revealed that HDAC3 transcriptionally promoted the expression of cGAS and potentiated the activation of the cGAS-STING pathway by regulating the acetylation and nuclear localization of p65 in microglia. Our in vivo results indicated that deletion of cGAS or HDAC3 in microglia attenuated I/R-induced neuroinflammation and brain injury. Conclusion: Collectively, we elucidated that the HDAC3-p65-cGAS-STING pathway is involved in the development of I/R-induced neuroinflammation, identifying a new therapeutic avenue for the treatment of ischemic stroke.
Collapse
|
71
|
Affiliation(s)
- Xia Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Phase I Unit, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
72
|
Sun Y, Cheng Y. STING or Sting: cGAS-STING-Mediated Immune Response to Protozoan Parasites. Trends Parasitol 2020; 36:773-784. [PMID: 32736985 DOI: 10.1016/j.pt.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that the DNA-sensing pathway plays a crucial role in innate immunity against multiple diseases, especially infectious diseases. Cyclic GMP-AMP synthase (cGAS), as a DNA sensor, and stimulator of interferon (IFN) genes (STING), as an adaptor protein, are the central components that link DNA sensing to immunologic functions - including, but not limited to, the type I IFN response. Recently, a series of studies have revealed that genomic DNA from protozoan parasites triggers the cGAS-STING pathway, and these studies identified the positive and negative regulators that modulate the signaling in parasite infection. Here, we summarize current understanding of the critical functions and potential applications of the cGAS-STING axis in parasitic diseases, specifically those caused by malaria parasites.
Collapse
Affiliation(s)
- Yifan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
73
|
Nirk EL, Reggiori F, Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol Med 2020; 12:e12476. [PMID: 32715647 PMCID: PMC7411564 DOI: 10.15252/emmm.202012476] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used as antimalarial drugs, hydroxychloroquine (HCQ) and, to a lesser extent, chloroquine (CQ) are currently being used to treat several diseases. Due to its cost‐effectiveness, safety and efficacy, HCQ is especially used in rheumatic autoimmune disorders (RADs), such as systemic lupus erythematosus, primary Sjögren's syndrome and rheumatoid arthritis. Despite this widespread use in the clinic, HCQ molecular modes of action are still not completely understood. By influencing several cellular pathways through different mechanisms, CQ and HCQ inhibit multiple endolysosomal functions, including autophagy, as well as endosomal Toll‐like receptor activation and calcium signalling. These effects alter several aspects of the immune system with the synergistic consequence of reducing pro‐inflammatory cytokine production and release, one of the most marked symptoms of RADs. Here, we review the current knowledge on the molecular modes of action of these drugs and the circumstances under which they trigger side effects. This is of particular importance as the therapeutic use of HCQ is expanding beyond the treatment of malaria and RADs.
Collapse
Affiliation(s)
- Eliise Laura Nirk
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
74
|
Tao SS, Wu GC, Zhang Q, Zhang TP, Leng RX, Pan HF, Ye DQ. TREX1 As a Potential Therapeutic Target for Autoimmune and Inflammatory Diseases. Curr Pharm Des 2020; 25:3239-3247. [PMID: 31475890 DOI: 10.2174/1381612825666190902113218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES The 3' repair exonuclease 1 (TREX1) gene is the major DNA-specific 3'-5 'exonuclease of mammalian cells which reduces single- and double-stranded DNA (ssDNA and dsDNA) to prevent undue immune activation mediated by the nucleic acid. TREX1 is also a crucial suppressor of selfrecognition that protects the host from inappropriate autoimmune activations. It has been revealed that TREX1 function is necessary to prevent host DNA accumulating after cell death which could actuate an autoimmune response. In the manuscript, we will discuss in detail the latest advancement to study the role of TREX1 in autoimmune disease. METHODS As a pivotal cytoprotective, antioxidant, anti-apoptotic, immunosuppressive, as well as an antiinflammatory molecule, the functional mechanisms of TREX1 were multifactorial. In this review, we will briefly summarize the latest advancement in studying the role of TREX1 in autoimmune disease, and discuss its potential as a therapeutic target for these diseases. RESULTS Deficiency of TREX1 in human patients and murine models is characterized by systemic inflammation and the disorder of TREX1 functions drives inflammatory responses leading to autoimmune disease. Moreover, much more studies revealed that mutations in TREX1 have been associated with a range of autoimmune disorders. But it is also unclear whether the mutations of TREX1 play a causal role in the disease progression, and whether manipulation of TREX1 has a beneficial effect in the treatment of autoimmune diseases. CONCLUSION Integration of functional TREX1 biology into autoimmune diseases may further deepen our understanding of the development and pathogenesis of autoimmune diseases and provide new clues and evidence for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Ping Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| |
Collapse
|
75
|
Zhao W, Xiong M, Yuan X, Li M, Sun H, Xu Y. In Silico Screening-Based Discovery of Novel Inhibitors of Human Cyclic GMP-AMP Synthase: A Cross-Validation Study of Molecular Docking and Experimental Testing. J Chem Inf Model 2020; 60:3265-3276. [PMID: 32459092 DOI: 10.1021/acs.jcim.0c00171] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) has been recently uncovered to be a promising therapeutic target for immune-associated diseases. Until now, only a few inhibitors have been identified through high-throughput screening campaigns. Here, we reported the discovery of novel inhibitors for the catalytic domain of human cGAS (h-cGASCD) by virtual screening for the first time. To generate a reliable docking mode, we first obtained a high-resolution crystal structure of h-cGASCD in complex with PF-06928215, a known inhibitor of h-cGAS, followed by molecular dynamics simulations on this complex structure. Four fragment hits were identified by the virtual screening together with a thermal shift assay. The crystal structures of these four compounds in complex with h-cGASCD were subsequently determined, and the binding modes of the compounds were similar to those predicted by molecular docking, supporting the reliability of the docking model. In addition, an enzyme activity assay identified compound 18 (IC50 = 29.88 ± 3.20 μM) from the compounds predicted by the virtual screening. A similarity search of compound 18 followed by a second virtual screening led to the discovery of compounds S2 (IC50 = 13.1 ± 0.09 μM) and S3 (IC50 = 4.9 ± 0.26 μM) as h-cGAS inhibitors with improved potency. Therefore, the present study not only provides the validated hit compounds for further development of h-cGAS inhibitors but also demonstrates a cross-validation study of virtual screening, in vitro experimental assays, and crystal structure determination.
Collapse
Affiliation(s)
- Wenfeng Zhao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China.,CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Muya Xiong
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojing Yuan
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
76
|
Skopelja-Gardner S, An J, Tai J, Tanaka L, Sun X, Hermanson P, Baum R, Kawasumi M, Green R, Gale M, Kalus A, Werth VP, Elkon KB. The early local and systemic Type I interferon responses to ultraviolet B light exposure are cGAS dependent. Sci Rep 2020; 10:7908. [PMID: 32404939 PMCID: PMC7220927 DOI: 10.1038/s41598-020-64865-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Abstract
Most systemic lupus erythematosus (SLE) patients are photosensitive and ultraviolet B light (UVB) exposure worsens cutaneous disease and precipitates systemic flares of disease. The pathogenic link between skin disease and systemic exacerbations in SLE remains elusive. In an acute model of UVB-triggered inflammation, we observed that a single UV exposure triggered a striking IFN-I signature not only in the skin, but also in the blood and kidneys. The early IFN-I signature was significantly higher in female compared to male mice. The early IFN-I response in the skin was almost entirely, and in the blood partly, dependent on the presence of cGAS, as was skin inflammatory cell infiltration. Inhibition of cGAMP hydrolysis augmented the UVB-triggered IFN-I response. UVB skin exposure leads to cGAS-activation and both local and systemic IFN-I signature and could contribute to acute flares of disease in susceptible subjects such as patients with SLE.
Collapse
Affiliation(s)
| | - Jie An
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Joyce Tai
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Lena Tanaka
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Xizhang Sun
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Payton Hermanson
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Rebecca Baum
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Masaoki Kawasumi
- Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Richard Green
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Andrea Kalus
- Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Victoria P Werth
- Dermatology Section, Philadelphia Veterans Affairs Medical Center, Philadelphia, USA
| | - Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA.
| |
Collapse
|
77
|
Key J, Maletzko A, Kohli A, Gispert S, Torres-Odio S, Wittig I, Heidler J, Bárcena C, López-Otín C, Lei Y, West AP, Münch C, Auburger G. Loss of mitochondrial ClpP, Lonp1, and Tfam triggers transcriptional induction of Rnf213, a susceptibility factor for moyamoya disease. Neurogenetics 2020; 21:187-203. [PMID: 32342250 PMCID: PMC7283203 DOI: 10.1007/s10048-020-00609-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/28/2020] [Indexed: 02/08/2023]
Abstract
Human RNF213, which encodes the protein mysterin, is a known susceptibility gene for moyamoya disease (MMD), a cerebrovascular condition with occlusive lesions and compensatory angiogenesis. Mysterin mutations, together with exposure to environmental trigger factors, lead to an elevated stroke risk since childhood. Mysterin is induced during cell stress, to function as cytosolic AAA+ ATPase and ubiquitylation enzyme. Little knowledge exists, in which context mysterin is needed. Here, we found that genetic ablation of several mitochondrial matrix factors, such as the peptidase ClpP, the transcription factor Tfam, as well as the peptidase and AAA+ ATPase Lonp1, potently induces Rnf213 transcript expression in various organs, in parallel with other components of the innate immune system. Mostly in mouse fibroblasts and human endothelial cells, the Rnf213 levels showed prominent upregulation upon Poly(I:C)-triggered TLR3-mediated responses to dsRNA toxicity, as well as upon interferon gamma treatment. Only partial suppression of Rnf213 induction was achieved by C16 as an antagonist of PKR (dsRNA-dependent protein kinase). Since dysfunctional mitochondria were recently reported to release immune-stimulatory dsRNA into the cytosol, our results suggest that mysterin becomes relevant when mitochondrial dysfunction or infections have triggered RNA-dependent inflammation. Thus, MMD has similarities with vasculopathies that involve altered nucleotide processing, such as Aicardi-Goutières syndrome or systemic lupus erythematosus. Furthermore, in MMD, the low penetrance of RNF213 mutations might be modified by dysfunctions in mitochondria or the TLR3 pathway.
Collapse
Affiliation(s)
- Jana Key
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany.,Faculty of Biosciences, Goethe-University, Frankfurt am Main, Germany
| | - Antonia Maletzko
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Aneesha Kohli
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany.,Institute of Biochemistry II, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany.,Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX, USA
| | - Ilka Wittig
- Functional Proteomics Group, Goethe-University Hospital, 60590, Frankfurt am Main, Germany
| | - Juliana Heidler
- Functional Proteomics Group, Goethe-University Hospital, 60590, Frankfurt am Main, Germany
| | - Clea Bárcena
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX, USA
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
78
|
Balka KR, Louis C, Saunders TL, Smith AM, Calleja DJ, D'Silva DB, Moghaddas F, Tailler M, Lawlor KE, Zhan Y, Burns CJ, Wicks IP, Miner JJ, Kile BT, Masters SL, De Nardo D. TBK1 and IKKε Act Redundantly to Mediate STING-Induced NF-κB Responses in Myeloid Cells. Cell Rep 2020; 31:107492. [PMID: 32268090 DOI: 10.1016/j.celrep.2020.03.056] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
Stimulator of Interferon Genes (STING) is a critical component of host innate immune defense but can contribute to chronic autoimmune or autoinflammatory disease. Once activated, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS)-STING pathway induces both type I interferon (IFN) expression and nuclear factor-κB (NF-κB)-mediated cytokine production. Currently, these two signaling arms are thought to be mediated by a single upstream kinase, TANK-binding kinase 1 (TBK1). Here, using genetic and pharmacological approaches, we show that TBK1 alone is dispensable for STING-induced NF-κB responses in human and mouse immune cells, as well as in vivo. We further demonstrate that TBK1 acts redundantly with IκB kinase ε (IKKε) to drive NF-κB upon STING activation. Interestingly, we show that activation of IFN regulatory factor 3 (IRF3) is highly dependent on TBK1 kinase activity, whereas NF-κB is significantly less sensitive to TBK1/IKKε kinase inhibition. Our work redefines signaling events downstream of cGAS-STING. Our findings further suggest that cGAS-STING will need to be targeted directly to effectively ameliorate the inflammation underpinning disorders associated with STING hyperactivity.
Collapse
Affiliation(s)
- Katherine R Balka
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tahnee L Saunders
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Amber M Smith
- Departments of Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dale J Calleja
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Damian B D'Silva
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maximilien Tailler
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Yifan Zhan
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher J Burns
- Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ian P Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Rheumatology Unit, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Jonathan J Miner
- Departments of Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin T Kile
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Health and Medical Sciences Faculty Office, University of Adelaide, Adelaide, SA 5005, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
79
|
Sintim HO, Mikek CG, Wang M, Sooreshjani MA. Interrupting cyclic dinucleotide-cGAS-STING axis with small molecules. MEDCHEMCOMM 2019; 10:1999-2023. [PMID: 32206239 PMCID: PMC7069516 DOI: 10.1039/c8md00555a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
The cyclic dinucleotide-cGAS-STING axis plays important roles in host immunity. Activation of this signaling pathway, via cytosolic sensing of bacterial-derived c-di-GMP/c-di-AMP or host-derived cGAMP, leads to the production of inflammatory interferons and cytokines that help resolve infection. Small molecule activators of the cGAS-STING axis have the potential to augment immune response against various pathogens or cancer. The aberrant activation of this pathway, due to gain-of-function mutations in any of the proteins that are part of the signaling axis, could lead to various autoimmune diseases. Inhibiting various nodes of the cGAS-STING axis could provide relief to patients with autoimmune diseases. Many excellent reviews on the cGAS-STING axis have been published recently, and these have mainly focused on the molecular details of the cGAS-STING pathway. This review however focuses on small molecules that can be used to modulate various aspects of the cGAS-STING pathway, as well as other parallel inflammatory pathways.
Collapse
Affiliation(s)
- Herman O Sintim
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Institute for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
- Purdue Institute of Inflammation and Infectious Diseases , Purdue University , West Lafayette , IN 47907 , USA
| | - Clinton G Mikek
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| | - Modi Wang
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| | - Moloud A Sooreshjani
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| |
Collapse
|
80
|
Feng X, Liu D, Li Z, Bian J. Bioactive modulators targeting STING adaptor in cGAS-STING pathway. Drug Discov Today 2019; 25:230-237. [PMID: 31758915 DOI: 10.1016/j.drudis.2019.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-pathway triggers innate immune responses by recognizing cytosolic DNA. Recent studies revealed that STING adaptor associates with various diseases, and several modulators targeting STING have been identified including three agonists that have entered clinical trials for treating cancer over the past 2 years. In particular, the efficacy of STING agonists and/or antagonists suggests adaptor STING as a potential therapeutic target for diverse diseases. Herein, we summarize the latest advances in understanding STING functioning and provide an overview of recent STING modulator discoveries, including structural details and the potential therapeutic applications of these modulators.
Collapse
Affiliation(s)
- Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dongyu Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
81
|
The triggers of the cGAS-STING pathway and the connection with inflammatory and autoimmune diseases. INFECTION GENETICS AND EVOLUTION 2019; 77:104094. [PMID: 31689545 DOI: 10.1016/j.meegid.2019.104094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a cytosolic nucleic acid sensor that can bind to dsDNA. It maintains an autoinhibited state in the absence of cytosolic dsDNA, while when activated, it in turn activates its adaptor protein STING, ultimately triggering a cascade that produces inflammatory cytokines and type I interferons (IFNs). With further research, additional types of nucleic acids have been found to be activators of the cGAS-STING pathway. The cGAS-STING pathway can provide protection or resistance against infections; however, improper or overactivation might cause severe inflammatory pathologies, including autoimmunity. This article systematically reviews the latest research progress on the axis, including categorical pathway triggers, the connection with autoimmune disease and drug therapy progress.
Collapse
|
82
|
Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2019; 18:845-867. [PMID: 31554927 DOI: 10.1038/s41573-019-0043-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Nucleic acid sensors, primarily TLR and RLR family members, as well as cGAS-STING signalling, play a critical role in the preservation of cellular and organismal homeostasis. Accordingly, deregulated nucleic acid sensing contributes to the origin of a diverse range of disorders, including infectious diseases, as well as cardiovascular, autoimmune and neoplastic conditions. Accumulating evidence indicates that normalizing aberrant nucleic acid sensing can mediate robust therapeutic effects. However, targeting nucleic acid sensors with pharmacological agents, such as STING agonists, presents multiple obstacles, including drug-, target-, disease- and host-related issues. Here, we discuss preclinical and clinical data supporting the potential of this therapeutic paradigm and highlight key limitations and possible strategies to overcome them.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Jules A Hoffmann
- University of Strasbourg Institute for Advanced Studies, Strasbourg, France.,CNRS UPR 9022, Institute for Molecular and Cellular Biology, Strasbourg, France.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université Paris Descartes, Paris, France.
| |
Collapse
|
83
|
Kumar V. A STING to inflammation and autoimmunity. J Leukoc Biol 2019; 106:171-185. [PMID: 30990921 DOI: 10.1002/jlb.4mir1018-397rr] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
Various intracellular pattern recognition receptors (PRRs) recognize cytosolic pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Cyclic GMP-AMP synthase (cGAS), a cytosolic PRR, recognizes cytosolic nucleic acids including dsDNAs. The recognition of dsDNA by cGAS generates cyclic GMP-AMP (GAMP). The cGAMP is then recognized by STING generating type 1 IFNs and NF-κB-mediated generation of pro-inflammatory cytokines and molecules. Thus, cGAS-STING signaling mediated recognition of cytosolic dsDNA causing the induction of type 1 IFNs plays a crucial role in innate immunity against cytosolic pathogens, PAMPs, and DAMPs. The overactivation of this system may lead to the development of autoinflammation and autoimmune diseases. The article opens with the introduction of different PRRs involved in the intracellular recognition of dsDNA and gives a brief introduction of cGAS-STING signaling. The second section briefly describes cGAS as intracellular PRR required to recognize intracellular nucleic acids (dsDNA and CDNs) and the formation of cGAMP. The cGAMP acts as a second messenger to activate STING- and TANK-binding kinase 1-mediated generation of type 1 IFNs and the activation of NF-κB. The third section of the article describes the role of cGAS-STING signaling in the induction of autoinflammation and various autoimmune diseases. The subsequent fourth section describes both chemical compounds developed and the endogenous negative regulators of cGAS-STING signaling required for its regulation. Therapeutic targeting of cGAS-STING signaling could offer new ways to treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
84
|
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease whose pathogenesis can be conceptualized by a model based on a central role for immune complexes (ICs) between antinuclear antibodies and nucleic acids. According to this model, ICs can promote pathogenesis by two main mechanisms: deposition in the tissue to incite local inflammation and interaction with cells of the innate immune system to stimulate the production of cytokines, most prominently type 1 interferon. The latter stimulation results from the uptake of DNA and RNA in the form of ICs into cells and subsequent signaling by internal nucleic acid sensors for DNA and RNA. These sensors are likely important for the response to intracellular infection, although they may also be triggered during cell stress or injury by DNA or RNA aberrantly present in the cytoplasm. For IC formation, a source of extracellular DNA and RNA is essential. The current model of SLE posits that cell death is the origin of the nucleic acids in the ICs and that impairment of clearance mechanisms increases the amount of nuclear material in the extracellular space. This model of SLE is important since it points to new approaches to therapy; agents targeting interferon or the interferon receptor are examples of therapeutic approaches derived from this model. Future studies will explore novel biomarkers to monitor the operation of these mechanisms and to elucidate other steps in pathogenesis that can be targeted for therapy.
Collapse
Affiliation(s)
- David S Pisetsky
- Department of Medicine and Immunology, Duke University Medical Center and Medical Research Service, VA Medical Center, Durham, NC, USA
| |
Collapse
|