51
|
Serapian SA, Triveri A, Marchetti F, Castelli M, Colombo G. Exploiting Folding and Degradation Machineries To Target Undruggable Proteins: What Can a Computational Approach Tell Us? ChemMedChem 2021; 16:1593-1599. [PMID: 33443306 DOI: 10.1002/cmdc.202000960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 01/03/2023]
Abstract
Advances in genomics and proteomics have unveiled an ever-growing number of key proteins and provided mechanistic insights into the genesis of pathologies. This wealth of data showed that changes in expression levels of specific proteins, mutations, and post-translational modifications can result in (often subtle) perturbations of functional protein-protein interaction networks, which ultimately determine disease phenotypes. Although many such validated pathogenic proteins have emerged as ideal drug targets, there are also several that escape traditional pharmacological regulation; these proteins have thus been labeled "undruggable". The challenges posed by undruggable targets call for new sorts of molecular intervention. One fascinating solution is to perturb a pathogenic protein's expression levels, rather than blocking its activities. In this Concept paper, we shall discuss chemical interventions aimed at recruiting undruggable proteins to the ubiquitin proteasome system, or aimed at disrupting protein-protein interactions in the chaperone-mediated cellular folding machinery: both kinds of intervention lead to a decrease in the amount of active pathogenic protein expressed. Specifically, we shall discuss the role of computational strategies in understanding the molecular determinants characterizing the function of synthetic molecules typically designed for either type of intervention. Finally, we shall provide our perspectives and views on the current limitations and possibilities to expand the scope of rational approaches to the design of chemical regulators of protein levels.
Collapse
Affiliation(s)
- Stefano A Serapian
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Alice Triveri
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Filippo Marchetti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Matteo Castelli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
52
|
Eyermann CE, Haley JD, Alexandrova EM. The HSP-RTK-Akt axis mediates acquired resistance to Ganetespib in HER2-positive breast cancer. Cell Death Dis 2021; 12:126. [PMID: 33500390 PMCID: PMC7838268 DOI: 10.1038/s41419-021-03414-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide. Human epidermal growth factor receptor 2 (HER2)-positive subtype comprises 20% of sporadic breast cancers and is an aggressive disease. While targeted therapies have greatly improved its management, primary and acquired resistance remain a major roadblock to making it a curable malignancy. Ganetespib, an Hsp90 (Heat shock protein 90) small molecule inhibitor, shows preferential efficacy in HER2-positive breast cancer, including therapy-refractory cases, and has an excellent safety profile in ongoing clinical trials (38 in total, six on breast cancer). However, Ganetespib itself evokes acquired resistance, which is a significant obstacle to its clinical advancement. Here, we show that Ganetespib potently, albeit temporarily, suppresses HER2-positive breast cancer in genetic mouse models, but the animals eventually succumb via acquired resistance. We found that Ganetespib-resistant tumors upregulate several compensatory HSPs, as well as a wide network of phospho-activated receptor tyrosine kinases (RTKs), many of which are HSP clients. Downstream of p-RTKs, the MAPK pathway remains suppressed in the resistant tumors, as is HER2 itself. In contrast, the p-RTK effector Akt is stabilized and phospho-activated. Notably, pharmacological inhibition of Akt significantly delays acquired Ganetespib resistance, by 50%. These data establish Akt as a unifying actionable node downstream of the broadly upregulated HSP/p-RTK resistance program and suggests that Akt co-targeting with Ganetespib may be a superior therapeutic strategy in the clinic.
Collapse
Affiliation(s)
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA
| | | |
Collapse
|
53
|
Mishra SJ, Liu W, Beebe K, Banerjee M, Kent CN, Munthali V, Koren J, Taylor JA, Neckers LM, Holzbeierlein J, Blagg BSJ. The Development of Hsp90β-Selective Inhibitors to Overcome Detriments Associated with pan-Hsp90 Inhibition. J Med Chem 2021; 64:1545-1557. [PMID: 33428418 DOI: 10.1021/acs.jmedchem.0c01700] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 90 kD heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding of select proteins, many of which are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials for the treatment of cancer, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms, which may lead to adverse effects. The development of Hsp90 isoform-selective inhibitors represents an alternative approach toward the treatment of cancer and may limit some of these detriments. Described herein, is a structure-based approach to develop isoform-selective inhibitors of Hsp90β, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90β-selective inhibitors as a method for overcoming the detriments associated with pan-inhibition.
Collapse
Affiliation(s)
- Sanket J Mishra
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Weiya Liu
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Kristin Beebe
- Center for Cancer Research, National Cancer Institute, Building 10 - Hatfield CRC, Rockville, Maryland 20892, United States
| | - Monimoy Banerjee
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Caitlin N Kent
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Vitumbiko Munthali
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - John Koren
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - John A Taylor
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Leonard M Neckers
- Center for Cancer Research, National Cancer Institute, Building 10 - Hatfield CRC, Rockville, Maryland 20892, United States
| | - Jeffrey Holzbeierlein
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
54
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
55
|
Visualizing the Dynamics of a Protein Folding Machinery: The Mechanism of Asymmetric ATP Processing in Hsp90 and its Implications for Client Remodelling. J Mol Biol 2020; 433:166728. [PMID: 33275968 DOI: 10.1016/j.jmb.2020.166728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023]
Abstract
The Hsp90 chaperone system interacts with a wide spectrum of client proteins, forming variable and dynamic multiprotein complexes that involve the intervention of cochaperone partners. Recent results suggest that the role of Hsp90 complexes is to establish interactions that suppress unwanted client activities, allow clients to be protected from degradation and respond to biochemical signals. Cryo-electron microscopy (cryoEM) provided the first key molecular picture of Hsp90 in complex with a kinase, Cdk4, and a cochaperone, Cdc37. Here, we use a combination of molecular dynamics (MD) simulations and advanced comparative analysis methods to elucidate key aspects of the functional dynamics of the complex, with different nucleotides bound at the N-terminal Domain of Hsp90. The results reveal that nucleotide-dependent structural modulations reverberate in a striking asymmetry of the dynamics of Hsp90 and identify specific patterns of long-range coordination between the nucleotide binding site, the client binding pocket, the cochaperone and the client. Our model establishes a direct atomic-resolution cross-talk between the ATP-binding site, the client region that is to be remodeled and the surfaces of the Cdc37-cochaperone.
Collapse
|
56
|
Dai J, Zhu M, Qi X, Wang Y, Li H, Tang S, Wang Q, Chen A, Liu M, Gu Q, Li D, Li J. Fungal mycotoxin penisuloxazin A, a novel C-terminal Hsp90 inhibitor and characteristics of its analogues on Hsp90 function related to binding sites. Biochem Pharmacol 2020; 182:114218. [PMID: 32949584 DOI: 10.1016/j.bcp.2020.114218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Hsp90 is a promising drug target for cancer therapy. However, toxicity and moderate effect are limitations of current inhibitors owing to broad protein degradation. The fungal mycotoxin penisuloxazin A (PNSA) belongs to a new epipolythiodiketopiperazines (ETPs) possessing a rare 3H-spiro[benzofuran-2,2'-piperazine] ring system. PNSA bound to cysteine residues C572/C598 of CT-Hsp90 with disulfide bonds and inhibits Hsp90 activity, resulting in apoptosis and growth inhibition of HCT116 cells in vitro and in vivo. We identified that analogues PEN-A and HDN-1 bound to C572/C597 and C572 of CT-Hsp90α respectively, with binding pattern very similar to PNSA. These ETPs exhibited different effects on ATPase activity, dimerization formation and selectivity on client protein of Hsp90, indicating client recognition of Hsp90 can be exactly regulated by different sites of Hsp90. Our findings not only offer new chemotypes for anticancer drug development, but also help to better understand biological function of Hsp90 for exploring inhibitor with some client protein bias.
Collapse
Affiliation(s)
- Jiajia Dai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Meilin Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Yanjuan Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shuai Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Academy of Sciences, Shanghai 201203, PR China
| | - Qiang Wang
- College of Pharmacy, South Central University for Nationalities, Wuhan 430074, PR China
| | - Ao Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| |
Collapse
|
57
|
Kim JY, Barua S, Huang MY, Park J, Yenari MA, Lee JE. Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection after Brain Injury. Cells 2020; 9:cells9092020. [PMID: 32887360 PMCID: PMC7563654 DOI: 10.3390/cells9092020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
The 70 kDa heat shock protein (HSP70) is a stress-inducible protein that has been shown to protect the brain from various nervous system injuries. It allows cells to withstand potentially lethal insults through its chaperone functions. Its chaperone properties can assist in protein folding and prevent protein aggregation following several of these insults. Although its neuroprotective properties have been largely attributed to its chaperone functions, HSP70 may interact directly with proteins involved in cell death and inflammatory pathways following injury. Through the use of mutant animal models, gene transfer, or heat stress, a number of studies have now reported positive outcomes of HSP70 induction. However, these approaches are not practical for clinical translation. Thus, pharmaceutical compounds that can induce HSP70, mostly by inhibiting HSP90, have been investigated as potential therapies to mitigate neurological disease and lead to neuroprotection. This review summarizes the neuroprotective mechanisms of HSP70 and discusses potential ways in which this endogenous therapeutic molecule could be practically induced by pharmacological means to ultimately improve neurological outcomes in acute neurological disease.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
| | - Mei Ying Huang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, Neurology (127) VAMC 4150 Clement St., San Francisco, CA 94121, USA
- Correspondence: (M.A.Y.); (J.E.L.); Tel.: +1-415-750-2011 (M.A.Y.); +82-2-2228-1646 (ext. 1659) (J.E.L.); Fax: +1-415-750-2273 (M.A.Y.); +82-2-365-0700 (J.E.L.)
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Correspondence: (M.A.Y.); (J.E.L.); Tel.: +1-415-750-2011 (M.A.Y.); +82-2-2228-1646 (ext. 1659) (J.E.L.); Fax: +1-415-750-2273 (M.A.Y.); +82-2-365-0700 (J.E.L.)
| |
Collapse
|
58
|
Li W, Chen Y, Ye M, Wang D, Chen Q. Evolutionary history of the heat shock protein 90 (Hsp90) family of 43 plants and characterization of Hsp90s in Solanum tuberosum. Mol Biol Rep 2020; 47:6679-6691. [PMID: 32780253 DOI: 10.1007/s11033-020-05722-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/02/2020] [Indexed: 01/12/2023]
Abstract
Heat shock protein 90 genes/proteins (Hsp90s) are related to the stress resistance found in various plant species. These proteins affect the growth and development of plants and have important effects on the plants under various stresses (cold, drought and salt) in the environment. In this study, we identified 334 Hsp90s from 43 plant species, and Hsp90s were found in all species. Phylogenetic tree and conserved domain database analysis of all Hsp90s showed three independent clades. The analysis of motifs, gene duplication events, and the expression data from PGSC website revealed the gene structures, evolution relationships, and expression patterns of the Hsp90s. In addition, analysis of the transcript levels of the 7 Hsp90s in potato (Solanum tuberosum) under low temperature and high temperature stresses showed that these genes were related to the temperature stresses. Especially StHsp90.2 and StHsp90.4, under high or low temperature conditions, the expression levels in leaves, stems, or roots were significantly up-regulated. Our findings revealed the evolution of the Hsp90s, which had guiding significance for further researching the precise functions of the Hsp90s.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Minghui Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
59
|
Glucose-Regulated Protein 94 (GRP94): A Novel Regulator of Insulin-Like Growth Factor Production. Cells 2020; 9:cells9081844. [PMID: 32781621 PMCID: PMC7465916 DOI: 10.3390/cells9081844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 01/22/2023] Open
Abstract
Mammals have two insulin-like growth factors (IGF) that are key mediators of somatic growth, tissue differentiation, and cellular responses to stress. Thus, the mechanisms that regulate the bioavailability of IGFs are important in both normal and aberrant development. IGF-I levels are primarily controlled via the growth hormone-IGF axis, in response to nutritional status, and also reflect metabolic diseases and cancer. One mechanism that controls IGF bioavailablity is the binding of circulating IGF to a number of binding proteins that keep IGF in a stable, but receptor non-binding state. However, even before IGF is released from the cells that produce it, it undergoes an obligatory association with a ubiquitous chaperone protein, GRP94. This binding is required for secretion of a properly folded, mature IGF. This chapter reviews the known aspects of the interaction and highlights the specificity issues yet to be determined. The IGF–GRP94 interaction provides a potential novel mechanism of idiopathic short stature, involving the obligatory chaperone and not just IGF gene expression. It also provides a novel target for cancer treatment, as GRP94 activity can be either inhibited or enhanced.
Collapse
|
60
|
Paladino A, Woodford MR, Backe SJ, Sager RA, Kancherla P, Daneshvar MA, Chen VZ, Bourboulia D, Ahanin EF, Prodromou C, Bergamaschi G, Strada A, Cretich M, Gori A, Veronesi M, Bandiera T, Vanna R, Bratslavsky G, Serapian SA, Mollapour M, Colombo G. Chemical Perturbation of Oncogenic Protein Folding: from the Prediction of Locally Unstable Structures to the Design of Disruptors of Hsp90-Client Interactions. Chemistry 2020; 26:9459-9465. [PMID: 32167602 PMCID: PMC7415569 DOI: 10.1002/chem.202000615] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/20/2022]
Abstract
Protein folding quality control in cells requires the activity of a class of proteins known as molecular chaperones. Heat shock protein-90 (Hsp90), a multidomain ATP driven molecular machine, is a prime representative of this family of proteins. Interactions between Hsp90, its co-chaperones, and client proteins have been shown to be important in facilitating the correct folding and activation of clients. Hsp90 levels and functions are elevated in tumor cells. Here, we computationally predict the regions on the native structures of clients c-Abl, c-Src, Cdk4, B-Raf and Glucocorticoid Receptor, that have the highest probability of undergoing local unfolding, despite being ordered in their native structures. Such regions represent potential ideal interaction points with the Hsp90-system. We synthesize mimics spanning these regions and confirm their interaction with partners of the Hsp90 complex (Hsp90, Cdc37 and Aha1) by Nuclear Magnetic Resonance (NMR). Designed mimics selectively disrupt the association of their respective clients with the Hsp90 machinery, leaving unrelated clients unperturbed and causing apoptosis in cancer cells. Overall, selective targeting of Hsp90 protein-protein interactions is achieved without causing indiscriminate degradation of all clients, setting the stage for the development of therapeutics based on specific chaperone:client perturbation.
Collapse
Affiliation(s)
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Priyanka Kancherla
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Michael A Daneshvar
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Victor Z Chen
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Elham F Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | | | | | | | | | | | - Marina Veronesi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Renzo Vanna
- Institute for Photonics and Nanotechnologies, IFN-CNR, c/o Dept. of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133, Milano, Italy
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Stefano A Serapian
- University of Pavia, Department of Chemistry, Viale Taramelli 10, 27100, Pavia, Italy
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Giorgio Colombo
- SCITEC-CNR, via Mario Bianco 9, 20131, Milano, Italy
- University of Pavia, Department of Chemistry, Viale Taramelli 10, 27100, Pavia, Italy
| |
Collapse
|
61
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
62
|
Chen H, Gong Y, Ma Y, Thompson RC, Wang J, Cheng Z, Xue L. A Brain-Penetrating Hsp90 Inhibitor NXD30001 Inhibits Glioblastoma as a Monotherapy or in Combination With Radiation. Front Pharmacol 2020; 11:974. [PMID: 32695001 PMCID: PMC7338553 DOI: 10.3389/fphar.2020.00974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly heterogeneous disease, which is initiated and sustained by various molecular alterations in an array of signal transduction pathways. Heat-shock protein 90 (Hsp90) is a molecular chaperone and is critically implicated in folding and activation of a diverse group of client proteins, many of which are key regulators for glioblastoma biology. We here assessed the anti-neoplastic efficacy of a novel brain-penetrating Hsp90 inhibitor NXD30001 as a monotherapy and combined with radiation in vitro and in vivo. Our results demonstrated that NXD30001 potently inhibited neurosphere formation, growth, and survival of CD133+ GBM cells with the half maximal inhibitory concentration at low nanomolar range, but CD133- GBM cells were less sensitive to NXD30001. NXD30001 also increased radio-sensitivity in glioblastoma stem cells (GSCs) at suboptimal concentrations. Moreover, NXD30001 dose-dependently decreased phosphorylation levels of multiple Hsp90 client proteins which play key roles in GBM, such as EGFR, Akt, c-Myc, and Notch1. In addition, NXD30001 could impair DNA damage response and endoplasmic reticulum stress response after radiotherapy by alteration of the related proteins expression. In a murine orthotopic model of human glioblastoma, NXD30001 marvelously induced tumor regression and extended median survival of tumor-bearing mice by approximately 20% when compared with the vehicle group (37 d vs 31 d, P<0.05). Radiotherapy solely increased median survival of tumor-bearing mice from 31 d to 38 d (P<0.05), while NXD30001 combined with radiation further extended survival to 43 d (P<0.05). We concluded that GSCs are more sensitive to NXD30001 than non-stem GBM cells, and NXD30001 in combination with radiation exerts better inhibitive effect in GBM progression than monotherapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yuanying Gong
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yufang Ma
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Reid C. Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jialiang Wang
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Zhixiang Cheng
- Department of Pain Management, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Department of Pain Management, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lixia Xue
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
63
|
Carrillo‐Gálvez AB, Gálvez‐Peisl S, González‐Correa JE, de Haro‐Carrillo M, Ayllón V, Carmona‐Sáez P, Ramos‐Mejía V, Galindo‐Moreno P, Cara FE, Granados‐Principal S, Muñoz P, Martin F, Anderson P. GARP is a key molecule for mesenchymal stromal cell responses to TGF-β and fundamental to control mitochondrial ROS levels. Stem Cells Transl Med 2020; 9:636-650. [PMID: 32073751 PMCID: PMC7180295 DOI: 10.1002/sctm.19-0372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising cell therapy in regenerative medicine and for autoimmune/inflammatory diseases. However, a main hurdle for MSCs-based therapies is the loss of their proliferative potential in vitro. Here we report that glycoprotein A repetitions predominant (GARP) is required for the proliferation and survival of adipose-derived MSCs (ASCs) via its regulation of transforming growth factor-β (TGF-β) activation. Silencing of GARP in human ASCs increased their activation of TGF-β which augmented the levels of mitochondrial reactive oxygen species (mtROS), resulting in DNA damage, a block in proliferation and apoptosis. Inhibition of TGF-β signaling reduced the levels of mtROS and DNA damage and restored the ability of GARP-/low ASCs to proliferate. In contrast, overexpression of GARP in ASCs increased their proliferative capacity and rendered them more resistant to etoposide-induced DNA damage and apoptosis, in a TGF-β-dependent manner. In summary, our data show that the presence or absence of GARP on ASCs gives rise to distinct TGF-β responses with diametrically opposing effects on ASC proliferation and survival.
Collapse
Affiliation(s)
- Ana Belén Carrillo‐Gálvez
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Sheyla Gálvez‐Peisl
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Juan Elías González‐Correa
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Marina de Haro‐Carrillo
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Verónica Ayllón
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Pedro Carmona‐Sáez
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Verónica Ramos‐Mejía
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Pablo Galindo‐Moreno
- Department of Oral Surgery and Implant DentistrySchool of Dentistry, University of GranadaGranadaSpain
| | - Francisca E. Cara
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
- UGC de Oncología Médica, Hospital Universitario de JaénJaénSpain
| | - Sergio Granados‐Principal
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
- UGC de Oncología Médica, Hospital Universitario de JaénJaénSpain
| | - Pilar Muñoz
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Francisco Martin
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Per Anderson
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio ClínicoHospital Universitario Virgen de las NievesGranadaSpain
- Biosanitary Institute of Granada (ibs.Granada), University of GranadaSpain
| |
Collapse
|
64
|
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Taranejoo S, Zali H. HSP90 and Co-chaperones: Impact on Tumor Progression and Prospects for Molecular-Targeted Cancer Therapy. Cancer Invest 2020; 38:310-328. [PMID: 32274949 DOI: 10.1080/07357907.2020.1752227] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heat shock protein 90 (HSP90), a highly and unique chaperone, presents as a double-edged sword. It plays an essential role in many physiological and pathological processes, including tumor development. The current review highlights a recent understanding of the roles of HSP90 in molecular mechanisms underlying cancer survival and progression. HSP90 and its client proteins through the regulation of oncoproteins including signaling proteins, receptors, and transcriptional factors involved in tumorigenesis. It also has potential clinical application as diagnostic and prognostic biomarkers for assessing cancer progression. In this way, using HSP90 to develop new anticancer therapeutic agents including HSP90 inhibitors, anti-HSP90 antibody, and HSP90-based vaccines has been promising.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrouz Taranejoo
- Wellman Centre for Photomedicine, Harvard-MIT Division of Health Sciences and Technology (HST), Boston, MA, USA
| | - Hakimeh Zali
- Department of Tissue engineering and applied cell, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
65
|
Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis 2020; 11:210. [PMID: 32231206 PMCID: PMC7105474 DOI: 10.1038/s41419-020-2399-y] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Escaping programmed cell death is a hallmark of cancer. NF-κB transcription factors are key regulator of cell survival and aberrant NF-κB signaling has been involved in the pathogenesis of most human malignancies. Although NF-κB is best known for its antiapoptotic role, other processes regulating the life/death balance, such as autophagy and necroptosis, seem to network with NF-κB. This review discusses how the reciprocal regulation of NF-κB, autophagy and programmed cell death affect cancer development and progression.
Collapse
|
66
|
Zhou C, Zhang C, Zhu H, Liu Z, Su H, Zhang X, Chen T, Zhong Y, Hu H, Xiong M, Zhou H, Xu Y, Zhang A, Zhang N. Allosteric Regulation of Hsp90α's Activity by Small Molecules Targeting the Middle Domain of the Chaperone. iScience 2020; 23:100857. [PMID: 32058968 PMCID: PMC6997908 DOI: 10.1016/j.isci.2020.100857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Hsp90 is a target for anti-cancer drug development. Both the conformational events tuned by ATP/ADP and co-chaperones and the chaperoning cycle timing are required for Hsp90's fully functional display. Interfering with either one of the conformational events or the cycle timing will down-regulate Hsp90's function. In this manuscript, non-covalent allosteric modulators (SOMCL-16-171 and SOMCL-16-175) targeting Hsp90α’s middle domain (Hsp90M) were developed for the first time. Multiple techniques were then applied to characterize the interactions between two active compounds and Hsp90α. Two loops and one α-helix (F349-N360, K443-E451, and D372-G387) in Hsp90M were identified responsible for the recognition of SOMCL-16-171 and SOMCL-16-175. Meanwhile, the binding of SOMCL-16-171 and SOMCL-16-175 to Hsp90M was demonstrated to allosterically modulate the structure and function of Hsp90α’s N-terminal domain. Finally, cellular assays were conducted to evaluate the cellular activity of SOMCL-16-175, and the results indicate that SOMCL-16-175 destabilizes Hsp90's client proteins and reduces cell viability. Allosteric modulators targeting Hsp90α's middle domain were developed for the first time Key elements in Hsp90M for the recognition of allosteric modulators were identified Compound SOMCL-16-175 promotes Hsp90α’s ATPase activity and reduces cell viability SOMCL-16-175 destabilizes Hsp90's clients without triggering heat shock response
Collapse
Affiliation(s)
- Chen Zhou
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chi Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongwen Zhu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Haixia Su
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xianglei Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tingting Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yan Zhong
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Huifang Hu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Muya Xiong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Naixia Zhang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
67
|
Gupta A, Bansal A, Hashimoto-Torii K. HSP70 and HSP90 in neurodegenerative diseases. Neurosci Lett 2020; 716:134678. [PMID: 31816334 PMCID: PMC7336893 DOI: 10.1016/j.neulet.2019.134678] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Molecular chaperones have a role to stabilize proteins or assist them in reaching their native fold. Heat shock proteins (HSPs) are a family of molecular chaperons that protect proteins from cellular stress during the assembly of protein complexes and also prevent the proteins from aggregation and disassembly. The immediate increase of HSPs is crucial for cellular adaptation to environmental changes and protection of other proteins from denaturation, thereby maintaining the cellular homeostasis and increasing the longevity of an organism. HSP70 and HSP90 are the most studied HSPs in this very large HSP family. Notably, HSP90 also stabilizes the disease-related proteins in neurodegenerative disorders. Therefore, small molecules that inhibit the HSP90 but also increase the HSP70 has been tested as potential drugs for neurodegenerative disorders.
Collapse
Affiliation(s)
- Abha Gupta
- University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, India
| | - Ankush Bansal
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA.
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA; Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
68
|
Goyal L, Chaudhary SP, Kwak EL, Abrams TA, Carpenter AN, Wolpin BM, Wadlow RC, Allen JN, Heist R, McCleary NJ, Chan JA, Goessling W, Schrag D, Ng K, Enzinger PC, Ryan DP, Clark JW. A phase 2 clinical trial of the heat shock protein 90 (HSP 90) inhibitor ganetespib in patients with refractory advanced esophagogastric cancer. Invest New Drugs 2020; 38:1533-1539. [PMID: 31898183 DOI: 10.1007/s10637-019-00889-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Subsets of esophagogastric (EG) cancers harbor genetic abnormalities, including amplification of HER2, MET, or FGFR2 or mutations in PIK3CA, EGFR, or BRAF. Ganetespib which is a novel triazolone heterocyclic inhibitor of HSP90, is a potentially biologically rational treatment strategy for advanced EG cancers with these gene amplification. This multicenter, single-arm phase 2 trial enrolled patients with histologically confirmed advanced EG cancer with progression on at least one line of systemic therapy. Patients received Ganetespib 200 mg/m2 IV on Days 1, 8, and 15 of a 28-day cycle. The primary endpoint was overall response rate (ORR). Secondary endpoints included: Progression Free Survival (PFS); to correlate the presence of HSP clients with ORR and PFS; evaluating the safety, tolerability and adverse events profile. In this study 26 eligible patients mainly: male 77%, median age 64 years were enrolled. The most common drug-related adverse events were diarrhea (77%), fatigue (65%), elevated ALKP (42%), and elevated AST (38%). The most common grade 3/4 AEs included: leucopenia (12%), fatigue (12%), diarrhea (8%), and elevated ALKP (8%). The ORR of 4% reflects the single patient of 26 who had a complete response and stayed on treatment for more than seventy (70) months. Median PFS and OS was 61 days (2.0 months), 94 days (3.1 months) respectively. Ganetespib showed manageable toxicity. While the study was terminated early due to insufficient evidence of single-agent activity, the durable CR and 2 minor responses suggest that there may be a subset of EG patients who could benefit from this drug.
Collapse
Affiliation(s)
- Lipika Goyal
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, 223 Bartlett Hall, Boston, 02114, MA, USA
| | - Surendra Pal Chaudhary
- Harvard Medical School, Boston, MA, USA.
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, 223 Bartlett Hall, Boston, 02114, MA, USA.
| | - Eunice L Kwak
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, 223 Bartlett Hall, Boston, 02114, MA, USA
| | - Thomas A Abrams
- Harvard Medical School, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Amanda N Carpenter
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, 223 Bartlett Hall, Boston, 02114, MA, USA
| | - Brian M Wolpin
- Harvard Medical School, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | | | - Jill N Allen
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, 223 Bartlett Hall, Boston, 02114, MA, USA
| | - Rebecca Heist
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, 223 Bartlett Hall, Boston, 02114, MA, USA
| | | | - Jennifer A Chan
- Harvard Medical School, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Wolfram Goessling
- Harvard Medical School, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Deborah Schrag
- Harvard Medical School, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Kimmie Ng
- Harvard Medical School, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Peter C Enzinger
- Harvard Medical School, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - David P Ryan
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, 223 Bartlett Hall, Boston, 02114, MA, USA
| | - Jeffrey W Clark
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, 223 Bartlett Hall, Boston, 02114, MA, USA
| |
Collapse
|
69
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Ugo MB, Arzt E. SUMO conjugation as regulator of the glucocorticoid receptor-FKBP51 cellular response to stress. Steroids 2020; 153:108520. [PMID: 31604074 DOI: 10.1016/j.steroids.2019.108520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 01/19/2023]
Abstract
In order to adequately respond to stressful stimuli, glucocorticoids (GCs) target almost every tissue of the body. By exerting a negative feedback loop in the hypothalamic-pituitary-adrenal (HPA) axis GCs inhibit their own synthesis and restore homeostasis. GCs actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associatedto different diseases including mood disorders and can lead to severe complication. Therefore, understanding the molecular complexity of GR modulation is mandatory for the development of new and effective drugs for treating GR-associated disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity and has a crucial role in psychiatric diseases. Both GR and FKBP51 activity are regulated by SUMOylation, a posttranslational (PTM). In this review, we focus on the impact of SUMO-conjugation as a regulator of this pathway.
Collapse
Affiliation(s)
- Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina.
| | - Maia L Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Romina P Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Maria B Ugo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
70
|
Weber B, Maier A, Buchner J. Peptides in proteins. J Pept Sci 2019; 26:e3235. [PMID: 31867828 DOI: 10.1002/psc.3235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
During evolution C-terminal peptide extensions were added to proteins on the gene level. These convey additional functions such as interaction with partner proteins or oligomerisation. IgM antibodies and molecular chaperones are two prominent examples discussed.
Collapse
Affiliation(s)
- Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Andreas Maier
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
71
|
Two closed ATP- and ADP-dependent conformations in yeast Hsp90 chaperone detected by Mn(II) EPR spectroscopic techniques. Proc Natl Acad Sci U S A 2019; 117:395-404. [PMID: 31862713 DOI: 10.1073/pnas.1916030116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hsp90 plays a central role in cell homeostasis by assisting folding and maturation of a large variety of clients. It is a homo-dimer, which functions via hydrolysis of ATP-coupled to conformational changes. Hsp90's conformational cycle in the absence of cochaperones is currently postulated as apo-Hsp90 being an ensemble of "open"/"closed" conformations. Upon ATP binding, Hsp90 adopts an active ATP-bound closed conformation where the N-terminal domains, which comprise the ATP binding site, are in close contact. However, there is no consensus regarding the conformation of the ADP-bound Hsp90, which is considered important for client release. In this work, we tracked the conformational states of yeast Hsp90 at various stages of ATP hydrolysis in frozen solutions employing electron paramagnetic resonance (EPR) techniques, particularly double electron-electron resonance (DEER) distance measurements. Using rigid Gd(III) spin labels, we found the C domains to be dimerized with same distance distribution at all hydrolysis states. Then, we substituted the ATPase Mg(II) cofactor with paramagnetic Mn(II) and followed the hydrolysis state using hyperfine spectroscopy and measured the inter-N-domain distance distributions via Mn(II)-Mn(II) DEER. The point character of the Mn(II) spin label allowed us resolve 2 different closed states: The ATP-bound (prehydrolysis) characterized by a distance distribution having a maximum of 4.3 nm, which broadened and shortened, shifting the mean to 3.8 nm at the ADP-bound state (posthydrolysis). This provides experimental evidence to a second closed conformational state of Hsp90 in solution, referred to as "compact." Finally, the so-called high-energy state, trapped by addition of vanadate, was found structurally similar to the posthydrolysis state.
Collapse
|
72
|
Puła B, Gołos A, Górniak P, Jamroziak K. Overcoming Ibrutinib Resistance in Chronic Lymphocytic Leukemia. Cancers (Basel) 2019; 11:E1834. [PMID: 31766355 PMCID: PMC6966427 DOI: 10.3390/cancers11121834] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Ibrutinib is the first Bruton's tyrosine kinase (BTK) inhibitor, which showed significant clinical activity in chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) patients regardless of cytogenetic risk factors. Recent results of phase III clinical trials in treatment-naïve CLL patients shift the importance of the agent to frontline therapy. Nevertheless, beside its clinical efficacy, ibrutinib possesses some off-target activity resulting in ibrutinib-characteristic adverse events including bleeding diathesis and arrhythmias. Furthermore, acquired and primary resistance to the drug have been described. As the use of ibrutinib in clinical practice increases, the problem of resistance is becoming apparent, and new methods of overcoming this clinical problem arise. In this review, we summarize the mechanisms of BTK inhibitors' resistance and discuss the post-ibrutinib treatment options.
Collapse
Affiliation(s)
- Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | - Aleksandra Gołos
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | - Patryk Górniak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| |
Collapse
|
73
|
Identification of Isoform-Selective Ligands for the Middle Domain of Heat Shock Protein 90 (Hsp90). Int J Mol Sci 2019; 20:ijms20215333. [PMID: 31717777 PMCID: PMC6862331 DOI: 10.3390/ijms20215333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is a current inhibition target for the treatment of diseases, including cancer. In humans, there are two major cytosolic isoforms of Hsp90 (Hsp90α and Hsp90β). Hsp90α is inducible and Hsp90β is constitutively expressed. Most Hsp90 inhibitors are pan-inhibitors that target both cytosolic isoforms of Hsp90. The development of isoform-selective inhibitors of Hsp90 may enable better clinical outcomes. Herein, by using virtual screening and binding studies, we report our work in the identification and characterisation of novel isoform-selective ligands for the middle domain of Hsp90β. Our results pave the way for further development of isoform-selective Hsp90 inhibitors.
Collapse
|
74
|
Yan F, Liu X, Zhang S, Zhang Q, Chen J. Understanding conformational diversity of heat shock protein 90 (HSP90) and binding features of inhibitors to HSP90 via molecular dynamics simulations. Chem Biol Drug Des 2019; 95:87-103. [PMID: 31560152 DOI: 10.1111/cbdd.13623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 12/23/2022]
Abstract
Heat shock protein 90 (HSP90) is a promising target for treatment of cancer, and inhibitor bindings can generate efficient suppression on tumor in multiple ways. In this work, 140-ns molecular dynamics simulations were performed on six systems. Principal component analysis was subsequently carried out to explore the conformational diversity of HSP90. The results suggest that inhibitor bindings induce large conformational changes of HSP90, which tends to enlarge the volume of the binding pocket to facilitate the entrance of inhibitors. Hierarchical clustering analyses, the calculation of the energy contribution of each atom, and the analyses of hydrogen-bonding interactions were performed. The results indicate that 20 residues in group A of the hierarchical tree are responsible for major contributions, and van der Waals interactions as well as hydrogen-bonding interactions between important residues in HSP90 and key regions of inhibitors are the main force for promoting inhibitor bindings. We expect that this work can provide useful theoretical information for development of efficient inhibitors targeting HSP90.
Collapse
Affiliation(s)
- Fangfang Yan
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
75
|
Kale Ş, Korcum AF, Dündar E, Erin N. HSP90 inhibitor PU-H71 increases radiosensitivity of breast cancer cells metastasized to visceral organs and alters the levels of inflammatory mediators. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:253-262. [PMID: 31522240 DOI: 10.1007/s00210-019-01725-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
Heat shock protein 90 (HSP90) inhibitors are considered as new radiosensitizing agents. PU-H71, a novel HSP90 inhibitor, is under evaluation for the treatment of advanced cancer. It is however not known whether PU-H71 alters radiosensitivity of metastatic breast cancer. Hence, we here evaluated mechanisms of possible anti-tumoral and radiosensitizing effects of PU-H71 on breast carcinoma cells metastasized to vital organs such as the liver and brain. The effect of PU-H71 on proliferation of breast carcinoma cells was determined using 4T1 cells and its brain (4TBM), liver (4TLM), and heart (4THM) metastatic subsets as well as non-metastatic 67NR cells. Changes in radiation sensitivity were determined by clonogenic assays. Changes in client proteins and levels of angiogenic and inflammatory mediators from these cancer cell cultures and ex vivo cultures were detected. PU-H71 alone inhibited ERK1/2, p38, and Akt activation and reduced N-cadherin and HER2 which further documented the anti-tumoral effects of PU-H71. The combination of PU-H71 and radiotherapy induced cytotoxic effect than PU-H71 alone, and PU-H71 showed a radiosensitizing effect in vitro. On the other hand, PU-H71 and radiation co-treatment increased p38 phosphorylation which is one of the hallmarks of inflammatory response. Accordingly, IL-6 secretion was increased following PU-H71 and radiotherapy co-treatment ex vivo. Levels of angiogenic and inflammatory factors such as MIP-2, SDF-1, and VEGF were increased under in vitro conditions but not under ex vivo conditions. These results demonstrated for the first time that PU-H71 enhances therapeutic effects of radiotherapy especially in highly metastatic breast carcinoma but a possible increase in inflammatory response should also be considered.
Collapse
Affiliation(s)
- Şule Kale
- Department of Pharmacology, School of Medicine, Akdeniz University, B-block, First floor, SBAUM, 07070, Antalya, Turkey
| | - Aylin F Korcum
- Department of Radiation Oncology, School of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Ertuğrul Dündar
- Department of Radiation Oncology, School of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Nuray Erin
- Department of Pharmacology, School of Medicine, Akdeniz University, B-block, First floor, SBAUM, 07070, Antalya, Turkey.
| |
Collapse
|
76
|
Citalan-Madrid AF, Cabral-Pacheco GA, Martinez-de-Villarreal LE, Villarreal-Martinez L, Ibarra-Ramirez M, Garza-Veloz I, Cardenas-Vargas E, Marino-Martinez I, Martinez-Fierro ML. Proteomic tools and new insights for the study of B-cell precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2019; 24:637-650. [PMID: 31514680 DOI: 10.1080/16078454.2019.1664127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a hematological malignancy of immature B-cell precursors, affecting children more often than adults. The etiology of BCP-ALL is still unknown, but environmental factors, sex, race or ethnicity, and genomic alterations influence the development of the disease. Tools based on protein detection, such as flow cytometry, mass spectrometry, mass cytometry and reverse phase protein array, represent an opportunity to investigate BCP-ALL pathogenesis and to identify new biomarkers of disease. This review aims to document the recent advancements with respect to applications of proteomic technologies to study mechanisms of leukemogenesis, how this information could be used in the discovery of biological targets, and finally we describe the challenges of application of proteomic tools for the approach of BCP-ALL.
Collapse
Affiliation(s)
- Alí F Citalan-Madrid
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Griselda A Cabral-Pacheco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | | | - Laura Villarreal-Martinez
- Hematology Service, Hospital Universitario 'Dr. José Eleuterio González', Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Marisol Ibarra-Ramirez
- Departamento de Genetica, Facultad de Medicina, Universidad Autónoma de Nuevo Leon , Monterrey , Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Edith Cardenas-Vargas
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Hospital General Zacatecas 'Luz González Cosío' , Zacatecas , Mexico
| | - Ivan Marino-Martinez
- Departamento de Patologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| |
Collapse
|
77
|
Effect of heat stress and Hsp90 inhibition on T-type calcium currents and voltage-dependent potassium currents in leydig cells. J Therm Biol 2019; 84:1-7. [PMID: 31466741 DOI: 10.1016/j.jtherbio.2019.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022]
Abstract
Heat can trigger testicular damage and impair fertility. Leydig cells produce testosterone in response to stimulation by luteinizing hormone (LH), which induces Ca2+ entry and K+ efflux through ion channels in their plasma membrane. Considering that mechanisms coordinating the Leydig cell responses to hyperthermic stress remain unclear; the present study analyzed the effects of heat stress (HS, 43°C, 15 min) and inhibition of Hsp90 on T-type calcium currents and voltage-dependent potassium currents (VKC) in mice Leydig cells. Results show that HS reduced the VKC steady state currents at +80 mV (45.3%) and maximum conductance (71.5%), as well as increased the activation time constant (31.7%) and the voltage for which half the channels are open (30%). Hsp90 inhibition did not change the VKC currents. T-type calcium currents were not affected by HS or Hsp90 inhibition. In conclusion, HS can slow the activation, reduce the currents and voltage dependence of the VKC, suggesting a possible role of these currents in the response to hyperthermic stress in Leydig cells.
Collapse
|
78
|
Huang Y, Xuan H, Yang C, Guo N, Wang H, Zhao J, Xing H. GmHsp90A2 is involved in soybean heat stress as a positive regulator. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:26-33. [PMID: 31203891 DOI: 10.1016/j.plantsci.2019.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 05/09/2023]
Abstract
Heat shock protein 90 s (Hsp90s), one of the most conserved and abundant molecular chaperones, is an essential component of the protective stress response. A previous study reported at least 12 genes in the GmHsp90s family in soybean and that GmHsp90A2 overexpression enhanced thermotolerance in Arabidopsis thaliana. Here, we investigate the roles of GmHsp90A2 in soybean by utilizing stable transgenic soybean lines overexpressing GmHsp90A2 and mutant lines generated by the CRISPR/Cas9 system. The results showed that compared with wild-type plants (WT) and empty vector control plants (VC), T3 transgenic soybean plants overexpressing GmHsp90A2 exhibited increased tolerance to heat stress through higher chlorophyll and lower malondialdehyde (MDA) contents in plants. Conversely, reduced chlorophyll and increased MDA contents in T2 homozygous GmHsp90A2-knockout mutants indicated decreased tolerance to heat stress. GmHsp90A2 was found to interact with GmHsp90A1 in yeast two-hybrid assays. Furthermore, subcellular localization analyses revealed that GmHsp90A2 was localized to the cytoplasm and cell membrane; as shown by bimolecular fluorescence complementation (BiFC) assays, GmHsp90A2 interacted with GmHsp90A1 in the nucleus and cytoplasm and cell membrane. Hence, we conclude that GmHsp90A1 is able to bind to GmHsp90A2 to form a complex and that this complex enters the nucleus. In summary, GmHsp90A2 might respond to heat stress and positively regulate thermotolerance by interacting with GmHsp90A1.
Collapse
Affiliation(s)
- Yanzhong Huang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huidong Xuan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengfeng Yang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitang Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
79
|
Burress H, Kellner A, Guyette J, Tatulian SA, Teter K. HSC70 and HSP90 chaperones perform complementary roles in translocation of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J Biol Chem 2019; 294:12122-12131. [PMID: 31221799 DOI: 10.1074/jbc.ra119.008568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/15/2019] [Indexed: 11/06/2022] Open
Abstract
Cholera toxin (CT) travels by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) where the catalytic A1 subunit of CT (CTA1) dissociates from the rest of the toxin, unfolds, and moves through a membrane-spanning translocon pore to reach the cytosol. Heat shock protein 90 (HSP90) binds to the N-terminal region of CTA1 and facilitates its ER-to-cytosol export by refolding the toxin as it emerges at the cytosolic face of the ER membrane. HSP90 also refolds some endogenous cytosolic proteins as part of a foldosome complex containing heat shock cognate 71-kDa protein (HSC70) and the HSC70/HSP90-organizing protein (HOP) linker that anchors HSP90 to HSC70. We accordingly predicted that HSC70 and HOP also function in CTA1 translocation. Inactivation of HSC70 by drug treatment disrupted CTA1 translocation to the cytosol and generated a toxin-resistant phenotype. In contrast, the depletion of HOP did not disrupt CT activity against cultured cells. HSC70 and HSP90 could bind independently to disordered CTA1, even in the absence of HOP. This indicated HSP90 and HSC70 recognize distinct regions of CTA1, which was confirmed by the identification of a YYIYVI-binding motif for HSC70 that spans residues 83-88 of the 192-amino acid CTA1 polypeptide. Refolding of disordered CTA1 occurred in the presence of HSC70 alone, indicating that HSC70 and HSP90 can each independently refold CTA1. Our work suggests a novel translocation mechanism in which sequential interactions with HSP90 and HSC70 drive the N- to C-terminal extraction of CTA1 from the ER.
Collapse
Affiliation(s)
- Helen Burress
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Alisha Kellner
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Jessica Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, Florida 32816
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826.
| |
Collapse
|
80
|
Ghosh A, Dai Y, Biswas P, Stuehr DJ. Myoglobin maturation is driven by the hsp90 chaperone machinery and by soluble guanylyl cyclase. FASEB J 2019; 33:9885-9896. [PMID: 31170354 DOI: 10.1096/fj.201802793rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myoglobin (Mb) maturation involves heme incorporation as a final step. We investigated a role for heat shock protein (hsp) 90 in Mb maturation in C2C12 skeletal muscle myoblasts and cell lines. We found the following: 1) Hsp90 directly interacts preferentially with heme-free Mb both in purified form and in cells. 2) Hsp90 drives heme insertion into apoprotein-Mb in an ATP-dependent process. 3) During differentiation of C2C12 myoblasts into myotubes, the apo-Mb-hsp90 complex associates with 5 cell cochaperons, Hsp70, activator of hsp90 ATPase protein 1 (Aha1), alanyl-tRNA synthetase domain containing 1 (Aarsd1), cell division cycle 37 (Cdc37), and stress induced phosphoprotein 1 (STIP1) in a pattern that is consistent with their enabling Mb maturation. 4) Mb heme insertion was significantly increased in cells that had a functional soluble guanylyl cyclase (sGC)-cGMP signaling pathway and was diminished upon small interfering RNA knockdown of sGCβ1 or upon overexpression of a phosphodiesterase to prevent cGMP buildup. Together, our findings suggest that hsp90 works in concert with cochaperons (Hsp70, Aha1, Aarsd1, STIP1, and Cdc37) and an active sGC-cGMP signaling pathway to promote heme insertion into immature apo-Mb, and thus generate functional Mb during muscle myotube formation. This fills gaps in our understanding and suggests new ways to potentially control these processes.-Ghosh, A., Dai, Y., Biswas, P., Stuehr, D. J. Myoglobin maturation is driven by the hsp90 chaperone machinery and by soluble guanylyl cyclase.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
81
|
Condelli V, Crispo F, Pietrafesa M, Lettini G, Matassa DS, Esposito F, Landriscina M, Maddalena F. HSP90 Molecular Chaperones, Metabolic Rewiring, and Epigenetics: Impact on Tumor Progression and Perspective for Anticancer Therapy. Cells 2019; 8:cells8060532. [PMID: 31163702 PMCID: PMC6627532 DOI: 10.3390/cells8060532] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 90 (HSP90) molecular chaperones are a family of ubiquitous proteins participating in several cellular functions through the regulation of folding and/or assembly of large multiprotein complexes and client proteins. Thus, HSP90s chaperones are, directly or indirectly, master regulators of a variety of cellular processes, such as adaptation to stress, cell proliferation, motility, angiogenesis, and signal transduction. In recent years, it has been proposed that HSP90s play a crucial role in carcinogenesis as regulators of genotype-to-phenotype interplay. Indeed, HSP90 chaperones control metabolic rewiring, a hallmark of cancer cells, and influence the transcription of several of the key-genes responsible for tumorigenesis and cancer progression, through either direct binding to chromatin or through the quality control of transcription factors and epigenetic effectors. In this review, we will revise evidence suggesting how this interplay between epigenetics and metabolism may affect oncogenesis. We will examine the effect of metabolic rewiring on the accumulation of specific metabolites, and the changes in the availability of epigenetic co-factors and how this process can be controlled by HSP90 molecular chaperones. Understanding deeply the relationship between epigenetic and metabolism could disclose novel therapeutic scenarios that may lead to improvements in cancer treatment.
Collapse
Affiliation(s)
- Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| |
Collapse
|
82
|
Park S, Park JA, Jeon JH, Lee Y. Traditional and Novel Mechanisms of Heat Shock Protein 90 (HSP90) Inhibition in Cancer Chemotherapy Including HSP90 Cleavage. Biomol Ther (Seoul) 2019; 27:423-434. [PMID: 31113013 PMCID: PMC6720532 DOI: 10.4062/biomolther.2019.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
HSP90 is a molecular chaperone that increases the stability of client proteins. Cancer cells show higher HSP90 expression than normal cells because many client proteins play an important role in the growth and survival of cancer cells. HSP90 inhibitors mainly bind to the ATP binding site of HSP90 and inhibit HSP90 activity, and these inhibitors can be distinguished as ansamycin and non-ansamycin depending on the structure. In addition, the histone deacetylase inhibitors inhibit the activity of HSP90 through acetylation of HSP90. These HSP90 inhibitors have undergone or are undergoing clinical trials for the treatment of cancer. On the other hand, recent studies have reported that various reagents induce cleavage of HSP90, resulting in reduced HSP90 client proteins and growth suppression in cancer cells. Cleavage of HSP90 can be divided into enzymatic cleavage and non-enzymatic cleavage. Therefore, reagents inducing cleavage of HSP90 can be classified as another class of HSP90 inhibitors. We discuss that the cleavage of HSP90 can be another mechanism in the cancer treatment by HSP90 inhibition.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jae-Hyung Jeon
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
83
|
Krüger K, Reichel T, Zeilinger C. Role of heat shock proteins 70/90 in exercise physiology and exercise immunology and their diagnostic potential in sports. J Appl Physiol (1985) 2019; 126:916-927. [DOI: 10.1152/japplphysiol.01052.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones facilitating the unfolding or folding of secondary structures of proteins, their client proteins, in cellular stress situations. Various internal and external physiological and mechanical stress factors induce a homeostatic imbalance, followed by an increased expression of HSP70 and HSP90. Exercise is a stress factor, too, and its cumulative physiological perturbation manifests at a cellular level by threatening the protein homeostasis of various cell types. Consequently, an increase of HSP70/90 was described in plasma and mononuclear cells and various organs and tissues, such as muscle, liver, cardiac tissue, and brain, after an acute bout of exercise. The specific response of HSP70/90 seems to be strongly related to the modality of exercise, with several dependent factors such as duration, intensity, exercise type, subjects’ training status, and environmental factors, e.g., temperature. It is suggested that HSP70/90 play a major role in immune regulation and cell protection during exercise and in the efficiency of regeneration and reparation processes. During long-term training, HSP70/90 are involved in preconditioning and adaptation processes that might also be important for disease prevention and therapy. With regard to their highly sensitive and individual response to specific exercise and training modalities, this review discusses whether and how HSP70 and HSP90 can be applied as biomarkers for monitoring exercise and training.
Collapse
Affiliation(s)
- Karsten Krüger
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Thomas Reichel
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Carsten Zeilinger
- Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
84
|
Song Z, Pan F, Yang C, Jia H, Jiang H, He F, Li N, Lu X, Zhang H. Genome-wide identification and expression analysis of HSP90 gene family in Nicotiana tabacum. BMC Genet 2019; 20:35. [PMID: 30890142 PMCID: PMC6423791 DOI: 10.1186/s12863-019-0738-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Heat shock proteins 90 (HSP90s) are a highly conserved protein family of cellular chaperones widely found in plants; they play a fundamental role in response to biotic and abiotic stresses. The genome-wide analysis of HSP90 gene family has been completed for some species; however, it has been rarely reported for the tobacco HSP90 genes. RESULTS In this study, we systematically conducted genome-wide identification and expression analysis of the tobacco HSP90 gene family, including gene structures, evolutionary relationships, chromosomal locations, conserved domains, and expression patterns. Twenty-one NtHSP90s were identified and classified into eleven categories (NtHSP90-1 to NtHSP90-11) based on phylogenetic analysis. The conserved structures and motifs of NtHSP90 proteins in the same subfamily were highly consistent. Most NtHSP90 proteins contained the ATPase domain, which was closely related to conserved motif 2. Motif 5 was a low complexity sequence and had the function of signal peptide. At least 6 pairs of NtHSP90 genes underwent gene duplication, which arose from segment duplication and tandem duplication events. Phylogenetic analysis showed that most species expanded according to their own species-specific approach during the evolution of HSP90s. Dynamic expression analysis indicated that some NtHSP90 genes may play fundamental roles in regulation of abiotic stress response. The expression of NtHSP90-4, NtHSP90-5, and NtHSP90-9 were up-regulated, while NtHSP90-6, and NtHSP90-7 were not induced by ABA, drought, salt, cold and heat stresses. Among the five treatments, NtHSP90s were most strongly induced by heat stress, and weakly activated by ABA treatment. There was a similar response pattern of NtHSP90s under osmotic stress, or extreme temperature stress. CONCLUSIONS This is the first genome-wide analysis of Hsp90 in N. tabacum. These results indicate that each NtHSP90 member fulfilled distinct functions in response to various abiotic stresses.
Collapse
Affiliation(s)
- Zhaopeng Song
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Feilong Pan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Chao Yang
- Chongqing Tobacco Science Research Institute, Chongqing, 400715 China
| | - Hongfang Jia
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Houlong Jiang
- Chongqing Tobacco Science Research Institute, Chongqing, 400715 China
| | - Fan He
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Najia Li
- Chongqing Tobacco Science Research Institute, Chongqing, 400715 China
| | - Xiaochong Lu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
85
|
Non-enzymatic cleavage of Hsp90 by oxidative stress leads to actin aggregate formation: A novel gain-of-function mechanism. Redox Biol 2019; 21:101108. [PMID: 30660959 PMCID: PMC6348241 DOI: 10.1016/j.redox.2019.101108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 01/03/2023] Open
Abstract
Aging is accompanied by the accumulation of oxidized proteins. To remove them, cells employ the proteasomal and autophagy-lysosomal systems; however, if the clearance rate is inferior to its formation, protein aggregates form as a hallmark of proteostasis loss. In cells, during stress conditions, actin aggregates accumulate leading to impaired proliferation and reduced proteasomal activity, as observed in cellular senescence. The heat shock protein 90 (Hsp90) is a molecular chaperone that binds and protects the proteasome from oxidative inactivation. We hypothesized that in oxidative stress conditions a malfunction of Hsp90 occurs resulting in the aforementioned protein aggregates. Here, we demonstrate that upon oxidative stress Hsp90 loses its function in a highly specific non-enzymatic iron-catalyzed oxidation event and its breakdown product, a cleaved form of Hsp90 (Hsp90cl), acquires a new function in mediating the accumulation of actin aggregates. Moreover, the prevention of Hsp90 cleavage reduces oxidized actin accumulation, whereas transfection of the cleaved form of Hsp90 leads to an enhanced accumulation of oxidized actin. This indicates a clear role of the Hsp90cl in the aggregation of oxidized proteins.
Collapse
|
86
|
Baker JD, Ozsan I, Rodriguez Ospina S, Gulick D, Blair LJ. Hsp90 Heterocomplexes Regulate Steroid Hormone Receptors: From Stress Response to Psychiatric Disease. Int J Mol Sci 2018; 20:ijms20010079. [PMID: 30585227 PMCID: PMC6337637 DOI: 10.3390/ijms20010079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/30/2023] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis directly controls the stress response. Dysregulation of this neuroendocrine system is a common feature among psychiatric disorders. Steroid hormone receptors, like glucocorticoid receptor (GR), function as transcription factors of a diverse set of genes upon activation. This activity is regulated by molecular chaperone heterocomplexes. Much is known about the structure and function of these GR/heterocomplexes. There is strong evidence suggesting altered regulation of steroid receptor hormones by chaperones, particularly the 51 kDa FK506-binding protein (FKBP51), may work with environmental factors to increase susceptibility to various psychiatric illnesses including post-traumatic stress disorder (PTSD), major depressive disorder (MDD), and anxiety. This review highlights the regulation of steroid receptor dynamics by the 90kDa heat shock protein (Hsp90)/cochaperone heterocomplexes with an in depth look at how the structural regulation and imbalances in cochaperones can cause functional effects on GR activity. Links between the stress response and circadian systems and the development of novel chaperone-targeting therapeutics are also discussed.
Collapse
Affiliation(s)
- Jeremy D Baker
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Ilayda Ozsan
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Santiago Rodriguez Ospina
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Danielle Gulick
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Laura J Blair
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| |
Collapse
|
87
|
Mbaba M, de la Mare JA, Sterrenberg JN, Kajewole D, Maharaj S, Edkins AL, Isaacs M, Hoppe HC, Khanye SD. Novobiocin-ferrocene conjugates possessing anticancer and antiplasmodial activity independent of HSP90 inhibition. J Biol Inorg Chem 2018; 24:139-149. [PMID: 30542925 DOI: 10.1007/s00775-018-1634-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022]
Abstract
A series of tailored novobiocin-ferrocene conjugates was prepared in moderate yields and investigated for in vitro anticancer and antiplasmodial activity against the MDA-MB-231 breast cancer line and Plasmodium falciparum 3D7 strain, respectively. While the target compounds displayed moderate anticancer activity against the breast cancer cell line with IC50 values in the mid-micromolar range, compounds 10a-c displayed promising antiplasmodial activity as low as 0.889 µM. Furthermore, the most promising compounds were tested for inhibitory effects against a postulated target, heat shock protein 90 (Hsp90). A selection of tailored novobiocin derivatives bearing the organometallic ferrocene unit were synthesized and characterized by common spectroscopic techniques. The target compounds were investigated for in vitro anticancer and antimalarial activity against the MDA-MB-231 breast cancer cell line and Plasmodium falciparum 3D7 strain, respectively.
Collapse
Affiliation(s)
- Mziyanda Mbaba
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown, 6140, South Africa.
| | - Jo-Anne de la Mare
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedical Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Jason N Sterrenberg
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, 6140, South Africa
| | - Deborah Kajewole
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, 6140, South Africa
| | - Shantal Maharaj
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, 6140, South Africa
| | - Adrienne L Edkins
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedical Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Michelle Isaacs
- Centre for Chemico- and Biomedical Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedical Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Setshaba D Khanye
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown, 6140, South Africa. .,Centre for Chemico- and Biomedical Research, Rhodes University, Grahamstown, 6140, South Africa. .,Faculty of Pharmacy, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
88
|
Kishinevsky S, Wang T, Rodina A, Chung SY, Xu C, Philip J, Taldone T, Joshi S, Alpaugh ML, Bolaender A, Gutbier S, Sandhu D, Fattahi F, Zimmer B, Shah SK, Chang E, Inda C, Koren J, Saurat NG, Leist M, Gross SS, Seshan VE, Klein C, Tomishima MJ, Erdjument-Bromage H, Neubert TA, Henrickson RC, Chiosis G, Studer L. HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons. Nat Commun 2018; 9:4345. [PMID: 30341316 PMCID: PMC6195591 DOI: 10.1038/s41467-018-06486-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Environmental and genetic risk factors contribute to Parkinson’s Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases. The early molecular events that ultimately lead to neuronal cell death in pathologies such as Parkinson’s disease are poorly understood. Here the authors use pluripotent stem-cell-derived human midbrain neurons and chemical biology tools to gain molecular level insight into the events induced by toxic and genetic stresses that mimic those occurring during neurodegeneration.
Collapse
Affiliation(s)
- Sarah Kishinevsky
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Neuroscience Graduate Program of Weill Cornell Graduate School of Biomedical Sciences, Weill Cornell Medical College, 1300 York Avenue, Box 65, New York, NY, 10065, USA
| | - Tai Wang
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Anna Rodina
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sun Young Chung
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Chao Xu
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - John Philip
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Tony Taldone
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Suhasini Joshi
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Mary L Alpaugh
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Molecular and Cellular Biosciences, Rowan University, 1275 York Avenue, Glassboro, NJ, 08028, USA
| | - Alexander Bolaender
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, 78464, Germany
| | - Davinder Sandhu
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Faranak Fattahi
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Bastian Zimmer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Smit K Shah
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Elizabeth Chang
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Carmen Inda
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Hostos Community College, City University of New York, Bronx, NY, 10453, USA
| | - John Koren
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nathalie G Saurat
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, 78464, Germany
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10017, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, 23538, Germany
| | - Mark J Tomishima
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,SKI Stem Cell Research Facility, 1275 York Avenue, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Ronald C Henrickson
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| |
Collapse
|
89
|
Dayalan Naidu S, Suzuki T, Yamamoto M, Fahey JW, Dinkova‐Kostova AT. Phenethyl Isothiocyanate, a Dual Activator of Transcription Factors NRF2 and HSF1. Mol Nutr Food Res 2018; 62:e1700908. [PMID: 29710398 PMCID: PMC6175120 DOI: 10.1002/mnfr.201700908] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/30/2018] [Indexed: 12/19/2022]
Abstract
Cruciferous vegetables are rich sources of glucosinolates which are the biogenic precursor molecules of isothiocyanates (ITCs). The relationship between the consumption of cruciferous vegetables and chemoprotection has been widely documented in epidemiological studies. Phenethyl isothiocyanate (PEITC) occurs as its glucosinolate precursor gluconasturtiin in the cruciferous vegetable watercress (Nasturtium officinale). PEITC has multiple biological effects, including activation of cytoprotective pathways, such as those mediated by the transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) and the transcription factor heat shock factor 1 (HSF1), and can cause changes in the epigenome. However, at high concentrations, PEITC leads to accumulation of reactive oxygen species and cytoskeletal changes, resulting in cytotoxicity. Underlying these activities is the sulfhydryl reactivity of PEITC with cysteine residues in its protein targets. This chemical reactivity highlights the critical importance of the dose of PEITC for achieving on-target selectivity, which should be carefully considered in the design of future clinical trials.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Takafumi Suzuki
- Department of Medical BiochemistryTohoku University Graduate School of MedicineSendai980‐8575Japan
| | - Masayuki Yamamoto
- Department of Medical BiochemistryTohoku University Graduate School of MedicineSendai980‐8575Japan
| | - Jed W. Fahey
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of MedicineDivision of Clinical PharmacologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of International HealthCenter for Human NutritionJohns Hopkins University Bloomberg School of Public HealthBaltimoreMD21205USA
| | - Albena T. Dinkova‐Kostova
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of MedicineDivision of Clinical PharmacologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Jacqui Wood Cancer CentreDivision of Cancer ResearchSchool of MedicineUniversity of DundeeDundeeDD1 9SYScotlandUK
| |
Collapse
|
90
|
Abstract
In this Opinion article, we aim to address how cells adapt to stress and the repercussions chronic stress has on cellular function. We consider acute and chronic stress-induced changes at the cellular level, with a focus on a regulator of cellular stress, the chaperome, which is a protein assembly that encompasses molecular chaperones, co-chaperones and other co-factors. We discuss how the chaperome takes on distinct functions under conditions of stress that are executed in ways that differ from the one-on-one cyclic, dynamic functions exhibited by distinct molecular chaperones. We argue that through the formation of multimeric stable chaperome complexes, a state of chaperome hyperconnectivity, or networking, is gained. The role of these chaperome networks is to act as multimolecular scaffolds, a particularly important function in cancer, where they increase the efficacy and functional diversity of several cellular processes. We predict that these concepts will change how we develop and implement drugs targeting the chaperome to treat cancer.
Collapse
Affiliation(s)
- Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thaís L S Araujo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
91
|
Hoter A, El-Sabban ME, Naim HY. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2018; 19:E2560. [PMID: 30158430 PMCID: PMC6164434 DOI: 10.3390/ijms19092560] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The mammalian HSP90 family of proteins is a cluster of highly conserved molecules that are involved in myriad cellular processes. Their distribution in various cellular compartments underlines their essential roles in cellular homeostasis. HSP90 and its co-chaperones orchestrate crucial physiological processes such as cell survival, cell cycle control, hormone signaling, and apoptosis. Conversely, HSP90, and its secreted forms, contribute to the development and progress of serious pathologies, including cancer and neurodegenerative diseases. Therefore, targeting HSP90 is an attractive strategy for the treatment of neoplasms and other diseases. This manuscript will review the general structure, regulation and function of HSP90 family and their potential role in pathophysiology.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Marwan E El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| |
Collapse
|
92
|
Identification of New Biomarkers Associated With IDH Mutation and Prognosis in Astrocytic Tumors Using NanoString nCounter Analysis System. Appl Immunohistochem Mol Morphol 2018; 26:101-107. [PMID: 27258564 DOI: 10.1097/pai.0000000000000396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH) mutations have been reported as biomarkers associated with tumorigenesis and prognosis in gliomas. However, genes affected by these mutations are still under investigation. The purpose of this study is to identify new molecular biomarkers associated with IDH mutation and prognosis in astrocytic tumors, which account for the largest proportion of gliomas. MATERIALS AND METHODS NanoString analysis was conducted on 40 astrocytic tumors. In total, 69 genes and 6 fusion genes were selected for screening. Quantitative real-time polymerase chain reaction and immunohistochemistry were used to validate the selected discriminatory genes. Kaplan-Meier survival curves and log-rank test were used to analyze the overall survival and progression-free survival. RESULTS mRNA levels of NTRK3, ERCC1, JAK2, AXL, BCL2, ESR1, HSP90AB1, TUBB3, RET, and ABCG2 were elevated in the IDH mutant group, whereas levels of POSTN and ERBB2 were elevated in the IDH wild-type group. Genes more highly expressed in the better prognosis group included NTRK3, ERCC1, ROS1, ERBB4, BCL2, CDKN2A, AXL, PI3KCA, HSP90AB1, ABCG2, JAK2, and RET. In the worse prognosis group, TIMP1, POSTN, and ERBB2 showed increased expressions. The elevated expression of HSP90AB1 was correlated with IDH mutation, long survival, and secondary glioblastomas. Elevated TIMP1 expression was related to high tumor grade and short patient survival. The results of NanoString were confirmed with quantitative real-time polymerase chain reaction and immunohistochemistry. CONCLUSIONS HSP90AB1 is related to IDH mutation and the expressions of HSP90AB1 and TIMP1 can predict prognosis in astrocytic tumors. The NanoString analysis system is a precise and reliable method to detect mRNA expression in formalin-fixed paraffin-embedded samples.
Collapse
|
93
|
Miao Z, Hu Y, Zhang X, Yang X, Tang Y, Kang A, Zhu D. Screening and identification of ligand-protein interactions using functionalized heat shock protein 90-fluorescent mesoporous silica-indium phosphide/zinc sulfide quantum dot nanocomposites. J Chromatogr A 2018; 1562:1-11. [DOI: 10.1016/j.chroma.2018.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023]
|
94
|
Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle 2018; 17:1048-1055. [PMID: 29886783 DOI: 10.1080/15384101.2018.1475828] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aging is characterized by progressive decay of biological systems and although it is not considered a disease, it is one of the main risk factors for chronic diseases and many types of cancers. The accumulation of senescent cells in various tissues is thought to be a major factor contributing to aging and age-related diseases. Removal of senescent cells during aging by either genetic or therapeutic methods have led to an improvement of several age related disease in mice. In this preview, we highlight the significance of developing senotherapeutic approaches to specifically kill senescent cells (senolytics) or suppress the senescence-associated secretory phenotype (SASP) that drives sterile inflammation (senomorphics) associated with aging to extend healthspan and potentially lifespan. Also, we provide an overview of the senotherapeutic drugs identified to date. In particular, we discuss and expand upon the recent identification of inhibitors of the HSP90 co-chaperone as a new class of senolytics.
Collapse
Affiliation(s)
- Heike Fuhrmann-Stroissnigg
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Laura J Niedernhofer
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Paul D Robbins
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| |
Collapse
|
95
|
Zabinsky RA, Mason GA, Queitsch C, Jarosz DF. It's not magic - Hsp90 and its effects on genetic and epigenetic variation. Semin Cell Dev Biol 2018; 88:21-35. [PMID: 29807130 DOI: 10.1016/j.semcdb.2018.05.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/15/2018] [Accepted: 05/15/2018] [Indexed: 10/14/2022]
Abstract
Canalization, or phenotypic robustness in the face of environmental and genetic perturbation, is an emergent property of living systems. Although this phenomenon has long been recognized, its molecular underpinnings have remained enigmatic until recently. Here, we review the contributions of the molecular chaperone Hsp90, a protein that facilitates the folding of many key regulators of growth and development, to canalization of phenotype - and de-canalization in times of stress - drawing on studies in eukaryotes as diverse as baker's yeast, mouse ear cress, and blind Mexican cavefish. Hsp90 is a hub of hubs that interacts with many so-called 'client proteins,' which affect virtually every aspect of cell signaling and physiology. As Hsp90 facilitates client folding and stability, it can epistatically suppress or enable the expression of genetic variants in its clients and other proteins that acquire client status through mutation. Hsp90's vast interaction network explains the breadth of its phenotypic reach, including Hsp90-dependent de novo mutations and epigenetic effects on gene regulation. Intrinsic links between environmental stress and Hsp90 function thus endow living systems with phenotypic plasticity in fluctuating environments. As environmental perturbations alter Hsp90 function, they also alter Hsp90's interaction with its client proteins, thereby re-wiring networks that determine the genotype-to-phenotype map. Ensuing de-canalization of phenotype creates phenotypic diversity that is not simply stochastic, but often has an underlying genetic basis. Thus, extreme phenotypes can be selected, and assimilated so that they no longer require environmental stress to manifest. In addition to acting on standing genetic variation, Hsp90 perturbation has also been linked to increased frequency of de novo variation and several epigenetic phenomena, all with the potential to generate heritable phenotypic change. Here, we aim to clarify and discuss the multiple means by which Hsp90 can affect phenotype and possibly evolutionary change, and identify their underlying common feature: at its core, Hsp90 interacts epistatically through its chaperone function with many other genes and their gene products. Its influence on phenotypic diversification is thus not magic but rather a fundamental property of genetics.
Collapse
Affiliation(s)
- Rebecca A Zabinsky
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, United States
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, United States; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
96
|
A switch point in the molecular chaperone Hsp90 responding to client interaction. Nat Commun 2018; 9:1472. [PMID: 29662162 PMCID: PMC5902578 DOI: 10.1038/s41467-018-03946-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a dimeric molecular chaperone that undergoes large conformational changes during its functional cycle. It has been established that conformational switch points exist in the N-terminal (Hsp90-N) and C-terminal (Hsp90-C) domains of Hsp90, however information for switch points in the large middle-domain (Hsp90-M) is scarce. Here we report on a tryptophan residue in Hsp90-M as a new type of switch point. Our study shows that this conserved tryptophan senses the interaction of Hsp90 with a stringent client protein and transfers this information via a cation–π interaction with a neighboring lysine. Mutations at this position hamper the communication between domains and the ability of a client protein to affect the Hsp90 cycle. The residue thus allows Hsp90 to transmit information on the binding of a client from Hsp90-M to Hsp90-N which is important for progression of the conformational cycle and the efficient processing of client proteins. The heat shock protein 90 (Hsp90) chaperone undergoes large conformational changes during its functional cycle. Here the authors combine in vivo, biochemical, biophysical and computational approaches and provide insights into the allosteric regulation of Hsp90 by identifying and characterizing a switch point in the Hsp90 middle domain.
Collapse
|
97
|
Srisutthisamphan K, Jirakanwisal K, Ramphan S, Tongluan N, Kuadkitkan A, Smith DR. Hsp90 interacts with multiple dengue virus 2 proteins. Sci Rep 2018. [PMID: 29523827 PMCID: PMC5844963 DOI: 10.1038/s41598-018-22639-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infections with the mosquito-borne dengue virus (DENV) remain a significant public health challenge. In the absence of a commercial therapeutic to treat DENV infection, a greater understanding of the processes of cellular replication is required. The abundant cellular chaperone protein heat shock protein 90 (Hsp90) has been shown to play a proviral role in the replication cycle of several viruses, predominantly through the stabilization of specific viral proteins. To investigate any potential role of Hsp90 in DENV infection the interaction between Hsp90 and DENV proteins was determined through co-immunoprecipitation experiments. Six DENV proteins namely envelope (E) and nonstructural (NS) proteins NS1, NS2B, NS3, NS4B and NS5 were shown to interact with Hsp90, and four of these proteins (E, NS1, NS3 and NS5) were shown to colocalize to a variable extent with Hsp90. Despite the extensive interactions between Hsp90 and DENV proteins, inhibition of the activity of Hsp90 had a relatively minor effect on DENV replication, with inhibition of Hsp90 resulting in a decrease of cellular E protein (but not nonstructural proteins) coupled with an increase of E protein in the medium and an increased virus titer. Collectively these results indicate that Hsp90 has a slight anti-viral effect in DENV infection.
Collapse
Affiliation(s)
| | - Krit Jirakanwisal
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Natthida Tongluan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
98
|
Zubieta MP, Contesini FJ, Rubio MV, Gonçalves AEDSS, Gerhardt JA, Prade RA, Damasio ARDL. Protein profile in Aspergillus nidulans recombinant strains overproducing heterologous enzymes. Microb Biotechnol 2018; 11:346-358. [PMID: 29316319 PMCID: PMC5812239 DOI: 10.1111/1751-7915.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 01/01/2023] Open
Abstract
Filamentous fungi are robust cell factories and have been used for the production of large quantities of industrially relevant enzymes. However, the production levels of heterologous proteins still need to be improved. Therefore, this article aimed to investigate the global proteome profiling of Aspergillus nidulans recombinant strains in order to understand the bottlenecks of heterologous enzymes production. About 250, 441 and 424 intracellular proteins were identified in the control strain Anid_pEXPYR and in the recombinant strains Anid_AbfA and Anid_Cbhl respectively. In this context, the most enriched processes in recombinant strains were energy pathway, amino acid metabolism, ribosome biogenesis, translation, endoplasmic reticulum and oxidative stress, and repression under secretion stress (RESS). The global protein profile of the recombinant strains Anid_AbfA and Anid_Cbhl was similar, although the latter strain secreted more recombinant enzyme than the former. These findings provide insights into the bottlenecks involved in the secretion of recombinant proteins in A. nidulans, as well as in regard to the rational manipulation of target genes for engineering fungal strains as microbial cell factories.
Collapse
Affiliation(s)
- Mariane Paludetti Zubieta
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Fabiano Jares Contesini
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Marcelo Ventura Rubio
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | | | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Rolf Alexander Prade
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOKUSA
| | | |
Collapse
|
99
|
Khandelwal A, Kent CN, Balch M, Peng S, Mishra SJ, Deng J, Day VW, Liu W, Subramanian C, Cohen M, Holzbeierlein JM, Matts R, Blagg BSJ. Structure-guided design of an Hsp90β N-terminal isoform-selective inhibitor. Nat Commun 2018; 9:425. [PMID: 29382832 PMCID: PMC5789826 DOI: 10.1038/s41467-017-02013-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 11/01/2017] [Indexed: 11/11/2022] Open
Abstract
The 90 kDa heat shock protein (Hsp90) is a molecular chaperone responsible for folding proteins that are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms. pan-Inhibition of Hsp90 appears to be detrimental as toxicities have been reported alongside induction of the pro-survival heat shock response. The development of Hsp90 isoform-selective inhibitors represents an alternative approach towards the treatment of cancer that may limit some of the detriments. Described herein is a structure-based approach to design isoform-selective inhibitors of Hsp90β, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90β-selective inhibitors as a method to overcome the detriments associated with pan-inhibition.
Collapse
Affiliation(s)
- Anuj Khandelwal
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 4048, Lawrence, KS, 66045, USA
| | - Caitlin N Kent
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Maurie Balch
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Sanket J Mishra
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 4048, Lawrence, KS, 66045, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Victor W Day
- Department of Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 2010, Lawrence, KS, 66045, USA
| | - Weiya Liu
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Chitra Subramanian
- Department of Pharmacology, University of Michigan School of Medicine, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Mark Cohen
- Department of Pharmacology, University of Michigan School of Medicine, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Jeffery M Holzbeierlein
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Robert Matts
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
100
|
mTOR: An attractive therapeutic target for osteosarcoma? Oncotarget 2018; 7:50805-50813. [PMID: 27177330 PMCID: PMC5226621 DOI: 10.18632/oncotarget.9305] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is a common primary malignant bone tumor with high morbidity and mortality in children and young adults. How to improve poor prognosis of OS due to resistance to chemotherapy remains a challenge. Recently, growing findings show activation of mammalian target of rapamycin (mTOR), is associated with OS cell growth, proliferation, metastasis. Targeting mTOR may be a promising therapeutic approach for treating OS. This review summarizes the roles of mTOR pathway in OS and present research status of mTOR inhibitors in the context of OS. In addition, we have attempted to discuss how to design a better treatment project for OS by combining mTOR inhibitor with other drugs.
Collapse
|