51
|
Tahir U, Shim YB, Kamran MA, Kim DI, Jeong MY. Nanofabrication Techniques: Challenges and Future Prospects. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:4981-5013. [PMID: 33875085 DOI: 10.1166/jnn.2021.19327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanofabrication of functional micro/nano-features is becoming increasingly relevant in various electronic, photonic, energy, and biological devices globally. The development of these devices with special characteristics originates from the integration of low-cost and high-quality micro/nano-features into 3D-designs. Great progress has been achieved in recent years for the fabrication of micro/nanostructured based devices by using different imprinting techniques. The key problems are designing techniques/approaches with adequate resolution and consistency with specific materials. By considering optical device fabrication on the large-scale as a context, we discussed the considerations involved in product fabrication processes compatibility, the feature's functionality, and capability of bottom-up and top-down processes. This review summarizes the recent developments in these areas with an emphasis on established techniques for the micro/nano-fabrication of 3-dimensional structured devices on large-scale. Moreover, numerous potential applications and innovative products based on the large-scale are also demonstrated. Finally, prospects, challenges, and future directions for device fabrication are addressed precisely.
Collapse
Affiliation(s)
- Usama Tahir
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Young Bo Shim
- Department of Opto-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Muhammad Ahmad Kamran
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Doo-In Kim
- Department of Opto-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Myung Yung Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
52
|
Research on the Inertial Migration Characteristics of Bi-Disperse Particles in Channel Flow. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The inertial focusing effect of particles in microchannels shows application potential in engineering practice. In order to study the mechanism of inertial migration of particles with different scales, the motion and distribution of two particles in Poiseuille flow are studied by the lattice Boltzmann method. The effects of particle size ratio, Reynolds number, and blocking rate on particle inertial migration are analyzed. The results show that, at a high blocking rate, after the same scale particles are released at the same height of the channel, the spacing between the two particles increases monotonically, and the change in the initial spacing has little effect on the final spacing of inertial migration. For two different size particles, when the smaller particle is downstream, the particle spacing will always increase and cannot remain stable. When the larger particle is downstream, the particle spacing increases firstly and then decreases, and finally tends to be stable.
Collapse
|
53
|
Nasiri R, Shamloo A, Akbari J. Design of a Hybrid Inertial and Magnetophoretic Microfluidic Device for CTCs Separation from Blood. MICROMACHINES 2021; 12:877. [PMID: 34442499 PMCID: PMC8401779 DOI: 10.3390/mi12080877] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) isolation from a blood sample plays an important role in cancer diagnosis and treatment. Microfluidics offers a great potential for cancer cell separation from the blood. Among the microfluidic-based methods for CTC separation, the inertial method as a passive method and magnetic method as an active method are two efficient well-established methods. Here, we investigated the combination of these two methods to separate CTCs from a blood sample in a single chip. Firstly, numerical simulations were performed to analyze the fluid flow within the proposed channel, and the particle trajectories within the inertial cell separation unit were investigated to determine/predict the particle trajectories within the inertial channel in the presence of fluid dynamic forces. Then, the designed device was fabricated using the soft-lithography technique. Later, the CTCs were conjugated with magnetic nanoparticles and Ep-CAM antibodies to improve the magnetic susceptibility of the cells in the presence of a magnetic field by using neodymium permanent magnets of 0.51 T. A diluted blood sample containing nanoparticle-conjugated CTCs was injected into the device at different flow rates to analyze its performance. It was found that the flow rate of 1000 µL/min resulted in the highest recovery rate and purity of ~95% and ~93% for CTCs, respectively.
Collapse
Affiliation(s)
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran; (R.N.); (J.A.)
| | | |
Collapse
|
54
|
Chong WH, Leong SS, Lim J. Design and operation of magnetophoretic systems at microscale: Device and particle approaches. Electrophoresis 2021; 42:2303-2328. [PMID: 34213767 DOI: 10.1002/elps.202100081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Combining both device and particle designs are the essential concepts to be considered in magnetophoretic system development. Researcher efforts are often dedicated to only one of these design aspects and neglecting the interplay between them. Herein, to bring out importance of the idea of integration between device and particle, we reviewed the working principle of magnetophoretic system (includes both device and particle design concepts). Since, the magnetophoretic force is influenced by both field gradient and magnetization volume, hence, accurate prediction of the magnetophoretic force is relying on the availability of information on both parameters. In device design, we focus on the different strategies used to create localized high-field gradient. For particle design, we emphasize on the scaling between hydrodynamic size and magnetization volume. Moreover, we also briefly discussed the importance of magnetoshape anisotropy related to particle design aspect of magnetophoretic systems. Next, we illustrated the need for integration between device and particle design using microscale applications of magnetophoretic systems, include magnetic tweezers and microfluidic systems, as our working example. On the basis of our discussion, we highlighted several promising examples of microscale magnetophoretic systems which greatly utilized the interplay between device and particle design. Further, we concluded the review with several factors that possibly resulted in the lack of research efforts related to device and particle design integration.
Collapse
Affiliation(s)
- Wai Hong Chong
- School of Chemical Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Sim Siong Leong
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, Penang, Malaysia.,Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
55
|
Jiang D, Ni C, Tang W, Huang D, Xiang N. Inertial microfluidics in contraction-expansion microchannels: A review. BIOMICROFLUIDICS 2021; 15:041501. [PMID: 34262632 PMCID: PMC8254650 DOI: 10.1063/5.0058732] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 05/02/2023]
Abstract
Inertial microfluidics has brought enormous changes in the conventional cell/particle detection process and now become the main trend of sample pretreatment with outstanding throughput, low cost, and simple control method. However, inertial microfluidics in a straight microchannel is not enough to provide high efficiency and satisfying performance for cell/particle separation. A contraction-expansion microchannel is a widely used and multifunctional channel pattern involving inertial microfluidics, secondary flow, and the vortex in the chamber. The strengthened inertial microfluidics can help us to focus particles with a shorter channel length and less processing time. Both the vortex in the chamber and the secondary flow in the main channel can trap the target particles or separate particles based on their sizes more precisely. The contraction-expansion microchannels are also capable of combining with a curved, spiral, or serpentine channel to further improve the separation performance. Some recent studies have focused on the viscoelastic fluid that utilizes both elastic forces and inertial forces to separate different size particles precisely with a relatively low flow rate for the vulnerable cells. This article comprehensively reviews various contraction-expansion microchannels with Newtonian and viscoelastic fluids for particle focusing, separation, and microfluid mixing and provides particle manipulation performance data analysis for the contraction-expansion microchannel design.
Collapse
Affiliation(s)
- Di Jiang
- Author to whom correspondence should be addressed:
| | - Chen Ni
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | | | - Di Huang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
56
|
Shen S, Wang X, Niu Y. Multi-Vortex Regulation for Efficient Fluid and Particle Manipulation in Ultra-Low Aspect Ratio Curved Microchannels. MICROMACHINES 2021; 12:mi12070758. [PMID: 34199145 PMCID: PMC8303296 DOI: 10.3390/mi12070758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023]
Abstract
Inertial microfluidics enables fluid and particle manipulation for biomedical and clinical applications. Herein, we developed a simple semicircular microchannel with an ultra-low aspect ratio to interrogate the unique formations of the helical vortex and Dean vortex by introducing order micro-obstacles. The purposeful and powerful regulation of dimensional confinement in the microchannel achieved significantly improved fluid mixing effects and fluid and particle manipulation in a high-throughput, highly efficient and easy-to-use way. Together, the results offer insights into the geometry-induced multi-vortex mechanism, which may contribute to simple, passive, continuous operations for biochemical and clinical applications, such as the detection and isolation of circulating tumor cells for cancer diagnostics.
Collapse
Affiliation(s)
- Shaofei Shen
- Correspondence: (S.S.); (Y.N.); Tel./Fax: +86-354-6287205 (S.S. & Y.N.)
| | | | - Yanbing Niu
- Correspondence: (S.S.); (Y.N.); Tel./Fax: +86-354-6287205 (S.S. & Y.N.)
| |
Collapse
|
57
|
Kwizera EA, Sun M, White AM, Li J, He X. Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles. ACS Biomater Sci Eng 2021; 7:2043-2063. [PMID: 33871975 PMCID: PMC8205986 DOI: 10.1021/acsbiomaterials.1c00083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Manipulation of microscale bioparticles including living cells is of great significance to the broad bioengineering and biotechnology fields. Dielectrophoresis (DEP), which is defined as the interactions between dielectric particles and the electric field, is one of the most widely used techniques for the manipulation of bioparticles including cell separation, sorting, and trapping. Bioparticles experience a DEP force if they have a different polarization from the surrounding media in an electric field that is nonuniform in terms of the intensity and/or phase of the electric field. A comprehensive literature survey shows that the DEP-based microfluidic devices for manipulating bioparticles can be categorized according to the methods of creating the nonuniformity via patterned microchannels, electrodes, and media to generate the DEP force. These methods together with the theory of DEP force generation are described in this review, to provide a summary of the methods and materials that have been used to manipulate various bioparticles for various specific biological outcomes. Further developments of DEP-based technologies include identifying materials that better integrate with electrodes than current popular materials (silicone/glass) and improving the performance of DEP manipulation of bioparticles by combining it with other methods of handling bioparticles. Collectively, DEP-based microfluidic manipulation of bioparticles holds great potential for various biomedical applications.
Collapse
Affiliation(s)
- Elyahb A. Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Mingrui Sun
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alisa M. White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
58
|
Woo SO, Oh M, Nietfeld K, Boehler B, Choi Y. Molecular diffusion analysis of dynamic blood flow and plasma separation driven by self-powered microfluidic devices. BIOMICROFLUIDICS 2021; 15:034106. [PMID: 34084256 PMCID: PMC8140817 DOI: 10.1063/5.0051361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Integration of microfluidic devices with pressure-driven, self-powered fluid flow propulsion methods has provided a very effective solution for on-chip, droplet blood testing applications. However, precise understanding of the physical process governing fluid dynamics in polydimethylsiloxane (PDMS)-based microfluidic devices remains unclear. Here, we propose a pressure-driven diffusion model using Fick's law and the ideal gas law, the results of which agree well with the experimental fluid dynamics observed in our vacuum pocket-assisted, self-powered microfluidic devices. Notably, this model enables us to precisely tune the flow rate by adjusting two geometrical parameters of the vacuum pocket. By linking the self-powered fluid flow propulsion method to the sedimentation, we also show that direct plasma separation from a drop of whole blood can be achieved using only a simple construction without the need for external power sources, connectors, or a complex operational procedure. Finally, the potential of the vacuum pocket, along with a removable vacuum battery to be integrated with non-PDMS microfluidic devices to drive and control the fluid flow, is demonstrated.
Collapse
Affiliation(s)
- Sung Oh Woo
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Myungkeun Oh
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Kyle Nietfeld
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Bailey Boehler
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Yongki Choi
- Author to whom correspondence should be addressed:
| |
Collapse
|
59
|
Carvalho Â, Ferreira G, Seixas D, Guimarães-Teixeira C, Henrique R, Monteiro FJ, Jerónimo C. Emerging Lab-on-a-Chip Approaches for Liquid Biopsy in Lung Cancer: Status in CTCs and ctDNA Research and Clinical Validation. Cancers (Basel) 2021; 13:cancers13092101. [PMID: 33925308 PMCID: PMC8123575 DOI: 10.3390/cancers13092101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Lung cancer (LCa) remains the leading cause of cancer-related mortality worldwide, with late diagnosis and limited therapeutic approaches still constraining patient’s outcome. In recent years, liquid biopsies have significantly improved the disease characterization and brought new insights into LCa diagnosis and management. The integration of microfluidic devices in liquid biopsies have shown promising results regarding circulating biomarkers isolation and analysis and these tools are expected to establish automatized and standardized results for liquid biopsies in the near future. Herein, we review the status of lab-on-a-chip approaches for liquid biopsies in LCa and highlight their current applications for circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) research and clinical validation studies. Abstract Despite the intensive efforts dedicated to cancer diagnosis and treatment, lung cancer (LCa) remains the leading cause of cancer-related mortality, worldwide. The poor survival rate among lung cancer patients commonly results from diagnosis at late-stage, limitations in characterizing tumor heterogeneity and the lack of non-invasive tools for detection of residual disease and early recurrence. Henceforth, research on liquid biopsies has been increasingly devoted to overcoming these major limitations and improving management of LCa patients. Liquid biopsy is an emerging field that has evolved significantly in recent years due its minimally invasive nature and potential to assess various disease biomarkers. Several strategies for characterization of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have been developed. With the aim of standardizing diagnostic and follow-up practices, microfluidic devices have been introduced to improve biomarkers isolation efficiency and specificity. Nonetheless, implementation of lab-on-a-chip platforms in clinical practice may face some challenges, considering its recent application to liquid biopsies. In this review, recent advances and strategies for the use of liquid biopsies in LCa management are discussed, focusing on high-throughput microfluidic devices applied for CTCs and ctDNA isolation and detection, current clinical validation studies and potential clinical utility.
Collapse
Affiliation(s)
- Ângela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Correspondence: ; Tel.: +351-226-074-900
| | - Gabriela Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
| | - Duarte Seixas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Catarina Guimarães-Teixeira
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Fernando J. Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Carmen Jerónimo
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
60
|
Huang D, Xiang N. Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods. LAB ON A CHIP 2021; 21:1409-1417. [PMID: 33605279 DOI: 10.1039/d0lc01223h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Circulating tumor cells (CTCs) play a significant role in cancer diagnosis and treatment monitoring. One of the major challenges in isolating and detecting rare CTCs from blood is that white blood cells (WBCs) have a size overlap with the target CTCs. To address this issue, we constructed a three-stage i-Mag device integrated with passive inertial microfluidics and active magnetophoresis, enabling rapid and precise separation of tumor cells from blood. The first-stage spiral inertial sorter was applied to rapidly remove small-sized red blood cells (RBCs), and then the second-stage serpentine inertial focuser and the third-stage magnetic sorter were used for removing the magnetically labeled WBCs size-independently, to significantly purify the captured tumor cells. Then, the separation performance of our i-Mag device was explored. The results indicated rapid and precise separation of breast cancer cells from diluted whole blood at a high separation efficiency of 93.84% and at a high purity of 51.47%. The purity of the collected tumor cells could be further improved to 93.60% when the blood dilution ratio was increased. We also successfully applied our i-Mag device for the isolation and detection of trace tumor cells. Our i-Mag device has numerous advantages, such as enabling high-throughput processing and high-precision separation, requiring easy manufacturing at a low cost, and providing tumor antigen-independent operation. We believe that the i-Mag device has great potential to act as a precise tool for separating various bioparticles.
Collapse
Affiliation(s)
- Di Huang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, P.R. China
| | | |
Collapse
|
61
|
Public-Health-Driven Microfluidic Technologies: From Separation to Detection. MICROMACHINES 2021; 12:mi12040391. [PMID: 33918189 PMCID: PMC8066776 DOI: 10.3390/mi12040391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Separation and detection are ubiquitous in our daily life and they are two of the most important steps toward practical biomedical diagnostics and industrial applications. A deep understanding of working principles and examples of separation and detection enables a plethora of applications from blood test and air/water quality monitoring to food safety and biosecurity; none of which are irrelevant to public health. Microfluidics can separate and detect various particles/aerosols as well as cells/viruses in a cost-effective and easy-to-operate manner. There are a number of papers reviewing microfluidic separation and detection, but to the best of our knowledge, the two topics are normally reviewed separately. In fact, these two themes are closely related with each other from the perspectives of public health: understanding separation or sorting technique will lead to the development of new detection methods, thereby providing new paths to guide the separation routes. Therefore, the purpose of this review paper is two-fold: reporting the latest developments in the application of microfluidics for separation and outlining the emerging research in microfluidic detection. The dominating microfluidics-based passive separation methods and detection methods are discussed, along with the future perspectives and challenges being discussed. Our work inspires novel development of separation and detection methods for the benefits of public health.
Collapse
|
62
|
Rastogi N, Seth P, Bhat R, Sen P. Vortex chip incorporating an orthogonal turn for size-based isolation of circulating cells. Anal Chim Acta 2021; 1159:338423. [PMID: 33867033 DOI: 10.1016/j.aca.2021.338423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
Size-based label-free separation of rare cells such as CTCs is attractive due to its wider applicability, simpler sample preparation, faster turnaround and better efficiency. Amongst such methods, vortex-trapping based techniques offer high throughput but operate at high flow velocities where the resulting hydrodynamic shear stress is likely to damage cells and compromise their viability for subsequent assays. We present here an orthogonal vortex chip which can carry out size-differentiated trapping at significantly lower (38% of previously reported) velocities. Composed of entry-exit channels that couple orthogonally to a trapping chamber, fluid flow in such configuration results in formation of a vortex which selectively traps larger particles above a critical velocity while smaller particles get ejected with the flow. We call this phenomenon the turn-effect. Critical velocities and optimal architectures for trapping of cells and particles of different sizes are characterized. We explain how shear-gradient lift, centrifugal and Dean flow drag forces contribute to the turn-effect by pushing particles into specific vortex orbits in a size- and velocity-dependent fashion. Selective trapping of human breast cancer cells mixed with whole blood at low concentration is demonstrated. The device shows promising results for gentle isolation of rare cells from blood.
Collapse
Affiliation(s)
- Navya Rastogi
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| | - Pranjal Seth
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Department of Biomedical Engineering, McGill University, Montreal, H3A 0G4, Canada.
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| | - Prosenjit Sen
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
63
|
Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques. Sci Rep 2021; 11:1939. [PMID: 33479404 PMCID: PMC7820336 DOI: 10.1038/s41598-021-81661-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
Isolation of rare cancer cells is one of the important and valuable stages of cancer research. Regarding the rarity of cancer cells in blood samples, it is important to invent an efficient separation device for cell enrichment. In this study, two centrifugal microfluidic devices were designed and fabricated for the isolation of rare cancer cells. The first design (passive plan) employs a contraction–expansion array (CEA) microchannel which is connected to a bifurcation region. This device is able to isolate the target cells through inertial effects and bifurcation law. The second design (hybrid plan) also utilizes a CEA microchannel, but instead of using the bifurcation region, it is reinforced by a stack of two permanent magnets to capture the magnetically labeled target cells at the end of the microchannel. These designs were optimized by numerical simulations and tested experimentally for isolation of MCF-7 human breast cancer cells from the population of mouse fibroblast L929 cells. In order to use the hybrid design, magnetite nanoparticles were attached to the MCF-7 cells through specific Ep-CAM antibodies, and two permanent magnets of 0.34 T were utilized at the downstream of the CEA microchannel. These devices were tested at different disk rotational speeds and it was found that the passive design can isolate MCF-7 cells with a recovery rate of 76% for the rotational speed of 2100 rpm while its hybrid counterpart is able to separate the target cells with a recovery rate of 85% for the rotational speed of 1200 rpm. Although the hybrid design of separator has a better separation efficiency and higher purity, the passive one has no need for a time-consuming process of cell labeling, occupies less space on the disk, and does not impose additional costs and complexity.
Collapse
|
64
|
Shen S, Gao M, Zhang F, Niu Y. Numerical Study of Multivortex Regulation in Curved Microchannels with Ultra-Low-Aspect-Ratio. MICROMACHINES 2021; 12:mi12010081. [PMID: 33466925 PMCID: PMC7830345 DOI: 10.3390/mi12010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
The field of inertial microfluidics has been significantly advanced in terms of application to fluid manipulation for biological analysis, materials synthesis, and chemical process control. Because of their superior benefits such as high-throughput, simplicity, and accurate manipulation, inertial microfluidics designs incorporating channel geometries generating Dean vortexes and helical vortexes have been studied extensively. However, existing technologies have not been studied by designing low-aspect-ratio microchannels to produce multi-vortexes. In this study, an inertial microfluidic device was developed, allowing the generation and regulation of the Dean vortex and helical vortex through the introduction of micro-obstacles in a semicircular microchannel with ultra-low aspect ratio. Multi-vortex formations in the vertical and horizontal planes of four dimension-confined curved channels were analyzed at different flow rates. Moreover, the regulation mechanisms of the multi-vortex were studied systematically by altering the micro-obstacle length and channel height. Through numerical simulation, the regulation of dimensional confinement in the microchannel is verified to induce the Dean vortex and helical vortex with different magnitudes and distributions. The results provide insights into the geometry-induced secondary flow mechanism, which can inspire simple and easily built planar 2D microchannel systems with low-aspect-ratio design with application in fluid manipulations for chemical engineering and bioengineering.
Collapse
Affiliation(s)
- Shaofei Shen
- Correspondence: (S.S.); (Y.N.); Tel./Fax: +86-354-6287205 (S.S. & Y.N.)
| | | | | | - Yanbing Niu
- Correspondence: (S.S.); (Y.N.); Tel./Fax: +86-354-6287205 (S.S. & Y.N.)
| |
Collapse
|
65
|
Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis. Talanta 2021; 221:121401. [DOI: 10.1016/j.talanta.2020.121401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
|
66
|
Giduthuri AT, Theodossiou SK, Schiele NR, Srivastava SK. Dielectrophoresis as a tool for electrophysiological characterization of stem cells. BIOPHYSICS REVIEWS 2020; 1:011304. [PMID: 38505626 PMCID: PMC10903368 DOI: 10.1063/5.0025056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/20/2020] [Indexed: 03/21/2024]
Abstract
Dielectrophoresis (DEP), a nonlinear electrokinetic technique caused by Maxwell-Wagner interfacial polarization of neutral particles in an electrolyte solution, is a powerful cell manipulation method used widely for various applications such as enrichment, trapping, and sorting of heterogeneous cell populations. While conventional cell characterization and sorting methods require tagging or labeling of cells, DEP has the potential to manipulate cells in a label-free way. Due to its unique ability to characterize and sort cells without the need of labeling, there is renewed interest in using DEP for stem cell research and regenerative medicine. Stem cells have the potential to differentiate into various lineages, but achieving homogeneous cell phenotypes from an initially heterogeneous cell population is a challenge. Using DEP to efficiently and affordably identify, sort, and enrich either undifferentiated or differentiated stem cell populations in a label-free way would advance their potential uses for applications in tissue engineering and regenerative medicine. This review summarizes recent, significant research findings regarding the electrophysiological characterization of stem cells, with a focus on cellular dielectric properties, i.e., permittivity and conductivity, and on studies that have obtained these measurements using techniques that preserve cell viability, such as crossover frequency. Potential applications for DEP in regenerative medicine are also discussed. Overall, DEP is a promising technique and, when used to characterize, sort, and enrich stem cells, will advance stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Anthony T. Giduthuri
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Sophia K. Theodossiou
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Nathan R. Schiele
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Soumya K. Srivastava
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
67
|
Huang D, Man J, Jiang D, Zhao J, Xiang N. Inertial microfluidics: Recent advances. Electrophoresis 2020; 41:2166-2187. [PMID: 33027533 DOI: 10.1002/elps.202000134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 02/24/2024]
Abstract
Inertial microfluidics has attracted significant attentions in last decade due to its superior advantages of high throughput, label- and external field-free operation, simplicity, and low cost. A wide variety of channel geometry designs were demonstrated for focusing, concentrating, isolating, or separating of various bioparticles such as blood components, circulating tumor cells, bacteria, and microalgae. In this review, we first briefly introduce the physics of inertial migration and Dean flow for allowing the readers with diverse backgrounds to have a better understanding of the fundamental mechanisms of inertial microfluidics. Then, we present a comprehensive review of the recent advances and applications of inertial microfluidic devices according to different channel geometries ranging from straight channels, curved channels to contraction-expansion-array channels. Finally, the challenges and future perspective of inertial microfluidics are discussed. Owing to its superior benefit for particle manipulation, the inertial microfluidics will play a more important role in biology and medicine applications.
Collapse
Affiliation(s)
- Di Huang
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Jiaxiang Man
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jiyun Zhao
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
68
|
Visualization and Measurements of Blood Cells Flowing in Microfluidic Systems and Blood Rheology: A Personalized Medicine Perspective. J Pers Med 2020; 10:jpm10040249. [PMID: 33256123 PMCID: PMC7712771 DOI: 10.3390/jpm10040249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Hemorheological alterations in the majority of metabolic diseases are always connected with blood rheology disturbances, such as the increase of blood and plasma viscosity, cell aggregation enhancement, and reduction of the red blood cells (RBCs) deformability. Thus, the visualizations and measurements of blood cells deformability flowing in microfluidic devices (point-of-care devices) can provide vital information to diagnose early symptoms of blood diseases and consequently to be used as a fast clinical tool for early detection of biomarkers. For instance, RBCs rigidity has been correlated with myocardial infarction, diabetes mellitus, hypertension, among other blood diseases. In order to better understand the blood cells behavior in microfluidic devices, rheological properties analysis is gaining interest by the biomedical committee, since it is strongly dependent on the interactions and mechanical cells proprieties. In addition, the development of blood analogue fluids capable of reproducing the rheological properties of blood and mimic the RBCs behavior at in vitro conditions is crucial for the design, performance and optimization of the microfluidic devices frequently used for personalized medicine. By combining the unique features of the hemorheology and microfluidic technology for single-cell analysis, valuable advances in personalized medicine for new treatments and diagnosis approach can be achieved.
Collapse
|
69
|
Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel. MICROMACHINES 2020; 11:mi11110998. [PMID: 33187390 PMCID: PMC7696856 DOI: 10.3390/mi11110998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Particle behavior in viscoelastic fluids has attracted considerable attention in recent years. In viscoelastic fluids, as opposed to Newtonian fluids, particle focusing can be simply realized in a microchannel without any external forces or complex structures. In this study, a polydimethylsiloxane (PDMS) microchannel with a rhombic cross-sectional shape was fabricated to experimentally investigate the behavior of inertial and elasto-inertial particles. Particle migration and behavior in Newtonian and non-Newtonian fluids were compared with respect to the flow rate and particle size to investigate their effect on the particle focusing position and focusing width. The PDMS rhombic microchannel was fabricated using basic microelectromechanical systems (MEMS) processes. The experimental results showed that single-line particle focusing was formed along the centerline of the microchannel in the non-Newtonian fluid, unlike the double-line particle focusing in the Newtonian fluid over a wide range of flow rates. Numerical simulation using the same flow conditions as in the experiments revealed that the particles suspended in the channel tend to drift toward the center of the channel owing to the negative net force throughout the cross-sectional area. This supports the experimental observation that the viscoelastic fluid in the rhombic microchannel significantly influences particle migration toward the channel center without any external force owing to coupling between the inertia and elasticity.
Collapse
|
70
|
Tang W, Zhu S, Jiang D, Zhu L, Yang J, Xiang N. Channel innovations for inertial microfluidics. LAB ON A CHIP 2020; 20:3485-3502. [PMID: 32910129 DOI: 10.1039/d0lc00714e] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inertial microfluidics has gained significant attention since first being proposed in 2007 owing to the advantages of simplicity, high throughput, precise manipulation, and freedom from an external field. Superior performance in particle focusing, filtering, concentrating, and separating has been demonstrated. As a passive technology, inertial microfluidics technology relies on the unconventional use of fluid inertia in an intermediate Reynolds number range to induce inertial migration and secondary flow, which depend directly on the channel structure, leading to particle migration to the lateral equilibrium position or trapping in a specific cavity. With the advances in micromachining technology, many channel structures have been designed and fabricated in the past decade to explore the fundamentals and applications of inertial microfluidics. However, the channel innovations for inertial microfluidics have not been discussed comprehensively. In this review, the inertial particle manipulations and underlying physics in conventional channels, including straight, spiral, sinusoidal, and expansion-contraction channels, are briefly described. Then, recent innovations in channel structure for inertial microfluidics, especially channel pattern modification and unconventional cross-sectional shape, are reviewed. Finally, the prospects for future channel innovations in inertial microfluidic chips are also discussed. The purpose of this review is to provide guidance for the continued study of innovative channel designs to improve further the accuracy and throughput of inertial microfluidics.
Collapse
Affiliation(s)
- Wenlai Tang
- School of Electrical and Automation Engineering, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, 210023, China.
| | | | | | | | | | | |
Collapse
|
71
|
Miccio L, Cimmino F, Kurelac I, Villone MM, Bianco V, Memmolo P, Merola F, Mugnano M, Capasso M, Iolascon A, Maffettone PL, Ferraro P. Perspectives on liquid biopsy for label‐free detection of “circulating tumor cells” through intelligent lab‐on‐chips. VIEW 2020. [DOI: 10.1002/viw.20200034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lisa Miccio
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | | | - Ivana Kurelac
- Dipartimento di Scienze Mediche e Chirurgiche Università di Bologna Bologna Italy
- Centro di Ricerca Biomedica Applicata (CRBA) Università di Bologna Bologna Italy
| | - Massimiliano M. Villone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale Università degli Studi di Napoli “Federico II” Napoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Vittorio Bianco
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Pasquale Memmolo
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Francesco Merola
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Martina Mugnano
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate Naples Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università degli Studi di Napoli Federico II Naples Italy
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate Naples Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università degli Studi di Napoli Federico II Naples Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale Università degli Studi di Napoli “Federico II” Napoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Pietro Ferraro
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| |
Collapse
|
72
|
Sun L, Yang W, Cai S, Chen Y, Chu H, Yu H, Wang Y, Liu L. Recent advances in microfluidic technologies for separation of biological cells. Biomed Microdevices 2020; 22:55. [PMID: 32797312 DOI: 10.1007/s10544-020-00510-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell separation has always been a key topic in academic research, especially in the fields of medicine and biology, due to its significance in diagnosis and treatment. Accurate, high-throughput and non-invasive separation of individual cells is key to driving the development of biomedicine and cellular biology. In recent years, a series of researches on the use of microfluidic technologies for cell separation have been conducted to solve bio-related problems. Hence, we present here a comprehensive review on the recent developments of microfluidic technologies for cell separation. In this review, we discuss several cell separation methods, mainly including: physical and biochemical method, their working principles as well as their practical applications. We also analyze the advantages and disadvantages of each method in detail. In addition, the current challenges and future prospects of microfluidic-based cell separation were discussed.
Collapse
Affiliation(s)
- Lujing Sun
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China.
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Honghui Chu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
73
|
Lee K, Lee J, Ha D, Kim M, Kim T. Low-electric-potential-assisted diffusiophoresis for continuous separation of nanoparticles on a chip. LAB ON A CHIP 2020; 20:2735-2747. [PMID: 32596703 DOI: 10.1039/d0lc00196a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticle separation techniques are of significant importance in nanoscience and nanotechnological applications and different concentration gradients, electric/dielectric forces, flow/pressure fields, and acoustic waves have been intensively investigated. However, precise separation of nanoparticles has many technical challenges in terms of sizes, shapes, and material properties, limiting the separation resolution, capability, applicability, throughput and so on. In this study, we present a microfluidic device for continuous separation of nanoparticles by combining diffusiophoresis (DP) and electrophoresis (EP) to achieve high separation performance. Concentration gradients formed from sodium chloride (NaCl) and potassium acetate (K-acetate) passively drive the diffusiophoretic migration of nanoparticles. Simultaneously, a low electric potential is additionally applied to impose a synergistic effect on nanoparticle migration by size and surface charge, which is called low-electric-potential-assisted DP (LEPDP). Using a LEPDP-based separation device, we demonstrate the separation of nanoparticles having different sizes (diameters of 500, 200, and 50 nm) and under different surface-charge conditions (carboxylated polystyrene, silica, and polylactide). The resulting separation performance exceeded 95%, in terms of size uniformity, which is about two times better than that obtained using DP alone. We also emphasize that the enhancement of separation performance only needs a small voltage (<1 V), thereby demonstrating that our multiphysical approach could be utilized for high-resolution and portable nanoparticle separation on a chip without the side effects associated with high electric fields. Lastly, we ensure that rapid and precise bio/chemical sensing and analysis of various nanosized particles would be envisioned by strategically combining two nonlinear but synergistic migration effects.
Collapse
Affiliation(s)
- Kyunghun Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | | | | | | | | |
Collapse
|
74
|
Nasiri R, Shamloo A, Ahadian S, Amirifar L, Akbari J, Goudie MJ, Lee K, Ashammakhi N, Dokmeci MR, Di Carlo D, Khademhosseini A. Microfluidic-Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000171. [PMID: 32529791 DOI: 10.1002/smll.202000171] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Cell separation is a key step in many biomedical research areas including biotechnology, cancer research, regenerative medicine, and drug discovery. While conventional cell sorting approaches have led to high-efficiency sorting by exploiting the cell's specific properties, microfluidics has shown great promise in cell separation by exploiting different physical principles and using different properties of the cells. In particular, label-free cell separation techniques are highly recommended to minimize cell damage and avoid costly and labor-intensive steps of labeling molecular signatures of cells. In general, microfluidic-based cell sorting approaches can separate cells using "intrinsic" (e.g., fluid dynamic forces) versus "extrinsic" external forces (e.g., magnetic, electric field, etc.) and by using different properties of cells including size, density, deformability, shape, as well as electrical, magnetic, and compressibility/acoustic properties to select target cells from a heterogeneous cell population. In this work, principles and applications of the most commonly used label-free microfluidic-based cell separation methods are described. In particular, applications of microfluidic methods for the separation of circulating tumor cells, blood cells, immune cells, stem cells, and other biological cells are summarized. Computational approaches complementing such microfluidic methods are also explained. Finally, challenges and perspectives to further develop microfluidic-based cell separation methods are discussed.
Collapse
Affiliation(s)
- Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Leyla Amirifar
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Javad Akbari
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Marcus J Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - KangJu Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
75
|
Kumar R, Ghosh M, Kumar S, Prasad M. Single Cell Metabolomics: A Future Tool to Unmask Cellular Heterogeneity and Virus-Host Interaction in Context of Emerging Viral Diseases. Front Microbiol 2020; 11:1152. [PMID: 32582094 PMCID: PMC7286130 DOI: 10.3389/fmicb.2020.01152] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Viral emergence is an unpredictable but obvious event, particularly in the era of climate change and globalization. Efficient management of viral outbreaks depends on pre-existing knowledge and alertness. The potential hotspots of viral emergence often remain neglected and the information related to them is insufficient, particularly for emerging viruses. Viral replication and transmission rely upon usurping the host metabolic machineries. So altered host metabolic pathways can be exploited for containment of these viruses. Metabolomics provides the insight for tracing out such checkpoints. Consequently introspection of metabolic alteration at virus-host interface has evolved as prime area in current virology research. Chromatographic separation followed by mass spectrometry has been used as the predominant analytical platform in bulk of the analyses followed by nuclear magnetic resonance (NMR) and fluorescence based techniques. Although valuable information regarding viral replication and modulation of host metabolic pathways have been extracted but ambiguity often superseded the real events due to population effect over the infected cells. Exploration of cellular heterogeneity and differentiation of infected cells from the nearby healthy ones has become essential. Single cell metabolomics (SCM) emerges as necessity to explore such minute details. Mass spectrometry imaging (MSI) coupled with several soft ionization techniques such as electrospray ionization (ESI), laser ablation electrospray ionization (LAESI), matrix assisted laser desorption/ionization (MALDI), matrix-free laser desorption ionization (LDI) have evolved as the best suited platforms for SCM analyses. The potential of SCM has already been exploited to resolve several biological conundrums. Thus SCM is knocking at the door of virus-host interface.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur, India
| | - Sandeep Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
76
|
Li T, Liu Y, Zhang W, Lin L, Zhang J, Xiong Y, Nie L, Liu X, Li H, Wang W. A rapid liquid biopsy of lung cancer by separation and detection of exfoliated tumor cells from bronchoalveolar lavage fluid with a dual-layer "PERFECT" filter system. Theranostics 2020; 10:6517-6529. [PMID: 32483467 PMCID: PMC7255025 DOI: 10.7150/thno.44274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022] Open
Abstract
Separation and detection of exfoliated tumor cells (ETCs) from bronchoalveolar lavage fluid (BALF), namely the liquid biopsy of BALF, has been proved to be a valuable tool for the diagnosis of lung cancer. Herein, we established a rapid liquid biopsy of BALF based on a dual-layer PERFECT (precise, efficient, rapid, flexible, easy-to-operate, controllable and thin) filter system for the first time. Methods: The dual-layer PERFECT filter system consists of an upper-layer filter with large micropores (feature size of 49.4 ± 0.5 μm) and a lower-layer filter with small micropores (9.1 ± 0.1 μm). The upper-layer filter contributes to the isolation of cell clusters and removal of mucus from BALF samples, meanwhile the lower-layer one targets for the separation of single ETCs. First, separation of 10000 spiked A549s (cultured lung cancer cells) from 10 mL clinical BALF samples (n=3) were performed to investigate the performance of the proposed system in rare cell separation. Furthermore, separation and detection of ETCs and ETC clusters from clinical BALF samples were performed with this system to test its efficacy and compared with the routine cytocentrifuge. The clinical BALF samples were collected from 33 lung cancer-suspected patients with visible lesions under bronchoscope. The final histopathological results showed that 20 samples were from lung cancer positive patients while the other 13 cases were from lung cancer negative patients. Results: The recovery rate of spiked A549 cells from clinical BALF samples with the developed system (89.8 ± 5.2%) is significantly higher than that with the cytocentrifuge (13.6 ± 7.8%). In the preliminary clinical trial, although 33 clinical BALF samples with volume ranging from 6 mL to 18 mL showed greatly varied turbidity, filtrations could be finished within 3 min for 54.6% of samples (18/33), and 10 min at most for the rest. The dual-layer PERFECT filter system is proved to have a much higher sensitivity (80.0%, 95% CI: 55.7%-93.4%) than the routine cytocentrifuge (45.0%, 95% CI: 23.8%-68.0%), p=0.016 (McNemar test, two-tail). Moreover, the sensitivity of this platform is neither interfered by the variations of turbidity of the BALF samples, nor associated with the types of lung cancer. Conclusions: The easy and rapid processing of BALF samples with varying volume and turbidity, competitive sensitivity and good versatility for different lung cancer types will make the established dual-layer PERFECT filter system a promising approach for the liquid biopsy of BALF. The high-performance BALF-based liquid biopsy will improve the cytopathological identification and diagnosis of lung cancer.
Collapse
Affiliation(s)
- Tingyu Li
- Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University, Beijing, 100871, China
- Antimicrobial Resistance (AMR) and Critical Analytics for Manufacturing Personalized-Medicine (CAMP) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, 138602, Singapore
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Lianjun Lin
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jixin Zhang
- Department of Pathology, Peking University First Hospital, Beijing, 100034, China
| | - Yan Xiong
- Department of Pathology, Peking University First Hospital, Beijing, 100034, China
| | - Ligong Nie
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, China
| | - Haichao Li
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing, 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
| |
Collapse
|
77
|
Hochstetter A. Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Diagnostics. MICROMACHINES 2020; 11:E468. [PMID: 32365567 PMCID: PMC7281269 DOI: 10.3390/mi11050468] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
In the last three decades, microfluidics and its applications have been on an exponential rise, including approaches to isolate rare cells and diagnose diseases on the single-cell level. The techniques mentioned herein have already had significant impacts in our lives, from in-the-field diagnosis of disease and parasitic infections, through home fertility tests, to uncovering the interactions between SARS-CoV-2 and their host cells. This review gives an overview of the field in general and the most notable developments of the last five years, in three parts: 1. What can we detect? 2. Which detection technologies are used in which setting? 3. How do these techniques work? Finally, this review discusses potentials, shortfalls, and an outlook on future developments, especially in respect to the funding landscape and the field-application of these chips.
Collapse
Affiliation(s)
- Axel Hochstetter
- Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
| |
Collapse
|
78
|
A Review of Secondary Flow in Inertial Microfluidics. MICROMACHINES 2020; 11:mi11050461. [PMID: 32354106 PMCID: PMC7280964 DOI: 10.3390/mi11050461] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
Inertial microfluidic technology, which can manipulate the target particle entirely relying on the microchannel characteristic geometry and intrinsic hydrodynamic effect, has attracted great attention due to its fascinating advantages of high throughput, simplicity, high resolution and low cost. As a passive microfluidic technology, inertial microfluidics can precisely focus, separate, mix or trap target particles in a continuous and high-flow-speed manner without any extra external force field. Therefore, it is promising and has great potential for a wide range of industrial, biomedical and clinical applications. In the regime of inertial microfluidics, particle migration due to inertial effects forms multiple equilibrium positions in straight channels. However, this is not promising for particle detection and separation. Secondary flow, which is a relatively minor flow perpendicular to the primary flow, may reduce the number of equilibrium positions as well as modify the location of particles focusing within channel cross sections by applying an additional hydrodynamic drag. For secondary flow, the pattern and magnitude can be controlled by the well-designed channel structure, such as curvature or disturbance obstacle. The magnitude and form of generated secondary flow are greatly dependent on the disturbing microstructure. Therefore, many inventive and delicate applications of secondary flow in inertial microfluidics have been reported. In this review, we comprehensively summarize the usage of the secondary flow in inertial microfluidics.
Collapse
|
79
|
Passive Dielectrophoretic Focusing of Particles and Cells in Ratchet Microchannels. MICROMACHINES 2020; 11:mi11050451. [PMID: 32344887 PMCID: PMC7281238 DOI: 10.3390/mi11050451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022]
Abstract
Focusing particles into a tight stream is critical for many microfluidic particle-handling devices such as flow cytometers and particle sorters. This work presents a fundamental study of the passive focusing of polystyrene particles in ratchet microchannels via direct current dielectrophoresis (DC DEP). We demonstrate using both experiments and simulation that particles achieve better focusing in a symmetric ratchet microchannel than in an asymmetric one, regardless of the particle movement direction in the latter. The particle focusing ratio, which is defined as the microchannel width over the particle stream width, is found to increase with an increase in particle size or electric field in the symmetric ratchet microchannel. Moreover, it exhibits an almost linear correlation with the number of ratchets, which can be explained by a theoretical formula that is obtained from a scaling analysis. In addition, we have demonstrated a DC dielectrophoretic focusing of yeast cells in the symmetric ratchet microchannel with minimal impact on the cell viability.
Collapse
|
80
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
81
|
Xue C, Sun Z, Li Y, Chen J, Liu B, Qin K. Separation of micro and sub‐micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis. Electrophoresis 2020; 41:909-916. [DOI: 10.1002/elps.202000002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Chun‐Dong Xue
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of Technology Dalian P. R. China
| | - Zhong‐Ping Sun
- School of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian P. R. China
| | - Yong‐Jiang Li
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of Technology Dalian P. R. China
| | - Jian‐Feng Chen
- The First Affiliated Hospital of Dalian Medical University Dalian P. R. China
| | - Bo Liu
- School of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian P. R. China
| | - Kai‐Rong Qin
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of Technology Dalian P. R. China
| |
Collapse
|
82
|
Yoon K, Jung HW, Chun MS. Two-phase flow in microfluidic-chip design of hydrodynamic filtration for cell particle sorting. Electrophoresis 2020; 41:1002-1010. [PMID: 32097495 DOI: 10.1002/elps.201900394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 11/07/2022]
Abstract
As one of the flow-based passive sorting, the hydrodynamic filtration using a microfluidic-chip has shown to effectively separate into different sizes of subpopulations from cell or particle suspensions. Its model framework involving two-phase Newtonian or generalized Newtonian fluid (GNF) was developed, by performing the complete analysis of laminar flow and complicated networks of main and multiple branch channels. To predict rigorously what occurs in flow fields, we estimated pressure drop, velocity profile, and the ratio of the flow fraction at each branch point, in which the analytical model was validated with numerical flow simulations. As a model fluid of the GNF, polysaccharide solution based on Carreau type was examined. The objective parameters aiming practical channel design include the number of the branches and the length of narrow section of each branch for arbitrary conditions. The flow fraction and the number of branches are distinctly affected by the viscosity ratio between feed and side flows. As the side flow becomes more viscous, the flow fraction increases but the number of branches decreases, which enables a compact chip designed with fewer branches being operated under the same throughput. Hence, our rational design analysis indicates the significance of constitutive properties of each stream.
Collapse
Affiliation(s)
- Kyu Yoon
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, Republic of Korea.,National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Myung-Suk Chun
- National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Bio-Medical Department, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
83
|
Zhang T, Hong ZY, Tang SY, Li W, Inglis DW, Hosokawa Y, Yalikun Y, Li M. Focusing of sub-micrometer particles in microfluidic devices. LAB ON A CHIP 2020; 20:35-53. [PMID: 31720655 DOI: 10.1039/c9lc00785g] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sub-micrometer particles (0.10-1.0 μm) are of great significance to study, e.g., microvesicles and protein aggregates are targets for therapeutic intervention, and sub-micrometer fluorescent polystyrene (PS) particles are used as probes for diagnostic imaging. Focusing of sub-micrometer particles - precisely control over the position of sub-micrometer particles in a tightly focused stream - has a wide range of applications in the field of biology, chemistry and environment, by acting as a prerequisite step for downstream detection, manipulation and quantification. Microfluidic devices have been attracting great attention as desirable tools for sub-micrometer particle focusing, due to their small size, low reagent consumption, fast analysis and low cost. Recent advancements in fundamental knowledge and fabrication technologies have enabled microfluidic focusing of particles at sub-micrometer scale in a continuous, label-free and high-throughput manner. Microfluidic methods for the focusing of sub-micrometer particles can be classified into two main groups depending on whether an external field is applied: 1) passive methods, which utilize intrinsic fluidic properties without the need of external actuation, such as inertial, deterministic lateral displacement (DLD), viscoelastic and hydrophoretic focusing; and 2) active methods, where external fields are used, such as dielectrophoretic, thermophoretic, acoustophoretic and optical focusing. This article mainly reviews the studies on the focusing of sub-micrometer particles in microfluidic devices over the past 10 years. It aims to bridge the gap between the focusing of micrometer and nanometer scale (1.0-100 nm) particles and to improve the understanding of development progress, current advances and future prospects in microfluidic focusing techniques.
Collapse
Affiliation(s)
- Tianlong Zhang
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan. and School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Zhen-Yi Hong
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Shi-Yang Tang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong 2522, Australia
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong 2522, Australia
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| |
Collapse
|
84
|
Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. NANOTECHNOLOGY 2019; 30:502003. [PMID: 31491782 DOI: 10.1088/1361-6528/ab4241] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomaterials, in addition to their small size, possess unique physicochemical properties that differ from bulk materials, making them ideal for a host of novel applications. Magnetic nanoparticles (MNPs) are one important class of nanomaterials that have been widely studied for their potential applications in nanomedicine. Due to the fact that MNPs can be detected and manipulated by remote magnetic fields, it opens a wide opportunity for them to be used in vivo. Nowadays, MNPs have been used for diverse applications including magnetic biosensing (diagnostics), magnetic imaging, magnetic separation, drug and gene delivery, and hyperthermia therapy, etc. Specifically, we reviewed some emerging techniques in magnetic diagnostics such as magnetoresistive (MR) and micro-Hall (μHall) biosensors, as well as the magnetic particle spectroscopy, magnetic relaxation switching and surface enhanced Raman spectroscopy (SERS)-based bioassays. Recent advances in applying MNPs as contrast agents in magnetic resonance imaging and as tracer materials in magnetic particle imaging are reviewed. In addition, the development of high magnetic moment MNPs with proper surface functionalization has progressed exponentially over the past decade. To this end, different MNP synthesis approaches and surface coating strategies are reviewed and the biocompatibility and toxicity of surface functionalized MNP nanocomposites are also discussed. Herein, we are aiming to provide a comprehensive assessment of the state-of-the-art biological and biomedical applications of MNPs. This review is not only to provide in-depth insights into the different synthesis, biofunctionalization, biosensing, imaging, and therapy methods but also to give an overview of limitations and possibilities of each technology.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | | | | | | |
Collapse
|
85
|
Xuan X. Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids. MICROMACHINES 2019; 10:E744. [PMID: 31683660 PMCID: PMC6915689 DOI: 10.3390/mi10110744] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Magnetic field-induced particle manipulation is simple and economic as compared to other techniques (e.g., electric, acoustic, and optical) for lab-on-a-chip applications. However, traditional magnetic controls require the particles to be manipulated being magnetizable, which renders it necessary to magnetically label particles that are almost exclusively diamagnetic in nature. In the past decade, magnetic fluids including paramagnetic solutions and ferrofluids have been increasingly used in microfluidic devices to implement label-free manipulations of various types of particles (both synthetic and biological). We review herein the recent advances in this field with focus upon the continuous-flow particle manipulations. Specifically, we review the reported studies on the negative magnetophoresis-induced deflection, focusing, enrichment, separation, and medium exchange of diamagnetic particles in the continuous flow of magnetic fluids through microchannels.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
86
|
Advances in Computational Fluid Mechanics in Cellular Flow Manipulation: A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, remarkable developments have taken place, leading to significant improvements in microfluidic methods to capture subtle biological effects down to single cells. As microfluidic devices are getting sophisticated, design optimization through experimentations is becoming more challenging. As a result, numerical simulations have contributed to this trend by offering a better understanding of cellular microenvironments hydrodynamics and optimizing the functionality of the current/emerging designs. The need for new marketable designs with advantageous hydrodynamics invokes easier access to efficient as well as time-conservative numerical simulations to provide screening over cellular microenvironments, and to emulate physiological conditions with high accuracy. Therefore, an excerpt overview on how each numerical methodology and associated handling software works, and how they differ in handling underlying hydrodynamic of lab-on-chip microfluidic is crucial. These numerical means rely on molecular and continuum levels of numerical simulations. The current review aims to serve as a guideline for researchers in this area by presenting a comprehensive characterization of various relevant simulation techniques.
Collapse
|
87
|
Exploring contraction–expansion inertial microfluidic‐based particle separation devices integrated with curved channels. AIChE J 2019. [DOI: 10.1002/aic.16741] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
88
|
Xiang N, Wang J, Li Q, Han Y, Huang D, Ni Z. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Anal Chem 2019; 91:10328-10334. [DOI: 10.1021/acs.analchem.9b02863] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jie Wang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Qiao Li
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Di Huang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
89
|
Tatsumi K, Kawano K, Shintani H, Nakabe K. Particle Timing Control and Alignment in Microchannel Flow by Applying Periodic Force Control Using Dielectrophoretic Force. Anal Chem 2019; 91:6462-6470. [PMID: 30933475 DOI: 10.1021/acs.analchem.8b04821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a technique for particle streamwise timing, spacing and velocity control (alignment) in microchannel flow by controlling the forces exerted on the particle in space and time, was developed. In the present technique, the timing of particles crossing a certain position in microchannel flow with a specific interval and the particle velocity are controlled by applying acceleration and deceleration forces periodically in the streamwise direction and activating them periodically. The force is produced by a dielectrophoretic force using ladder-type electrodes embedded in the microfluidic device and is turned on and off in a cycle. The timing of particles crossing a certain position can be changed by adjusting the phase of the on-off cycle, i.e., the phase of the voltage signal. In the experiment, timing and velocity were measured at the inlet and outlet of ladder-type regions for Jurkat cells and particles of some variation in size, and probability density functions for the deviation of these values from the equilibrium (aligned) state were evaluated. Further, we will discuss the motion characteristics of the particles numerically and experimentally to understand the mechanism and evaluate the performance of the particle timing control and alignment using the present technique. The results confirm that the particles randomly distributed at the inlet of ladder-type electrode regions are controlled to flow with even spacing at a specific velocity. Moreover, the timing of the particles passing a specific location in the ladder-type electrode region was synchronized with the activated/nonactivated cycle of the applied force and could be specified.
Collapse
Affiliation(s)
- Kazuya Tatsumi
- Department of Mechanical Engineering and Science , Kyoto University , Kyotodaigakukatsura, Kyoto , Kyoto 615-8540 , Japan
| | - Koki Kawano
- Department of Mechanical Engineering and Science , Kyoto University , Kyotodaigakukatsura, Kyoto , Kyoto 615-8540 , Japan
| | - Hiromichi Shintani
- Department of Mechanical Engineering and Science , Kyoto University , Kyotodaigakukatsura, Kyoto , Kyoto 615-8540 , Japan
| | - Kazuyoshi Nakabe
- Department of Mechanical Engineering and Science , Kyoto University , Kyotodaigakukatsura, Kyoto , Kyoto 615-8540 , Japan
| |
Collapse
|
90
|
Alkayyali T, Cameron T, Haltli B, Kerr R, Ahmadi A. Microfluidic and cross-linking methods for encapsulation of living cells and bacteria - A review. Anal Chim Acta 2019; 1053:1-21. [DOI: 10.1016/j.aca.2018.12.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
|
91
|
Zhou W, Liu Y, Ran M, Zhao X, Li H, Li H, Wang W. Rapid liquid biopsy for Mohs surgery: rare target cell separation from surgical margin lavage fluid with a high recovery rate and selectivity. LAB ON A CHIP 2019; 19:974-983. [PMID: 30694285 DOI: 10.1039/c8lc01335g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In melanoma surgery, it is difficult to identify residual scattered tumor cells at the surgical margin because of invasive growth. Mohs surgery, widely applied to increase the cure rate and decrease the recurrence rate of melanoma, involves examination of the tissue for tumor cells after tissue removal. Here, we established a liquid biopsy platform for rapid (<5 h), sensitive examination of residual tumor cells at the margin after Mohs surgery using clinical samples from patients with pigment nevus for a demonstration. The design involved highly sensitive, selective rare target cell separation from surgical margin lavage fluid (SMLF) through micropore-arrayed filtration. High recovery rates (86.7% ± 16.3% and 72.7% ± 46.7%, respectively) for separation of spiked 5 A375s (cultured human melanoma cells) and 1 A375 from 1 mL PBS were achieved for this platform. Detection of SMLF samples from patients with pigment nevus was performed, and many (66-7420) Melan-A-positive target cells were successfully recovered and identified, demonstrating the application performance of this rapid liquid biopsy for Mohs surgery in clinical practice. Moreover, a high-selectivity separation of larger target A375 cells from smaller background Jurkat cells was achieved with a high enrichment factor (4.2 ± 1.1). In clinical practice, high selectivity contributes to effective depletion of red blood cells (RBCs), thus ensuring verification of target cells from samples with severe RBC contamination. Furthermore, target cells were obtained with high purity (2.7-35.2%). The capability of this method for rare-cell separation with a high recovery rate and good selectivity may facilitate improvement of performance of Mohs surgery for real clinical practice, including shortening examination time and increasing detection sensitivity.
Collapse
Affiliation(s)
- Wenbo Zhou
- Institute of Microelectronics, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | |
Collapse
|
92
|
Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst 2019; 143:2936-2970. [PMID: 29796523 DOI: 10.1039/c7an01979c] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metastasis is the main cause of tumor-related death, and the dispersal of tumor cells through the circulatory system is a critical step in the metastatic process. Early detection and analysis of circulating tumor cells (CTCs) is therefore important for early diagnosis, prognosis, and effective treatment of cancer, enabling favorable clinical outcomes in cancer patients. Accurate and reliable methods for isolating and detecting CTCs are necessary to obtain this clinical information. Over the past two decades, microfluidic technologies have demonstrated great potential for isolating and detecting CTCs from blood. The present paper reviews current advanced microfluidic technologies for isolating CTCs based on various biological and physical principles, and discusses their fundamental advantages and drawbacks for subsequent cellular and molecular assays. Owing to significant genetic heterogeneity among CTCs, microfluidic technologies for isolating individual CTCs have recently been developed. We discuss these single-cell isolation methods, as well as approaches to overcoming the limitations of current microfluidic CTC isolation technologies. Finally, we provide an overview of future innovative microfluidic platforms.
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
93
|
Dalili A, Samiei E, Hoorfar M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst 2019; 144:87-113. [DOI: 10.1039/c8an01061g] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have reviewed the microfluidic approaches for cell/particle isolation and sorting, and extensively explained the mechanism behind each method.
Collapse
Affiliation(s)
- Arash Dalili
- The University of British
- School of Engineering
- Kelowna
- Canada V1 V 1 V7
| | - Ehsan Samiei
- University of Victoria
- Department of Mechanical Engineering
- Victoria
- Canada
| | - Mina Hoorfar
- The University of British
- School of Engineering
- Kelowna
- Canada V1 V 1 V7
| |
Collapse
|
94
|
Liu N, Petchakup C, Tay HM, Li KHH, Hou HW. Spiral Inertial Microfluidics for Cell Separation and Biomedical Applications. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
95
|
Yao J, Chen J, Cao X, Dong H. Combining 3D sidewall electrodes and contraction/expansion microstructures in microchip promotes isolation of cancer cells from red blood cells. Talanta 2018; 196:546-555. [PMID: 30683404 DOI: 10.1016/j.talanta.2018.12.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023]
Abstract
Cell sorting from heterogeneous organisms and tissues composed of multi-type cells is of great importance in biological and clinical applications. As promising cell sorting methods, dielectrophoresis (DEP) and hydrodynamics are attracting much attention in recent years. In this paper, we report a novel strategy by coupling DEP unit (3D sidewall electrodes) and hydrodynamic unit (microchannels with contraction/expansion structures) together in one microfluidic chip. Depending on the relative positions of 3D sidewall electrodes and contraction/expansion structure, three microchips (full-coupling, semi-coupling and non-coupling) are developed and their cell sorting performance are compared by isolating lung cancer cells (PC-9 cells) from red blood cells (RBCs). Both finite element simulation and practical cell sorting prove that high cell sorting efficiency (recovery of PC-9 cells: 90.21%, recovery of RBCs: 94.35%) can be achieved in full-coupling microchip, mainly owing to the synergistic effects between DEP sorting and hydrodynamic sorting. i.e., the positive DEP force generated by 3D sidewall electrodes can simultaneously act as an additional shear gradient lift force and thus trigger secondary flow even at low flow velocity. Live/dead cell staining, hemolysis ratio, fluorescence images and CCK-8 assay prove that RBCs and PC-9 cells show no significance difference in cell viability before and after cell sorting. The proposed coupling platform for cell sorting brings on a new pathway to construct integrated microfluidic chips for effective cell sorting and separation.
Collapse
Affiliation(s)
- Jie Yao
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jingxuan Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Cao
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
96
|
Liu Y, Li T, Xu M, Zhang W, Xiong Y, Nie L, Wang Q, Li H, Wang W. A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples. LAB ON A CHIP 2018; 19:68-78. [PMID: 30516210 DOI: 10.1039/c8lc01048j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liquid biopsy techniques for rare tumor cell separation from body fluids have shown enormous promise in cancer detection and prognosis monitoring. This work established a high-throughput liquid biopsy platform with a high recovery rate and a high cell viability based on a previously reported 2.5D micropore-arrayed filtration membrane. Thanks to its high porosity (>40.2%, edge-to-edge space between the adjacent micropores <4 μm), the achieved filtration throughputs can reach >110 mL min-1 for aqueous samples and >17 mL min-1 for undiluted whole blood, only driven by gravity with no need for any extra pressure loading. The recoveries of rare lung tumor cells (A549s) spiked in PBS (10 mL), unprocessed BALF (10 mL) and whole blood (5 mL) show high recovery rates (88.0 ± 3.7%, 86.0 ± 5.3% and 83.2 ± 6.2%, respectively, n = 5 for every trial) and prove the high performance of this platform. Successful detection of circulating tumor cells (CTCs) from whole blood samples (5 mL) of lung cancer patients (n = 5) was demonstrated. In addition, it was both numerically and experimentally proved that a small edge-to-edge space was significant to improve the viability of the recovered cells and the purity of the target cell recovery, which was reported for the first time to the best of the authors' knowledge. This high-throughput technique will expand the detecting targets of liquid biopsy from the presently focused CTCs in whole blood to the exfoliated tumor cells (ETCs) in other large-volume clinical samples, such as BALF, urine and pleural fluid. Meanwhile, the technique is easy to operate and ready for integration with other separation and analysis tools to fulfill a powerful system for practical clinical applications of liquid biopsy.
Collapse
Affiliation(s)
- Yaoping Liu
- Institute of Microelectronics, Peking University, 100871, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Tang W, Jiang D, Li Z, Zhu L, Shi J, Yang J, Xiang N. Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles. Electrophoresis 2018; 40:930-954. [DOI: 10.1002/elps.201800361] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Wenlai Tang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering; Nanjing Forestry University; P. R. China
| | - Zongan Li
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Liya Zhu
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jianping Shi
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jiquan Yang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Nan Xiang
- School of Mechanical Engineering; Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; P. R. China
| |
Collapse
|
98
|
Li D, Zielinski J, Kozubowski L, Xuan X. Continuous sheath-free separation of drug-treated human fungal pathogen Cryptococcus neoformans by morphology in biocompatible polymer solutions. Electrophoresis 2018; 39:2362-2369. [PMID: 29466605 PMCID: PMC6737929 DOI: 10.1002/elps.201700428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/13/2022]
Abstract
Cryptococcal meningitis caused by Cryptococcus neoformans is the leading cause of fungal central nervous system infections. Current antifungal treatments for cryptococcal infections are inadequate partly due to the occurrence of drug resistance. Recent studies indicate that the treatment of the azole drug fluconazole changes the morphology of C. neoformans to form enlarged "multimeras" that consist of three or more connected cells/buds. To analyze if these multimeric cells are a prerequisite for C. neoformans to acquire drug resistance, a tool capable of separating them from normal cells is critical. We extend our recently demonstrated sheath-free elasto-inertial particle separation technique to fractionate drug-treated C. neoformans cells by morphology in biocompatible polymer solutions. The separation performance is evaluated for both multimeric and normal cells in terms of three dimensionless metrics: efficiency, purity, and enrichment ratio. The effects of flow rate, polymer concentration, and microchannel height on cell separation are studied.
Collapse
Affiliation(s)
- Di Li
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA
| | - Jessica Zielinski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634-0318, United States
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634-0318, United States
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA
| |
Collapse
|
99
|
Khan M, Mao S, Li W, Lin J. Microfluidic Devices in the Fast‐Growing Domain of Single‐Cell Analysis. Chemistry 2018; 24:15398-15420. [DOI: 10.1002/chem.201800305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
100
|
Luo T, Fan L, Zeng Y, Liu Y, Chen S, Tan Q, Lam RHW, Sun D. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation. LAB ON A CHIP 2018; 18:1521-1532. [PMID: 29725680 DOI: 10.1039/c8lc00173a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Prefocusing of the cell mixture is necessary for achieving a high-efficiency and continuous dielectrophoretic (DEP) cell separation. However, prefocusing through sheath flow requires a complex and tedious peripheral system for multi-channel fluid control, hindering the integration of DEP separation systems with other microfluidic functionalities for comprehensive clinical and biological tasks. This paper presented a simplified sheathless cell separation approach that combines gravitational-sedimentation-based sheathless prefocusing and DEP separation methods. Through gravitational sedimentation in a tubing, which was inserted into the inlet of a microfluidic chip with an adjustable steering angle, the cells were focused into a stream at the upstream region of a microchannel prior to separation. Then, a DEP force was applied at the downstream region of the microchannel for the active separation of the cells. Through this combined strategy, the peripheral system for the sheath flow was no longer required, and thus the integration of cell separation system with additional microfluidic functionalities was facilitated. The proposed sheathless scheme focused the mixture of cells with different sizes and dielectric properties into a stream in a wide range of flow rates without changing the design of the microfluidic chip. The DEP method is a label-free approach that can continuously separate cells on the basis of the sizes or dielectric properties of the cells and thus capable of greatly flexible cell separation. The efficiency of the proposed approach was experimentally assessed according to its performance in the separation of human acute monocytic leukemia THP-1 cells from yeast cells with respect to different sizes and THP-1 cells from human acute myelomonocytic leukemia OCI-AML3 cells with respect to different dielectric properties. The experimental results revealed that the separation efficiency of the method can surpass 90% and thus effective in separating cells on the basis of either size or dielectric property.
Collapse
Affiliation(s)
- Tao Luo
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|