51
|
Hayat S, Thomas A, Afshar F, Sonigra R, Wigley CB. Manipulation of olfactory ensheathing cell signaling mechanisms: effects on their support for neurite regrowth from adult CNS neurons in coculture. Glia 2004; 44:232-41. [PMID: 14603464 DOI: 10.1002/glia.10299] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pretreatment of olfactory ensheathing cells (OECs) with Pertussis toxin increased the number of subsequently cocultured adult retinal ganglion cells (RGCs) regrowing neurites without affecting neuronal survival. Pertussis toxin (PTx) inactivated an OEC G(i/o) protein as pretreating OECs with the PTx B-oligomer subunit had no effect on RGC neurite regrowth. However, the B-oligomer was responsible for decreasing the marked orientation of neurite regrowth on the OEC substrate. Simultaneous incubation of OECs with PTx and a depolarizing concentration of KCl abolished the increase in neurite regrowth from cocultured RGCs, but exposure to a depolarizing KCl concentration after OECs had been PTx-treated had no effect. Our evidence supports the hypothesis that G-protein-regulated calcium signaling plays a significant role in OEC support for CNS axonal regeneration.
Collapse
Affiliation(s)
- Shaista Hayat
- Neural Damage and Repair Group, Centre for Neuroscience Research, Kings College London, London, UK
| | | | | | | | | |
Collapse
|
52
|
Barnett SC, Riddell JS. Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats. J Anat 2004; 204:57-67. [PMID: 14690478 PMCID: PMC1571239 DOI: 10.1111/j.1469-7580.2004.00257.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2003] [Indexed: 10/26/2022] Open
Abstract
One of the main research strategies to improve treatment for spinal cord injury involves the use of cell transplantation. This review looks at the advantages and possible caveats of using glial cells from the olfactory system in transplant-mediated repair. These glial cells, termed olfactory ensheathing cells (OECs), ensheath the axons of the olfactory receptor neurons. The primary olfactory system is an unusual tissue in that it can support neurogenesis throughout life. In addition, newly generated olfactory receptor neurons are able to grow into the CNS environment of the olfactory bulb tissue and reform synapses. It is thought that this unique regenerative property depends in part on the presence of OECs. OECs share some of the properties of both astrocytes and Schwann cells but appear to have advantages over these and other glial cells for CNS repair. In particular, OECs are less likely to induce hypertrophy of CNS astrocytes. As well as remyelinating demyelinated axons, OEC grafts appear to promote the restoration of functions lost following a spinal cord lesion. However, much of the evidence for this is based on behavioural tests, and the mechanisms that underlie their potential benefits in transplant-mediated repair remain to be clarified.
Collapse
Affiliation(s)
- Susan C Barnett
- Division of Clinical Neurosciences, Beatson Laboratories, Glasgow, UK.
| | | |
Collapse
|
53
|
Barnett SC, Chang L. Olfactory ensheathing cells and CNS repair: going solo or in need of a friend? Trends Neurosci 2004; 27:54-60. [PMID: 14698611 DOI: 10.1016/j.tins.2003.10.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Susan C Barnett
- Division of Clinical Neuroscience, University of Glasgow, Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland, UK.
| | | |
Collapse
|
54
|
Radtke C, Akiyama Y, Brokaw J, Lankford KL, Wewetzer K, Fodor WL, Kocsis JD. Remyelination of the nonhuman primate spinal cord by transplantation of H-transferase transgenic adult pig olfactory ensheathing cells. FASEB J 2003; 18:335-7. [PMID: 14657003 PMCID: PMC2605365 DOI: 10.1096/fj.03-0214fje] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Olfactory ensheathing cells (OECs) have been shown to mediate remyelination and to stimulate axonal regeneration in a number of in vivo rodent spinal cord studies. However, whether OECs display similar properties in the primate model has not been tested so far. In the present study, we thus transplanted highly-purified OECs isolated from transgenic pigs expressing the alpha1,2 fucosyltransferase gene (H-transferase or HT) gene into a demyelinated lesion of the African green monkey spinal cord. Four weeks posttransplantation, robust remyelination was found in 62.5% of the lesion sites, whereas there was virtually no remyelination in the nontransplanted controls. This together with the immunohistochemical demonstration of the grafted cells within the lesioned area confirmed that remyelination was indeed achieved by OECs. Additional in vitro assays demonstrated 1) that the applied cell suspension consisted of >98% OECs, 2) that the majority of the cells expressed the transgene, and 3) that expression of the HT gene reduced complement activation more than twofold compared with the nontransgenic control. This is the first demonstration that xenotransplantation of characterized OECs into the primate spinal cord results in remyelination.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
- CTR. Anatomy, Hannover Medical School, Hannover, Germany
| | - Yukinori Akiyama
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
| | - Jane Brokaw
- Alexion Pharmaceuticals Inc., Cheshire, Connecticut 06410
| | - Karen L. Lankford
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
| | | | | | - Jeffery D. Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
| |
Collapse
|
55
|
Hegg CC, Au E, Roskams AJ, Lucero MT. PACAP is present in the olfactory system and evokes calcium transients in olfactory receptor neurons. J Neurophysiol 2003; 90:2711-9. [PMID: 12761277 PMCID: PMC2976504 DOI: 10.1152/jn.00288.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pituitary adenylate cyclase activating peptide (PACAP), a neuroregulatory peptide, is found in germinative regions of the CNS, including the olfactory bulb, throughout adulthood. We show that 1) PACAP immunoreactivity is also present in the neonatal mouse and adult mouse and rat olfactory epithelium, 2) PACAP expression pattern differs between neonatal and adult mice, and 3) PACAP is produced by olfactory ensheathing cells. PACAP may thus be a key factor in the uniquely supportive role of olfactory ensheathing cells in regeneration of neurons from olfactory epithelium and lesioned spinal cord. Using calcium imaging, we demonstrated physiological responses to PACAP in both neonatal and adult olfactory receptor neurons (ORNs). We propose that PACAP plays an important role in normal turnover of ORNs by providing neurotrophic support during development and regeneration and neuroprotective support of mature neurons.
Collapse
Affiliation(s)
- Colleen C Hegg
- Department of Physiology, School of Medicine, University of Utah, Salt Lake City, Utah 84108-1297, USA
| | | | | | | |
Collapse
|
56
|
Bartolami S, Augé C, Travo C, Ventéo S, Knipper M, Sans A. Vestibular Schwann cells are a distinct subpopulation of peripheral glia with specific sensitivity to growth factors and extracellular matrix components. ACTA ACUST UNITED AC 2003; 57:270-90. [PMID: 14608663 DOI: 10.1002/neu.10302] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vestibular nerve Schwann cells are predisposed to develop schwannoma. While knowledge concerning this condition has greatly improved, little is known about properties of normal vestibular Schwann cells. In an attempt to understand this predisposition, we evaluated cell density regulation and proliferative features of these cells taken from 6-day-old rats. Data were compared to those obtained with sciatic Schwann cells. In both vestibular and sciatic 7-day-old cultures, Schwann cells appear as bipolar or flattened cells. However, sciatic and vestibular cells greatly differ in other aspects: on poly-L-lysine coating, sciatic cells specifically synthesize myelin basic protein, while expression of P0 mRNAs is restricted to some vestibular cells. Laminin increases sciatic cell density but not that of vestibular cells. Fibronectin selectively enhances the proliferation of vestibular Schwann cells and lacks an effect on sciatic ones. Comparison of cell density changes between sciatic and vestibular cells shows that they are sensitive to two different sets of growth factors. Progesterone and FGF-2 combined with forskolin selectively enhance the cell density of sciatic glia, while IGF-1 and GDNF specifically increase vestibular cell density. Furthermore, BrdU incorporation assays indicate that GDNF is also a mitogen for vestibular cells. Altogether, vestibular Schwann cells display phenotypic features and responsiveness to exogenous signals that are significantly different from sciatic Schwann cells, suggesting that vestibular glia form a subpopulation of Schwann cells.
Collapse
Affiliation(s)
- Sylvain Bartolami
- INSERM U583, Université Montpellier II, Place Eugène Bataillon, 34090 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
57
|
Jiang S, Wang J, Khan MI, Middlemiss PJ, Salgado-Ceballos H, Werstiuk ES, Wickson R, Rathbone MP. Enteric glia promote regeneration of transected dorsal root axons into spinal cord of adult rats. Exp Neurol 2003; 181:79-83. [PMID: 12710936 DOI: 10.1016/s0014-4886(02)00030-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
After spinal cord injury axonal regeneration is poor, but may be enhanced by the implantation of olfactory ensheathing glia (OEG). Enteric glia (EG) share many properties of OEG. Transected dorsal root axons normally do not regenerate through the central nervous system myelin into the spinal cord. We tested whether EG, like OEG, could promote regeneration in this paradigm. Three weeks after EG implantation, numerous regenerating dorsal root axons reentered the spinal cord. Ingrowth of dorsal root axons was observed using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate. Primary sensory afferents invaded laminae 1, 2, and 3, grew through laminae 4 and 5, and reached the dorsal gray commissure. No axonal ingrowth was observed in control animals, indicating that transplanted EG enabled regeneration of the injured dorsal root axons into the adult spinal cord. Thus, EG implantation may be beneficial in promoting axonal growth after central nervous system injury.
Collapse
Affiliation(s)
- Shucui Jiang
- Department of Medicine, McMaster University Health Sciences Centre 4N71, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
58
|
van den Pol AN, Santarelli JG. Olfactory ensheathing cells: time lapse imaging of cellular interactions, axonal support, rapid morphologic shifts, and mitosis. J Comp Neurol 2003; 458:175-94. [PMID: 12596257 DOI: 10.1002/cne.10577] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Olfactory ensheathing cells (OECs) have considerable potential for facilitating axonal growth across regions of spinal cord and brain injury but in this context have been studied primarily in static images of fixed tissue from the olfactory system or after transplantation. In the present work, we studied the behavior of live OECs, and their interactions with neurons, Schwann cells, and astrocytes by using cells that express the reporter gene coding for green fluorescent protein (GFP); the work is based on combinations of fluorescence, phase contrast, digital time lapse imaging, and P75 immunocytochemical identification. Cultures, explants, and regions of olfactory system slices rich in OECs enhanced axonal growth of cerebellar granule cells or hippocampal neurons; axons grew parallel to the long axis of fusiform OECs. Neuron cell bodies and axons preferred OECs over artificial substrates. Axons and neuron cell bodies can take active or passive roles in extension and migration on underlying motile OECs and move from one OEC to another. Axon extension was facilitated to a similar degree by OECs and Schwann cells, whereas astrocytes were more likely to integrate with existing OECs than with Schwann cells. OECs showed a dramatic ability to rapidly change shape, size, and direction of migration and to undergo mitosis. Mitosis was characterized by a quick retraction of all processes, thereby forming a sphere that divided into spherical daughter cells within minutes. Progeny OECs might take on the parental or a non-parental morphotype, with both daughter cells showing robust expression of GFP. Together these OEC data demonstrated a substantial plasticity and capability for relatively rapid changes in structure and support the view that OECs have multiple attributes favorable for enhancing axonal extension and neuronal migration after central nervous system injury.
Collapse
Affiliation(s)
- Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
59
|
Vincent AJ, West AK, Chuah MI. Morphological plasticity of olfactory ensheathing cells is regulated by cAMP and endothelin-1. Glia 2003; 41:393-403. [PMID: 12555206 DOI: 10.1002/glia.10171] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Olfactory ensheathing cells (ECs) are a promising tool for the repair of injury in the adult central nervous system. However, important aspects of the cell biology of ECs remain unclear, such as whether ECs exist as a single population or as two subpopulations with Schwann cell-like and astrocyte-like characteristics. The morphologies of these subpopulations are used as defining characteristics, yet ECs are known to be morphologically plastic. To elucidate this apparent inconsistency, we investigated the morphological plasticity of ECs in culture. We defined purified ECs as immunopositive for both p75 neurotrophin receptor and glial fibrillary acidic protein. In MEM (D)-valine modification + 10% dialyzed fetal calf serum, 87%-90% of ECs displayed a flat morphology. In three different serum-free media (N2 medium, neurobasal medium + B27 supplement, and DMEM/F-12 medium + G5 supplement), 78%-84% of ECs displayed process-bearing morphology. Ensheathing cells switched reversibly between these morphologies within a day of the serum conditions being changed. Exposure to 1 nM endothelin-1 in serum-free medium prevented the switch from flat to process-bearing morphology, while 1 mM dibutyryl cAMP accelerated this change. The effects of both agents were completely reversible and similar to that reported for astrocytes. Both flat and process-bearing ECs were immunopositive for brain-derived neurotrophic factor, nerve growth factor, neurotrophin-4, and TrkB but not TrkA. Together, these results suggest that ECs exist as a single morphologically plastic population.
Collapse
Affiliation(s)
- Adele J Vincent
- NeuroRepair Group, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | |
Collapse
|
60
|
Boyd JG, Skihar V, Kawaja M, Doucette R. Olfactory ensheathing cells: historical perspective and therapeutic potential. ANATOMICAL RECORD. PART B, NEW ANATOMIST 2003; 271:49-60. [PMID: 12619086 DOI: 10.1002/ar.b.10011] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Olfactory ensheathing cells (OECs) are the glial cells that ensheath the axons of the first cranial nerve. They are attracting increasing attention from neuroscientists as potential therapeutic agents for use in the repair of spinal cord injury and as a source of myelinating glia for use in remyelinating axons in demyelinating diseases such as multiple sclerosis. This review mainly addresses the cell biological aspects of OECs pertinent to addressing two questions. Namely, where do OECs fit into the groupings of central nervous system (CNS)/peripheral nervous system (PNS) glial cells and should OECs be viewed as a clinically relevant alternative to Schwann cells in the treatment of spinal cord injury? The evidence indicates that OECs are indeed a clinically relevant alternative to Schwann cells. However, much more work needs to be done before we can even come close to answering the first question as to the lineage and functional relationship of OECs to the other types of CNS and PNS glial cells.
Collapse
Affiliation(s)
- J G Boyd
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
61
|
Hayat S, Wigley CB, Robbins J. Intracellular calcium handling in rat olfactory ensheathing cells and its role in axonal regeneration. Mol Cell Neurosci 2003; 22:259-70. [PMID: 12676535 DOI: 10.1016/s1044-7431(03)00051-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intracellular calcium handling by rat olfactory ensheathing cells (OECs) is implicated in their support for regrowth of adult CNS neurites in a coculture model of axonal regeneration. Pretreatment of OECs with BAPTA-AM to sequester glial intracellular calcium ([Ca(2+)](i)) reduces significantly the numbers of cocultured neurons regrowing neurites. The mean resting [Ca(2+)](i) of OECs cultured alone or with neurons was 300 nM in an external solution containing 2.5 mM calcium ([Ca(2+)](o)). In high [K(+)](o) or zero [Ca(2+)](o), resting [Ca(2+)](i) significantly decreased. [Ca(2+)](i) significantly increased when [Ca(2+)](o) was increased to 20 mM, lonomycin, thapsigargin, and thimerosal increased [Ca(2+)](i), and caffeine, ryanodine, and cyclopiazonic acid were without effect. Of the receptor agonists tested, none induced a change in [Ca(2+)](i). The calcium influx induced by high [Ca(2+)](o) was blocked by La(3+) and SKF96365, partially inhibited by Cd(2+), and insensitive to Ni(2+) and nifedipine. Pretreatment of OECs with La(3+) reduced neurite regrowth in cocultures in a concentration-dependent manner over the range that blocked the non-voltage-gated calcium flux through a putative TRP-like channel, which, we propose, is activated in OEC-mediated axonal regeneration.
Collapse
Affiliation(s)
- Shaista Hayat
- Neural Damage and Repair GroupCentre for Neuroscience Research, King's College London, Guys Campus, SE1 1UL, London, UK
| | | | | |
Collapse
|
62
|
Purified adult ensheathing glia fail to myelinate axons under culture conditions that enable Schwann cells to form myelin. J Neurosci 2002. [PMID: 12122069 DOI: 10.1523/jneurosci.22-14-06083.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several studies have suggested that olfactory ensheathing glia (EG) can form Schwann cell (SC)-like myelin. Because of possible misinterpretation attributable to contaminating SCs, the capacity of EG to produce myelin needs to be explored further. Therefore, we compared the abilities of adult EG, purified by immunopanning with p75 antibody, and adult SCs to produce myelin when cocultured with purified dorsal root ganglion neurons (DRGNs) in serum-free and serum-containing media. In both media formulations, the number of myelin sheaths in SC/DRGN cultures was far higher than in EG/DRGN cultures; the number of sheaths in EG/DRGN cultures was equal to that in purified DRGN cultures without added cells. The latter result demonstrates that myelination by a few SCs remaining in purified DRGN cultures may occur, suggesting that myelin in EG/DRGN cultures could be SC myelin. Striking differences in the relationship of EG and SC processes to axons were observed. Whereas SCs displayed relatively short, thick processes that engulfed axons in small bundles or in individual cytoplasmic furrows and segregated larger axons into one-to-one relationships, EG extended flattened sheets that partitioned or only partially encircled fascicles of axons, sometimes spanning the entire culture. SCs exhibited behavior typical of SCs in peripheral nerves, whereas EG exhibited characteristics resembling those of EG in olfactory nerves. In sum, p75-selected EG from adult animals did not exhibit an SC-like relationship to axons and did not form myelin.
Collapse
|
63
|
Illing N, Boolay S, Siwoski JS, Casper D, Lucero MT, Roskams AJ. Conditionally immortalized clonal cell lines from the mouse olfactory placode differentiate into olfactory receptor neurons. Mol Cell Neurosci 2002; 20:225-43. [PMID: 12093156 DOI: 10.1006/mcne.2002.1106] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To test extracellular signals that direct the development of the olfactory system, we have generated clonal temperature-sensitive cell lines that represent distinct cellular lineages derived from the E10 mouse olfactory placode. Two of these lines, OP6 and OP27, express (at the permissive temperature), a transcriptional profile representing intermediate-late developmental stages in the olfactory receptor neuron (ORN) lineage. At the nonpermissive temperature, both OP6 and OP27 cells can be induced by all-trans retinoic acid to differentiate into a population of mature bipolar ORN-like cells. In response to retinoic acid, differentiated OP6 and OP27 down-regulate neuron-specific transcription factors required for early stages of neuronal differentiation, and shift active components of the neurotrophin signaling cascade (Trk receptors) into a kinase inactive state. When morphologically mature, OP6 and OP27 express the mature ORN chemosensory signaling components, olfactory G-protein (G(olf)), Type III adenylate cyclase (ACIII), OCNC1, and the olfactory marker protein (OMP). OP27 expresses one odorant receptor, OR 27-3. OP6 expresses two very closely related receptors, OR 6-13 and OR 6-8. Voltage-gated sodium and potassium channels resembling those recorded from primary cultures of ORNs can also be recorded from a subset of differentiated OP6 cells.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line, Transformed
- Cell Lineage/drug effects
- Cell Lineage/physiology
- Clone Cells
- Female
- Fetus
- GAP-43 Protein/metabolism
- GTP-Binding Proteins/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Ion Channels/drug effects
- Ion Channels/metabolism
- Mice
- Mice, Inbred C3H
- Neural Cell Adhesion Molecules/metabolism
- Olfactory Receptor Neurons/cytology
- Olfactory Receptor Neurons/drug effects
- Olfactory Receptor Neurons/embryology
- Pregnancy
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Nerve Growth Factor/drug effects
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Odorant/genetics
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Stem Cells/cytology
- Stem Cells/drug effects
- Stem Cells/metabolism
- Transcription Factors/drug effects
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tretinoin/pharmacology
- Tubulin/metabolism
Collapse
Affiliation(s)
- Nicola Illing
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, V5Z 4H4
| | | | | | | | | | | |
Collapse
|
64
|
Au WW, Treloar HB, Greer CA. Sublaminar organization of the mouse olfactory bulb nerve layer. J Comp Neurol 2002; 446:68-80. [PMID: 11920721 DOI: 10.1002/cne.10182] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Olfactory sensory neuron (OSN) axons coalesce to form the olfactory nerve (ON) and then grow from the olfactory epithelium to the olfactory bulb (OB), enter the olfactory nerve layer (ONL), reorganize extensively, and innervate specific glomeruli. Within the ON and ONL a population of glial cells, the olfactory ensheathing cells (OECs), surround OSN axon fascicles. To better understand the relationship between OECs and axon fascicles in the ONL of the adult mouse, we used confocal microscopy and antibodies to the low affinity nerve growth factor receptor p75 (p75), glial fibrillary acidic protein (GFAP), neuropeptide Y (NPY), and S-100 to identify glia. Antibodies to olfactory marker protein (OMP) and neuronal cell adhesion molecule (NCAM) were used to identify OSN axons. Electron microscopy characterized the ONL ultrastructure. We found that glial processes were not uniformly distributed in the ONL of the mouse. The p75(+) OEC processes were restricted to the ON and the outer ONL sublamina, and oriented parallel to the plane of the OB layers. In the inner ONL NPY(+) OEC-like processes were seen. GFAP(+) processes were restricted to the inner ONL sublamina, the ONL/GL boundary, and the GL, where they delineated loosely aggregated axon fascicles that entered the glomeruli obliquely. S-100(+) processes and somata were distributed throughout the ONL; the outer and inner ONL were equivalent in their S-100 staining. Ultrastructural studies showed that, although OECs could be identified in both the outer and inner ONL, in the latter, their relationship to bundles of OEC axons appeared less orderly than seen in the outer ONL. Our data demonstrate a differential organization of the ONL that could subserve distinct functions; axon extension may occur predominantly in the outermost ONL, whereas glomerular targeting occurs in the inner sublamina of the ONL.
Collapse
Affiliation(s)
- Winnie W Au
- Department of Neurosurgery and Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8082, USA
| | | | | |
Collapse
|
65
|
Abstract
STUDY DESIGN The literature concerning the potential use of olfactory ensheathing cells for repairing damaged spinal cord was reviewed. OBJECTIVE To engender a better understanding of the role that olfactory ensheathing cells play in spinal cord regeneration. SUMMARY OF BACKGROUND DATA Intraspinal transplants (e.g., fetal neuronal cells, progenitor stem cells, and olfactory ensheathing cells) have been used to restore intraspinal circuitry or to serve as a "bridge" for damaged axons. Among these transplants, olfactory ensheathing cells provide a particularly favorable substrate for spinal axonal regeneration because these cells can secrete extracellular molecules and neurotrophic factors and have the ability to migrate into gliotic scar tissue, an important attribute that might be associated with high potential for axonal regeneration. METHODS Recent advances using centrally and peripherally derived olfactory ensheathing cells to promote spinal cord regeneration were reviewed. RESULTS Both centrally and peripherally derived olfactory ensheathing cells can lead to a degree of functional and anatomic recovery after spinal cord injury in adult animals. CONCLUSION Olfactory ensheathing cells from olfactory lamina propria in the nose are among the best transplants for "bridging" descending and ascending pathways in damaged spinal cord.
Collapse
Affiliation(s)
- Jike Lu
- School of Anatomy, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
66
|
Middlemiss PJ, Jiang S, Wang J, Rathbone MP. A method for purifying enteric glia from rat myenteric plexus. In Vitro Cell Dev Biol Anim 2002; 38:188-90. [PMID: 12197768 DOI: 10.1290/1071-2690(2002)038<0188:amfpeg>2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The enteric nervous system is a large and complex division of the peripheral nervous system. The glia associated with it share some characteristics with the olfactory-ensheathing glia, astrocytes and Schwann cells. To facilitate studies of rat enteric glia, we have developed a method for preparing them in large quantities with a high degree of homogeneity. The enteric glia were isolated from the small intestine of Wistar rats by enzymatic digestion with dispase. The cell isolate was added to a mitotically arrested layer of 3T3 cells. Subsequent separation of the enteric glia from the 3T3 cells was done enzymatically, with unavoidable loss of many enteric glia and potential contamination of enteric glia cultures with the 3T3 cells. Therefore, 3T3 cells were cultured in Nunc 0.2-microm tissue culture inserts that could be readily removed from the wells when no longer needed. There was no loss of the enteric glia. The cultures consisted entirely of GFAP-labeled cells, presumptive enteric glia. This method permits the culturing of large numbers of highly purified enteric glia without the use of expensive growth factors and complement-mediated cytolysis.
Collapse
Affiliation(s)
- Pamela J Middlemiss
- Department of Medicine, McMaster University, 1200 Main Street West, HSC 4N71, Hamilton, Ontario, Canada L8N 3Z5.
| | | | | | | |
Collapse
|
67
|
Teresa Moreno-Flores M, Díaz-Nido J, Wandosell F, Avila J. Olfactory Ensheathing Glia: Drivers of Axonal Regeneration in the Central Nervous System? J Biomed Biotechnol 2002; 2:37-43. [PMID: 12488598 PMCID: PMC139118 DOI: 10.1155/s1110724302000372] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Olfactory ensheathing glia (OEG) accompany olfactory growing axons in their entry to the adult mammalian central nervous system (CNS). Due to this special characteristic, considerable attention has been focused on the possibility of using OEG for CNS regeneration. OEG present a large heterogeneity in culture with respect to their cellular morphology and expressed molecules. The specific characteristics of OEG responsible for their regenerative properties have to be defined. These properties probably result from the combination of several factors: molecular composition of the membrane (expressing adhesion molecules as PSA-NCAM, L1 and/or others) combined with their ability to reduce glial scarring and to accompany new growing axons into the host CNS. Their capacity to produce some neurotrophic factors might also account for their ability to produce CNS regeneration.
Collapse
Affiliation(s)
- M. Teresa Moreno-Flores
- Centro de Biología Molecular “Severo Ochoa”
(CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| | - Javier Díaz-Nido
- Centro de Biología Molecular “Severo Ochoa”
(CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa”
(CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular “Severo Ochoa”
(CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| |
Collapse
|
68
|
Abstract
Hepatocyte growth factor (HGF) is a potent mitogen for mature hepatocytes, and it has multi-functional effects in a variety of cells in various organs. HGF stimulates DNA synthesis and promotes cell migration and morphogenesis in several cell types including the olfactory system. To characterize the potential mitogenic activity of HGF that might contribute to olfactory ensheathing cell (OEC) proliferation, we tested the ability of HGF to stimulate OEC division in vitro. OECs were obtained from adult rat olfactory bulbs and cultured in serum-free medium, and were identified by double immunostaining for p75 and S-100 antibodies. DNA synthesis assayed by pulsing BrdU for 24 hr showed that HGF at the concentration of 5-100 ng/ml elicited a 5-10-fold increase of OEC proliferation. By immunocytochemical analysis, we demonstrated that c-Met-immunoreactivity was present in cultured OECs, and c-Met anti-serum significantly sequestered the activity of HGF on OECs proliferation, suggesting that HGF-induced proliferation of OECs is mediated by the c-Met receptor. The mitogenic activity of HGF was potentiated by addition of heregulin (HRG), but inhibited by addition of forskolin. These results demonstrate that HGF is a novel mitogen for rat OECs in vitro, and HGF/c-Met system is involved in regulating OECs growth and development.
Collapse
Affiliation(s)
| | | | - Jeffery D. Kocsis
- Correspondence to: Jeffery D. Kocsis, PhD, Department of Neurology, Yale University School of Medicine, Neuroscience Research Center (127A), VAMC, West Haven, CT 06516. E-mail:
| |
Collapse
|
69
|
Wang X, Gao C, Norgren RB. Cellular interactions in the development of the olfactory system: an ablation and homotypic transplantation analysis. JOURNAL OF NEUROBIOLOGY 2001; 49:29-39. [PMID: 11536195 DOI: 10.1002/neu.1063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the current study, we addressed two questions: First, is the olfactory placode necessary for the development of the olfactory bulb and the entire telencephalon? Second, does the olfactory placode contribute cells to the olfactory bulb? We addressed these questions by unilaterally ablating the olfactory placode in chick embryos before an olfactory nerve was produced and, in a second series of experiments, by replacing the ablated chick olfactory placode with a quail olfactory placode. Our results indicate that the olfactory placode is critical for olfactory bulb development, but is not necessary for the development of the rest of the telencephalon. Further, our results support the hypothesis that LHRH neurons and olfactory nerve glia originate in the olfactory placode, but do not support an olfactory placodal origin for other cell types within the olfactory bulb.
Collapse
Affiliation(s)
- X Wang
- Department of Cell Biology and Anatomy, University of Nebraska Medical Center, 600 S. 42(nd) Street, Omaha, Nebraska 69198-6395, USA
| | | | | |
Collapse
|
70
|
Jeffery ND, Penderis J, Smith PM, Franklin RJ. Bridging the divide: spinal cord repair by cellular transplantation--from research laboratory to therapeutic application. J Small Anim Pract 2001; 42:428-32. [PMID: 11570384 DOI: 10.1111/j.1748-5827.2001.tb02495.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spinal cord injury remains a clinical problem for which new therapeutic options are required. Recent developments in spinal cord injury research have suggested that promotion of axonal regeneration by cellular transplantation may be a feasible future treatment modality and it is possible that small animal clinical patients may be the first to benefit from these new approaches. This article describes the experiments which have generated this optimism and considers the steps that will be required to make the transition from laboratory experiments to clinical application.
Collapse
Affiliation(s)
- N D Jeffery
- Department of Clinical Veterinary Medicine, University of Cambridge
| | | | | | | |
Collapse
|
71
|
Abstract
Several recent publications describe remarkably promising effects of transplanting olfactory ensheathing cells as a potential future method to repair human spinal cord injuries. But why were cells from the nose transplanted into the spinal cord? What are olfactory ensheathing cells, and how might they produce these beneficial effects? And more generally, what do we mean by spinal cord injury? To what extent can we compare repair in an animal to repair in a human?
Collapse
Affiliation(s)
- G Raisman
- Division of Neurobiology, Norman and Sadie Lee Research Centre, National Institute for Medical Research, Medical Research Council, London NW7 1AA, UK.
| |
Collapse
|
72
|
Woodhall E, West AK, Chuah MI. Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 88:203-13. [PMID: 11295250 DOI: 10.1016/s0169-328x(01)00044-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the primary olfactory pathway axons of olfactory neurons (ONs) are accompanied by ensheathing cells (ECs) as the fibres course towards the olfactory bulb. Ensheathing cells are thought to play an important role in promoting and guiding olfactory axons to their appropriate target. In recent years, studies have shown that transplants of ECs into lesions in the central nervous system (CNS) are able to stimulate the growth of axons and in some cases restore functional connections. In an attempt to identify a possible mechanism underlying EC support for olfactory nerve growth and CNS axonal regeneration, this study investigated the production of growth factors and expression of corresponding receptors by these cells. Three techniques immunohistochemistry, enzyme linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to assess growth factor expression in cultured ECs. Immunohistochemistry showed that ECs expressed nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and glial cell-line derived neurotrophic factor (GDNF). ELISA confirmed the intracellular presence of NGF and BDNF and showed that, compared to BDNF, about seven times as much NGF was secreted by ECs. RT-PCR analysis demonstrated expression of mRNA for NGF, BDNF, GDNF and neurturin (NTN). In addition, ECs also expressed the receptors trkB, GFRalpha-1 and GFRalpha-2. The results of the experiments show that ECs express a number of growth factors and that BDNF in particular could act both in a paracrine and autocrine manner.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/analysis
- Brain-Derived Neurotrophic Factor/genetics
- Cells, Cultured
- Drosophila Proteins
- Gene Expression/physiology
- Glial Cell Line-Derived Neurotrophic Factor
- Glial Cell Line-Derived Neurotrophic Factor Receptors
- Nerve Growth Factor/analysis
- Nerve Growth Factor/genetics
- Nerve Growth Factors/analysis
- Nerve Growth Factors/genetics
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/genetics
- Neurturin
- Olfactory Pathways/chemistry
- Olfactory Pathways/cytology
- Olfactory Pathways/physiology
- Proto-Oncogene Proteins/analysis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-ret
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Receptor Protein-Tyrosine Kinases/analysis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, trkA/analysis
- Receptor, trkA/genetics
- Receptor, trkB/analysis
- Receptor, trkB/genetics
- Receptor, trkC/analysis
- Receptor, trkC/genetics
- Receptors, Nerve Growth Factor/analysis
- Receptors, Nerve Growth Factor/genetics
Collapse
Affiliation(s)
- E Woodhall
- Department of Anatomy and Physiology, University of Tasmania, P.O. Box 252-24, Hobart, Tasmania 7001, Australia
| | | | | |
Collapse
|
73
|
Abstract
Olfactory ensheathing glia (EG) from adult rat proliferate slowly in vitro without added mitogens. The potential future use of EG in transplantation within the central nervous system to improve neural repair is dependent on identifying mitogens that will effectively expand EG without altering their phenotype. The mitogenic effects of heregulin (HRG), fibroblast growth factor 2 (FGF-2), platelet-derived growth factor BB (PDGF-BB), insulin-like growth factor 1 (IGF-1), and forskolin (FSK) on cultured adult-derived rat EG were monitored by tritiated-thymidine labeling and p75 immunostaining. In serum-containing medium, HRG, FGF-2, PDGF-BB, IGF-1, and FSK were capable of stimulating EG proliferation, and the stimulation by these growth factors was potentiated by FSK. The combinations of HRG + FGF-2, HRG + PDGF-BB, HRG + IGF-1, FGF-2 + PDGF-BB, and FGF-2 + IGF-1 all promoted EG proliferation in an additive manner. In serum-free medium, HRG and FGF-2 were mitogenic, but PDGF-BB, IGF-1 and FSK were not; however, FSK potentiated the stimulation by HRG and FGF-2, and the combination of HRG + FGF-2 promoted EG proliferation in an additive manner. This new information will be useful for the design of protocols to achieve sufficient numbers of adult-derived EG for clinical purposes. This study also further establishes similarities between EG and Schwann cells.
Collapse
Affiliation(s)
- H Yan
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
74
|
Lu J, Féron F, Ho SM, Mackay-Sim A, Waite PM. Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Res 2001; 889:344-57. [PMID: 11166728 DOI: 10.1016/s0006-8993(00)03235-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent reports have highlighted the potential therapeutic role of olfactory ensheathing cells for repair of spinal cord injuries. Previously ensheathing cells collected from the olfactory bulbs within the skull were used. In humans a source of these cells for autologous therapy lies in the nasal mucosa where they accompany the axons of the olfactory neurons. The aim of the present study was to test the therapeutic potential of nasal olfactory ensheathing cells for spinal cord repair. Olfactory ensheathing cells cultured from the olfactory lamina propria or pieces of lamina propria from the olfactory mucosa were transplanted into the transected spinal cord. Three to ten weeks later these animals partially recovered movement of their hind limbs and joints which was abolished by a second spinal cord transection. Control rats, receiving collagen matrix, respiratory lamina propria or culture medium, did not recover hind limb movement. Recovery of movement was associated with recovery of spinal reflex circuitry, assessed using the rate-sensitive depression of the H-reflex from an interosseous muscle. Histological analysis of spinal cords grafted with olfactory tissue demonstrated nerve fibres passing through the transection site, serotonin-positive fibres in the spinal cord distal to the transection site, and retrograde labelling of brainstem raphe and gigantocellularis neurons from injections into the distal cord, indicating regeneration of descending pathways. Thus, olfactory lamina propria transplantation promoted partial restoration of function after relatively short recovery periods. This study is particularly significance because it suggests an accessible source of tissue for autologous grafting in human paraplegia.
Collapse
Affiliation(s)
- J Lu
- Neural Injury Research Unit, School of Anatomy, University of New South Wales, 2052, Sydney, Australia
| | | | | | | | | |
Collapse
|
75
|
Abstract
The restricted expression of the low affinity nerve growth factor receptor p75NTR by olfactory ensheathing cells suggests that this molecule is involved in the development of the olfactory nerve pathway. To begin to understand the role of p75NTR, we examined the development of the primary olfactory system in p75NTR(-/-) and wild-type mice. Our results demonstrate that, although p75NTR is not essential for the initial assembly of the olfactory nerve, it plays an important role in the postnatal maturation of the olfactory bulb. In the absence of p75NTR, there is exuberant growth of some primary olfactory axons into the olfactory bulb. These axons either aberrantly bypass the glomerular layer and project into deeper lamina or grow into an abnormal bleb of tissue protruding from the medial surface of the dorsocaudal olfactory bulb. These blebs become apparent in neonatal mice and contain axons expressing olfactory marker protein that form ectopic glomerular-like tufts. Histochemical staining with the plant lectin Dolichos biflorus agglutinin revealed that axons sorted out and selectively converged on glomeruli within these blebs. Our results suggest that p75NTR indirectly influences axon growth but not glomerular targeting and plays a role in the postnatal maturation of laminar cytoarchitecture in the olfactory bulb.
Collapse
Affiliation(s)
- K T Tisay
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
76
|
Abstract
The number of identified growth factors continues to increase rapidly with many being implicated in the development of the nervous system, although for most of them the autocrine and paracrine pathways of cellular regulation still remain to be elucidated. The primary olfactory pathway, consisting of the olfactory epithelium and olfactory bulb, is presented here as a very useful model for the analysis of growth factor function. Review of the available literature suggests that a large proportion of neuroactive growth factors and their receptors are present in the olfactory epithelium or olfactory bulb. Furthermore, the primary olfactory pathway is one of the most plastic in the nervous system with neurogenesis continuing to contribute new sensory neurones in the olfactory epithelium and new interneurones in the olfactory bulb throughout adult life. The rich diversity of growth factors and their receptors in the olfactory system indicates that it will be useful in elucidating how these molecules regulate the formation of the nervous system. The olfactory epithelium in particular is proving useful as a model for the actions of growth factors in directing the neuronal lineage from stem cell to mature neurone.
Collapse
Affiliation(s)
- A Mackay-Sima
- Centre for Molecular Neurobiology, School of Biomolecular and Biomedical Science, Griffith University, Brisbane, Australia.
| | | |
Collapse
|
77
|
Affiliation(s)
- R J Franklin
- Department of Clinical Veterinary Medicine, University of Cambridge, United Kingdom.
| | | |
Collapse
|
78
|
Abstract
Soluble factors normally produced by cells of the human body are of increasing importance as potential therapeutic agents. Although considerable progress has been made in understanding the etiology and pathogenesis of disease, in developing animal models and newer experimental therapeutics, few discoveries have been translated into clinically effective ways of delivering the multiple therapeutic agents obtained from living mammalian cells. This review examines the use of transplanted cells as alternatives to conventional delivery systems to deliver a variety of protein based therapeutic agents. The chapter begins with a set of questions to establish the complexity and challenges of this form of drug delivery. The following section focuses the discussion on our understanding of genetic engineering, tissue engineering, and some areas of developmental biology as they relate to the development of this nascent field. Much of the discussion has a neuro/endocrine emphasis. The chapter ends by listing the basic ingredients needed to push the use of transplanted cells toward medical practice and some general comments about future developments.
Collapse
Affiliation(s)
- P A Tresco
- Department of Bioengineering, The Keck Center for Tissue Engineering, The Huntsman Cancer Institute, Tissue Engineering Laboratory, University of Utah, 20 South 2030 East, Room 506, 84112 9458, Salt Lake City, UT, USA.
| | | | | |
Collapse
|
79
|
Abstract
Olfactory ensheathing cells (OECs) share properties with astrocytes and Schwann cells. This study was designed to test the hypothesis that glia with properties similar to those exhibited by OECs might be present in brain areas other than the olfactory bulb. We found tanycytes and pituicytes to express a distinctive set of immunological markers in common with OECs and nonmyelinating Schwann cells, namely low-affinity neurotrophin receptor (p75NTR), O4 antigen, estrogen receptor-alpha type, and insulin-like growth factor 1 (IGF-1). The two glial types could be cultured from adult hypothalamus and neurohypophysis, respectively, using the methods developed for olfactory OECs. Both glial types displayed morphologies reminiscent of Schwann cells, in primary culture. Schwann-like central glia presented a preferred growth substrate for dorsal root ganglion neurites and, when making intimate contacts with them, manifested a myelinating phenotype. These combined properties define a type of CNS macroglia that would not fit within conventional central glia types.
Collapse
Affiliation(s)
- G Gudiño-Cabrera
- Neural Plasticity Laboratory, Instituto Cajal, CSIC, Madrid, Spain
| | | |
Collapse
|
80
|
Chuah MI, Cossins J, Woodhall E, Tennent R, Nash G, West AK. Glial growth factor 2 induces proliferation and structural changes in ensheathing cells. Brain Res 2000; 857:265-74. [PMID: 10700575 DOI: 10.1016/s0006-8993(99)02455-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ensheathing cells were isolated from neonatal rat olfactory bulbs and cultured in the presence of glial growth factor 2 (GGF2). Proliferation assay showed that at concentrations of up to 60 ng/ml GGF2, ensheathing cells underwent a modest increase in proliferation rate. This stimulation was not maintained at high doses of GGF2 at 100 ng/ml or more. Chemotaxis chambers and scanning electron microscopy were used to determine whether GGF2 was a chemoattractant for ensheathing cells. Although the results showed no chemotactic response to GGF2, ensheathing cells demonstrated structural changes when cultured in the presence of 20 ng/ml GGF2. Ultrastructural observations revealed that GGF2 promoted increased deposition of extracellular matrix on the cell membrane, more cytoskeletal elements in the processes and as a possible consequence, contributed to a more rigid support. Ensheathing cells cultured in the absence of GGF2 often extended thinner and curved processes. Reverse transcription-polymerase chain reaction confirmed the presence of GGF2 transcripts in ensheathing cells, suggesting that ensheathing cells themselves are a source of GGF2.
Collapse
Affiliation(s)
- M I Chuah
- Department of Anatomy and Physiology, University of Tasmania, Box 252-24, Hobart, Australia.
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
Primary olfactory axons grow along a stereotypical pathway from the nasal cavity to the olfactory bulb through an extracellular matrix rich in laminin and heparan sulfate proteoglycans (HSPGs) and bounded by the expression of chondroitin sulfate proteoglycans (CSPGs). This pathway is pioneered by olfactory ensheathing cells, which provide a substrate conducive for axon growth during early development. In the present study, we examined the effect of several extracellular matrix constituents on the spreading and migration, as well as the neurite outgrowth-promoting properties, of olfactory ensheathing cells. Laminin and Matrigel enhanced the spreading and migration of olfactory ensheathing cells and increased their neurite outgrowth-promoting activity. In contrast, HSPG and CSPG had little effect on the spreading and migration of olfactory ensheathing cells and hence did not promote olfactory neurite outgrowth. In vitro olfactory axons grew preferentially on the surface of olfactory ensheathing cells rather than the underlying extracellular matrix. We propose that olfactory ensheathing cells secrete laminin and HSPGs, which together with other cofactors, stimulate these cells to migrate and adopt a neurite outgrowth-promoting phenotype. Expression of CSPGs in the surrounding mesenchyme confines the growth of ensheathing cells, as well as the axons, which grow on the surface of these cells, to a specific pathway. Thus, the ECM indirectly modulates the growth and guidance of olfactory axons during development.
Collapse
|
82
|
Chuah MI, Teague R. Basic fibroblast growth factor in the primary olfactory pathway: mitogenic effect on ensheathing cells. Neuroscience 1999; 88:1043-50. [PMID: 10336119 DOI: 10.1016/s0306-4522(98)00277-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mitogenic effect of basic fibroblast growth factor and nerve growth factor (2.5S) on olfactory ensheathing cell culture was examined by bromodeoxyuridine uptake. It was found that, at 10 ng/ml, basic fibroblast growth factor elicited about a three-fold increase in proliferation, while the stimulatory effect of nerve growth factor was considerably less. The increased proliferation resulting from basic fibroblast growth factor could be attributed to perlecan, which was shown to be expressed by ensheathing cell in culture. Perlecan is known to induce high-affinity binding of basic fibroblast growth factor to receptors on cell membranes. Immunohistochemical staining demonstrated that basic fibroblast growth factor was abundantly expressed in select regions of the lamina propria underlying the olfactory epithelium. In these regions, contiguous patches of olfactory epithelium also showed the presence of basic fibroblast growth factor. Although basic fibroblast growth factor was present on the periphery of nerve bundles in the olfactory nerve layer of the bulb, all other laminae did not demonstrate the presence of this factor. The immunohistochemistry and cell culture results show that regions of the lamina propria and small patches of the olfactory epithelium, by their presence of basic fibroblast growth factor, are potential sites of ensheathing cell proliferation in vivo.
Collapse
Affiliation(s)
- M I Chuah
- Division of Anatomy and Physiology, University of Tasmania, Hobart, Australia
| | | |
Collapse
|
83
|
Abstract
Gonadotropin releasing hormone (GnRH) is produced and secreted by neurons dispersed throughout the septal-preoptic and anterior hypothalamic areas in adult birds and mammals. These neurons, essential for a functional brain-pituitary-gonadal axis, differentiate in the olfactory placode, the superior aspect of which forms the olfactory epithelium. To reach their final placement within the brain, GnRH neurons migrate out of the epithelium and along the olfactory nerve to the CNS. This nerve is essential for the entrance of GnRH neurons into the CNS. Due to the importance of the nerve for the proper migration of these neurons, we have used immunocytochemistry, DiI labeling and 1 microm serial plastic-embedded sections to characterize the nerve's earliest development in the embryonic chick (stages 17-21). Initially (stage 17) the zone between the placode and prosencephalon is a cellular mass contiguous with the placode. This cluster, known as epithelioid cells, is positive for some but not all neuronal markers studied. The epithelium itself is negative for all neuronal and glial markers at this early stage. By stage 18, the first neurites emerge from the epithelium; this was confirmed at stage 19 by examination of serial 1 microm plastic sections. There is sequential acquisition of immunoreactivity to neuronal markers from stage 18 to 21. The glial component of the nerve appears at stage 21. Axons originating from epithelium, extend to the border of the CNS as confirmed by DiI labeling at stage 21. Small fascicles have entered the CNS at this stage. As previously reported, GnRH neurons begin their migration between stages 20-21 and have also arrived at the border of the brain at stage 21. Despite the penetration of neurites from the olfactory nerve into the CNS, GnRH neurons pause at the nerve-brain junction until stage 29 (2 1/2 days later) before entering the brain. Subsequent studies will examine the nature of the impediment to continued GnRH neuronal migration.
Collapse
Affiliation(s)
- P T Drapkin
- Columbia University, College of Physicians and Surgeons, Department of Anatomy and Cell Biology, New York, New York 10032, USA
| | | |
Collapse
|
84
|
Sonigra RJ, Brighton PC, Jacoby J, Hall S, Wigley CB. Adult rat olfactory nerve ensheathing cells are effective promoters of adult central nervous system neurite outgrowth in coculture. Glia 1999; 25:256-69. [PMID: 9932872 DOI: 10.1002/(sici)1098-1136(19990201)25:3<256::aid-glia6>3.0.co;2-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A coculture method is described for ensheathing glial cells from adult rat olfactory nerve, serving as a substrate for the regrowth of neurites from adult rat retinal ganglion cells. Immunocytochemically identified phenotypes present in primary cultures of olfactory nerve cells are described, and their ability to promote neurite outgrowth is compared with neonatal astrocytes and Schwann cells, with other nonglial cells, and with laminin. Ensheathing cell cultures were more effective than any other substrate tested and also directed the orientation of regrowing neurites. In comparison with cultured Schwann cells, which released neurotrophic factors into the culture medium, there was no evidence of a similar activity in ensheathing cell cultures. Combinations of ensheathing cell-conditioned medium and substrates of laminin, merosin, or 3T3 cells also failed to show the release of factors enhancing either survival or neurite outgrowth from retinal ganglion cells. Evidence is presented for a partial inhibition of neurite outgrowth in the presence of calcium channel antagonists or an intracellular calcium-chelating reagent. This provides evidence for a contribution from an intracellular calcium signaling mechanism, possibly implicating ensheathing cell adhesion molecules in promoting neurite outgrowth.
Collapse
Affiliation(s)
- R J Sonigra
- Neuroscience Research Centre and Division of Anatomy, School of Biomedical Sciences, King's College London, England
| | | | | | | | | |
Collapse
|
85
|
Heredia M, Gascuel J, Ramón-Cueto A, Santacana M, Avila J, Masson C, Valverde F. Two novel monoclonal antibodies (1.9.E and 4.11.C) against olfactory bulb ensheathing glia. Glia 1998; 24:352-64. [PMID: 9775987 DOI: 10.1002/(sici)1098-1136(199811)24:3<352::aid-glia10>3.0.co;2-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We produced and characterized two monoclonal antibodies, termed 1.9.E and 4.11.C, that specifically recognize olfactory bulb ensheathing glia. Both antibodies were generated using the olfactory nerve layer (ONL) of newborn rat olfactory bulbs (P0, P1) as immunogens. The specificity of these antibodies was tested by immunofluorescence techniques on tissue sections and cultures of adult and neonatal rat olfactory bulbs, and by Western blot analysis. 1.9.E labeled the ONL and glomerular layer of the olfactory bulb (OB) of adult rats. In newborn rats, 1.9.E immunostained ensheathing cells from the ONL and peripheral olfactory fascicles. Furthermore, 1.9.E reacted with some processes of the radial glia in the periventricular germinal layer of the newborn rat. Although 4.11.C also specifically labeled ensheathing cells in the adult OB, it did not stain any cell type in the ONL of newborn rats. The lack of double labeling with either 1.9.E or 4.11.C and anti-olfactory marker protein (OMP) antibody, a specific marker for olfactory axons, indicated that none of the monoclonals recognized olfactory axons. Double immunostaining of adult OB cultures with 1.9.E or 4.11.C and anti-p75-nerve growth factor receptor revealed that both antibodies specifically recognized ensheathing glia in those cultures. Filaments were strongly labeled throughout the entire cytoplasm of ensheathing cells, suggesting that 1.9.E and 4.11.C immunoreacted with ensheathing glia cytoskeleton. 4.11.C stained a few Schwann cells in adult sciatic nerve sections. Moreover, 4.11.C immunostained cortical astrocyte cultures from newborn rats (P1). In Western blot analysis both antibodies recognized a major component, migrating with an apparent molecular weight of 60 kDa, from olfactory nerve and glomerular layer (ONGL) extracts of adult and neonatal rats. The pattern of immunoreactivity of 1.9.E and 4.11.C antibodies suggest that both antibodies are specific markers for olfactory ensheathing glia in the adult rat central nervous system (CNS).
Collapse
Affiliation(s)
- M Heredia
- Departamento Fisiología y Farmacología, Facultad de Medicina, Universidad de Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
The failure of regenerating axons to grow within the adult mammalian central nervous system (CNS) does not apply to the olfactory bulb (OB). In this structure, normal and transected olfactory axons are able to enter, regenerate, and reestablish lost synaptic contacts with their targets, throughout the lifetime of the organism. A remarkable difference between an axonal growth-permissive structure such as the OB and the remaining CNS resides in the presence of ensheathing glia in the former. These cells exhibit phenotypic and functional properties known to be involved in the process of axonal elongation that may explain the permissibility of the OB to axonal growth. In addition, transplants of ensheathing glia were successfully used to promote axonal regeneration within the injured adult CNS. The axonal growth-promoting properties of ensheathing glia make the study of this cell type interesting to provide an insight into the mechanisms underlying the process of axonal regeneration. Therefore, in this article we review the developmental, morphologic, immunocytochemical, and functional properties presented by this unique glial cell type, and correlate them with the axonal growth-promoting ability of ensheathing glia. In addition, we provide some evidence of the potentiality that ensheathing glia might have as a promoter of axonal regeneration within the injured nervous system.
Collapse
Affiliation(s)
- A Ramón-Cueto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain.
| | | |
Collapse
|
87
|
Astic L, Pellier-Monnin V, Godinot F. Spatio-temporal patterns of ensheathing cell differentiation in the rat olfactory system during development. Neuroscience 1998; 84:295-307. [PMID: 9522382 DOI: 10.1016/s0306-4522(97)00496-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An immunocytochemical approach with specific glial markers was used to investigate the temporal and spatial patterns of differentiation of ensheathing glia wrapping axon fascicles along the primary olfactory pathway of the rat during development. The two glial markers tested, the proteins S-100 and glial fibrillary acidic protein, are known to be expressed at different stages of maturation in glial cells. The S-100 protein was first weakly expressed in cells accompanying the olfactory axons at embryonic day 14 (E14), while a first faint glial fibrillary acidic protein staining was detected along the olfactory axons at E15 and along the vomeronasal nerves at E16. A strong S-100 immunoreactivity was already present from E16 onwards along the axon fascicles through their course in both the nasal mesenchyme and the subarachnoid space before entering the olfactory nerve layer of the olfactory bulb. A gradual increase in glial fibrillary acidic protein expression was observed along this part of the developing olfactory pathway from E16 up to E20, when an adult-like pattern of staining intensity was seen. By contrast, most of the ensheathing cells residing in the olfactory nerve layer exhibited some delay in their differentiation timing and also a noticeable delayed maturation. It was only from E20 onwards that a weak to moderate S-100 expression was detected in an increasing number of cells throughout this layer, and only few of them appeared weakly glial fibrillary acidic protein positive at postnatal days 1 and 5. The immunocytochemical data indicate that there is a proximodistal gradient of differentiation of ensheathing cells along the developing olfactory pathway. The prolonged immaturity of ensheathing cells in the olfactory nerve layer, which coincides with the formation of the first glomeruli, might facilitate the sorting out of olfactory axons leading to a radical reorganization of afferents before they end in specific glomeruli.
Collapse
Affiliation(s)
- L Astic
- Laboratoire de Neurosciences et Systèmes sensoriels, Université Claude Bernard/Lyon 1, Villeurbanne, France
| | | | | |
Collapse
|
88
|
Abstract
To a large extent the success of axon regeneration and sustained remyelination which distinguishes the PNS from the CNS is attributable to differences in their respective glial environments. For this reason, many have been attracted to the idea that repair of the CNS might be achieved by transplanting Schwann cells into areas of CNS pathology. Schwann cells will not only promote regeneration but will also myelinate axons thereby making them an appropriate cell type to mediate repair of lesions characterised by demyelination as well as axotomy. The recent discovery that olfactory glia are capable of forming myelin sheaths, together with their well-documented ability to support axon regeneration, means that these cells have a range of repair properties similar to that of Schwann cells. It is not clear at present which of these two alternatives, the Schwann cells or the olfactory glial cell, would be of greater benefit for achieving regeneration of axons or remyelination of persistent demyelination following transplantation into the CNS. In this article we review the repair properties of olfactory glia and identify the areas in which their use for repairing the CNS may have advantages over Schwann cells.
Collapse
Affiliation(s)
- R J Franklin
- MRC Cambridge Centre for Brain Repair and Department of Clinical Veterinary Medicine, University of Cambridge, United Kingdom.
| | | |
Collapse
|
89
|
Chao TI, Kasa P, Wolff JR. Distribution of astroglia in glomeruli of the rat main olfactory bulb: Exclusion from the sensory subcompartment of neuropil. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971117)388:2<191::aid-cne2>3.0.co;2-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
90
|
Abstract
BACKGROUND The olfactory epithelial sustentacular cells may support the survival and function of olfactory receptor neurons, but few reagents are available to mark and manipulate such cells. METHODS Novel nasal cell-specific monoclonal antibodies were generated using whole cultured rat olfactory mucosal cells as the antigenic stimuli. They were characterized by immunostaining at the light level in rat tissues and newborn rat olfactory cell cultures, and at the electron microscopic level in adult tissues using freeze-substitution, post-embedding staining. RESULTS An IgMkappa monoclonal antibody designated 1F4 selectively labeled apical surfaces of the rat olfactory and respiratory epithelia in tissue sections and what appeared to be sustentacular cells in olfactory cell cultures. Using electron microscopy, 1F4 bound selectively to the microvilli of sustentacular cells and ductal cells of Bowman's glands in the olfactory epithelium, and to the microvilli and cilia of ciliated but not secretory cells in the respiratory epithelium. No staining was detected in olfactory receptor neurons, basal cells, or two types of microvilli-bearing cells that differed from sustentacular cells. A contrasting antibody, 2H4, bound to granules of secretory respiratory cells. Developmental expression of 1F4 binding began at E17 and increased at and after E18/E19. Bulbectomy did not alter 1F4 immunoreactivity. Cell culture studies found that the 1F4 epitope was external and insensitive to trypsin treatment, and that both 1F4 and 2H4 positive cells required contact with aggregated cells for survival up to fifteen days in vitro. CONCLUSIONS The antibody 1F4 is a useful marker and potential manipulation reagent specific for sustentacular cells and their microvilli.
Collapse
Affiliation(s)
- S K Pixley
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Ohio 45267-0521, USA.
| | | | | |
Collapse
|
91
|
In vitro generation of adult rat olfactory sensory neurons and regulation of maturation by coculture with CNS tissues. J Neurosci 1997. [PMID: 9096146 DOI: 10.1523/jneurosci.17-09-03120.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Olfactory sensory neurons (OSNs) are continually generated throughout life. Although previous studies have examined neurogenesis in olfactory cell cultures derived from embryonic or newborn rodents, we demonstrate neurogenesis in cell cultures derived from adult rat tissues. Dissociated cells taken from adult rat nasal mucosal tissues (ANM cells) were plated onto a feeder layer of newborn rat cortical glia (astrocytes) in serum-free conditions. Immature OSNs (stained for neuron-specific tubulin, NST) increased in number between 1 and 5 d in vitro (DIV) and in mass thereafter. Mature OSN (stained for olfactory marker protein, OMP) numbers decreased between 1 and 5 DIV, then increased over 5 DIV values by 12 and 15 DIV. Pulse labeling with [3H]thymidine confirmed in vitro neurogenesis. To determine whether the target cells for OSNs, olfactory bulb (OB) neurons, provide trophic support, dissociated newborn rat OB cells were cocultured with ANM cells on glia. This resulted in greater numbers of OMP-positive (OMP+) neurons after 9 DIV than ANM-alone cultures. This neurotrophic effect was not OB specific. Addition of newborn rat cerebellar and embryonic rat ventral mesencephalic cells to ANM cells also increased OMP+ neurons, whereas addition of newborn rat cortical cells or controls (purified glia or fibroblasts) did not. Changes in numbers of dopaminergic neurons (stained for tyrosine hydroxylase), present in OB and VM cultures, did not correlate with OMP+ neuronal increases. Thus, cultures of adult rat OSNs demonstrate neurogenesis, and trophic/maturation support is variably provided by CNS neurons (and not glia).
Collapse
|
92
|
Gong Q, Liu WL, Srodon M, Foster TD, Shipley MT. Olfactory epithelial organotypic slice cultures: a useful tool for investigating olfactory neural development. Int J Dev Neurosci 1996; 14:841-52. [PMID: 9010729 DOI: 10.1016/s0736-5748(96)00056-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An in vitro slice culture was established for investigating olfactory neural development. The olfactory epithelium was dissected from embryonic day 13 rats; 400 microns slices were cultured for 5 days in serum-free medium on Millicell-CM membranes coated with different substrates. The slices were grown in the absence of their appropriate target, the olfactory bulb, or CNS derived glia. The cultures mimic many features of in vivo development. Cells in the olfactory epithelium slices differentiate into neurons that express olfactory marker protein (OMP). OMP-positive cells have the characteristic morphology of olfactory receptor neurons: a short dendrite and a single thin axon. The slices support robust axon outgrowth. In single-label experiments, many axons expressed neural specific tubulin, growth-associated protein 43 and OMP. Axons appeared to grow equally well on membranes coated with type I rat tail collagen, laminin or fibronectin. The cultures exhibit organotypic polarity with an apical side rich in olfactory neurons and a basal side supporting axon outgrowth. Numerous cells migrate out of the slices, of which a small minority was identified as neurons based on the expression of neural specific tubulin and HuD, a nuclear antigen, expressed exclusively in differentiated neurons. Most of the migrating cells, however, were positive for glial fibrillary acidic protein and S-100, indicating that they are differentiated glia. A subpopulation of these glial cells also expressed low-affinity nerve growth factor receptors, indicating that they are olfactory Schwann cells. Both migrating neurons and glia were frequently associated with axons growing out of the slice. In some cases, axons extended in advance of migrating cells. This suggests that olfactory receptor neurons in organotypic cultures require neither a pre-established glial/neuronal cellular terrain nor any target tissue for successful axon outgrowth. Organotypic olfactory epithelial slice cultures may be useful for investigating cellular and molecular mechanisms that regulate early olfactory development and function.
Collapse
Affiliation(s)
- Q Gong
- Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
93
|
Pixley SK. Characterization of olfactory receptor neurons and other cell types in dissociated rat olfactory cell cultures. Int J Dev Neurosci 1996; 14:823-39. [PMID: 9010728 DOI: 10.1016/s0736-5748(96)00057-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In dissociated cell cultures, control over the cellular environment facilitates study of the differentiation of mature cellular phenotypes. Central to this approach is a rigorous characterization of the cells that reside in culture. Therefore, we have used a battery of cell type-specific antibody markers to identify the cell types present in dissociated cultures of olfactory mucosal cells (containing cells from both the epithelium and lamina propria). To identify olfactory receptor neurons in the cultures, staining with antibodies against neuron-specific tubulin was compared to staining with antibodies to neuron-specific enolase, the neural cell adhesion molecule, N-CAM, and the adhesion molecule, LI. Staining of mature olfactory neurons in culture, with an antibody against the olfactory marker protein, was compared to staining with antibodies to carnosine. In contrast to tissue section staining, the overlap between carnosine and olfactory marker protein staining was not complete. Olfactory nerve glial cells were immunoreactive for the S100 beta protein and nestin, an intermediate filament found in early neuronal progenitor cells and Schwann cells. Antibodies to nestin did not label olfactory neurons or progenitor cells. An antibody to an oligodendrocyte-Schwann cell enzyme, 2',3'-cyclic nucleotide 3'-phosphodiesterase, did not label olfactory glia, but did label oligodendrocyte-like cells that appeared to be derived from the CNS glial feeder layer. An antibody against the heavy (200 kDa) neurofilament protein stained a minor subset of cells. The cultures also contained muscle cells, cartilage cells and macrophages (and/or microglia). These results demonstrate that multiple cell types either maintain or re-establish differentiated, cell type-specific phenotypes in dissociated olfactory cell cultures.
Collapse
Affiliation(s)
- S K Pixley
- Dept of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Ohio, USA.
| |
Collapse
|
94
|
MacDonald KP, Mackay-Sim A, Bushell GR, Bartlett PF. Olfactory neuronal cell lines generated by retroviral insertion of the n-myc oncogene display different developmental phenotypes. J Neurosci Res 1996; 45:237-47. [PMID: 8841984 DOI: 10.1002/(sici)1097-4547(19960801)45:3<237::aid-jnr5>3.0.co;2-e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Being genetically homogeneous, clonal cell lines are potentially important for investigating many aspects of cellular differentiation. We describe here the creation of clonal cell lines by immortalization of neuronal precursor cells from the adult mouse olfactory epithelium. Unlike neurons elsewhere in the vertebrate nervous system, the olfactory sensory neuron can be replaced throughout the lifespan of the animal. However, little is known about the molecular aspects of olfactory neurogenesis. Continuous cell lines were generated by retroviral transduction of the n-myc proto-oncogene into the mitotically active basal cells of the olfactory epithelium which give rise to the sensory neuron. Twenty-one clonal cell lines were produced which could be divided into three distinct morphological classes: one with flat, epithelial-like cells only; another with round, flat, and bipolar cells; and a third with large flat and large bipolar cells. These morphological classes had different patterns of intermediate filament expression, as shown by immunocytochemistry and immunoblot analysis. All cells in all cell lines expressed the intermediate filament protein vimentin. Most bipolar cells, but not other cell types, expressed neurofilament protein and in one morphological class the bipolar cells co-expressed neurofilament and glial fibrillary acidic protein. Several cell lines expressed mRNA for OMP, a marker of mature olfactory sensory neurons, and GOLF, a guanine nucleotide binding protein involved in olfactory sensory transduction. It is concluded that these cell lines were immortalized from sensory neuron precursors late in the lineage pathway. Other cell lines appear to have been immortalized at earlier stages in the lineage pathway. These cell lines therefore provide useful tools for the investigation of neuronal differentiation and sensory transduction in the olfactory epithelium.
Collapse
Affiliation(s)
- K P MacDonald
- Faculty of Science and Technology, Griffith University, Nathan, Queensland, Australia
| | | | | | | |
Collapse
|
95
|
Malun D, Brunjes PC. Development of olfactory glomeruli: temporal and spatial interactions between olfactory receptor axons and mitral cells in opossums and rats. J Comp Neurol 1996; 368:1-16. [PMID: 8725290 DOI: 10.1002/(sici)1096-9861(19960422)368:1<1::aid-cne1>3.0.co;2-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitral cells are the primary output neurons of the vertebrate olfactory bulb and are major recipients of sensory input from the periphery. The morphogenesis of mitral cell dendrites was followed to elucidate their early spatial and temporal interactions with olfactory receptor neurons and glia during the construction of olfactory glomeruli. Monodelphis domestica, a marsupial born at an extremely immature stage, and rats were examined. Mitral cells were retrogradely labeled by application of the lipophilic dye 1,1' dihexadecyl-3,3,3'3'-tetramethylin-docarbocyanine perchlorate (DiI) to the lateral olfactory tract. In double-labeling experiments, olfactory receptor neurons were stained with 3,3' dihexadecyloxacarbocyanine perchlorate (DiO), or olfactory nerve Schwann cells were visualized using S-100 protein immunohistochemistry. Tissue was examined with a confocal laser scanning microscope. Some preparations were subsequently investigated with an electron microscope. In Monodelphis, differentiation of mitral cells starts with an outgrowth of numerous, uniform, and widespread dendrites. As soon as terminals of olfactory receptor axons coalesce into glomerular knots within the presumptive glomerular layer, dendrites of individual mitral cells innervate several adjacent glomeruli where they receive sensory synaptic input. With maturation, supernumerary mitral cell dendrites retract, leaving one primary dendrite bearing a terminal glomerular tuft. Simultaneously, secondary dendrites begin to arise. The formation of glomeruli begins earlier and progresses faster in the rat compared to Monodelphis. Nevertheless, mitral cell differentiation in both species follows a common sequence: overproduction of dendrites, selection of usually one primary apical dendrite, and elimination of supernumerary processes. Since olfactory receptor neurons form synaptic contacts with the widespread mitral cell dendrites, considerable synaptic rearrangement must occur within the olfactory glomeruli during maturation.
Collapse
Affiliation(s)
- D Malun
- Department of Psychology, University of Virginia, Charlottesville 22903, USA
| | | |
Collapse
|
96
|
MacDonald KP, Murrell WG, Bartlett PF, Bushell GR, Mackay-Sim A. FGF2 promotes neuronal differentiation in explant cultures of adult and embryonic mouse olfactory epithelium. J Neurosci Res 1996; 44:27-39. [PMID: 8926627 DOI: 10.1002/(sici)1097-4547(19960401)44:1<27::aid-jnr4>3.0.co;2-k] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurogenesis in the adult olfactory epithelium is highly regulated in vivo. Little is known of the molecular signals which control this process, although contact with the olfactory bulb or with astrocytes has been implicated. Explants of mouse olfactory epithelium were grown in the presence or absence of several peptide growth factors. Basic fibroblast growth factor (FGF2) stimulated differentiation of sensory neurons in adult and embryonic olfactory epithelium. Other growth factors tested were ineffective. FGF2-stimulated neurons were born in vitro and expressed neurofilament, neural cell adhesion molecule, and beta-tubulin. The cells also expressed olfactory marker protein, a marker for mature olfactory sensory neurons in vivo. These bipolar neurons did not express glial fibrillary acidic protein or low-affinity nerve growth factor receptor. These results indicate that neither astrocytes nor olfactory bulb are necessary for differentiation of olfactory sensory neurons in vitro.
Collapse
Affiliation(s)
- K P MacDonald
- Faculty of Science and Technology, Griffith University, Nathan, Australia
| | | | | | | | | |
Collapse
|
97
|
Abstract
Primary olfactory axons project from the nasal olfactory neuroepithelium to glomeruli in the olfactory bulb where they synapse with mitral cells, the second-order olfactory neurons. We have shown that the heparin-binding growth factor FGF-1 is expressed by olfactory nerve ensheathing cells which surround fascicles of primary olfactory axons en route to the olfactory bulb. These cells are believed to modulate olfactory axon growth between the olfactory neuroepithelium and the olfactory bulb. During late embryogenesis, FGF-1 expression is turned on in the mitral cells, and the FGF-1 peptide becomes confined to layers of synaptic neuropil in the postnatal olfactory bulb. FGF-1 is selectively present in glomeruli and the external plexiform layer. In cultures of olfactory neuroepithelial cells, complexes between FGF-1 and an appropriate activating heparan sulfate proteoglycan stimulated morphological differentiation of both olfactory nerve ensheathing cells and primary sensory olfactory neurons. Thus, the spatiotemporal expression and the functional properties of FGF-1 in this system suggest that this molecule plays an important regulatory role in the formation of the olfactory pathway.
Collapse
Affiliation(s)
- B Key
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, VIC, Australia.
| | | | | | | | | |
Collapse
|
98
|
Abstract
In this report, we describe the isolation of a cell line, Rolf B1.T, from cultures of adult rat olfactory nerve cells. Rolf B1.T cells have an antigenic phenotype which closely resembles that of olfactory ensheathing cells. In routine culture conditions, Rolf B1.T cells constitutively express glial fibrillary acidic protein, S1OO, the low-affinity neurotrophin receptor p75 NGF, laminin, tenascin, and the neural cell adhesion molecule (N-CAM); a variable proportion of the cells also express cadherin, which is regulated by local culture conditions and is associated positively with cell proliferation status. We provide evidence that the association may be indirect and linked to a related parameter such as local cell density. Rolf B1.T cells arose from a population of less well-differentiated cells after a spontaneous immortalisation event. The cells retain many characteristics of normal cells, are dependent on serum growth factors for their proliferation, and fail to grow in semi-solid agar. Rolf B1.T cells support the regrowth of neurites from adult retinal ganglion cells in vitro in a heterologous co-culture system and will have potential value in investigations into the mechanisms of glial support for axonal regeneration from adult mammalian central neurons.
Collapse
Affiliation(s)
- R J Sonigra
- Division of Anatomy and Cell Biology, United Medical and Dental Schools of Guys and St. Thomas's, London, United Kingdom
| | | | | |
Collapse
|
99
|
Sosnowski JS, Gupta M, Reid KH, Roisen FJ. Chemical traumatization of adult mouse olfactory epithelium in situ stimulates growth and differentiation of olfactory neurons in vitro. Brain Res 1995; 702:37-48. [PMID: 8846094 DOI: 10.1016/0006-8993(95)00960-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study demonstrates that ZnSO4-induced chemical trauma results in an in situ regeneration of the olfactory epithelium which, when maintained in vitro, provides an enriched population of olfactory neurons. Therefore, the ability of the olfactory epithelium to respond to chemical trauma with increased mitotic activity can be used to increase growth of neurons in culture. Tissue obtained from normal or vehicle-treated adult mice produced few olfactory neurons, when maintained in culture, compared to cultures established from tissue following an in situ ZnSO4 trauma. Maximal neuronal yields were obtained in cultures established from tissue that was removed 4-6 days following chemical trauma. The morphological appearance and the presence of cell specific intermediate filament proteins were used to classify the cell types in these olfactory epithelial cultures. Single cells and aggregates of cells which were immunopositive for keratin, but immunonegative for neurofilament protein and GFAP, were identified as epithelioid. Flattened polygonal cells immunopositive for GFAP were identified as glia. A small population of flattened cells was immunonegative for all of the antibodies used in this study. Cells that had processes were immunonegative for GFAP and keratin. Some were immunopositive for 200 kDa and 160 kDa neurofilament proteins but immunonegative for the 68 kDa neurofilament protein. A few of these cells showed positive immunoreactivity with the olfactory marker protein (OMP) antibody and most likely represented the most mature olfactory neurons in the cultures. This trauma-induced culture model using olfactory tissue from adult mice can serve as a source of CNS neurons for comparison with cultured embryonic neurons.
Collapse
Affiliation(s)
- J S Sosnowski
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, KY 40292, USA
| | | | | | | |
Collapse
|
100
|
Ramón-Cueto A, Valverde F. Olfactory bulb ensheathing glia: a unique cell type with axonal growth-promoting properties. Glia 1995; 14:163-73. [PMID: 7591028 DOI: 10.1002/glia.440140302] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The olfactory bulb (OB) is a structure of the central nervous system (CNS) in which axonal growth occurs throughout the lifetime of the organism. A major difference between the OB and the remaining CNS is the presence of ensheathing glia in the first two layers of the OB. Ensheathing glia display properties that might be involved in the process of regeneration and they appear to be responsible for the permissibility of the adult OB to axonal growth. In fact, transplants of ensheathing glia can be used as promoters of axonal regeneration within the adult CNS. The axonal growth-promoting properties of ensheathing glia make the study of this cell type interesting for understanding the mechanisms underlying axonal regeneration. Several groups have studied OB ensheathing cells extensively in an attempt to classify them within any of the known glial groups. However, this cell type does not exhibit the phenotypic features of any glial population described thus far. In this article we review the characteristics that differentiate ensheathing glia from other peripheral and central glial populations as well as the properties that involve them in axonal regeneration. The evidence suggests that ensheathing glia are unique, have their own identity, and do not belong to any previously described glial type.
Collapse
Affiliation(s)
- A Ramón-Cueto
- Departamento de Investigación, Hospital Ramón y Cajal, Madrid, Spain
| | | |
Collapse
|