51
|
Early life adversities or high fat diet intake reduce cognitive function and alter BDNF signaling in adult rats: Interplay of these factors changes these effects. Int J Dev Neurosci 2016; 50:16-25. [DOI: 10.1016/j.ijdevneu.2016.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/01/2016] [Indexed: 01/09/2023] Open
|
52
|
Darcet F, Gardier AM, Gaillard R, David DJ, Guilloux JP. Cognitive Dysfunction in Major Depressive Disorder. A Translational Review in Animal Models of the Disease. Pharmaceuticals (Basel) 2016; 9:ph9010009. [PMID: 26901205 PMCID: PMC4812373 DOI: 10.3390/ph9010009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Major Depressive Disorder (MDD) is the most common psychiatric disease, affecting millions of people worldwide. In addition to the well-defined depressive symptoms, patients suffering from MDD consistently complain about cognitive disturbances, significantly exacerbating the burden of this illness. Among cognitive symptoms, impairments in attention, working memory, learning and memory or executive functions are often reported. However, available data about the heterogeneity of MDD patients and magnitude of cognitive symptoms through the different phases of MDD remain difficult to summarize. Thus, the first part of this review briefly overviewed clinical studies, focusing on the cognitive dysfunctions depending on the MDD type. As animal models are essential translational tools for underpinning the mechanisms of cognitive deficits in MDD, the second part of this review synthetized preclinical studies observing cognitive deficits in different rodent models of anxiety/depression. For each cognitive domain, we determined whether deficits could be shared across models. Particularly, we established whether specific stress-related procedures or unspecific criteria (such as species, sex or age) could segregate common cognitive alteration across models. Finally, the role of adult hippocampal neurogenesis in rodents in cognitive dysfunctions during MDD state was also discussed.
Collapse
Affiliation(s)
- Flavie Darcet
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Alain M Gardier
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Raphael Gaillard
- Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de Psychiatrie et Neurosciences U894, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Service de Psychiatrie, Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, Paris 75015, France.
| | - Denis J David
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Jean-Philippe Guilloux
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| |
Collapse
|
53
|
Moreno Gudiño H, Carías Picón D, de Brugada Sauras I. Dietary choline during periadolescence attenuates cognitive damage caused by neonatal maternal separation in male rats. Nutr Neurosci 2015; 20:327-335. [DOI: 10.1080/1028415x.2015.1126444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hayarelis Moreno Gudiño
- Department of Experimental Psychology and Physiology of behavior, University of Granada, Spain
- Department of Biological and Biochemical Processes, Simón Bolívar University, Caracas, Venezuela
| | - Diamela Carías Picón
- Department of Biological and Biochemical Processes, Simón Bolívar University, Caracas, Venezuela
| | | |
Collapse
|
54
|
Daskalakis NP, De Kloet ER, Yehuda R, Malaspina D, Kranz TM. Early Life Stress Effects on Glucocorticoid-BDNF Interplay in the Hippocampus. Front Mol Neurosci 2015; 8:68. [PMID: 26635521 PMCID: PMC4644789 DOI: 10.3389/fnmol.2015.00068] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022] Open
Abstract
Early life stress (ELS) is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid (GC) and/or neurotrophin signaling pathways. GC-signaling mediates the regulation of stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and GC-signaling pathways co-exist throughout the central nervous system (CNS), particularly in the hippocampus, which has high expression levels of glucocorticoid-receptors (GR) and mineralocorticoid-receptors (MR) as well as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB). This review addresses the effects of ELS paradigms on GC- and BDNF-dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders.
Collapse
Affiliation(s)
- Nikolaos P Daskalakis
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA
| | - Edo Ronald De Kloet
- Department of Medical Pharmacology, Leiden Academic Centre for Drug Research Leiden, Netherlands ; Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden University Leiden, Netherlands
| | - Rachel Yehuda
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Dolores Malaspina
- Department of Psychiatry, New York University School of Medicine New York, NY, USA
| | - Thorsten M Kranz
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University New York, NY, USA
| |
Collapse
|
55
|
Ye L, Hu Z, Wang H, Zhu H, Dong Z, Jiang W, Zhao H, Li N, Mi W, Wang W, Hu X. Tris-(2,3-Dibromopropyl) Isocyanurate, a New Emerging Pollutant, Impairs Cognition and Provokes Depression-Like Behaviors in Adult Rats. PLoS One 2015; 10:e0140281. [PMID: 26458255 PMCID: PMC4601767 DOI: 10.1371/journal.pone.0140281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/23/2015] [Indexed: 01/11/2023] Open
Abstract
Tris-(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO), an emerging brominated flame retardant, possesses the characteristics of candidate persistent organic pollutants and has displayed toxicity to fish and rodents. TDBP-TAZTO can pass through the blood brain barrier and accumulate in brain. However, the neurotoxicity of TDBP-TAZTO has not yet studied in rodents. We hypothesize that TDBP-TAZTO could induce the neurotoxicity in rat hippocampal neurons. The male adult rats were exposed to TDBP-TAZTO of 5 and 50 mg/kg by gavage, daily for 6 months. TDBP-TAZTO resulted in cognitive impairment and depression-like behaviors, which may be related with TDBP-TAZTO-induced hypothalamic-pituitary-adrenal axis hyperactivation, upregulation of inflammatory and oxidative stress markers, overexpression of pro-apoptotic proteins, downexpression of neurogenesis-related proteins in hippocampus, and hippocampal neurons damage in DG, CA1 and CA3 areas. Our findings suggested that TDBP-TAZTO induces significant hippocampal neurotoxicity, which provokes cognitive impairment and depression-like behaviors in adult rats. Therefore, this research will contribute to evaluate the neurotoxic effects of TDBP-TAZTO in human.
Collapse
Affiliation(s)
- Liang Ye
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
- Institute of Toxicology, Binzhou Medical University, Yantai, Shandong, PR China
| | - Zhengping Hu
- Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong, PR China
| | - Hui Wang
- School of Pharmacy, Yantai University, Yantai, Shandong, PR China
| | - Haibo Zhu
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
- Institute of Toxicology, Binzhou Medical University, Yantai, Shandong, PR China
| | - Zhaoju Dong
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
| | - Wanglin Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, PR China
| | - Huijuan Zhao
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
| | - Ning Li
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
| | - Wei Mi
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
| | - Wenyan Wang
- School of Pharmacy, Yantai University, Yantai, Shandong, PR China
| | - Xihou Hu
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
| |
Collapse
|
56
|
Mosaferi B, Babri S, Mohaddes G, Khamnei S, Mesgari M. Post-weaning environmental enrichment improves BDNF response of adult male rats. Int J Dev Neurosci 2015; 46:108-14. [PMID: 26291061 DOI: 10.1016/j.ijdevneu.2015.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/13/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022] Open
Abstract
The environment could have long lasting effects on the individual phenotype through developmental plasticity. Early environmental enrichment exerts profound biological effects, most of which are quite beneficial ones. To explore the enduring effects of rearing condition quality on BDNF(1) responses, we reared male Wistar rats from weaning to young-adulthood in three different environmental conditions: 1. Enriched 2. Standard, and 3. Isolated. Then, at the age of 16 weeks, 10 rats from each group were randomly chosen and allocated to six common mix cages. They were kept together for 14 weeks. At the end of the experiment, each rat received ten inescapable foot-shocks. Twelve hours later, the BDNF contents of the amygdala and CA1 sub-region of the dorsal hippocampus were measured. The serum BDNF levels, hematocrit values as well as brain and testis weights were also measured. Results showed that the environmental enrichment led to stronger dorsal hippocampal BDNF response and higher serum BDNF levels, while rats from standard laboratory condition showed higher amygdala BDNF response. Also, enriched animals showed higher brain weight compared to isolation reared rats as well as higher testis weight and hematocrit value compared to animals reared in standard laboratory condition. Rats showed less body weights in isolated condition. In conclusion, the BDNF profile of enriched animals might represent the neurobiological correlate of resilience phenotype under a stressful situation.
Collapse
Affiliation(s)
- Belal Mosaferi
- Neuroscience Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shirin Babri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Gisou Mohaddes
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saeed Khamnei
- Department of Physiology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Mehran Mesgari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
57
|
The maternal deprivation animal model revisited. Neurosci Biobehav Rev 2015; 51:151-63. [PMID: 25616179 DOI: 10.1016/j.neubiorev.2015.01.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/23/2014] [Accepted: 01/12/2015] [Indexed: 12/17/2022]
Abstract
Early life stress, in the form of MD (24h at pnd 9), interferes with brain developmental trajectories modifying both behavioral and neurobiochemical parameters. MD has been reported to enhance neuroendocrine responses to stress, to affect emotional behavior and to impair cognitive function. More recently, changes in body weight gain, metabolic parameters and immunological responding have also been described. Present data give support to the fact that neuronal degeneration and/or astrocyte proliferation are present in specific brain regions, mainly hippocampus, prefrontal cortex and hypothalamus, which are particularly vulnerable to the effects of neonatal stress. The MD animal model arises as a valuable tool for the investigation of the brain processes occurring at the narrow time window comprised between pnd 9 and 10 that are critical for the establishment of brain circuitries critical for the regulation of behavior, metabolism and energy homeostasis. In the present review we will discuss three possible mechanisms that might be crucial for the effects of MD, namely, the rapid increase in glucocorticoids, the lack of the neonatal leptin surge, and the enhanced endocannabinoid signaling during the specific critical period of MD. A better understanding of the mechanisms underlying the detrimental consequences of MD is a concern for public health and may provide new insights into mental health prevention strategies and into novel therapeutic approaches in neuropsychiatry.
Collapse
|
58
|
Camara ML, Corrigan F, Jaehne EJ, Jawahar MC, Anscomb H, Baune BT. Effects of centrally administered etanercept on behavior, microglia, and astrocytes in mice following a peripheral immune challenge. Neuropsychopharmacology 2015; 40:502-12. [PMID: 25103178 PMCID: PMC4443965 DOI: 10.1038/npp.2014.199] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/22/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022]
Abstract
Peripheral cytokines affect central nervous system (CNS) function, manifesting in symptoms of anxiety and cognitive decline. Although the peripheral blockage of tumor necrosis factor (TNF)-α has been effective in alleviating depression and rheumatoid arthritis, it is yet unknown whether central blockade of TNF-α is beneficial for immune-challenged CNS function. This study investigated the effects of central etanercept administration following a peripheral immune challenge on anxiety-like and cognition-like behaviors and microglia and astrocyte numbers. Twelve-week-old C57BL/6 mice (n=40) were treated with either LPS or saline administered peripherally 24 h before being treated with either etanercept or artificial CSF (aCSF) by intracerebroventricular injection. Mice underwent behavioral analyses for locomotion, memory, and anxiety-like behavior 24 h post-etanercept/aCSF treatment, and tissue was collected to estimate the numbers of hippocampal microglia and astrocytes. Following peripheral immune challenge with LPS, mice showed increased anxiety-like behavior, which was significantly improved following treatment with etanercept (two-way ANOVA: Interaction: F(1,30)=0.60, P=0.44; Saline/LPS challenge: F(1,30)=23.92, P<0.0001, etanercept vs aCSF: F(1,30)=11.09, P=0.0023). For cognition, a significant interaction effect found by two-way ANOVA (Interaction: F(1,20)=4.96, P=0.037, Saline/LPS challenge: F(1,20)=4.966, P=0.31, aCSF/etanercept treatment: F(1,20)=0.06, P=0.80) and post-hoc analysis revealed a significant decrease in cognition in LPS-aCSF compared with Sal-aCSF mice (P=0.038), but no significant difference was noted between LPS-aCSF and LPS-Etan mice (P>0.9). A significant reduction in the number of microglia within the hippocampus of these mice was noted (two-way ANOVA: Interaction: F(1,15)=11.41, P=0.0041; Saline/LPS challenge: F(1,15)=50.13, P<0.0001, etanercept vs aCSF: F(1,15)=3.36, P=0.08). Centrally administered etanercept improved anxiety-like behavior but not spatial memory under a peripheral immune challenge and was associated with a decrease in the hippocampal microglia numbers. This suggests that etanercept recovers anxiety-like behavior possibly mediated by a reduction of TNF-α-related central inflammation.
Collapse
Affiliation(s)
- Marie lou Camara
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia,Discipline of Anatomy, School of Medicine, James Cook University, Townsville QLD, Australia
| | - Frances Corrigan
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, SA, Australia
| | - Emily J Jaehne
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Magdalene C Jawahar
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Helen Anscomb
- Discipline of Anatomy, School of Medicine, James Cook University, Townsville QLD, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia,Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA 5005 Australia, Tel: +1 61 8 8222 5141, Fax: +1 61 8 8222 2774, E-mail:
| |
Collapse
|
59
|
Tata DA, Markostamou I, Ioannidis A, Gkioka M, Simeonidou C, Anogianakis G, Spandou E. Effects of maternal separation on behavior and brain damage in adult rats exposed to neonatal hypoxia-ischemia. Behav Brain Res 2014; 280:51-61. [PMID: 25433094 DOI: 10.1016/j.bbr.2014.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/15/2014] [Accepted: 11/20/2014] [Indexed: 12/17/2022]
Abstract
Animal studies suggest that maternal separation, a widely used paradigm to study the effects of early life adversity, exerts a profound and life-long impact on both brain and behavior. The aim of the current study was to investigate whether adverse early life experiences interact with neonatal hypoxia-ischemia, affecting the outcome of this neurological insult at both functional and structural levels during adulthood. Rat pups were separated from their mothers during postnatal days 1-6, for either a short (15 min) or prolonged (180 min) period, while another group was left undisturbed. On postnatal day 7, a subgroup from each of the three postnatal manipulations was exposed to a hypoxic-ischemic episode. Behavioral examination took place approximately at three months of age and included tests of learning and memory (Morris water maze, novel object and novel place recognition), as well as motor coordination (rota-rod). We found that both prolonged maternal separation and neonatal hypoxia-ischemia impaired the animals' spatial learning and reference memory. Deficits in spatial but not visual recognition memory were detected only in hypoxic-ischemic rats. Interestingly, prolonged maternal separation prior to neonatal hypoxia-ischemia augmented the reference memory impairments. Histological analysis of infarct size, hippocampal area and thickness of corpus callosum did not reveal any exacerbation of damage in hypoxic-ischemic rats that were maternally separated for a prolonged period. These are the first data suggesting that an adverse postnatal environmental manipulation of just 6 days causes long-term effects on spatial learning and memory and may render the organism more vulnerable to a subsequent insult.
Collapse
Affiliation(s)
- Despina A Tata
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ioanna Markostamou
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anestis Ioannidis
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mara Gkioka
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Anogianakis
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
60
|
de Miranda AS, Brant F, Campos AC, Vieira LB, Rocha NP, Cisalpino D, Binda NS, Rodrigues DH, Ransohoff RM, Machado FS, Rachid MA, Teixeira AL. Evidence for the contribution of adult neurogenesis and hippocampal cell death in experimental cerebral malaria cognitive outcome. Neuroscience 2014; 284:920-933. [PMID: 25451296 DOI: 10.1016/j.neuroscience.2014.10.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/09/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
Cognitive dysfunction is a major sign of cerebral malaria (CM). However, the underlying mechanisms of CM cognitive outcome remain poorly understood. A body of evidence suggests that adult neurogenesis may play a role in learning and memory processes. It has also been reported that these phenomena can be regulated by the immune system. We hypothesized that memory dysfunction in CM results from hippocampal neurogenesis impairment mediated by the deregulated immune response during the acute phase of CM. C57Bl/6 mice were infected with Plasmodium berghei ANKA (PbA) strain, using a standardized inoculation of 10(6) parasitized erythrocytes. Long-term working memory was evaluated using the novel object recognition test. The mRNA expression of brain-derived neurotrophic factor (BDNF), tropomyosin-receptor-kinase (TRK-B) and nerve growth factor (NGF) in the frontal cortex and hippocampus was estimated by real-time polymerase chain reaction (PCR). The protein levels of cytokine interleukin-2 (IL-2), IL-4, IL-6, IL-10, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and CCL11 and neurotrophins BDNF and NGF were determined using a cytometric bead array (CBA) kit or enzyme-linked immunosorbent assay. Cell viability in the hippocampus was analyzed by Confocal Microscopy. Neurogenesis in the dentate gyrus was determined through quantification of doublecortin (DCX) positive cells. PbA-infected mice presented working memory impairment on day 5 post-infection. At this same time point, CM mice exhibited a decrease in DCX-positive cells in the dentate gyrus in parallel with increased cell death and elevated inflammatory cytokines (IL-6, TNF-α, IFN-γ and CCL11) in the hippocampus and frontal cortex. A significant reduction of BDNF mRNA expression was also found. IL-6 and TNF-α correlated negatively with BDNF and NGF levels in the hippocampus of CM mice. In summary, we provide further evidence that neuroinflammation following PbA-infection influences neurotrophin expression, impairs adult hippocampal neurogenesis and increases hippocampal cell death in association with memory impairment following CM course. The current study identified potential mediators of memory impairment in CM.
Collapse
Affiliation(s)
- A S de Miranda
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - F Brant
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A C Campos
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - L B Vieira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - N P Rocha
- Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - D Cisalpino
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - N S Binda
- National Institute of Science and Technology in Molecular Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - D H Rodrigues
- Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - R M Ransohoff
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - F S Machado
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M A Rachid
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A L Teixeira
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
61
|
Pinheiro RMC, de Lima MNM, Portal BCD, Busato SB, Falavigna L, Ferreira RDP, Paz AC, de Aguiar BW, Kapczinski F, Schröder N. Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: effects of valproic acid and topiramate. J Neural Transm (Vienna) 2014; 122:709-19. [PMID: 25182413 DOI: 10.1007/s00702-014-1303-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/22/2014] [Indexed: 01/04/2023]
Abstract
Exposure to stressful events early in life may have permanent deleterious consequences on nervous system function and increase the susceptibility to psychiatric conditions later in life. Maternal deprivation, commonly used as a source of neonatal stress, impairs memory in adult rats and reduces hippocampal brain-derived neurotrophic factor (BDNF) levels. Inflammatory cytokines, such as interleukins (IL) and tumor necrosis factor-α (TNF-α) have been shown to be increased in the peripheral blood of patients with psychiatric disorders. The aim of the present study was to investigate the effects of maternal separation on the levels of IL-10 and TNF-α, and BDNF in the hippocampus and prefrontal cortex of adult rats. We also evaluated the potential ameliorating properties of topiramate and valproic acid on memory deficits and cytokine and BDNF changes associated with maternal deprivation. The results indicated that, in addition to inducing memory deficits, maternal deprivation increased the levels of IL-10 in the hippocampus, and TNF-α in the hippocampus and in the cortex, and decreased hippocampal levels of BDNF, in adult life. Neither valproic acid nor topiramate were able to ameliorate memory deficits or the reduction in BDNF induced by maternal separation. The highest dose of topiramate was able to reduce IL-10 in the hippocampus and TNF-α in the prefrontal cortex, while valproate only reduced IL-10 levels in the hippocampus. These findings may have implications for a better understanding of the mechanisms associated with alterations observed in adult life induced by early stressful events, and for the proposal of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rose Mary Carvalho Pinheiro
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Av. Ipiranga, 6681 Predio 12D, Porto Alegre, RS, 90619-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Hill RA, Kiss Von Soly S, Ratnayake U, Klug M, Binder MD, Hannan AJ, van den Buuse M. Long-term effects of combined neonatal and adolescent stress on brain-derived neurotrophic factor and dopamine receptor expression in the rat forebrain. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2126-35. [PMID: 25159716 DOI: 10.1016/j.bbadis.2014.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 11/25/2022]
Abstract
Altered brain-derived neurotrophic factor (BDNF) signalling and dopaminergic neurotransmission have been shown in the forebrain in schizophrenia. The 'two hit' hypothesis proposes that two major disruptions during development are involved in the pathophysiology of this illness. We therefore used a 'two hit' rat model of combined neonatal and young-adult stress to assess effects on BDNF signalling and dopamine receptor expression. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. At adulthood the medial prefrontal cortex (mPFC), caudate putamen (CPu) and nucleus accumbens (NAc) were analysed by qPCR and Western blot. The 'two hit' combination of MS and CORT treatment caused significant increases in BDNF mRNA and protein levels in the mPFC of male, but not female rats. BDNF mRNA expression was unchanged in the CPu but was significantly reduced by CORT in the NAc. DR3 and DR2 mRNA were significantly up-regulated in the mPFC of two-hit rats and a positive correlation was found between BDNF and DR3 expression in male, but not female rats. DR2 and DR3 expression were significantly increased following CORT treatment in the NAc and a significant negative correlation between BDNF and DR3 and DR2 mRNA levels was found. Our data demonstrate male-specific two-hit effects of developmental stress on BDNF and DR3 expression in the mPFC. Furthermore, following chronic adolescent CORT treatment, the relationship between BDNF and dopamine receptor expression was significantly altered in the NAc. These results elucidate the long-term effects of 'two hit' developmental stress on behaviour.
Collapse
Affiliation(s)
- Rachel A Hill
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Szerenke Kiss Von Soly
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Udani Ratnayake
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Maren Klug
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Department of Psychology, Swinburne University, Hawthorn, Australia
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Maarten van den Buuse
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia; School of Psychological Science, La Trobe University, Melbourne, Australia.
| |
Collapse
|
63
|
Gururajan A, Hill R, van den Buuse M. Long-term differential effects of chronic young-adult corticosterone exposure on anxiety and depression-like behaviour in BDNF heterozygous rats depend on the experimental paradigm used. Neurosci Lett 2014; 576:6-10. [DOI: 10.1016/j.neulet.2014.05.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/13/2022]
|
64
|
Zhang F, Zhu ZQ, Liu DEX, Zhang C, Gong QH, Zhu YH. Emulsified isoflurane anesthesia decreases brain-derived neurotrophic factor expression and induces cognitive dysfunction in adult rats. Exp Ther Med 2014; 8:471-477. [PMID: 25009603 PMCID: PMC4079394 DOI: 10.3892/etm.2014.1769] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/27/2014] [Indexed: 11/12/2022] Open
Abstract
Post-operative cognitive dysfunction (POCD) is a severe complication characterized by cognitive decline in patients following anesthesia and surgery. Previous studies have suggested that volatile anesthetics, for example isoflurane, may contribute to such impairment. In the present study, the effects of emulsified isoflurane (EI) exposure on cognitive function, as well as the potential mechanisms, were investigated in animal models. Eight-month-old male rats were administered a single intravenous injection of 8% EI. The rats were then subjected to the Morris water maze test to assess their cognitive functions at different time-points following drug administration. Samples were taken in order to detect the plasma corticosterone concentration and the levels of hippocampal brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), as well as the expression of BDNF and NGF in the hippocampal region. The results showed that a single injection of EI caused reversible learning and memory dysfunction in adult rats. It was found that downregulation of BDNF expression may contribute to the isoflurane-induced cognitive impairment of these rats. Increased expression of NGF may be associated with the protection mechanism subsequent to learning and memory function decline, and therefore may accelerate the recovery of cognitive function.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - DE-Xing Liu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Chao Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Qi-Hai Gong
- Department of Pharmacology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Yu-Hang Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
65
|
Hill RA, Klug M, Kiss Von Soly S, Binder MD, Hannan AJ, van den Buuse M. Sex-specific disruptions in spatial memory and anhedonia in a "two hit" rat model correspond with alterations in hippocampal brain-derived neurotrophic factor expression and signaling. Hippocampus 2014; 24:1197-211. [PMID: 24802968 DOI: 10.1002/hipo.22302] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 01/01/2023]
Abstract
Post-mortem studies have demonstrated reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of schizophrenia and major depression patients. The "two hit" hypothesis proposes that two or more major disruptions at specific time points during development are involved in the pathophysiology of these mental illnesses. However, the role of BDNF in these "two hit" effects is unclear. Our aim was to behaviorally characterize a "two hit" rat model of developmental stress accompanied by an in-depth assessment of BDNF expression and signalling. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. In adulthood, models of cognitive and negative symptoms of mental illness were analyzed. The hippocampus was then dissected into dorsal (DHP) and ventral (VHP) regions and analyzed by qPCR for exon-specific BDNF gene expression or by Western blot for BDNF protein expression and downstream signaling. Male "two hit" rats showed marked disruptions in short-term spatial memory (Y-maze) which were absent in females. However, female "two hit" rats showed signs of anhedonia (sucrose preference test), which were absent in males. Novel object recognition and anxiety (elevated plus maze) were unchanged by either of the two "hits". In the DHP, MS caused a male-specific increase in BDNF Exons I, II, IV, VII, and IX mRNA but a decrease in mature BDNF and phosphorylated TrkB (pTrkB) protein expression in adulthood. In the VHP, BDNF transcript expression was unchanged; however, in female rats only, MS significantly decreased mature BDNF and pTrkB protein expression in adulthood. These data demonstrate that MS causes region-specific and sex-specific long-term effects on BDNF expression and signaling and, importantly, mRNA expression does not always infer protein expression. Alterations to BDNF signaling may mediate the sex-specific effects of developmental stress on anhedonic behaviors.
Collapse
Affiliation(s)
- Rachel A Hill
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
66
|
Fuentes S, Daviu N, Gagliano H, Garrido P, Zelena D, Monasterio N, Armario A, Nadal R. Sex-dependent effects of an early life treatment in rats that increases maternal care: vulnerability or resilience? Front Behav Neurosci 2014; 8:56. [PMID: 24616673 PMCID: PMC3934416 DOI: 10.3389/fnbeh.2014.00056] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/05/2014] [Indexed: 11/13/2022] Open
Abstract
Early life stress (ELS) in rodents has profound long-term effects that are partially mediated by changes in maternal care. ELS not only induces “detrimental” effects in adulthood, increasing psychopathology, but also promotes resilience to further stressors. In Long-Evans rats, we evaluated a combination of two procedures as a model of ELS: restriction of bedding during the first post-natal days and exposure to a “substitute” mother. The maternal care of biological and “substitute” mothers was measured. The male and female offspring were evaluated during adulthood in several contexts. Anxiety was measured by the elevated plus-maze (EPM), acoustic startle response (ASR) and forced swim test (FST). In other group of animals, novelty-seeking was measured (activity in an inescapable novel environment, preference for novel environments and exploration of novel objects). Plasmatic ACTH and corticosterone in basal conditions and in response to stress were also measured. Cognitive impulsivity was assessed by a delay-discounting paradigm, and impulsive action, attention and compulsive-like behavior by a five choice serial reaction time task (5CSRTT). ELS decreased pup body weight and increased the care of the biological mother; however, the “substitute” mother did not exhibit overt maltreatment. A mixture of “detrimental” and “beneficial” effects was shown. In the 5CSRTT, attention was impaired in both genders, and in females, ELS increased compulsive-like behavior. Novel object exploration was only increased by ELS in males, but the preference for novel spaces decreased in both genders. Baseline anxiety (EPM and ASR) and recognition memory were not affected. Unexpectedly, ELS decreased the ACTH response to novelty and swim stress and increased active coping in the FST in both genders. Cognitive impulsivity was decreased only in females, but impulsive action was not affected. The enhancement in maternal care may “buffer” the effects of ELS in a context-dependent manner.
Collapse
Affiliation(s)
- Sílvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Núria Daviu
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Pedro Garrido
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Science Budapest, Hungary
| | - Nela Monasterio
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
67
|
TNF-α and its receptors modulate complex behaviours and neurotrophins in transgenic mice. Psychoneuroendocrinology 2013; 38:3102-14. [PMID: 24094876 DOI: 10.1016/j.psyneuen.2013.09.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 02/01/2023]
Abstract
UNLABELLED Tumour necrosis factor-α (TNF-α) plays an important role not only in immunity but also in the normal functioning of the central nervous system (CNS). At physiological levels, studies have shown TNF-α is essential to maintain synaptic scaling and thus influence learning and memory formation while also playing a role in modulating pathological states of anxiety and depression. TNF-α signals mainly through its two receptors, TNF-R1 and TNF-R2, however the exact role that these receptors play in TNF-α mediated behavioural phenotypes is yet to be determined. METHODS We have assessed TNF(-/-), TNF-R1(-/-) and TNF-R2(-/-) mice against C57BL/6 wild-type (WT) mice from 12 weeks of age in order to evaluate measures of spatial memory and learning in the Barnes maze (BM) and Y-maze, as well as other behaviours such as exploration, social interaction, anxiety and depression-like behaviour in a battery of tests. We have also measured hippocampal and prefrontal cortex levels of the neurotrophins nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) as well as used immunohistochemical analyses to measure number of proliferating cells (Ki67) and immature neurons (DCX) within the dentate gyrus. RESULTS We have shown that young adult TNF(-/-) and TNF-R1(-/-) mice displayed impairments in learning and memory in the BM and Y-maze, while TNF-R2(-/-) mice showed good memory but slow learning in these tests. TNF(-/-)and TNF-R2(-/-) mice also demonstrated a decrease in anxiety like behaviour compared to WT mice. ELISA analyses showed TNF(-/-) and TNF-R2(-/-) mice had lower levels of NGF compared to WT mice. CONCLUSION These results indicate that while lack of TNF-α can decrease anxiety-like behaviour in mice, certain basal levels of TNF-α are required for the development of normal cognition. Furthermore our results suggest that both TNF-R1 and TNF-R2 signalling play a role in normal CNS function, with knockout of either receptor impairing cognition on the Barnes maze.
Collapse
|
68
|
Hida H, Mouri A, Ando Y, Mori K, Mamiya T, Iwamoto K, Ozaki N, Yamada K, Nabeshima T, Noda Y. Combination of neonatal PolyI:C and adolescent phencyclidine treatments is required to induce behavioral abnormalities with overexpression of GLAST in adult mice. Behav Brain Res 2013; 258:34-42. [PMID: 24060653 DOI: 10.1016/j.bbr.2013.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/08/2013] [Accepted: 09/11/2013] [Indexed: 12/25/2022]
Abstract
Cumulative incidences of multiple risk factors are related to pathology of psychiatric disorders. The present study was designed to examine combinative effects of a neonatal immune challenge with adolescent abused substance treatment on the psychological behaviors and molecular expressions in the adult. C57BL/6J mice were neonatally treated, with polyriboinosinic-polyribocytidylic acid (PolyI:C: 5mg/kg) during postnatal days (PD) 2-6, then with phencyclidine (PCP: 10mg/kg) during adolescence (PD35-41). Locomotor activity was analyzed to evaluate sensitivity to PCP on PD35 and PD41. Emotional and cognitive tests were carried out on PD42-48. Neonatal PolyI:C treatment markedly enhanced sensitivity to PCP- and methamphetamine-induced hyperactivity in the adolescent. Mice treated with both neonatal PolyI:C and adolescent PCP (PolyI:C/PCP) showed social deficit and object recognition memory impairment. The expression of glutamate/aspartate transporter (GLAST) in the prefrontal cortex (PFC) was significantly increased in the (PolyI:C/PCP)-treated mice. Infusion of glutamate transporter inhibitor (DL-TBOA: 1 nmol/bilaterally) into the PFC reversed the object recognition impairment in the (PolyI:C/PCP)-treated mice. These results indicate that the combined treatment of neonatal PolyI:C with adolescent PCP leads to behavioral abnormalities, which were associated with increase of GLAST expression in the adult PFC.
Collapse
Affiliation(s)
- Hirotake Hida
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Garcia VA, Hirotsu C, Matos G, Alvarenga T, Pires GN, Kapczinski F, Schröder N, Tufik S, Andersen ML. Modafinil ameliorates cognitive deficits induced by maternal separation and sleep deprivation. Behav Brain Res 2013; 253:274-9. [DOI: 10.1016/j.bbr.2013.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 11/26/2022]
|
70
|
Bath KG, Schilit A, Lee FS. Stress effects on BDNF expression: Effects of age, sex, and form of stress. Neuroscience 2013; 239:149-56. [PMID: 23402850 DOI: 10.1016/j.neuroscience.2013.01.074] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/17/2012] [Accepted: 01/31/2013] [Indexed: 12/14/2022]
Affiliation(s)
- K G Bath
- Department of Neuroscience, Brown University, Box GL-N, 185 Meeting Street, Providence, RI 02912, USA.
| | | | | |
Collapse
|
71
|
Lukasz B, O'Sullivan NC, Loscher JS, Pickering M, Regan CM, Murphy KJ. Peripubertal viral-like challenge and social isolation mediate overlapping but distinct effects on behaviour and brain interferon regulatory factor 7 expression in the adult Wistar rat. Brain Behav Immun 2013; 27:71-9. [PMID: 23036922 DOI: 10.1016/j.bbi.2012.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 12/14/2022] Open
Abstract
A range of adverse, early life environmental influences such as viral infection and social deprivation are thought to increase risk of psychiatric illness later in life. Here, we used peripheral administration of the viral infection mimic polyriboinosinic-polyribocytidylic acid (polyI:C) to compare the consequences of peripubertal infection and isolation rearing. Isolation rearing induced deficits in sensorimotor gating and recognition memory while no changes in social interaction or spatial learning were observed. PolyI:C injection during the peripubertal period markedly increased expression of interferon-stimulated genes (Ifit2, Prkr, Mx2 and Irf7) in the hippocampal dentate gyrus demonstrating that peripheral administration of the viral mimic in the adolescent animal does have direct effects in the brain. Peripubertal infection mimicry induced a similar but later emerging behavioural deficit in prepulse inhibition implying the existence of a peripubertal window of opportunity for viral-mediated cytokine increases to impact brain development and function. PolyI:C treatment also impaired novel object recognition but did not alter spatial reference memory or social interaction. Combining the polyI:C challenge with social isolation did not exacerbate the behavioural deficits seen with isolation rearing alone. Using Irf7 as a marker, peripubertal viral infection mimicry, isolation rearing and a combination of both were all seen to produce a long-lasting molecular imprint on the interferon-associated signalling pathway in the principal neuron population of the hippocampal dentate gyrus. The data suggest that the sensitivity of brain structure and function to disruption by viral infection extends into the peripubertal period. Moreover, augmented interferon signalling in hippocampus may represent a common molecular imprint of environmental insults associated with neuropsychiatric illnesses like schizophrenia.
Collapse
Affiliation(s)
- Bartlomiej Lukasz
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
72
|
Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: a cytokine to remember. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4213-9. [PMID: 23087426 PMCID: PMC3481177 DOI: 10.4049/jimmunol.1202246] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-4 has been extensively studied in the context of its role in immunity. Accumulating evidence indicates, however, that it also plays a critical role in higher functions of the normal brain, such as memory and learning. In this review, we summarize current knowledge of the basic immunology of IL-4, describe how and where this cytokine appears to operate in normal brain function, and propose a hypothesis concerning its potential role in neurological pathologies.
Collapse
Affiliation(s)
- Sachin P Gadani
- Department of Neuroscience and Graduate Program in Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
73
|
Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology (Berl) 2012; 223:319-30. [PMID: 22569815 DOI: 10.1007/s00213-012-2719-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/03/2012] [Indexed: 12/29/2022]
Abstract
RATIONALE Flavonoid-rich foods have been shown to be able to reverse age-related cognitive deficits in memory and learning in both animals and humans. However, to date, there have been only a limited number of studies investigating the effects of flavonoid-rich foods on cognition in young/healthy animals. OBJECTIVES The aim of this study was to investigate the effects of a blueberry-rich diet in young animals using a spatial working memory paradigm, the delayed non-match task, using an eight-arm radial maze. Furthermore, the mechanisms underlying such behavioural effects were investigated. RESULTS We show that a 7-week supplementation with a blueberry diet (2 % w/w) improves the spatial memory performance of young rats (2 months old). Blueberry-fed animals also exhibited a faster rate of learning compared to those on the control diet. These behavioural outputs were accompanied by the activation of extracellular signal-related kinase (ERK1/2), increases in total cAMP-response element-binding protein (CREB) and elevated levels of pro- and mature brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in hippocampal CREB correlated well with memory performance. Further regional analysis of BDNF gene expression in the hippocampus revealed a specific increase in BDNF mRNA in the dentate gyrus and CA1 areas of hippocampi of blueberry-fed animals. CONCLUSIONS The present study suggests that consumption of flavonoid-rich blueberries has a positive impact on spatial learning performance in young healthy animals, and these improvements are linked to the activation of ERK-CREB-BDNF pathway in the hippocampus.
Collapse
|
74
|
The Effects of Reboxetine Treatment on Depression-like Behavior, Brain Neurotrophins, and ERK Expression in Rats Exposed to Chronic Mild Stress. J Mol Neurosci 2012; 50:88-97. [DOI: 10.1007/s12031-012-9872-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/01/2012] [Indexed: 10/27/2022]
|
75
|
Lim AL, Taylor DA, Malone DT. A two-hit model: behavioural investigation of the effect of combined neonatal MK-801 administration and isolation rearing in the rat. J Psychopharmacol 2012; 26:1252-64. [PMID: 22361477 DOI: 10.1177/0269881111430751] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study combined two neurodevelopmental manipulations, neonatal MK-801 treatment and isolation rearing, to produce a 'two-hit' model and determine whether two hits induce a more robust behavioural phenotype of an animal model of aspects of schizophrenia compared with individual manipulations alone. The effect of clozapine was also assessed. Male Sprague-Dawley rats received 0.2 mg/kg MK-801 or saline intraperitoneally (i.p.) once daily on postnatal days (PNDs) 7-10 and were assigned to group or isolation rearing at weaning (PND 21). From PND 77, they received a vehicle or 5 mg/kg clozapine (i.p.) treatment regimen and were subjected to three prepulse inhibition (PPI) tests, a locomotor activity assessment and a novel object recognition task. MK-801-treated rats reared in isolation displayed robust PPI disruptions which were consistently manifested in all three tests. PPI deficits were also detected in saline-treated rats reared in isolation but not in all tests. Only the two-hit rats demonstrated hyperlocomotion and impaired object recognition memory. Clozapine restored PPI anomalies in the two-hit rats. The two-hit model showed greater psychotic-like effects than either neonatal MK-801 or isolation rearing alone. The preliminary predictive validity shown with clozapine suggests this model may be useful for predicting the efficacy of putative antipsychotics.
Collapse
Affiliation(s)
- Ann Li Lim
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | | | | |
Collapse
|
76
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
77
|
Klug M, van den Buuse M. Chronic cannabinoid treatment during young adulthood induces sex-specific behavioural deficits in maternally separated rats. Behav Brain Res 2012; 233:305-13. [DOI: 10.1016/j.bbr.2012.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 01/07/2023]
|
78
|
Kosten TA, Kim JJ, Lee HJ. Early life manipulations alter learning and memory in rats. Neurosci Biobehav Rev 2012; 36:1985-2006. [PMID: 22819985 DOI: 10.1016/j.neubiorev.2012.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 12/24/2022]
Abstract
Much research shows that early life manipulations have enduring behavioral, neural, and hormonal effects. However, findings of learning and memory performance vary widely across studies. We reviewed studies in which pre-weaning rat pups were exposed to stressors and tested on learning and memory tasks in adulthood. Tasks were classified as aversive conditioning, inhibitory learning, or spatial/relational memory. Variables of duration, type, and timing of neonatal manipulation and sex and strain of animals were examined to determine if any predict enhanced or impaired performance. Brief separations enhanced and prolonged separations impaired performance on spatial/relational tasks. Performance was impaired in aversive conditioning and enhanced in inhibitory learning tasks regardless of manipulation duration. Opposing effects on performance for spatial/relational memory also depended upon timing of manipulation. Enhanced performance was likely if the manipulation occurred during postnatal week 3 but performance was impaired if it was confined to the first two postnatal weeks. Thus, the relationship between early life experiences and adulthood learning and memory performance is multifaceted and decidedly task-dependent.
Collapse
Affiliation(s)
- Therese A Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
79
|
Hill RA, Wu YWC, Kwek P, van den Buuse M. Modulatory effects of sex steroid hormones on brain-derived neurotrophic factor-tyrosine kinase B expression during adolescent development in C57Bl/6 mice. J Neuroendocrinol 2012; 24:774-88. [PMID: 22221196 DOI: 10.1111/j.1365-2826.2012.02277.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sex steroid hormones and neurotrophic factors are involved in pruning and shaping the adolescent brain and have been implicated in the pathogenesis of neurodevelopmental disorders, including mental illness. We aimed to determine the association between altered levels of sex steroid hormones during adolescent development and neurotrophic signalling in the C57Bl/6 mouse. We first performed a week by week analysis from pre-pubescence to adulthood in male and female C57Bl/6 mice, measuring serum levels of testosterone and oestradiol in conjunction with western blot analysis of neurotrophin expression in the forebrain and hippocampal regions. Second, we manipulated adolescent sex steroid hormone levels by gonadectomy and hormone replacement at the pre-pubescent age of 5 weeks. Young-adult forebrain and hippocampal neurotrophin expression was then determined. Male mice showed significant changes in brain-derived neurotrophic factor (BDNF) expression in the forebrain regions during weeks 7-10, which corresponded significantly with a surge in serum testosterone. Castration and testosterone or di-hydrotestosterone replacement experiments revealed an androgen receptor-dependent effect on BDNF-tyrosine kinase (Trk) B signalling in the forebrain and hippocampal regions during adolescence. Female mice showed changes in BDNF-TrkB signalling at a much earlier time point (weeks 4-8) in the forebrain and hippocampal regions and these did not correspond with changes in serum oestradiol. Ovariectomy actually increased BDNF expression but decreased TrkB phosphorylation in the forebrain regions. 17β-Oestradiol replacement had no effect, suggesting a role for other ovarian hormones in regulating BDNF-TrkB signalling in the adolescent female mouse brain. These results suggest the differential actions of sex steroid hormones in modulating BDNF-TrkB signalling during adolescence. These data provide insight into how the male and female brain changes in response to altered levels of circulating sex steroid hormones and could help to explain some of the developmental sex differences in the pathogenesis of neurodevelopmental disorders, including mental illness.
Collapse
Affiliation(s)
- R A Hill
- Behavioural Neuroscience Laboratory, Mental Health Research Institute, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
80
|
Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice. Neurobiol Dis 2012; 46:722-31. [PMID: 22426399 DOI: 10.1016/j.nbd.2012.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/07/2012] [Accepted: 03/01/2012] [Indexed: 12/27/2022] Open
Abstract
Psychiatric illnesses, such as schizophrenia, are most likely caused by an interaction between genetic predisposition and environmental factors, including stress during development. The neurotrophin, brain-derived neurotrophic factor (BDNF) has been implicated in this illness as BDNF levels are decreased in the brain of patients with schizophrenia. The aim of the present study was to assess the combined effect of reduced BDNF levels and postnatal stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone. From 6 weeks of age, female and male BDNF heterozygous mice and their wild-type controls were chronically treated with corticosterone in their drinking water for 3 weeks. At 11 weeks of age, male, but not female BDNF heterozygous mice treated with corticosterone exhibited a profound memory deficit in the Y-maze. There were no differences between the groups in baseline prepulse inhibition (PPI), a measure of sensorimotor gating, or its disruption by treatment with MK-801. However, an increase in startle caused by MK-801 treatment was absent in male, but not female BDNF heterozygous mice, irrespective of corticosterone treatment. Analysis of protein levels of the NMDA receptor subunits NR1, NR2A, NR2B and NR2C, showed a marked increase of NR2B levels in the dorsal hippocampus of male BDNF heterozygous mice treated with corticosterone. In the ventral hippocampus, significantly reduced levels of NR2A, NR2B and NR2C were observed in male BDNF heterozygous mice. The NMDA receptor effects in hippocampal sub-regions could be related to the spatial memory deficits and the loss of the effect of MK-801 on startle in these mice, respectively. No significant changes in NMDA receptor subunit levels were observed in any of the female groups. Similarly, no significant changes in levels of BDNF or its receptor, TrkB, were found other than the expected reduced levels of BDNF in heterozygous mice. In conclusion, the data show differential interactive effects of reduced levels of BDNF expression and corticosterone treatment on spatial memory and startle in male and female mice, accompanied by significant, but region-specific changes in NMDA receptor subunit levels in the dorsal and ventral hippocampus. These results could be important for our understanding of the interaction of neurodevelopmental stress and BDNF deficiency in cognitive and anxiety-related symptoms of psychiatric illnesses, such as schizophrenia.
Collapse
|
81
|
Piechal A, Blecharz-Klin K, Wyszogrodzka E, Kołomańska P, Rok-Bujko P, Krząścik P, Kostowski W, Widy-Tyszkiewicz E, Filip M, Stefański R. Neonatal serotonin (5-HT) depletion does not affect spatial learning and memory in rats. Pharmacol Rep 2012; 64:266-74. [DOI: 10.1016/s1734-1140(12)70764-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 11/21/2011] [Indexed: 01/28/2023]
|
82
|
LÓPEZ-GALLARDO M, LÓPEZ-RODRÍGUEZ AB, LLORENTE-BERZAL Á, ROTLLANT D, MACKIE K, ARMARIO A, NADAL R, VIVEROS MP. Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion. Neuroscience 2012; 204:90-103. [PMID: 22001306 PMCID: PMC3659815 DOI: 10.1016/j.neuroscience.2011.09.063] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/08/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022]
Abstract
We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9-10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28-42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug "per se" induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments.
Collapse
Affiliation(s)
- M. LÓPEZ-GALLARDO
- Departmento de Fisiología, Fac. Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - A. B. LÓPEZ-RODRÍGUEZ
- Departmento de Fisiología (Fisiología Animal II) Fac Biología, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Á. LLORENTE-BERZAL
- Departmento de Fisiología (Fisiología Animal II) Fac Biología, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - D. ROTLLANT
- Unidad de Fisiología Animal, Unidad de Psicobiología, Instituto de Neurosciencias, Universidad Autónoma de Barcelona, Spain
| | - K. MACKIE
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - A. ARMARIO
- Unidad de Fisiología Animal, Unidad de Psicobiología, Instituto de Neurosciencias, Universidad Autónoma de Barcelona, Spain
| | - R. NADAL
- Unidad de Fisiología Animal, Unidad de Psicobiología, Instituto de Neurosciencias, Universidad Autónoma de Barcelona, Spain
| | - M.-P. VIVEROS
- Departmento de Fisiología (Fisiología Animal II) Fac Biología, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
83
|
Graybeal C, Kiselycznyk C, Holmes A. Stress-induced impairments in prefrontal-mediated behaviors and the role of the N-methyl-D-aspartate receptor. Neuroscience 2012; 211:28-38. [PMID: 22414923 DOI: 10.1016/j.neuroscience.2012.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/31/2022]
Abstract
The prefrontal cortex (PFC) mediates higher-order cognitive and executive functions that subserve various complex, adaptable behaviors, such as cognitive flexibility, attention, and working memory. Deficits in these functions typify multiple neuropsychiatric disorders that are caused or exacerbated by exposure to psychological stress. Here we review recent evidence examining the effects of stress on executive and cognitive functions in rodents and discuss an emerging body of evidence that implicates the N-methyl-D-aspartate receptor (NMDAR) as a potentially critical molecular mechanism mediating these effects. Future work in this area could open up new avenues for developing pharmacotherapies for ameliorating cognitive dysfunction in neuropsychiatric disease.
Collapse
Affiliation(s)
- C Graybeal
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892-9304, USA.
| | | | | |
Collapse
|
84
|
Early-life stress mediated modulation of adult neurogenesis and behavior. Behav Brain Res 2012; 227:400-9. [DOI: 10.1016/j.bbr.2011.07.037] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 02/06/2023]
|
85
|
Daskalakis NP, Oitzl MS, Schächinger H, Champagne DL, de Kloet ER. Testing the cumulative stress and mismatch hypotheses of psychopathology in a rat model of early-life adversity. Physiol Behav 2012; 106:707-21. [PMID: 22306534 DOI: 10.1016/j.physbeh.2012.01.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/27/2011] [Accepted: 01/20/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND In the present study, we tested both the cumulative stress and the mismatch hypothesis of psychopathology. For this purpose the combined effects of early-life adversity and later-life stress exposure on behavioral markers of psychosis susceptibility were studied in male Wistar rats. METHOD Experiment I: rat pups divided on the basis of the levels of their maternal care experience in low, medium or high maternal care groups, were reared post-weaning in groups (Exp. IA) or in social isolation (Exp. IB) and tested at adulthood under basal conditions or after an acute corticosterone (CORT) administration. Maternal care levels were assessed by measuring the dam's licking and grooming (LG) the first postnatal week of life. Experiment II: rat pups exposed as neonates to daily sessions of 8h of maternal separation (MS) on postnatal days 3, 4 and 5 either altogether in their home cage (HOME SEP) or alone in a novel environment (NOVEL SEP), were reared post-weaning in groups and tested at adulthood under basal conditions. Adult testing included behaviors marking psychosis susceptibility: apomorphine-induced gnawing (APO-gnawing), acoustic startle response and its modulation by a prepulse stimulus (PPI). The behavior of the Medium LG offspring was used as baseline reference for all the three experiments. RESULTS Experiment I: Low maternal LG history alone had limited effects on the behavior of Wistar offspring, although increased acoustic startle and increased PPI, at high prepulse intensity levels, were observed. When low maternal LG history was combined with post-weaning social isolation, basal APO-gnawing was decreased and PPI increased, compared to High LG and Med LG offspring. This reflects attenuated psychosis susceptibility. High LG offspring reared in isolation displayed, however, the highest APO-gnawing and the lowest PPI levels among rats reared in social isolation, which is indicative for increased psychosis susceptibility. These findings support the mismatch hypothesis. For demonstration of the cumulative stress hypothesis an injection of CORT in the adult Low LG offspring was required that increased APO-gnawing and reduced PPI. This CORT-induced PPI disruption was greatly enhanced after additional isolation rearing. The High LG group, either socially housed or reared in isolation, was resistant to the acute effects of CORT at adulthood. Experiment II: MS increased psychosis susceptibility only in NOVEL SEP rats that had experienced MS in the context of early social isolation. These individuals displayed increased adult APO-gnawing and reduced PPI, if reared post-weaning in a condition that does not match with their early life social environment (i.e. group housing). This finding supports the mismatch hypothesis. CONCLUSION The outcome of environmental manipulations on developmental programming of psychosis susceptibility depends on the interplay of early-life adversity and later-life stressors in a manner that supports the mismatch hypothesis. However, evidence for the cumulative stress hypothesis arises if vulnerable individuals are exposed in later life additionally to excess of the stress hormone CORT.
Collapse
Affiliation(s)
- Nikolaos P Daskalakis
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
86
|
Pinheiro RMC, de Lima MNM, Fries GR, Garcia VA, Presti-Torres J, Hallmenschlager LH, Alcalde LA, Roesler R, Andersen ML, Quevedo J, Kapczinski F, Schröder N. Early life stress exacerbates cognitive dysfunction induced by d-amphetamine: amelioration by valproic acid. J Neural Transm (Vienna) 2012; 119:627-37. [PMID: 22218930 DOI: 10.1007/s00702-011-0754-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/20/2011] [Indexed: 12/29/2022]
Abstract
It has been demonstrated that experiences taking place early in life have a profound influence on brain development, interacting with the genetic background and determining differences in the vulnerability to the onset of bipolar disorder when the individual is exposed to a second adverse event later in life. Here, we investigated the effects of exposure to an early adverse life event (maternal deprivation) and to a later adverse life event [D-amphetamine (AMPH)] on cognition in an animal model of mania. We have previously demonstrated that that repeated AMPH exposure produces severe and persistent cognitive impairment, which was more pronounced when the animals were maternal deprived, suggesting that the early adverse life event could be potentiating the effects of the exposure to the second adverse life event later in life. Here, we show that valproic acid ameliorated the cognitive deficits induced by AMPH, but it was not effective when the animals were exposed to both stressors: maternal deprivation and AMPH treatment.
Collapse
Affiliation(s)
- Rose Mary Carvalho Pinheiro
- Department of Physiological Sciences, Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Av Ipiranga, 6681 Prédio 12D, Sala 340, Porto Alegre, RS 90619-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Nederhof E, Schmidt MV. Mismatch or cumulative stress: toward an integrated hypothesis of programming effects. Physiol Behav 2011; 106:691-700. [PMID: 22210393 DOI: 10.1016/j.physbeh.2011.12.008] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/10/2011] [Accepted: 12/13/2011] [Indexed: 01/17/2023]
Abstract
This paper integrates the cumulative stress hypothesis with the mismatch hypothesis, taking into account individual differences in sensitivity to programming. According to the cumulative stress hypothesis, individuals are more likely to suffer from disease as adversity accumulates. According to the mismatch hypothesis, individuals are more likely to suffer from disease if a mismatch occurs between the early programming environment and the later adult environment. These seemingly contradicting hypotheses are integrated into a new model proposing that the cumulative stress hypothesis applies to individuals who were not or only to a small extent programmed by their early environment, while the mismatch hypothesis applies to individuals who experienced strong programming effects. Evidence for the main effects of adversity as well as evidence for the interaction between adversity in early and later life is presented from human observational studies and animal models. Next, convincing evidence for individual differences in sensitivity to programming is presented. We extensively discuss how our integrated model can be tested empirically in animal models and human studies, inviting researchers to test this model. Furthermore, this integrated model should tempt clinicians and other intervenors to interpret symptoms as possible adaptations from an evolutionary biology perspective.
Collapse
|
88
|
Llorente-Berzal A, Fuentes S, Gagliano H, López-Gallardo M, Armario A, Viveros MP, Nadal R. Sex-dependent effects of maternal deprivation and adolescent cannabinoid treatment on adult rat behaviour. Addict Biol 2011; 16:624-37. [PMID: 21521421 DOI: 10.1111/j.1369-1600.2011.00318.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Early life experiences such as maternal deprivation (MD) exert long-lasting changes in adult behaviour and reactivity to stressors. Adolescent exposure to cannabinoids is a predisposing factor in developing certain psychiatric disorders. Therefore, the combination of the two factors could exacerbate the negative consequences of each factor when evaluated at adulthood. The objective of this study was to investigate the long-term effects of early MD [24 hours at postnatal day (PND) 9] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (0.4 mg/kg, PND 28-42) on diverse behavioural and physiological responses of adult male and female Wistar rats. We tested them in the prepulse inhibition (PPI) of the startle response and analysed their exploratory activity (holeboard) and anxiety (elevated plus maze, EPM). In addition, we evaluated their adrenocortical reactivity in response to stress and plasma leptin levels. Maternal behaviour was measured before and after deprivation. MD induced a transient increase of maternal behaviour on reuniting. In adulthood, maternally deprived males showed anxiolytic-like behaviour (or increased risk-taking behaviour) in the EPM. Adolescent exposure to the cannabinoid agonist induced an impairment of the PPI in females and increased adrenocortical responsiveness to the PPI test in males. Both, MD and adolescent cannabinoid exposure also induced sex-dependent changes in plasma leptin levels and body weights. The present results indicate that early MD and adolescent cannabinoid exposure exerted distinct sex-dependent long-term behavioural and physiological modifications that could predispose to the development of certain neuropsychiatric disorders, though no synergistic effects were found.
Collapse
Affiliation(s)
- Alvaro Llorente-Berzal
- Department of Physiology, School of Biological Sciences, Complutense University, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
89
|
Brain-derived neurotrophic factor, food intake regulation, and obesity. Arch Med Res 2011; 42:482-94. [PMID: 21945389 DOI: 10.1016/j.arcmed.2011.09.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/10/2011] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a fundamental role in development and plasticity of the central nervous system (CNS). It is currently recognized as a major participant in the regulation of food intake. Multiple studies have shown that different regulators of appetite such as leptin, insulin and pancreatic polypeptide (PP) potentially exert anorexigenic effects through BDNF. Low circulating levels of BDNF are associated with a higher risk of eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). Strict food restriction reduces BDNF and may trigger binge-eating episodes and weight gain. The existence of mutations that cause haploinsufficiency of BDNF as well as some genetic variants, notably the BDNF p.Val66Met polymorphism, are also associated with the development of obese phenotypes and hyperphagia. However, association of the Met allele with AN and BN, which have different phenotypic characteristics, shows clearly the existence of other relevant factors that regulate eating behavior. This may, in part, be explained by the epigenetic regulation of BDNF through mechanisms like DNA methylation and histone acetylation. Environmental factors, primarily during early development, are crucial to the establishment of these stable but reversible changes that alter the transcriptional expression and are transgenerationally heritable, with potential concomitant effects on the development of eating disorders and body weight control.
Collapse
|
90
|
Adams W, van den Buuse M. Hippocampal serotonin depletion facilitates the enhancement of prepulse inhibition by risperidone: Possible role of 5-HT2C receptors in the dorsal hippocampus. Neuropharmacology 2011; 61:458-67. [DOI: 10.1016/j.neuropharm.2011.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 03/16/2011] [Accepted: 03/21/2011] [Indexed: 11/30/2022]
|
91
|
de Lima MNM, Presti-Torres J, Vedana G, Alcalde LA, Stertz L, Fries GR, Roesler R, Andersen ML, Quevedo J, Kapczinski F, Schröder N. Early life stress decreases hippocampal BDNF content and exacerbates recognition memory deficits induced by repeated D-amphetamine exposure. Behav Brain Res 2011; 224:100-6. [PMID: 21645554 DOI: 10.1016/j.bbr.2011.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 05/17/2011] [Accepted: 05/22/2011] [Indexed: 12/14/2022]
Abstract
Adverse experiences early in life may have profound influences on brain development, for example, determining alterations in response to psychostimulant drugs, an increased risk of developing a substance abuse disorder, and individual differences in the vulnerability to neuropsychiatric disorders later in life. Here, we investigated the effects of exposure to an early adverse life event, maternal deprivation, combined with repeated d-amphetamine (AMPH) administration in adulthood, on recognition memory and brain-derived neurotrophic factor (BDNF) levels in rats' brain and serum. Rats were exposed to one of the following maternal rearing conditions from postnatal days 1 to 14: non-deprived (ND) or deprived (D). In adulthood, both groups received injections of saline (SAL) or AMPH (2.0mg/kg, i.p.) for 7 days. In Experiment I (performed 24h after the last AMPH injection), AMPH induced long-term memory (LTM) impairments in ND and D groups. The D+AMPH group also presented short-term memory (STM) impairments, indicating that the effects of AMPH on memory were more pronounced when the animals where maternally deprived. The group exposed to D+SAL (SAL) showed only LTM impairments. In Experiment II (performed 8 days after the last injection), AMPH detrimental effects on memory persisted in ND and D groups. BDNF levels were decreased in the hippocampus of D+SAL rats. In conclusion, AMPH produces severe and persistent recognition memory impairments that were more pronounced when the animals were maternally deprived, suggesting that an early adverse life event may increase the vulnerability of cognitive function to exposure to a psychostimulant later in life.
Collapse
Affiliation(s)
- Maria Noêmia Martins de Lima
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
The Effects of Fluoxetine Treatment in a Chronic Mild Stress Rat Model on Depression-Related Behavior, Brain Neurotrophins and ERK Expression. J Mol Neurosci 2011; 45:246-55. [DOI: 10.1007/s12031-011-9515-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/08/2011] [Indexed: 12/25/2022]
|
93
|
Llorente R, Miguel-Blanco C, Aisa B, Lachize S, Borcel E, Meijer OC, Ramirez MJ, De Kloet ER, Viveros MP. Long term sex-dependent psychoneuroendocrine effects of maternal deprivation and juvenile unpredictable stress in rats. J Neuroendocrinol 2011; 23:329-44. [PMID: 21219484 DOI: 10.1111/j.1365-2826.2011.02109.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have analysed the long-term psychoneuroendocrine effects of maternal deprivation (MD) [24 h at postnatal day (PND) 9] and/or exposure to chronic unpredictable stress (CUS) during the periadolescent period (PND 28 to PND 43) in male and female Wistar rats. Animals were tested in the elevated plus maze (EPM, anxiety) at PND 44 and in two memory tests, spontaneous alternation and novel object recognition (NOT) in adulthood. The expression of hippocampal glucocorticoid (GR) and mineralocorticoid (MR) receptors, as well as of synaptophysin, neural cell adhesion molecule and brain-derived neurotrophic factor, was analysed by in situ hybridisation in selected hippocampal regions. Endocrine determinations of leptin, testosterone and oestradiol plasma levels were carried out by radioimmunoassay. Young CUS animals showed decreased anxiety behaviour in the EPM (increased percentage of time and entries in the open arms) irrespective of neonatal treatment. Memory impairments were induced by the two stressful treatments as was revealed by the NOT, with males being most clearly affected. Although each stressful procedure, when considered separately, induced different (always decrements) effects on the three synaptic molecules analysed and affected males and females differently, the combination of MD and CUS induced an unique disruptive effect on the three synaptic plasticity players. MD induced a long-term significant decrease in hippocampal GR only in males, whereas CUS tended to increase MR in males and decrease MR in females. Both neonatal MD and periadolescent CUS induced marked reductions in testosterone and oestradiol in males, whereas MD male animals also showed significantly decreased leptin levels. By contrast, in females, none of the hormones analysed was altered by any of the stressful procedures. Taking our data together in support of the 'two-hit' hypothesis, MD during neonatal life and/or exposure to CUS during the periadolescent period induced a permanent deficit in memory, which was accompanied by a decrement in markers for hippocampal plasticity. The long-term effects on body weight and hormone levels, particularly among males, might reflect sex-dependent lasting metabolic alterations as well as an impaired reproductive function.
Collapse
Affiliation(s)
- R Llorente
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Chen J, Wang Z, Li M. Multiple 'hits' during postnatal and early adulthood periods disrupt the normal development of sensorimotor gating ability in rats. J Psychopharmacol 2011; 25:379-92. [PMID: 20093319 DOI: 10.1177/0269881109354929] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, we evaluated a multiple-hit animal model of schizophrenia in an attempt to capture the complex interactions among various adverse developmental factors in schizophrenia. Sprague-Dawley rats were assigned to receive either repeated daily 3-h maternal separation for eight days (first 'hit') on postnatal days (PND) 3 to 10, and/or avoidance conditioning for six days (second 'hit') on PND 49-56, and/or repeated phencyclidine treatment (third 'hit', 3.0 mg/kg, sc) immediately after each daily avoidance conditioning. Prepulse inhibition (PPI) of acoustic startle reflex was assessed at late adolescence (PND 41-43) and early adulthood (PND 62-63). The change in %PPI from the adolescence phase to adulthood phase was used to index the maturation-related improvement of sensorimotor gating ability. Maternal separation, avoidance conditioning and PCP treatment had a complex three-way interaction on the functional improvement of sensorimotor gating. Maternal separation impaired PPI improvement preferentially in the saline rats that were not subjected to avoidance conditioning. Avoidance conditioning had no effect on PPI improvement in the non-maternally separated rats, but restored the maternal separation-induced disruption. However, this restoration effect was abolished by PCP treatment. The present study also identified a number of behavioral, emotional and learning abnormalities caused by these three developmental insults which may precede their interactive disruption of normal development of sensorimotor gating ability.
Collapse
Affiliation(s)
- Jing Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, PR China
| | | | | |
Collapse
|
95
|
Oomen CA, Soeters H, Audureau N, Vermunt L, van Hasselt FN, Manders EMM, Joëls M, Krugers H, Lucassen PJ. Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats. Psychopharmacology (Berl) 2011; 214:249-60. [PMID: 20589492 PMCID: PMC3045507 DOI: 10.1007/s00213-010-1922-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/09/2010] [Indexed: 12/19/2022]
Abstract
RATIONALE Stress elicits functional and structural changes in the hippocampus. Early life stress is one of the major risk factors for stress-related pathologies like depression. Patients suffering from depression show a reduced hippocampal volume, and in women, this occurs more often when depression is preceded by childhood trauma. However, the underlying mechanisms that account for a reduced hippocampal volume are unknown. OBJECTIVE We examined the effects of maternal absence on structure and function of the hippocampus in female offspring. METHODS We studied whether 24 h of maternal deprivation (MD) on postnatal day 3 altered adult neurogenesis, individual neuronal morphology and dentate gyrus (DG) structure in young adult female rats. In addition, functional alterations were addressed by studying synaptic plasticity in vitro, and spatial as well as emotional learning was tested. RESULTS Adult females that were subjected to MD revealed significant reductions in DG granule cell number and density. In addition, DG neurons were altered in their dendritic arrangement. No effects on the rate of adult neurogenesis were found. Furthermore, MD did not alter synaptic plasticity in vitro, neither under normal nor high-stress conditions. In addition, spatial learning and contextual fear conditioning were comparable between control and MD animals. However, MD animals showed an improved amygdala-dependent fear memory. CONCLUSION Although early life stress exposure did not impair hippocampus-dependent functioning in female offspring, it irreversibly affected DG structure by reducing cell numbers. This may be relevant for the reduced hippocampal volume observed in depression and the increased vulnerability of women to develop depression.
Collapse
Affiliation(s)
- Charlotte A. Oomen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Heleen Soeters
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Audureau
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Felisa N. van Hasselt
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik M. M. Manders
- Center for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Marian Joëls
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Rudolf Magnus Institute for Neurosciences, UMC Utrecht, Utrecht, The Netherlands
| | - Harm Krugers
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
96
|
Roth TL, Sweatt JD. Epigenetic marking of the BDNF gene by early-life adverse experiences. Horm Behav 2011; 59:315-20. [PMID: 20483357 PMCID: PMC2948595 DOI: 10.1016/j.yhbeh.2010.05.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/26/2010] [Accepted: 05/08/2010] [Indexed: 01/01/2023]
Abstract
Studies over the past half-century have made it clear that environmental influences in development, particularly stress and traumatic experiences, can remain pervasive across the lifespan. Though it has been hypothesized for some time that the long-term consequences of early-life adversity represent epigenetic influences, it has not been until recently that studies have begun to provide empirical support of experience-driven epigenetic modifications to the genome. Here we focus on this theme, and review current knowledge pertaining to the epigenetics of behavioral development. At the center of our discussion is the brain-derived neurotrophic factor (BDNF) gene, as abnormal BDNF gene activity is a leading etiological hypothesis by which early-life adverse experiences persistently modify brain and behavioral plasticity.
Collapse
Affiliation(s)
- Tania L. Roth
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294
| | - J. David Sweatt
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294
- Address correspondence to: J. David Sweatt, Ph.D., University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd., SHEL 1010, Birmingham, AL 35294-2182, Phone: (205) 975-5196, Fax: (205) 975-5097,
| |
Collapse
|
97
|
Réus GZ, Stringari RB, Ribeiro KF, Cipriano AL, Panizzutti BS, Stertz L, Lersch C, Kapczinski F, Quevedo J. Maternal Deprivation Induces Depressive-like Behaviour and Alters Neurotrophin Levels in the Rat Brain. Neurochem Res 2010; 36:460-6. [DOI: 10.1007/s11064-010-0364-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2010] [Indexed: 12/29/2022]
|
98
|
Choy KHC, Dean O, Berk M, Bush AI, van den Buuse M. Effects of N-acetyl-cysteine treatment on glutathione depletion and a short-term spatial memory deficit in 2-cyclohexene-1-one-treated rats. Eur J Pharmacol 2010; 649:224-8. [PMID: 20868666 DOI: 10.1016/j.ejphar.2010.09.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/21/2010] [Accepted: 09/14/2010] [Indexed: 02/07/2023]
Abstract
Glutathione (GSH) is the primary antioxidant in the body and is present in high levels in the brain. Levels of GSH and other antioxidants are significantly altered in major psychiatric illnesses, such as schizophrenia. Recent clinical trials have demonstrated that chronic treatment with N-acetyl-l-cysteine (NAC), a GSH precursor, improved symptoms in individuals with this illness. We previously showed in rats and mice that depletion of GSH by treatment with 2-cyclohexene-1-one (CHX) induced short-term spatial memory deficits in the Y-maze test. The aim of present study was to characterise the effect of NAC in this CHX-induced glutathione depletion model. Consistent with our previous studies, CHX treatment induced approximately 50% reduction of GSH levels in striatum, hippocampus and frontal cortex tissue. GSH depletion was significantly rescued by either 1.2 g/kg or 1.6 g/kg of NAC administration, with a full recovery observed in the frontal cortex after the high dose of NAC. CHX treatment also induced a disruption in short-term spatial recognition memory in Y-maze test, as measured by the duration of time spent in the novel arm. This disruption was reversed by treatment with 1.6 g/kg of NAC. In conclusion, this study suggests that rescue of depleted levels of GSH in the brain restores cognitive deficits, as measured by the Y-maze. These effects appear to be dose-dependent and region-specific. These results may be relevant to the understanding and management of the cognitive symptoms of schizophrenia and bipolar disorder.
Collapse
|
99
|
Maternal deprivation-caused behavioral abnormalities in adult rats relate to a non-methylation-regulated D2 receptor levels in the nucleus accumbens. Behav Brain Res 2010; 209:281-8. [DOI: 10.1016/j.bbr.2010.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/29/2010] [Accepted: 02/02/2010] [Indexed: 12/31/2022]
|
100
|
Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR, Kipnis J. Regulation of learning and memory by meningeal immunity: a key role for IL-4. ACTA ACUST UNITED AC 2010; 207:1067-80. [PMID: 20439540 PMCID: PMC2867291 DOI: 10.1084/jem.20091419] [Citation(s) in RCA: 569] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proinflammatory cytokines have been shown to impair cognition; consequently, immune activity in the central nervous system was considered detrimental to cognitive function. Unexpectedly, however, T cells were recently shown to support learning and memory, though the underlying mechanism was unclear. We show that one of the steps in the cascade of T cell-based support of learning and memory takes place in the meningeal spaces. Performance of cognitive tasks led to accumulation of IL-4-producing T cells in the meninges. Depletion of T cells from meningeal spaces skewed meningeal myeloid cells toward a proinflammatory phenotype. T cell-derived IL-4 was critical, as IL-4(-/-) mice exhibited a skewed proinflammatory meningeal myeloid cell phenotype and cognitive deficits. Transplantation of IL-4(-/-) bone marrow into irradiated wild-type recipients also resulted in cognitive impairment and proinflammatory skew. Moreover, adoptive transfer of T cells from wild-type into IL-4(-/-) mice reversed cognitive impairment and attenuated the proinflammatory character of meningeal myeloid cells. Our results point to a critical role for T cell-derived IL-4 in the regulation of cognitive function through meningeal myeloid cell phenotype and brain-derived neurotrophic factor expression. These findings might lead to the development of new immune-based therapies for cognitive impairment associated with immune decline.
Collapse
Affiliation(s)
- Noël C Derecki
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|