51
|
Nahum L, Pignat JM, Bouzerda-Wahlen A, Gabriel D, Liverani MC, Lazeyras F, Ptak R, Richiardi J, Haller S, Thorens G, Zullino DF, Guggisberg AG, Schnider A. Neural Correlate of Anterograde Amnesia in Wernicke-Korsakoff Syndrome. Brain Topogr 2014; 28:760-770. [PMID: 25148770 DOI: 10.1007/s10548-014-0391-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 08/04/2014] [Indexed: 11/25/2022]
Abstract
The neural correlate of anterograde amnesia in Wernicke-Korsakoff syndrome (WKS) is still debated. While the capacity to learn new information has been associated with integrity of the medial temporal lobe (MTL), previous studies indicated that the WKS is associated with diencephalic lesions, mainly in the mammillary bodies and anterior or dorsomedial thalamic nuclei. The present study tested the hypothesis that amnesia in WKS is associated with a disrupted neural circuit between diencephalic and hippocampal structures. High-density evoked potentials were recorded in four severely amnesic patients with chronic WKS, in five patients with chronic alcoholism without WKS, and in ten age matched controls. Participants performed a continuous recognition task of pictures previously shown to induce a left medial temporal lobe dependent positive potential between 250 and 350 ms. In addition, the integrity of the fornix was assessed using diffusion tensor imaging (DTI). WKS, but not alcoholic patients without WKS, showed absence of the early, left MTL dependent positive potential following immediate picture repetitions. DTI indicated disruption of the fornix, which connects diencephalic and hippocampal structures. The findings support an interpretation of anterograde amnesia in WKS as a consequence of a disconnection between diencephalic and MTL structures with deficient contribution of the MTL to rapid consolidation.
Collapse
Affiliation(s)
- Louis Nahum
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences and Dermatology, Medical Faculty, University Hospitals of Geneva, Geneva, Switzerland. .,Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospitals of Geneva, Av. de Beau-Séjour 26, 1211, Geneva, Switzerland.
| | - Jean-Michel Pignat
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences and Dermatology, Medical Faculty, University Hospitals of Geneva, Geneva, Switzerland.,Division of Radiology, Department of Neuroscience and Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | - Aurélie Bouzerda-Wahlen
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences and Dermatology, Medical Faculty, University Hospitals of Geneva, Geneva, Switzerland
| | - Damien Gabriel
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences and Dermatology, Medical Faculty, University Hospitals of Geneva, Geneva, Switzerland
| | - Maria Chiara Liverani
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences and Dermatology, Medical Faculty, University Hospitals of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Division of Radiology, Department of Neuroscience and Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | - Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences and Dermatology, Medical Faculty, University Hospitals of Geneva, Geneva, Switzerland.,Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospitals of Geneva, Av. de Beau-Séjour 26, 1211, Geneva, Switzerland
| | - Jonas Richiardi
- Division of Radiology, Department of Neuroscience and Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Standford, CA, USA
| | - Sven Haller
- Division of Radiology, Department of Neuroscience and Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriel Thorens
- Division of Addictology, Department of Psychiatry, University Hopsitals of Geneva, Geneva, Switzerland
| | - Daniele F Zullino
- Division of Addictology, Department of Psychiatry, University Hopsitals of Geneva, Geneva, Switzerland
| | - Adrian G Guggisberg
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences and Dermatology, Medical Faculty, University Hospitals of Geneva, Geneva, Switzerland.,Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospitals of Geneva, Av. de Beau-Séjour 26, 1211, Geneva, Switzerland
| | - Armin Schnider
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences and Dermatology, Medical Faculty, University Hospitals of Geneva, Geneva, Switzerland.,Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospitals of Geneva, Av. de Beau-Séjour 26, 1211, Geneva, Switzerland
| |
Collapse
|
52
|
Olarte-Sánchez CM, Kinnavane L, Amin E, Aggleton JP. Contrasting networks for recognition memory and recency memory revealed by immediate-early gene imaging in the rat. Behav Neurosci 2014; 128:504-22. [PMID: 24933661 PMCID: PMC4105319 DOI: 10.1037/a0037055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/31/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023]
Abstract
The expression of the immediate-early gene c-fos was used to compare networks of activity associated with recency memory (temporal order memory) and recognition memory. In Experiment 1, rats were first familiarized with sets of objects and then given pairs of different, familiar objects to explore. For the recency test group, each object in a pair was separated by 110 min in the time between their previous presentations. For the recency control test, each object in a pair was separated by less than a 1 min between their prior presentations. Temporal discrimination of the objects correlated with c-fos activity in the recency test group in several sites, including area Te2, the perirhinal cortex, lateral entorhinal cortex, as well as the dentate gyrus, hippocampal fields CA3 and CA1. For both the test and control conditions, network models were derived using structural equation modeling. The recency test model emphasized serial connections from the perirhinal cortex to lateral entorhinal cortex and then to the CA1 subfield. The recency control condition involved more parallel pathways, but again highlighted CA1 within the hippocampus. Both models contrasted with those derived from tests of object recognition (Experiment 2), because stimulus novelty was associated with pathways from the perirhinal cortex to lateral entorhinal cortex that then involved both the dentate gyrus (and CA3) and CA1 in parallel. The present findings implicate CA1 for the processing of familiar stimuli, including recency discriminations, while the dentate gyrus and CA3 pathways are recruited when the perirhinal cortex signals novel stimuli.
Collapse
Affiliation(s)
| | - Lisa Kinnavane
- Neuroscience and Mental Health Research Institute, Cardiff University
| | - Eman Amin
- School of Psychology, Cardiff University
| | - John P Aggleton
- Neuroscience and Mental Health Research Institute, Cardiff University
| |
Collapse
|
53
|
Affiliation(s)
- Wendy A. Suzuki
- Center for Neural Science, New York University, New York, NY 10003;
| | - Yuji Naya
- Department of Psychology, Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| |
Collapse
|
54
|
Collins JA, Olson IR. Beyond the FFA: The role of the ventral anterior temporal lobes in face processing. Neuropsychologia 2014; 61:65-79. [PMID: 24937188 DOI: 10.1016/j.neuropsychologia.2014.06.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 05/19/2014] [Accepted: 06/08/2014] [Indexed: 11/17/2022]
Abstract
Extensive research has supported the existence of a specialized face-processing network that is distinct from the visual processing areas used for general object recognition. The majority of this work has been aimed at characterizing the response properties of the fusiform face area (FFA) and the occipital face area (OFA), which together are thought to constitute the core network of brain areas responsible for facial identification. Although accruing evidence has shown that face-selective patches in the ventral anterior temporal lobes (vATLs) are interconnected with the FFA and OFA, and that they play a role in facial identification, the relative contribution of these brain areas to the core face-processing network has remained unarticulated. Here we review recent research critically implicating the vATLs in face perception and memory. We propose that current models of face processing should be revised such that the ventral anterior temporal lobes serve a centralized role in the visual face-processing network. We speculate that a hierarchically organized system of face processing areas extends bilaterally from the inferior occipital gyri to the vATLs, with facial representations becoming increasingly complex and abstracted from low-level perceptual features as they move forward along this network. The anterior temporal face areas may serve as the apex of this hierarchy, instantiating the final stages of face recognition. We further argue that the anterior temporal face areas are ideally suited to serve as an interface between face perception and face memory, linking perceptual representations of individual identity with person-specific semantic knowledge.
Collapse
Affiliation(s)
- Jessica A Collins
- Department of Psychology, Temple University, 1701 North 13th street, Philadelphia, PA 19122, USA.
| | - Ingrid R Olson
- Department of Psychology, Temple University, 1701 North 13th street, Philadelphia, PA 19122, USA.
| |
Collapse
|
55
|
Höller Y, Trinka E. What do temporal lobe epilepsy and progressive mild cognitive impairment have in common? Front Syst Neurosci 2014; 8:58. [PMID: 24795575 PMCID: PMC3997046 DOI: 10.3389/fnsys.2014.00058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 12/27/2022] Open
Abstract
Temporal lobe epilepsy (TLE) and mild cognitive impairment (MCI) are both subject to intensive memory research. Memory problems are a core characteristic of both conditions and we wonder if there are analogies which would enrich the two distinct research communities. In this review we focus on memory decline in both conditions, that is, the most feared psychosocial effect. While it is clear that memory decline in MCI is highly likely and would lead to the more severe diagnosis of Alzheimer's disease, it is a debate if TLE is a dementing disease or not. As such, like for MCI, one can differentiate progressive from stable TLE subtypes, mainly depending on the age of onset. Neuroimaging techniques such as volumetric analysis of the hippocampus, entorhinal, and perirhinal cortex show evidence of pathological changes in TLE and are predictive for memory decline in MCI. Several studies emphasize that it is necessary to extend the region of interest—even whole-brain characteristics can be predictive for conversion from MCI to Alzheimer's disease. Electroencephalography is increasingly subject to computational neuroscience, revealing new approaches for analyzing frequency, spatial synchronization, and information content of the signals. These methods together with event-related designs that assess memory functions are highly promising for understanding the mechanisms of memory decline in both TLE and MCI populations. Finally, there is evidence that the potential of such markers for memory decline is far from being exhausted. Similar structural and neurophysiological characteristics are linked to memory decline in TLE and MCI. We raise the hope that interdisciplinary research and cross-talk between fields such as research on epilepsy and dementia, will shed further light on the dementing characteristics of the pathological basis of MCI and TLE and support the development of new memory enhancing treatment strategies.
Collapse
Affiliation(s)
- Yvonne Höller
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
56
|
First come, last primed: FN400 reflects post-encoding editing of the memory trace. Behav Brain Res 2014; 266:63-76. [PMID: 24631391 DOI: 10.1016/j.bbr.2014.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/23/2014] [Accepted: 02/28/2014] [Indexed: 11/21/2022]
Abstract
Explicit associative memory relies on different neural substrates depending on similarity of the items associated. Extant literature dissociates old/new effects elicited by homogeneous and heterogeneous pairs. However, current results scarcely address potential priming effects induced by the presentation sequence. In the present ERP study, participants learned associations between two pictures, which either belonged to the same semantic category (e.g., animal-animal), or to different categories (e.g., animal-scene). Pictures forming a pair were shown sequentially, allowing for investigation of the different neural processes related to presentation of the first and the second item. After the study phase, participants performed a recognition judgment. After recognition, participants were asked to recall the associated picture. During retrieval, between 260 and 350 ms post-stimulus there was a significant frontal effect of category (i.e., same-category versus different-category), but only for items shown first within a pair. In the 350-600 ms time window the parietal old/new effect was unaffected by semantic category, but was modulated by presentation order. Exploratory analyses revealed even earlier effects in the time windows 40-90 ms and 150-200 ms. This evidence supports the priming account of the FN400 and highlights the importance of sequence effects in electrophysiological activity during episodic retrieval.
Collapse
|
57
|
Banks PJ, Warburton EC, Brown MW, Bashir ZI. Mechanisms of synaptic plasticity and recognition memory in the perirhinal cortex. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:193-209. [PMID: 24484702 DOI: 10.1016/b978-0-12-420170-5.00007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Learning is widely believed to involve synaptic plasticity, employing mechanisms such as those used in long-term potentiation (LTP) and long-term depression (LTD). In this chapter, we will review work on mechanisms of synaptic plasticity in perirhinal cortex in vitro and relate these findings to studies underlying recognition memory in vivo. We describe how antagonism of different glutamate and acetylcholine receptors, inhibition of nitric oxide synthase, inhibition of CREB phosphorylation, and interfering with glutamate AMPA receptor internalization can produce deficits in synaptic plasticity in vitro. Inhibition of each of these different mechanisms in vivo also results in recognition memory deficits. Therefore, we provide strong evidence that synaptic plastic mechanisms are necessary for the information processing and storage that underlies object recognition memory.
Collapse
Affiliation(s)
- P J Banks
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - E C Warburton
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - M W Brown
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Z I Bashir
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
58
|
Pergola G, Suchan B. Associative learning beyond the medial temporal lobe: many actors on the memory stage. Front Behav Neurosci 2013; 7:162. [PMID: 24312029 PMCID: PMC3832901 DOI: 10.3389/fnbeh.2013.00162] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/28/2013] [Indexed: 12/23/2022] Open
Abstract
Decades of research have established a model that includes the medial temporal lobe, and particularly the hippocampus, as a critical node for episodic memory. Neuroimaging and clinical studies have shown the involvement of additional cortical and subcortical regions. Among these areas, the thalamus, the retrosplenial cortex, and the prefrontal cortices have been consistently related to episodic memory performance. This article provides evidences that these areas are in different forms and degrees critical for human memory function rather than playing only an ancillary role. First we briefly summarize the functional architecture of the medial temporal lobe with respect to recognition memory and recall. We then focus on the clinical and neuroimaging evidence available on thalamo-prefrontal and thalamo-retrosplenial networks. The role of these networks in episodic memory has been considered secondary, partly because disruption of these areas does not always lead to severe impairments; to account for this evidence, we discuss methodological issues related to the investigation of these regions. We propose that these networks contribute differently to recognition memory and recall, and also that the memory stage of their contribution shows specificity to encoding or retrieval in recall tasks. We note that the same mechanisms may be in force when humans perform non-episodic tasks, e.g., semantic retrieval and mental time travel. Functional disturbance of these networks is related to cognitive impairments not only in neurological disorders, but also in psychiatric medical conditions, such as schizophrenia. Finally we discuss possible mechanisms for the contribution of these areas to memory, including regulation of oscillatory rhythms and long-term potentiation. We conclude that integrity of the thalamo-frontal and the thalamo-retrosplenial networks is necessary for the manifold features of episodic memory.
Collapse
Affiliation(s)
- Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Boris Suchan
- Department of Neuropsychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
59
|
Illa M, Eixarch E, Batalle D, Arbat-Plana A, Muñoz-Moreno E, Figueras F, Gratacos E. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction. PLoS One 2013; 8:e76453. [PMID: 24143189 PMCID: PMC3797044 DOI: 10.1371/journal.pone.0076453] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. METHODOLOGY At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. PRINCIPAL FINDINGS The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. CONCLUSIONS The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis.
Collapse
Affiliation(s)
- Miriam Illa
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic, Barcelona, Spain
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Elisenda Eixarch
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic, Barcelona, Spain
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Dafnis Batalle
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ariadna Arbat-Plana
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Emma Muñoz-Moreno
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Francesc Figueras
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic, Barcelona, Spain
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Eduard Gratacos
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic, Barcelona, Spain
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
60
|
|
61
|
A critical role for the hippocampus and perirhinal cortex in perceptual learning of scenes and faces: complementary findings from amnesia and FMRI. J Neurosci 2013; 33:10490-502. [PMID: 23785161 DOI: 10.1523/jneurosci.2958-12.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is debated whether subregions within the medial temporal lobe (MTL), in particular the hippocampus (HC) and perirhinal cortex (PrC), play domain-sensitive roles in learning. In the present study, two patients with differing degrees of MTL damage were first exposed to pairs of highly similar scenes, faces, and dot patterns and then asked to make repeated same/different decisions to preexposed and nonexposed (novel) pairs from the three categories (Experiment 1). We measured whether patients would show a benefit of prior exposure (preexposed > nonexposed) and whether repetition of nonexposed (and preexposed) pairs at test would benefit discrimination accuracy. Although selective HC damage impaired learning of scenes, but not faces and dot patterns, broader MTL damage involving the HC and PrC compromised discrimination learning of scenes and faces but left dot pattern learning unaffected. In Experiment 2, a similar task was run in healthy young participants in the MRI scanner. Functional region-of-interest analyses revealed that posterior HC and posterior parahippocampal gyrus showed greater activity during scene pattern learning, but not face and dot pattern learning, whereas PrC, anterior HC, and posterior fusiform gyrus were recruited during discrimination learning for faces, but not scenes and dot pattern learning. Critically, activity in posterior HC and PrC, but not the other functional region-of-interest analyses, was modulated by accuracy (correct > incorrect within a preferred category). Therefore, both approaches revealed a key role for the HC and PrC in discrimination learning, which is consistent with representational accounts in which subregions in these MTL structures store complex spatial and object representations, respectively.
Collapse
|
62
|
Carone DA, Green P, Drane DL. Word Memory Test Profiles in Two Cases with Surgical Removal of the Left Anterior Hippocampus and Parahippocampal Gyrus. APPLIED NEUROPSYCHOLOGY-ADULT 2013; 21:155-60. [DOI: 10.1080/09084282.2012.755533] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dominic A. Carone
- a Physical Medicine and Rehabilitation, SUNY Upstate Medical University , Syracuse , New York
| | - Paul Green
- b Private Practice , Edmonton , Alberta , Canada
| | - Daniel L. Drane
- c Department of Neurology , Emory University School of Medicine , Atlanta , Georgia
| |
Collapse
|
63
|
Albasser MM, Dumont JR, Amin E, Holmes JD, Horne MR, Pearce JM, Aggleton JP. Association rules for rat spatial learning: the importance of the hippocampus for binding item identity with item location. Hippocampus 2013; 23:1162-78. [PMID: 23749378 PMCID: PMC4265297 DOI: 10.1002/hipo.22154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/19/2013] [Accepted: 05/24/2013] [Indexed: 11/08/2022]
Abstract
Three cohorts of rats with extensive hippocampal lesions received multiple tests to examine the relationships between particular forms of associative learning and an influential account of hippocampal function (the cognitive map hypothesis). Hippocampal lesions spared both the ability to discriminate two different digging media and to discriminate two different room locations in a go/no-go task when each location was approached from a single direction. Hippocampal lesions had, however, differential effects on a more complex task (biconditional discrimination) where the correct response was signaled by the presence or absence of specific cues. For all biconditional tasks, digging in one medium (A) was rewarded in the presence of cue C, while digging in medium B was rewarded in the presences of cue D. Such biconditional tasks are “configural” as no individual cue or element predicts the solution (AC+, AD−, BD+, and BC−). When proximal context cues signaled the correct digging choice, biconditional learning was seemingly unaffected by hippocampal lesions. Severe deficits occurred, however, when the correct digging choice was signaled by distal room cues. Also, impaired was the ability to discriminate two locations when each location was approached from two directions. A task demand that predicted those tasks impaired by hippocampal damage was the need to combine specific cues with their relative spatial positions (“structural learning”). This ability makes it possible to distinguish the same cues set in different spatial arrays. Thus, the hippocampus appears necessary for configural discriminations involving structure, discriminations that potentially underlie the creation of cognitive maps.
Collapse
Affiliation(s)
- Mathieu M Albasser
- School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
64
|
Banks PJ, Bashir ZI, Brown MW. Recognition memory and synaptic plasticity in the perirhinal and prefrontal cortices. Hippocampus 2013; 22:2012-31. [PMID: 22987679 DOI: 10.1002/hipo.22067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Work is reviewed that relates recognition memory to studies of synaptic plasticity mechanisms in perirhinal and prefrontal cortices. The aim is to consider evidence that perirhinal cortex and medial prefrontal cortex store rather than merely transmit information necessary for recognition memory and, if so, to consider what mechanisms are potentially available within these cortices for producing such storage through synaptic change. Interventions with known actions on plasticity mechanisms are reviewed in relation to their effects on recognition memory processes. These interventions importantly include those involving antagonism of glutamatergic and cholinergic receptors but also inhibition of plasticity consolidation and expression mechanisms. It is concluded that there is strong evidence that perirhinal cortex is involved in information storage necessary for object recognition memory and, moreover, that such storage involves synaptic weakening mechanisms including the removal of AMPA glutamate receptors from synapses. There is good evidence that medial prefrontal cortex is necessary for associative and temporal order recognition memory and that this cortex expresses plasticity mechanisms that potentially allow the storage of information. However, the case for medial prefrontal cortex acting as a store requires further support.
Collapse
|
65
|
Kivisaari SL, Monsch AU, Taylor KI. False positives to confusable objects predict medial temporal lobe atrophy. Hippocampus 2013; 23:832-41. [DOI: 10.1002/hipo.22137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Sasa L. Kivisaari
- Memory ClinicDepartment of GeriatricsUniversity Hospital BaselBasel Switzerland
- Department of Behavioural SciencesUniversity of Helsinki Finland
| | - Andreas U. Monsch
- Memory ClinicDepartment of GeriatricsUniversity Hospital BaselBasel Switzerland
- University of BaselBasel Switzerland
| | - Kirsten I. Taylor
- Memory ClinicDepartment of GeriatricsUniversity Hospital BaselBasel Switzerland
- University Center for Medicine of Aging BaselBasel Switzerland
- Centre for SpeechLanguage and the BrainDepartment of Experimental PsychologyUniversity of CambridgeDowning StreetCambridge United Kingdom
| |
Collapse
|
66
|
Tamagnini F, Barker G, Warburton EC, Burattini C, Aicardi G, Bashir ZI. Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory. J Physiol 2013; 591:3963-79. [PMID: 23671159 PMCID: PMC3764640 DOI: 10.1113/jphysiol.2013.254862] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Synaptic plasticity in perirhinal cortex is essential for recognition memory. Nitric oxide and endocannabinoids (eCBs), which are produced in the postsynaptic cell and act on the presynaptic terminal, are implicated in mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in other brain regions. In this study, we examine these two retrograde signalling cascades in perirhinal cortex synaptic plasticity and in visual recognition memory in the rat. We show that inhibition of NO-dependent signalling prevented both carbachol- and activity (5 Hz)-dependent LTD but not activity (100 Hz theta burst)-dependent LTP in the rat perirhinal cortex in vitro. In contrast, inhibition of the eCB-dependent signalling prevented LTP but not the two forms of LTD in vitro. Local administration into perirhinal cortex of the nitric oxide synthase inhibitor NPA (2 μm) disrupted acquisition of long-term visual recognition memory. In contrast, AM251 (10 μm), a cannabinoid receptor 1 antagonist, did not impair visual recognition memory. The results of this study demonstrate dissociation between putative retrograde signalling mechanisms in LTD and LTP in perirhinal cortex. Thus, LTP relies on cannabinoid but not NO signalling, whilst LTD relies on NO- but not eCB-dependent signalling. Critically, these results also establish, for the first time, that NO- but not eCB-dependent signalling is important in perirhinal cortex-dependent visual recognition memory.
Collapse
Affiliation(s)
- Francesco Tamagnini
- School of Physiology and Pharmacology, Medical Research Council Centre for Synaptic Plasticity, Bristol University, UK
| | | | | | | | | | | |
Collapse
|
67
|
TATRO ET, Risbrough V, Soontornniyomkij B, Young J, Shumaker S, Jeste DV, Achim CL. Short-term recognition memory correlates with regional CNS expression of microRNA-138 in mice. Am J Geriatr Psychiatry 2013; 21:461-73. [PMID: 23570889 PMCID: PMC3660985 DOI: 10.1016/j.jagp.2012.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 08/24/2012] [Accepted: 09/26/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVES We hypothesized that microRNA (miR) expression may be involved in memory function because it controls local protein translation at synapses and dendritic spines. DESIGN Case-control animal study. METHODS We assessed the miR repertoire in the hippocampus of young, 6-month-old (N = 18) mice compared with aged, 26-month-old (N = 23) mice and compared miR quantity to memory scores as determined by the novel object recognition task. We performed a histological brain regional analysis of miR-138, acyl protein thioesterase 1 (APT1) mRNA, and APT1 protein. RESULTS We found that higher miR-138 expression in the mouse hippocampus is correlated with better memory performance. We also found that APT1 (a depalmytoylation enzyme expressed at dendritic spines whose translation is controlled by miR-138) mRNA is increased in the mouse hippocampal CA1 and dentate gyrus in aged mice compared with young mice, but not in mice with memory impairment. We found APT1 protein distribution to be lower in cells with high miR-138 expression. CONCLUSIONS These results suggest that increased miR-138 is associated with better memory and increased APT1 gene transcription occurs with aging. The role of miR-138 and APT1 protein function in memory and aging warrants further investigation.
Collapse
|
68
|
Abstract
There has recently been an increase in interest in the effects of visual interference on memory processing, with the aim of elucidating the role of the perirhinal cortex (PRC) in recognition memory. One view argues that the PRC processes highly complex conjunctions of object features, and recent evidence from rodents suggests that these representations may be vital for buffering against the effects of pre-retrieval interference on object recognition memory. To investigate whether PRC-dependent object representations play a similar role in humans, we used functional magnetic resonance imaging to scan neurologically healthy participants while they performed a novel interference-match-to-sample task. This paradigm was specifically designed to concurrently assess the impact of object versus spatial interference, on recognition memory for objects or scenes, while keeping constant the amount of object and scene information presented across all trials. Activity at retrieval was examined, within an anatomically defined PRC region of interest, according to the demand for object or scene memory, following a period of object compared with spatial interference. Critically, we found greater PRC activity for object memory following object interference, compared with object memory following scene interference, and no difference between object and scene interference for scene recognition. These data demonstrate a role for the human PRC during object recognition memory, following a period of object, but not scene interference, and emphasize the importance of representational content to mnemonic processing.
Collapse
|
69
|
O'Neil EB, Barkley VA, Köhler S. Representational demands modulate involvement of perirhinal cortex in face processing. Hippocampus 2013; 23:592-605. [PMID: 23460411 DOI: 10.1002/hipo.22117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 01/26/2023]
Abstract
The classic view holds that the medial temporal lobes (MTL) are dedicated to declarative memory functioning. Recent evidence, however, suggests that perirhinal cortex (PrC), a structure within the anterior MTL, may also play a role in perceptual discriminations when representations of complex conjunctions of features, or of gestalt-characteristics of objects must be generated. Interestingly, neuroimaging and electrophysiological recordings in nonhuman primates have also revealed a face patch in the anterior collateral sulcus with preferential responses to face stimuli in various task contexts. In the present fMRI study, we investigated the representational demands that influence PrC involvement in different types of judgments on human faces. Holding stimulus complexity constant, we independently manipulated the nature of the task and the orientation of the stimuli presented (through face inversion). Aspects of right PrC showed increased responses in a forced-choice recognition-memory and a perceptual-oddity task, as compared to a feature-search task that was included to probe visual detection of an isolated face feature. Effects of stimulus orientation in right PrC were observed when the recognition-memory condition for upright faces was compared with all other experimental conditions, including recognition-memory for inverted faces-a result that can be related to past work on the role of PrC in object unitization. Notably, both effects in right PrC paralleled activity patterns in broader networks of regions that also included the right fusiform gyrus and the amygdala, regions frequently implicated in face processing in prior research. As such, the current findings do not support the view that reference to a prior study episode clearly distinguishes the role of PrC from that of more posterior ventral visual pathway regions. They add to a growing body of evidence suggesting that the functional role of specific MTL structures may be best understood in terms of the representations that are required by the task and the stimuli at hand.
Collapse
Affiliation(s)
- Edward B O'Neil
- The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
70
|
Wolk DA, Mancuso L, Kliot D, Arnold SE, Dickerson BC. Familiarity-based memory as an early cognitive marker of preclinical and prodromal AD. Neuropsychologia 2013; 51:1094-102. [PMID: 23474075 DOI: 10.1016/j.neuropsychologia.2013.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/21/2013] [Accepted: 02/27/2013] [Indexed: 11/19/2022]
Abstract
There is great interest in the development of cognitive markers that differentiate "normal" age-associated cognitive change from that of Alzheimer's disease (AD) in its prodromal (i.e., mild cognitive impairment; MCI) or even preclinical stages. Dual process models posit that recognition memory is supported by the dissociable processes of recollection and familiarity. Familiarity-based memory has generally been considered to be spared during normal aging, but it remains controversial whether this type of memory is impaired in early AD. Here, we describe findings of estimates of recollection and familiarity in young adults (YA), cognitively normal older adults (CN), and patients with amnestic-MCI (a-MCI). These measures in the CN and a-MCI patients were then related to a structural imaging biomarker of AD that has previously been demonstrated to be sensitive to preclinical and prodromal AD, the Cortical Signature of AD (ADsig). Consistent with much work in the literature, recollection, but not familiarity, was impaired in CN versus YA. Replicating our prior findings, a-MCI patients displayed impairment in both familiarity and recollection. Finally, the familiarity measure was correlated with the ADsig biomarker across the CN and a-MCI group, as well as within the CN adults alone. No other standard psychometric measure was as highly associated with the ADsig, suggesting that familiarity may be a sensitive biomarker of AD-specific brain changes in preclinical and prodromal AD and that it may offer a qualitatively distinct measure of early AD memory impairment relative to normal age-associated change.
Collapse
Affiliation(s)
- David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
71
|
Ramos JMJ. Essential role of the perirhinal cortex in complex tactual discrimination tasks in rats. Cereb Cortex 2013; 24:2068-80. [PMID: 23448873 DOI: 10.1093/cercor/bht054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We designed a battery of tactual discrimination tasks to study whether rats with perirhinal cortex (Prh) lesions had any deficit in resolving complex/ambiguous tactual tasks in the dark. Animals had to discriminate among 3 stimuli simultaneously exposed in 3 arms of a 4-arm plus-shaped maze. Rats with Prh lesions showed a profound impairment in a texture discrimination learning task when the stimuli had a high or intermediate degree of feature ambiguity (experiments 1a and 1b), but not when they had a low degree of feature ambiguity (experiment. 1c). Hippocampal lesions, however, did not cause any impairment in task acquisition even when the stimuli had a high degree of feature ambiguity (experiment 2). Experiments 3a, 3b, and 4 showed that perirhinal and control rats performed the task similarly when the animals had to discriminate on the basis of simple/individual, nonoverlapping features of the stimuli (size) with different levels of difficulty. Finally, to isolate the task's memory functions from its perceptual functions, a reversal learning task revealed a profound deficit in the initial learning phase, but unimpaired learning in the reversal phase with identical stimuli (experiment 5). The findings suggest that the Prh plays an essential role in somatosensory perceptual functions.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain
| |
Collapse
|
72
|
Albasser MM, Olarte-Sánchez CM, Amin E, Horne MR, Newton MJ, Warburton EC, Aggleton JP. The neural basis of nonvisual object recognition memory in the rat. Behav Neurosci 2013; 127:70-85. [PMID: 23244291 PMCID: PMC3569044 DOI: 10.1037/a0031216] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/31/2012] [Accepted: 11/05/2012] [Indexed: 11/08/2022]
Abstract
Research into the neural basis of recognition memory has traditionally focused on the remembrance of visual stimuli. The present study examined the neural basis of object recognition memory in the dark, with a view to determining the extent to which it shares common pathways with visual-based object recognition. Experiment 1 assessed the expression of the immediate-early gene c-fos in rats that discriminated novel from familiar objects in the dark (Group Novel). Comparisons made with a control group that explored only familiar objects (Group Familiar) showed that Group Novel had higher c-fos activity in the rostral perirhinal cortex and the lateral entorhinal cortex. Outside the temporal region, Group Novel showed relatively increased c-fos activity in the anterior medial thalamic nucleus and the anterior cingulate cortex. Both the hippocampal CA fields and the granular retrosplenial cortex showed borderline increases in c-fos activity with object novelty. The hippocampal findings prompted Experiment 2. Here, rats with hippocampal lesions were tested in the dark for object recognition memory at different retention delays. Across two replications, no evidence was found that hippocampal lesions impair nonvisual object recognition. The results indicate that in the dark, as in the light, interrelated parahippocampal sites are activated when rats explore novel stimuli. These findings reveal a network of linked c-fos activations that share superficial features with those associated with visual recognition but differ in the fine details; for example, in the locus of the perirhinal cortex activation. While there may also be a relative increase in c-fos activation in the extended-hippocampal system to object recognition in the dark, there was no evidence that this recognition memory problem required an intact hippocampus.
Collapse
Affiliation(s)
| | | | - Eman Amin
- School of Psychology, Cardiff University
| | | | | | | | | |
Collapse
|
73
|
Martin CB, Mirsattari SM, Pruessner JC, Pietrantonio S, Burneo JG, Hayman-Abello B, Köhler S. Déjà vu in unilateral temporal-lobe epilepsy is associated with selective familiarity impairments on experimental tasks of recognition memory. Neuropsychologia 2012; 50:2981-91. [DOI: 10.1016/j.neuropsychologia.2012.07.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/30/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
|
74
|
Albasser MM, Amin E, Lin TCE, Iordanova MD, Aggleton JP. Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory. Behav Neurosci 2012; 126:659-69. [PMID: 23025831 PMCID: PMC3462035 DOI: 10.1037/a0029754] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/08/2022]
Abstract
Adult rats with extensive, bilateral neurotoxic lesions of the hippocampus showed normal forgetting curves for object recognition memory, yet were impaired on closely related tests of object recency memory. The present findings point to specific mechanisms for temporal order information (recency) that are dependent on the hippocampus and do not involve object recognition memory. The object recognition tests measured rats exploring simultaneously presented objects, one novel and the other familiar. Task difficulty was varied by altering the retention delays after presentation of the familiar object, so creating a forgetting curve. Hippocampal lesions had no apparent effect, despite using an apparatus (bow-tie maze) where it was possible to give lists of objects that might be expected to increase stimulus interference. In contrast, the same hippocampal lesions impaired the normal preference for an older (less recent) familiar object over a more recent, familiar object. A correlation was found between the loss of septal hippocampal tissue and this impairment in recency memory. The dissociation in the present study between recognition memory (spared) and recency memory (impaired) was unusually compelling, because it was possible to test the same objects for both forms of memory within the same session and within the same apparatus. The object recency deficit is of additional interest as it provides an example of a nonspatial memory deficit following hippocampal damage.
Collapse
Affiliation(s)
- Mathieu M Albasser
- School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom.
| | | | | | | | | |
Collapse
|
75
|
Burbacher TM, Grant KS. Measuring infant memory: Utility of the visual paired-comparison test paradigm for studies in developmental neurotoxicology. Neurotoxicol Teratol 2012; 34:473-80. [PMID: 22750243 PMCID: PMC5420201 DOI: 10.1016/j.ntt.2012.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
The assessment of brain function and behavior in young infants is central to understanding the effects of chemical exposure on central nervous system development. One approach to infant cognitive assessment, based on the direct observation of infant eye movements, is known as the Visual Paired-Comparison task. The Visual Paired-Comparison test methodology uses selective visual attention as a vehicle to study emerging recognition memory skills. The utility of this procedure to study visual recognition memory has been well established in both human and nonhuman primate infants. The primary outcome measure produced by this assessment technique is known as the Novelty Preference Score, reflecting the amount of time the infant spends actively looking at novel rather than familiar test stimuli. Visual recognition memory testing has demonstrated a strong sensitivity to conditions that may place infants at risk for poor developmental outcome (e.g. preterm birth, Down syndrome) and in humans; performance is significantly related to later measures of I.Q. and language competency. This assessment methodology has been successfully applied to the study of neurobehavioral effects after fetal neurotoxicant exposure. Field and laboratory studies have used tests of visual recognition memory to better understand the effects of compounds such as lead, methylmercury and polychlorinated biphenyls on emergent cognitive processing. The Visual Paired-Comparison paradigm and its capacity to measure recognition memory in preverbal infants provides a valid and theoretically meaningful approach to neurobehavioral assessment for studies in developmental toxicology and teratology.
Collapse
Affiliation(s)
- Thomas M Burbacher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
76
|
Pergola G, Güntürkün O, Koch B, Schwarz M, Daum I, Suchan B. Recall deficits in stroke patients with thalamic lesions covary with damage to the parvocellular mediodorsal nucleus of the thalamus. Neuropsychologia 2012; 50:2477-91. [DOI: 10.1016/j.neuropsychologia.2012.06.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 06/16/2012] [Accepted: 06/23/2012] [Indexed: 11/26/2022]
|
77
|
Migo EM, Mayes AR, Montaldi D. Measuring recollection and familiarity: Improving the remember/know procedure. Conscious Cogn 2012; 21:1435-55. [PMID: 22846231 DOI: 10.1016/j.concog.2012.04.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 03/03/2012] [Accepted: 04/29/2012] [Indexed: 12/17/2022]
Abstract
The remember/know (RK) procedure is the most widely used method to investigate recollection and familiarity. It uses trial-by-trial reports to determine how much recollection and familiarity contribute to different kinds of recognition. Few other methods provide information about individual memory judgements and no alternative allows such direct indications of recollection and familiarity influences. Here we review how the RK procedure has been and should be used to help resolve theoretical disagreements about the processing and neural bases of components of recognition memory. Emphasis is placed on procedural weaknesses and a possible confound of recollection and familiarity with recognition memory strength. Recommendations are made about how to minimise these problems including using modified versions of the procedure. The proposals here are important for improving behavioural and lesion research, and vital for brain imaging work.
Collapse
Affiliation(s)
- Ellen M Migo
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, St Thomas's Hospital, London SE1 7EH, UK
| | | | | |
Collapse
|
78
|
Butler C, Kapur N, Zeman A, Weller R, Connelly A. Epilepsy-related long-term amnesia: anatomical perspectives. Neuropsychologia 2012; 50:2973-80. [PMID: 22841993 DOI: 10.1016/j.neuropsychologia.2012.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 05/27/2012] [Accepted: 07/18/2012] [Indexed: 11/29/2022]
Abstract
There are few clues as to the neural basis of selective long-term amnesia. We report group and single-case data to shed light on this issue. In a group study of patients with transient epileptic amnesia, there were no significant correlations between volumetric measures of the hippocampus and indices of accelerated long-term forgetting or longer-term autobiographical memory loss. Post-mortem investigations in a patient with temporal lobe epilepsy who showed accelerated long-term forgetting, together with a degree of autobiographical memory loss, yielded evidence of neuronal loss and gliosis in regions of both the right and the left hippocampus. Neuronal loss and gliosis were more evident in anterior than posterior hippocampus. These results indicate that the unusual forms of long-term forgetting seen in some patients with temporal lobe epilepsy have no gross anatomical correlate. The findings leave open the possibilities that subtle structural damage or subtle functional disturbance, perhaps in the form of subclinical epileptiform activity, underly epilepsy-related long-term amnesia.
Collapse
Affiliation(s)
- Chris Butler
- Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
79
|
What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory. Neuropsychologia 2012; 50:3122-40. [PMID: 22841990 PMCID: PMC3500694 DOI: 10.1016/j.neuropsychologia.2012.07.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/26/2012] [Accepted: 07/22/2012] [Indexed: 11/23/2022]
Abstract
Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity).
Collapse
|
80
|
Chang EH, Huerta PT. Neurophysiological correlates of object recognition in the dorsal subiculum. Front Behav Neurosci 2012; 6:46. [PMID: 22833721 PMCID: PMC3400129 DOI: 10.3389/fnbeh.2012.00046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/04/2012] [Indexed: 11/29/2022] Open
Abstract
The medial temporal lobe (MTL) encompasses a network of interconnected cortical areas that is considered the neural substrate for some types of memory, such as spatial, episodic, recognition, and associative memory. Within the MTL, the subiculum has been well characterized in terms of its connectivity and structure, but its functional role remains elusive. A long-held view is that the subiculum is mainly involved in spatial encoding because it exhibits spatially selective firing and receives prominent projections from the CA1 field, which is an essential substrate for spatial memory. However, the dorsal subiculum (DS) is also reciprocally connected to the perirhinal and postrhinal cortices, which are critically involved in recognition memory. This connectivity pattern suggests that DS might encode not only spatial signals but also recognition signals. Here, we examined this hypothesis by recording with multi-electrodes in DS and CA1 of freely behaving mice, as they performed the novel object recognition (NOR) task. Analysis of network oscillations revealed that theta power was significantly higher in DS when mice explored novel objects as compared to familiar objects and that this theta modulation was absent in CA1. We also found significant differences in coherence between DS and CA1, in the theta and gamma bands, depending on whether mice examined objects or engaged in spatial exploration. Furthermore, single-unit recordings revealed that DS cells did not exhibit phase-locked firing to theta and differed from CA1 place cells in that they had multiple peaks of spatially selective firing. We also detected DS units that were responsive specifically to novel object exploration, indicating that a subset of DS neurons were tuned to novelty during the NOR task. We have thus identified clear neurophysiological correlates for recognition within the DS, at the network and single-unit levels, strongly suggesting that it participates in encoding recognition-related signals.
Collapse
Affiliation(s)
- Eric H. Chang
- Laboratory of Immune and Neural Networks, Center for Biomedical Science, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, ManhassetNY, USA
| | - Patricio T. Huerta
- Laboratory of Immune and Neural Networks, Center for Biomedical Science, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, ManhassetNY, USA
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, ManhassetNY, USA
| |
Collapse
|
81
|
|
82
|
Marshall JF, O'Dell SJ. Methamphetamine influences on brain and behavior: unsafe at any speed? Trends Neurosci 2012; 35:536-45. [PMID: 22709631 DOI: 10.1016/j.tins.2012.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 11/30/2022]
Abstract
Methamphetamine damages monoamine-containing nerve terminals in the brains of both animals and human drug abusers, and the cellular mechanisms underlying this injury have been extensively studied. More recently, the growing evidence for methamphetamine influences on memory and executive function of human users has prompted studies of cognitive impairments in methamphetamine-exposed animals. After summarizing current knowledge about the cellular mechanisms of methamphetamine-induced brain injury, this review emphasizes research into the brain changes that underlie the cognitive deficits that accompany repeated methamphetamine exposure. Novel approaches to mitigating or reversing methamphetamine-induced brain and behavioral changes are described, and it is argued that the slow spontaneous reversibility of the injury produced by this drug may offer opportunities for novel treatment development.
Collapse
Affiliation(s)
- John F Marshall
- Department of Neurobiology and Behavior, Center for Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
83
|
Redrobe JP, Elster L, Frederiksen K, Bundgaard C, de Jong IEM, Smith GP, Bruun AT, Larsen PH, Didriksen M. Negative modulation of GABAA α5 receptors by RO4938581 attenuates discrete sub-chronic and early postnatal phencyclidine (PCP)-induced cognitive deficits in rats. Psychopharmacology (Berl) 2012; 221:451-68. [PMID: 22124672 DOI: 10.1007/s00213-011-2593-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/15/2011] [Indexed: 11/29/2022]
Abstract
RATIONALE A growing body of evidence suggests that negative modulation of γ-aminobutyric acid (GABA) GABA(A) α5 receptors may be a promising strategy for the treatment of certain facets of cognitive impairment; however, selective modulators of GABA(A) α5 receptors have not yet been tested in "schizophrenia-relevant" cognitive assay/model systems in animals. OBJECTIVES The objectives of this study were to investigate the potential of RO4938581, a negative modulator of GABA(A) α5 receptors, and to attenuate cognitive impairments induced following sub-chronic (sub-PCP) and early postnatal PCP (neo-PCP) administration in the novel object recognition (NOR) and intra-extradimensional shift (ID/ED) paradigms in rats. Complementary in vitro, ex vivo and in vivo studies were performed to confirm negative modulatory activity of RO4938581 and to investigate animal model validity, concept validity and potential side effect issues, respectively. RESULTS In vitro studies confirmed the reported negative modulatory activity of RO4938581, whilst immunohistochemical analyses revealed significantly reduced parvalbumin-positive cells in the prefrontal cortex of sub-PCP- and neo-PCP-treated rats. RO4938581 (1 mg/kg) ameliorated both sub-PCP- and neo-PCP-induced cognitive deficits in NOR and ID/ED performance, respectively. In contrast, QH-II-066 (1 and 3 mg/kg), a GABA(A) α5 receptor positive modulator, impaired cognitive performance in the NOR task when administered to vehicle-treated animals. Additional studies revealed that both RO4938581 (1 mg/kg) and QH-II-066 (1 and 3 mg/kg) attenuated amphetamine-induced hyperactivity in rats. CONCLUSIONS Taken together, these novel findings suggest that negative modulation of GABA(A) α5 receptors may represent an attractive treatment option for the cognitive impairments, and potentially positive symptoms, associated with schizophrenia.
Collapse
Affiliation(s)
- John P Redrobe
- Synaptic Transmission I, Neuroscience Research DK, H Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
It is debated whether functional divisions between structures in the medial temporal lobe (MTL), in particular the perirhinal cortex (PrC) and hippocampus (HC), are best conceptualized according to memory process (Diana et al., 2007; Ranganath, 2010; Wixted et al., 2010) or stimulus category (Graham et al., 2010). In the former account, PrC is critical for item familiarity but not recollection of associations between items and their contexts (which is instead dependent upon the HC; Ranganath et al., 2004). In the latter theory, complex object representations in PrC are capable of supporting memory for objects as well as for object-context associations, particularly when there is a demand to discriminate between highly visually similar objects (Cowell et al., 2010). To adjudicate between these accounts, human participants were scanned while making two different judgments about visually presented objects (is the object common or uncommon, or does the object have more edges or curves). In a subsequent, unscanned, retrieval phase, participants made item (old/new) followed by context (encoding task) judgments about previously seen and novel objects. Neural activity at encoding was separated according to the accuracy of the retrieval judgments. PrC activity predicted successful item-context judgments, a result that remained when item-memory strength was equated across objects for which the context was remembered or forgotten. These data imply that the function of PrC goes beyond processing item-based memory information, contributing additionally to memory for item-context associations when the stimuli are objects (Graham et al., 2010).
Collapse
|
85
|
Gómez-Chacón B, Gámiz F, Gallo M. Basolateral amygdala lesions attenuate safe taste memory-related c-fos expression in the rat perirhinal cortex. Behav Brain Res 2012; 230:418-22. [DOI: 10.1016/j.bbr.2012.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 01/05/2023]
|
86
|
Miller BT, D'Esposito M. Spatial and temporal dynamics of cortical networks engaged in memory encoding and retrieval. Front Hum Neurosci 2012; 6:109. [PMID: 22557959 PMCID: PMC3340945 DOI: 10.3389/fnhum.2012.00109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/11/2012] [Indexed: 11/13/2022] Open
Abstract
Memory operations such as encoding and retrieval require the coordinated interplay of cortical regions with distinct functional contributions. The mechanistic nature of these interactions, however, remains unspecified. During the performance of a face memory task during fMRI scanning, we measured the magnitude (a measure of the strength of coupling between areas) and phase (a measure of the relative timing across areas) of coherence between regions of interest and the rest of the brain. The fusiform face area (FFA) showed robust coherence with a distributed network of subregions in the prefrontal cortex (PFC), posterior parietal cortex (PPC), precuneus, and hippocampus across both memory operations. While these findings reveal significant overlap in the cortical networks underlying mnemonic encoding and retrieval, coherence phase analyses revealed context-dependent differences in cortical dynamics. During both encoding and retrieval, PFC and PPC exhibited earlier activity than in the FFA and hippocampus. Also, during retrieval, PFC activity preceded PPC activity. These findings are consistent with prior physiology studies suggesting an early contribution of PFC and PPC in mnemonic control. Together, these findings contribute to the growing literature exploring the spatio-temporal dynamics of basic memory operations.
Collapse
Affiliation(s)
- Brian T Miller
- Helen Wills Neuroscience Institute, University of California, Berkeley CA, USA
| | | |
Collapse
|
87
|
Seoane A, Tinsley CJ, Brown MW. Interfering with Fos expression in rat perirhinal cortex impairs recognition memory. Hippocampus 2012; 22:2101-13. [PMID: 22532480 DOI: 10.1002/hipo.22028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2012] [Indexed: 12/27/2022]
Abstract
Previous work has shown that immunohistochemical imaging of Fos protein is a reliable marker for changes in activity related to recognition memory in the perirhinal (PRH) cortex of the medial temporal lobe; however, whether PRH Fos expression is necessary for recognition memory had not been established. To investigate this potential requirement, antisense Fos oligodeoxynucleotide (ODN) was infused locally into PRH cortex to interfere with Fos production. As in previous studies, differential Fos expression produced by viewing novel or familiar visual stimuli was measured by immunohistochemistry: antisense Fos ODN infusion into PRH cortex disrupted the normal pattern of differential Fos expression in PRH cortex. The effect of antisense Fos ODN infusion into PRH cortex was therefore sought on recognition memory. Infusion before or immediately after acquisition impaired recognition memory for objects when the memory delay was 3 or 24 h, but not when the delay was 20 min, or when the ODN was infused before retrieval after a 24-h delay. The findings indicate a role for Fos in consolidation processes underlying long-term recognition memory for objects and establish that interfering with its expression impairs recognition memory. Antisense Fos ODN infusion also impaired object-in-place recognition memory. The results demonstrate that Fos is necessary for neuronal mechanisms in PRH cortex essential to recognition memory.
Collapse
Affiliation(s)
- Ana Seoane
- Department of Physiology and Pharmacology, Medical Research Council Centre for Synaptic Plasticity, University of Bristol, United Kingdom
| | | | | |
Collapse
|
88
|
Krüger HS, Brockmann MD, Salamon J, Ittrich H, Hanganu-Opatz IL. Neonatal hippocampal lesion alters the functional maturation of the prefrontal cortex and the early cognitive development in pre-juvenile rats. Neurobiol Learn Mem 2012; 97:470-81. [PMID: 22521798 DOI: 10.1016/j.nlm.2012.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/01/2012] [Indexed: 11/18/2022]
Abstract
Mnemonic and executive performance is encoded into activity patterns of complex neuronal networks. Lesion studies revealed that adult recognition memory critically depends on the activation of the prefrontal cortex (PFC) and hippocampus (HP). However, its developmental profile remains poorly elucidated. We previously showed the rat PFC and HP are functionally coupled in theta- and gamma-band oscillations during neonatal [postnatal day (P) 5-8] and pre-juvenile (P10-15) stages of development. Here, we assess the behavioral readout of this early prefrontal-hippocampal activation by investigating the ontogeny and the mechanisms of novelty detection and recognition memory in relationship to the functional integrity of the PFC and HP. Excitotoxic lesion of the HP at birth led to abnormal oscillatory entrainment of the PFC throughout neonatal and pre-juvenile development. Although the onset of novelty detection correlated rather with the maturation of sensory perception and motor skills than with hippocampal integrity, the pre-juvenile performance in item, spatial and temporal order recognition memory significantly decreased after HP lesion at birth. This poorer performance does result neither from abnormal developmental milestones and locomotion nor from increased anxiety. Thus, novelty recognition in rat emerges during the second postnatal week and requires functional integrity of communication within neuronal networks including the PFC and HP.
Collapse
Affiliation(s)
- Hanna-Sophie Krüger
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | | | | | | |
Collapse
|
89
|
Soontornniyomkij V, Risbrough VB, Young JW, Soontornniyomkij B, Jeste DV, Achim CL. Increased hippocampal accumulation of autophagosomes predicts short-term recognition memory impairment in aged mice. AGE (DORDRECHT, NETHERLANDS) 2012; 34:305-316. [PMID: 21431350 PMCID: PMC3312638 DOI: 10.1007/s11357-011-9234-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 03/02/2011] [Indexed: 05/29/2023]
Abstract
Constitutive macroautophagy involved in the turnover of defective long-lived proteins and organelles is crucial for neuronal homeostasis. We hypothesized that macroautophagic dysregulation in selective brain regions was associated with memory impairment in aged mice. We used the single-trial object recognition test to measure short-term memory in 18 aged mice compared to 22 young mice and employed immunohistochemistry to assess cellular distribution of proteins involved in the selective degradation of ubiquitinated proteins via macroautophagy. Values of the discrimination ratio (DR, a measure of short-term recognition memory performance) in aged mice were significantly lower than those in young mice (median, 0.54 vs. 0.67; p = 0.005, U test). Almost exclusively in aged mice, there were clusters of puncta immunoreactive for microtubule-associated protein 1 light chain 3 (LC3), ubiquitin- and LC3-binding protein p62, and ubiquitin in neuronal processes predominantly in the hippocampal formation, olfactory bulb/tubercle, and cerebellar cortex. The hippocampal burden of clustered puncta immunoreactive for LC3 and p62 exhibited inverse linear correlations with DR in aged mice (ρ = -0.48 and -0.55, p = 0.044 and 0.018, respectively, Spearman's rank correlation). These findings suggest that increased accumulation of autophagosomes within neuronal processes in selective brain regions is characteristic of aging. The dysregulation of macroautophagy can adversely affect the turnover of aggregate-prone proteins and defective organelles, which may contribute to memory impairment in aged mice.
Collapse
Affiliation(s)
- Virawudh Soontornniyomkij
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, 92093-0603, USA.
| | | | | | | | | | | |
Collapse
|
90
|
Bergmann HC, Rijpkema M, Fernández G, Kessels RPC. Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe. Neuroimage 2012; 63:989-97. [PMID: 22484305 DOI: 10.1016/j.neuroimage.2012.03.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/13/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022] Open
Abstract
Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies using "classical" WM tasks may at least partly reflect incidental LTM encoding. To disentangle WM processing and LTM formation we administered a delayed-match-to-sample associative WM task in an event-related fMRI study design. Each trial of the WM task consisted of four pairs of faces and houses, which had to be maintained during a delay of 10 s. This was followed by a probe phase consisting of three consecutively presented pairs; for each pair participants were to indicate whether it matched one of the pairs of the encoding phase. After scanning, an unexpected recognition-memory (LTM) task was administered. Brain activity during encoding was analyzed based on WM and LTM performance. Hence, encoding-related activity predicting WM success in the absence of successful LTM formation could be isolated. Furthermore, regions critical for successful LTM formation for pairs previously correctly processed in WM were analyzed. Results showed that the left parahippocampal gyrus including the fusiform gyrus predicted subsequent accuracy on WM decisions. The right anterior hippocampus and left inferior frontal gyrus, in contrast, predicted successful LTM for pairs that were previously correctly classified in the WM task. Our results suggest that brain regions associated with higher-level visuo-perceptual processing are involved in successful associative WM encoding, whereas the anterior hippocampus and left inferior frontal gyrus are involved in successful LTM formation during incidental encoding.
Collapse
Affiliation(s)
- Heiko C Bergmann
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9104, 6500HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
91
|
Van Cauter T, Camon J, Alvernhe A, Elduayen C, Sargolini F, Save E. Distinct Roles of Medial and Lateral Entorhinal Cortex in Spatial Cognition. Cereb Cortex 2012; 23:451-9. [DOI: 10.1093/cercor/bhs033] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
92
|
Cyrenne DLM, Brown GR. Effects of suppressing gonadal hormones on response to novel objects in adolescent rats. Horm Behav 2011; 60:625-31. [PMID: 21920363 PMCID: PMC3221042 DOI: 10.1016/j.yhbeh.2011.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/26/2011] [Accepted: 08/28/2011] [Indexed: 11/20/2022]
Abstract
Human adolescents exhibit higher levels of novelty-seeking behaviour than younger or older individuals, and novelty-seeking is higher in males than females from adolescence onwards. Gonadal hormones, such as testosterone and estradiol, have been suggested to underlie age and sex difference in response to novelty; however, empirical evidence in support of this hypothesis is limited. Here, we investigated whether suppressing gonadal hormone levels during adolescence affects response to novelty in laboratory rats. Previously, we have shown that male adolescent Lister-hooded rats (postnatal day, pnd, 40) exhibit a stronger preference than same-aged females for a novel object compared to a familiar object. In the current study, 24 male and 24 female Lister-hooded rats were administered with Antide (a gonadotrophin-releasing hormone antagonist), or with a control vehicle solution, at pnd 28. Antide provided long-term suppression of gonadal hormone production, as confirmed by ELISA assays and measurement of internal organs. Response to novel objects was tested at pnd 40 in Antide-treated and control subjects using a 'novel object recognition' task with a short (2-minute) inter-trial interval. In support of previous findings, control males exhibited a stronger preference than control females for novelty when presented with a choice of objects. Antide-treated males exhibited a significantly lower preference for novel objects compared to control males, whilst Antide-treated females did not differ significantly from control females in their preference for novelty. Antide treatment did not affect total time spent interacting with objects. We discuss how gonadal hormones might influence sex differences in preference for novelty during adolescence.
Collapse
Affiliation(s)
| | - Gillian R. Brown
- Corresponding author at: School of Psychology, University of St Andrews, South Street, St Andrews, KY16 9JP, UK. Fax: + 44 1334 463042.
| |
Collapse
|
93
|
Microglia in the normally aged hippocampus. Lab Anim Res 2011; 27:181-7. [PMID: 21998606 PMCID: PMC3188724 DOI: 10.5625/lar.2011.27.3.181] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 01/20/2023] Open
Abstract
The hippocampus plays important roles in the regulation and combination of short and long term memory and spatial navigation with other brain centers. Aging is accompanied by a functional decline of the hippocampus and degenerative disease. Microglia are major immune cells in the central nervous system and response to degenerative changes in the aged brain. In this respect, functional and morphological changes of the hippocampus have been closely related to microglial changes during normal aging with or without disease. Therefore, in this review, we discuss morphological and functional changes of the hippocampus and microglia in the aging brain.
Collapse
|
94
|
Aggleton JP. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neurosci Biobehav Rev 2011; 36:1579-96. [PMID: 21964564 DOI: 10.1016/j.neubiorev.2011.09.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
A review of medial temporal lobe connections reveals three distinct groupings of hippocampal efferents. These efferent systems and their putative memory functions are: (1) The 'extended-hippocampal system' for episodic memory, which involves the anterior thalamic nuclei, mammillary bodies and retrosplenial cortex, originates in the subicular cortices, and has a largely laminar organisation; (2) The 'rostral hippocampal system' for affective and social learning, which involves prefrontal cortex, amygdala and nucleus accumbens, has a columnar organisation, and originates from rostral CA1 and subiculum; (3) The 'reciprocal hippocampal-parahippocampal system' for sensory processing and integration, which originates from the length of CA1 and the subiculum, and is characterised by columnar, connections with reciprocal topographies. A fourth system, the 'parahippocampal-prefrontal system' that supports familiarity signalling and retrieval processing, has more widespread prefrontal connections than those of the hippocampus, along with different thalamic inputs. Despite many interactions between these four systems, they may retain different roles in memory which when combined explain the importance of the medial temporal lobe for the formation of declarative memories.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
95
|
Ho JWT, Narduzzo KE, Outram A, Tinsley CJ, Henley JM, Warburton EC, Brown MW. Contributions of area Te2 to rat recognition memory. Learn Mem 2011; 18:493-501. [PMID: 21700715 DOI: 10.1101/lm.2167511] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ablations and local intracerebral infusions were used to determine the role of rat temporal association cortex (area Te2) in object recognition memory, so that this role might be compared with that of the adjacent perirhinal cortex (PRH). Bilateral lesions of Te2 impaired recognition memory measured by preferential exploration of a novel rather than a familiar object at delays ≥20 min but not after a 5-min delay. Local infusion bilaterally into Te2 of (1) CNQX to block AMPA/kainate receptors or (2) lidocaine to block axonal transmission or (3) AP5, an NMDA receptor antagonist, impaired recognition memory after a 24-h but not a 20-min delay. In PRH all these manipulations impair recognition memory after a 20-min as well as a 24-h delay. UBP302, a GluK1 kainate receptor antagonist, impaired recognition memory after a 24-h but not a 20-min delay, contrasting with its action in PRH where it impairs only shorter-term (20 min) recognition memory. Also in contrast to PRH, infusion of the muscarinic receptor antagonist scopolamine was without effect. The Te2 impairments could not readily be ascribed to perceptual deficits. Hence, Te2 is essential for object recognition memory at delays >5 or 20 min. Thus, at long delays both area Te2 and PRH are necessary for object recognition memory.
Collapse
Affiliation(s)
- Jonathan Weng-Thim Ho
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
96
|
Tinsley CJ, Fontaine-Palmer NS, Vincent M, Endean EPE, Aggleton JP, Brown MW, Warburton EC. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex. Learn Mem 2011; 18:484-92. [PMID: 21693636 DOI: 10.1101/lm.2274911] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive.
Collapse
Affiliation(s)
- Chris J Tinsley
- MRC Centre for Synaptic Plasticity, School of Physiological Sciences, Bristol University, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
97
|
Hippocampus and neocortex: recognition and spatial memory. Curr Opin Neurobiol 2011; 21:440-5. [DOI: 10.1016/j.conb.2011.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 02/05/2023]
|
98
|
Wixted JT, Squire LR. The medial temporal lobe and the attributes of memory. Trends Cogn Sci 2011; 15:210-7. [PMID: 21481629 DOI: 10.1016/j.tics.2011.03.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/17/2022]
Abstract
Neuroimaging and lesion studies have seemed to converge on the idea that the hippocampus selectively supports recollection. However, these studies usually involve a comparison between strong recollection-based memories and weak familiarity-based memories. Studies that avoid confounding memory strength with recollection and familiarity almost always find that the hippocampus supports both recollection and familiarity. We argue that the functional organization of the medial temporal lobe (MTL) is unlikely to be illuminated by the psychological distinction between recollection and familiarity and will be better informed by findings from neuroanatomy and neurophysiology. These findings indicate that the different structures of the MTL process different attributes of experience. By representing the widest array of attributes, the hippocampus supports recollection-based and familiarity-based memory of multiattribute stimuli.
Collapse
Affiliation(s)
- John T Wixted
- Department of Psychology, UCSD, La Jolla, CA, 92093, USA
| | | |
Collapse
|
99
|
Kealy J, Commins S. The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function. Prog Neurobiol 2011; 93:522-48. [DOI: 10.1016/j.pneurobio.2011.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 01/28/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
|
100
|
Tinsley CJ, Narduzzo KE, Brown MW, Warburton EC. A role for the CAMKK pathway in visual object recognition memory. Hippocampus 2011; 22:466-76. [DOI: 10.1002/hipo.20913] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2010] [Indexed: 11/09/2022]
|