51
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
52
|
SenGupta S, Hein LE, Parent CA. The Recruitment of Neutrophils to the Tumor Microenvironment Is Regulated by Multiple Mediators. Front Immunol 2021; 12:734188. [PMID: 34567000 PMCID: PMC8461236 DOI: 10.3389/fimmu.2021.734188] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neutrophils sense and migrate towards chemotactic factors released at sites of infection/inflammation and contain the affected area using a variety of effector mechanisms. Aside from these established immune defense functions, neutrophils are emerging as one of the key tumor-infiltrating immune cells that influence cancer progression and metastasis. Neutrophil recruitment to the tumor microenvironment (TME) is mediated by multiple mediators including cytokines, chemokines, lipids, and growth factors that are secreted from cancer cells and cancer-associated stromal cells. However, the molecular mechanisms that underlie the expression and secretion of the different mediators from cancer cells and how neutrophils integrate these signals to reach and invade tumors remain unclear. Here, we discuss the possible role of the epithelial to mesenchymal transition (EMT) program, which is a well-established promoter of malignant potential in cancer, in regulating the expression and secretion of these key mediators. We also summarize and review our current understanding of the machineries that potentially control the secretion of the mediators from cancer cells, including the exocytic trafficking pathways, secretory autophagy, and extracellular vesicle-mediated secretion. We further reflect on possible mechanisms by which different mediators collaborate by integrating their signaling network, and particularly focus on TGF-β, a cytokine that is highly expressed in invasive tumors, and CXCR2 ligands, which are crucial neutrophil recruiting chemokines. Finally, we highlight gaps in the field and the need to expand current knowledge of the secretory machineries and cross-talks among mediators to develop novel neutrophil targeting strategies as effective therapeutic options in the treatment of cancer.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lauren E. Hein
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carole A. Parent
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
53
|
Bule P, Aguiar SI, Aires-Da-Silva F, Dias JNR. Chemokine-Directed Tumor Microenvironment Modulation in Cancer Immunotherapy. Int J Mol Sci 2021; 22:9804. [PMID: 34575965 PMCID: PMC8464715 DOI: 10.3390/ijms22189804] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that coordinates immune cell trafficking. In cancer, they have a pivotal role in the migration pattern of immune cells into the tumor, thereby shaping the tumor microenvironment immune profile, often towards a pro-tumorigenic state. Furthermore, chemokines can directly target non-immune cells in the tumor microenvironment, including cancer, stromal and vascular endothelial cells. As such, chemokines participate in several cancer development processes such as angiogenesis, metastasis, cancer cell proliferation, stemness and invasiveness, and are therefore key determinants of disease progression, with a strong influence in patient prognosis and response to therapy. Due to their multifaceted role in the tumor immune response and tumor biology, the chemokine network has emerged as a potential immunotherapy target. Under the present review, we provide a general overview of chemokine effects on several tumoral processes, as well as a description of the currently available chemokine-directed therapies, highlighting their potential both as monotherapy or in combination with standard chemotherapy or other immunotherapies. Finally, we discuss the most critical challenges and prospects of developing targeted chemokines as therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Joana Nunes Ribeiro Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal; (P.B.); (S.I.A.); (F.A.-D.-S.)
| |
Collapse
|
54
|
Moraes JA, Encarnação C, Franco VA, Xavier Botelho LG, Rodrigues GP, Ramos-Andrade I, Barja-Fidalgo C, Renovato-Martins M. Adipose Tissue-Derived Extracellular Vesicles and the Tumor Microenvironment: Revisiting the Hallmarks of Cancer. Cancers (Basel) 2021; 13:3328. [PMID: 34283044 PMCID: PMC8268128 DOI: 10.3390/cancers13133328] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are crucial elements that sustain the communication between tumor cells and their microenvironment, and have emerged as a widespread mechanism of tumor formation and metastasis. In obesity, the adipose tissue becomes hypertrophic and hyperplastic, triggering increased production of pro-inflammatory adipokines, such as tumor necrosis factor α, interleukin 6, interleukin 1, and leptin. Furthermore, obese adipose tissue undergoes dysregulation in the cargo content of the released EVs, resulting in an increased content of pro-inflammatory proteins, fatty acids, and oncogenic microRNAs. These alterations drive obesity-associated inflammatory responses both locally and systemically. After being ignored for a long time, adipose tissues have recently received considerable attention as a major player in tumor microenvironment-linked obesity and cancer. The role of adipose tissue in the establishment and progression of cancer is reinforced by its high plasticity and inflammatory content. Such a relationship may be established by direct contact between adipocytes and cancer cells within the microenvironment or systemically, via EV-mediated cell-to-cell communication. Here, we highlight cues evidencing the influence of adipose tissue-derived EVs on the hallmarks of cancer, which are critical for tumor malignancy.
Collapse
Affiliation(s)
- João Alfredo Moraes
- Redox Biology Laboratory, Programa de Pesquisa em Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil;
| | - Carol Encarnação
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Victor Aguiar Franco
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Luiz Gabriel Xavier Botelho
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Gabriella Pacheco Rodrigues
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Isadora Ramos-Andrade
- Laboratory of Cellular and Molecular Pharmacology, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-170 Rio de Janeiro, Brazil; (I.R.-A.); (C.B.-F.)
| | - Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-170 Rio de Janeiro, Brazil; (I.R.-A.); (C.B.-F.)
| | - Mariana Renovato-Martins
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| |
Collapse
|
55
|
Chung KPS, Leung RWH, Lee TKW. Hampering Stromal Cells in the Tumor Microenvironment as a Therapeutic Strategy to Destem Cancer Stem Cells. Cancers (Basel) 2021; 13:3191. [PMID: 34202411 PMCID: PMC8268361 DOI: 10.3390/cancers13133191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer stem cells (CSCs) within the tumor bulk play crucial roles in tumor initiation, recurrence and therapeutic resistance. In addition to intrinsic regulation, a growing body of evidence suggests that the phenotypes of CSCs are also regulated extrinsically by stromal cells in the tumor microenvironment (TME). Here, we discuss the current knowledge of the interplay between stromal cells and cancer cells with a special focus on how stromal cells drive the stemness of cancer cells and immune evasive mechanisms of CSCs. Knowledge gained from the interaction between CSCs and stromal cells will provide a mechanistic basis for the development of novel therapeutic strategies for the treatment of cancers.
Collapse
Affiliation(s)
- Katherine Po Sin Chung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (K.P.S.C.); (R.W.H.L.)
| | - Rainbow Wing Hei Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (K.P.S.C.); (R.W.H.L.)
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (K.P.S.C.); (R.W.H.L.)
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
56
|
Simultaneous blockage of contextual TGF-β by cyto-pharmaceuticals to suppress breast cancer metastasis. J Control Release 2021; 336:40-53. [PMID: 34119557 DOI: 10.1016/j.jconrel.2021.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
It remains challenging to treat tumor metastasis currently in the light of multiple cascade processes of tumor metastasis. Additionally, multiple clinical drugs for metastasis have quite limited therapeutic potential and even facilitate metastasis in preclinical models. Thus, potential metastasis targets and novel metastasis-directed drugs are urgently needed to be further developed. Herein, transforming growth factor-β (TGF-β) is verified to contribute to lung metastasis in a context-dependent manner in the 4T1 orthotopic tumor-bearing mice model, which induces epithelial-mesenchymal-transition (EMT) to promote tumor dissemination from the primary site and dampens the anti-tumor response of neutrophils to support tumor colonization at the metastatic niche. In view of neutrophils' superior tropism towards both inflammatory primary tumor and metastatic niche, SB525334, a TGF-β receptor inhibitor, is loaded into cationic liposome (SBLP) which is subsequently incorporated into neutrophils to yield the cyto-pharmaceuticals (SBLP/NE). The systemically infused SBLP/NE can simultaneously migrate into both primary and metastatic sites, then release SB525334 in response to tumor stimuli, and contextually inhibit TGF-β-mediated-EMT and phenotype reversal of infiltrated neutrophils, showing substantial metastasis suppression efficacy without causing any detectable toxicities. This project shifts the paradigm for metastasis suppression therapy by simultaneous blockage of contextual TGF-β using metastatic-cascades-targeting neutrophil cyto-pharmaceuticals.
Collapse
|
57
|
Zhu F, Willette-Brown J, Zhang J, Ferre EMN, Sun Z, Wu X, Lionakis MS, Hu Y. NLRP3 Inhibition Ameliorates Severe Cutaneous Autoimmune Manifestations in a Mouse Model of Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy-Like Disease. J Invest Dermatol 2021; 141:1404-1415. [PMID: 33188780 PMCID: PMC8110612 DOI: 10.1016/j.jid.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy show diverse endocrine and nonendocrine manifestations initiated by self-reactive T cells because of AIRE mutation-induced defective central tolerance. A large number of American patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy suffer from early-onset cutaneous inflammatory lesions accompanied by an infiltration of T cells and myeloid cells. The role of myeloid cells in this setting remains to be fully investigated. In this study, we characterize the autoinflammatory phenotypes in the skin of both autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy-like kinase-dead Ikkα knockin mice and patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. We found a marked infiltration of autoreactive CD4 T cells, macrophages, and neutrophils; elevated uric acid; and increased NLRP3, a major inflammasome component. Depleting autoreactive CD4 T cells or ablating Ccl2/Cxcr2 genes significantly attenuated the inflammasome activity, inflammation, and skin phenotypes in kinase-dead Ikkα knockin mice. Importantly, treatment with an NLRP3 inhibitor reduced skin phenotypes and decreased infiltration of CD4 T cells, macrophages, and neutrophils. These results suggest that increased myeloid cell infiltration contributes to autoreactive CD4 T cell-mediated skin autoinflammation. Thus, our findings reveal that the combined infiltration of macrophages and neutrophils is required for autoreactive CD4 T cell-mediated skin disease pathogenesis and that the NLRP3-dependent inflammasome is a potential therapeutic target for the cutaneous manifestations of autoimmune diseases.
Collapse
Affiliation(s)
- Feng Zhu
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Jami Willette-Brown
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Jian Zhang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA; Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Elise M N Ferre
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Yinling Hu
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA.
| |
Collapse
|
58
|
Guimarães-Bastos D, Frony AC, Barja-Fidalgo C, Moraes JA. Melanoma-derived extracellular vesicles skew neutrophils into a pro-tumor phenotype. J Leukoc Biol 2021; 111:585-596. [PMID: 34043843 DOI: 10.1002/jlb.3a0120-050rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Evidence shows that tumor cells abundantly produce and release extracellular vesicles (EVs) that can interact with stromal cells and modulate their functions. In the tumor neighborhood, neutrophils can assume both antitumor and pro-tumor phenotypes, known as TAN-N1 and TAN-N2, respectively. Nevertheless, the contribution of tumor-derived EVs to the modulation of TAN phenotypes is still poorly understood. The effects of EVs produced by a metastatic human melanoma cell line (MV3) on the differentiation and functional changes in human neutrophils were investigated. Treatment with MV3-derived EVs induced neutrophil chemotaxis through a signaling pathway involving the CXCR2/PI3K-Akt axis, prolonged neutrophil life span, promoted formation of neutrophil extracellular traps with poor elastase activity, and increased reactive oxygen species production. In contrast, EVs also increased the expression of TAN-N2 molecular markers (such as ARG1, CXCR4, and VEGF) in neutrophils. They also impaired oxide nitric and peroxynitrite production and diminished cytotoxic activity against melanoma cells, inducing neutrophils into a pro-tumor profile. Remarkably, EV-stimulated neutrophils did not exhibit phagocytic activity. These data suggested that melanoma-derived EVs could activate neutrophils, allowing their migration toward the tumor microenvironment, and driving these cells to a pro-tumor/N2 polarization, thus contributing to tumor progression.
Collapse
Affiliation(s)
- Daniel Guimarães-Bastos
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.,Laboratory of RedOx Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana Clara Frony
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - João Alfredo Moraes
- Laboratory of RedOx Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
59
|
Timaxian C, Vogel CFA, Orcel C, Vetter D, Durochat C, Chinal C, NGuyen P, Aknin ML, Mercier-Nomé F, Davy M, Raymond-Letron I, Van TNN, Diermeier SD, Godefroy A, Gary-Bobo M, Molina F, Balabanian K, Lazennec G. Pivotal Role for Cxcr2 in Regulating Tumor-Associated Neutrophil in Breast Cancer. Cancers (Basel) 2021; 13:cancers13112584. [PMID: 34070438 PMCID: PMC8197482 DOI: 10.3390/cancers13112584] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Chemokines present in the tumor microenvironment are essential for the control of tumor progression. We show here that several ligands of the chemokine receptor Cxcr2 were up-regulated in the PyMT (polyoma middle T oncogene) model of breast cancer. Interestingly, the knock-down of Cxcr2 in PyMT animals led to an increased growth of the primary tumor and lung metastasis. The analysis of tumor content of PyMT-Cxcr2-/- animals highlighted an increased infiltration of tumor associated neutrophils (TANs), mirrored by a decreased recruitment of tumor associated macrophages (TAMs) compared to PyMT animals. Analysis of PyMT-Cxcr2-/- TANs revealed that they lost their killing ability compared to PyMT-Cxcr2+/+ TANs. The transcriptomic analysis of PyMT-Cxcr2-/- TANs showed that they had a more pronounced pro-tumor TAN2 profile compared to PyMT TANs. In particular, PyMT-Cxcr2-/- TANs displayed an up-regulation of the pathways involved in reactive oxygen species (ROS) production and angiogenesis and factors favoring metastasis, but reduced apoptosis. In summary, our data reveal that a lack of Cxcr2 provides TANs with pro-tumor effects.
Collapse
Affiliation(s)
- Colin Timaxian
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Charlotte Orcel
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Diana Vetter
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Camille Durochat
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Clarisse Chinal
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Phuong NGuyen
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Marie-Laure Aknin
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Françoise Mercier-Nomé
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Martin Davy
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Isabelle Raymond-Letron
- Department of Histopathology, National Veterinary School of Toulouse, 31076 Toulouse, France;
- Platform of Experimental and Compared Histopathology, STROMALab, UMR UPS/CNRS 5223, EFS, Inserm U1031, 31076 Toulouse, France
| | - Thi-Nhu-Ngoc Van
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Anastasia Godefroy
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Franck Molina
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Karl Balabanian
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Institut de Recherche Saint-Louis, Université de Paris, EMiLy, Inserm U1160, 75010 Paris, France
| | - Gwendal Lazennec
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Correspondence:
| |
Collapse
|
60
|
Zhou X, Xiao F, Sugimoto H, Li B, McAndrews KM, Kalluri R. Acute Kidney Injury Instigates Malignant Renal Cell Carcinoma via CXCR2 in Mice with Inactivated Trp53 and Pten in Proximal Tubular Kidney Epithelial Cells. Cancer Res 2021; 81:2690-2702. [PMID: 33558337 PMCID: PMC12048857 DOI: 10.1158/0008-5472.can-20-2930] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most common urologic malignancies with the highest mortality rates worldwide. However, relevant mouse models that recapitulated the genetic alterations found in RCC have been lacking. In this study, we crossed Trp53 and Pten conditional knockout mice with Ggt1-Cre mice to generate a Ggt1-Cre; Trp53LoxP/LoxP ; PtenLoxP/LoxP ; YFPLoxP/LoxP (GPPY) mouse model, which resulted in the formation of dysplastic lesions involving kidney tubular epithelial cells (TEC), with only approximately 25% of mice developing RCC at an advanced age. Combining CRISPR/Cas9-mediated Vhl knockout in these mice increased the frequency of dysplasia, but failed to increase the incidence of RCC. Assessments of whether ischemic injury of TECs in the GPPY kidney without Vhl knockout influences the emergence of RCC revealed that advanced RCC predominantly emerged in the contralateral, noninjured kidney with 100% penetrance at a younger age, but rarely in the injured kidney due to severely damaged ischemic TEC. Injured TEC released CXCL1 into the microenvironment that traveled systemically to activate fibroblasts and recruit neutrophils to enable emergence of RCC in the contralateral kidney. Fibroblasts responded to CXCL1 via CXCR2 and recruited tumor-associated neutrophils, which in turn mediated tumor-promoting inflammation and angiogenesis. Treatment with anti-CXCR2 antibodies abolished the emergence of malignant RCC. Collectively, these results demonstrate a defining functional role of systemic inflammation and microenvironment in the emergence of malignant cancer from preestablished dysplastic precursor lesions. SIGNIFICANCE: These results identify a role for CXCL1/CXCR2 and the tumor microenvironment in the development of RCC. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2690/F1.large.jpg.See related commentary by Kusmartsev, p. 2584.
Collapse
Affiliation(s)
- Xunian Zhou
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fei Xiao
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Bioengineering, Rice University, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
61
|
Şen M, Akbayır E, Mercan Ö, Arsoy E, Gencer M, Yılmaz V, Küçükali Cİ, Tüzün E, Türkoğlu R. Cytokine-chemokine and cognitive profile of multiple sclerosis patients with predominant optic nerve and spinal cord involvement. J Spinal Cord Med 2021; 44:411-417. [PMID: 31556809 PMCID: PMC8081324 DOI: 10.1080/10790268.2019.1666238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Context/Objective: Clinical disease activity in multiple sclerosis (MS) may manifest as predominant involvement of optic nerves and spinal cord, as exemplified by opticospinal multiple sclerosis (OSMS) often encountered in Asian countries. Our aim was to compare the clinical features, neuropsychological profile and cytokine/chemokine levels of patients with conventional MS (CMS) and MS presenting predominantly with spinal cord and optic nerve attacks (MS-SCON).Design: Cross-sectional study.Setting: MS Outpatient Clinic.Participants: Fourteen MS-SCON patients, 20 CMS patients without myelitis and optic neuritis attacks and 21 healthy individuals.Outcome measures: IL-8, IL-10, IFN-γ, IL-17 and TNF-α levels were measured by multiplex assay and CXCL2 and CXCL5 levels were measured by ELISA. A panel of neuropsychological tests, Beck depression inventory, 9-hole peg and timed 25-foot walk tests were employed.Results: CMS and MS-SCON patients showed similar clinical features. Both CMS and MS-SCON patients displayed reduced IL-8 and CXCL2 and increased TNF-α levels, while IL-10 and CXCL5 levels were identical among all groups.Conclusion: Neuropsychological and motor function test performances of CMS and MS-SCON patients were highly comparable. CMS and MS-SCON present with similar clinical, neuropsychological and immunological features. Therefore, optic nerve and spinal cord-dominant form of MS does not necessarily establish a distinct entity in our region. Cognitive networks of the central nervous system may be damaged during the disease course of MS, despite the absence of cerebral or cerebellar clinical attacks.
Collapse
Affiliation(s)
- Melis Şen
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ece Akbayır
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Özlem Mercan
- Department of Neurology, Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey
| | - Erdil Arsoy
- Department of Neurology, Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey
| | - Mehmet Gencer
- Department of Neurology, Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey
| | - Vuslat Yılmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cem İsmail Küçükali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey,Correspondence to: Erdem Tüzün, Department of Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Ph: +90-2124142000-33356, +90-2124142001.
| | - Recai Türkoğlu
- Department of Neurology, Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
62
|
Gao M, Lin Y, Liu X, Zhao Z, Zhu Z, Zhang H, Ban Y, Bie Y, He X, Sun X, Zhang S. TERT Mutation Is Accompanied by Neutrophil Infiltration and Contributes to Poor Survival in Isocitrate Dehydrogenase Wild-Type Glioma. Front Cell Dev Biol 2021; 9:654407. [PMID: 33996815 PMCID: PMC8119999 DOI: 10.3389/fcell.2021.654407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Mutation of the telomerase reverse transcriptase (TERT) promoter has been demonstrated as an unfavorable prognostic marker in patients with isocitrate dehydrogenase wild-type (IDHwt) glioma. This study aimed to investigate the immune role of TERT promoter mutation status which could improve prognostic prediction in IDHwt. TERT mutation status, IDH mutation, and 1p-19q codeletion status data were obtained from 614 glioma cases from the Cancer Genome Atlas, and 325 cases from the Chinese Glioma Genome Atlas. The same information was obtained from 49 clinical glioma tissues. TERT mutation is preferentially present in glioblastoma and IDH-wt gliomas and is associated with poor prognosis. Moreover, TERT mutation was associated with infiltration of neutrophils and expression of neutrophil chemokines. which might partially contribute to the poor outcome in IDH-wt glioma. Furthermore, patients with IDH-wt glioma did not harbor increased peripheral neutrophils, implying that the infiltrated neutrophil in the tumor environment might due to cytokine chemotaxis. In this study, we hereby propose that TERT mutation might be a molecular driver of the dysfunctional immune microenvironment in IDH-wt glioma. TERT mutation may be a potential immune therapeutic target for optimizing treatment combinations and patient selection for glioma immunotherapy.
Collapse
Affiliation(s)
- Mengqi Gao
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yi Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xing Liu
- Chinese Glioma Genome Atlas Network, Beijing, China
| | - Zheng Zhao
- Chinese Glioma Genome Atlas Network, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyuan Zhu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongbo Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yunchao Ban
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yanan Bie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaozheng He
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiang Sun
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shizhong Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
63
|
Ruotsalainen J, Lopez‐Ramos D, Rogava M, Shridhar N, Glodde N, Gaffal E, Hölzel M, Bald T, Tüting T. The myeloid cell type I IFN system promotes antitumor immunity over pro-tumoral inflammation in cancer T-cell therapy. Clin Transl Immunology 2021; 10:e1276. [PMID: 33968406 PMCID: PMC8082713 DOI: 10.1002/cti2.1276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/24/2020] [Accepted: 03/25/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Type I interferons are evolutionally conserved cytokines, with broad antimicrobial and immunoregulatory functions. Despite well-characterised role in spontaneous cancer immunosurveillance, the function of type I IFNs in cancer immunotherapy remains incompletely understood. METHODS We utilised genetic mouse models to explore the role of the type I IFN system in CD8+ T-cell immunotherapy targeting the melanocytic lineage antigen gp100. RESULTS The therapeutic efficacy of adoptively transferred T cells was found to depend on a functional type I IFN system in myeloid immune cells. Compromised type I IFN signalling in myeloid immune cells did not prevent expansion, tumor infiltration or effector function of melanoma-specific Pmel-1 CD8+ T cells. However, melanomas growing in globally (Ifnar1-/-) or conditionally (Ifnar1ΔLysM) type I IFN system-deficient mice displayed increased myeloid infiltration, hypoxia and melanoma cell dedifferentiation. Mechanistically, hypoxia was found to induce dedifferentiation and loss of the gp100 target antigen in melanoma cells and type I IFN could directly inhibit the inflammatory activation of myeloid cells. Unexpectedly, the immunotherapy induced significant reduction in tumor blood vessel density and whereas host type I IFN system was not required for the vasculosculpting, it promoted vessel permeability. CONCLUSION Our results substantiate a complex and plastic phenotypic interconnection between melanoma and myeloid cells in the context of T-cell immunotherapy. Type I IFN signalling in myeloid cells was identified as a key regulator of the balance between antitumor immunity and disease-promoting inflammation, thus supporting the development of novel combinatorial immunotherapies targeting this immune cell compartment.
Collapse
Affiliation(s)
- Janne Ruotsalainen
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Dorys Lopez‐Ramos
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Meri Rogava
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Naveen Shridhar
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Nicole Glodde
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
- Institute of Experimental Oncology (IEO)Medical FacultyUniversity Hospital BonnUniversity of BonnBonnGermany
| | - Evelyn Gaffal
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO)Medical FacultyUniversity Hospital BonnUniversity of BonnBonnGermany
| | - Tobias Bald
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
- Laboratory of Tumor‐ImmunobiologyInstitute of Experimental Oncology (IEO)Medical FacultyUniversity Hospital BonnUniversity of BonnBonnGermany
| | - Thomas Tüting
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| |
Collapse
|
64
|
Di Pilato M, Palomino-Segura M, Mejías-Pérez E, Gómez CE, Rubio-Ponce A, D'Antuono R, Pizzagalli DU, Pérez P, Kfuri-Rubens R, Benguría A, Dopazo A, Ballesteros I, Sorzano COS, Hidalgo A, Esteban M, Gonzalez SF. Neutrophil subtypes shape HIV-specific CD8 T-cell responses after vaccinia virus infection. NPJ Vaccines 2021; 6:52. [PMID: 33846352 PMCID: PMC8041892 DOI: 10.1038/s41541-021-00314-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.
Collapse
Affiliation(s)
- Mauro Di Pilato
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland. .,Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain. .,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Miguel Palomino-Segura
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain.,Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Carmen E Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Andrea Rubio-Ponce
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Rocco D'Antuono
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Crick Advanced Light Microscopy Science and Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Diego Ulisse Pizzagalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Institute of Computational Science, Università della Svizzera Italiana, Lugano, Switzerland
| | - Patricia Pérez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Raphael Kfuri-Rubens
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Iván Ballesteros
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Carlos Oscar S Sorzano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain.
| | - Santiago F Gonzalez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.
| |
Collapse
|
65
|
Liu TW, Gammon ST, Yang P, Fuentes D, Piwnica-Worms D. Myeloid cell-derived HOCl is a paracrine effector that trans-inhibits IKK/NF-κB in melanoma cells and limits early tumor progression. Sci Signal 2021; 14:14/677/eaax5971. [PMID: 33824181 DOI: 10.1126/scisignal.aax5971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The myeloperoxidase (MPO) system of myeloid-derived cells (MDCs) is central to cellular innate immunity. Upon MDC activation, MPO is secreted into phagosomes where it catalyzes the production of hypochlorous acid (HOCl), a potent chlorinating oxidant. Here, we demonstrated that the myeloid lineage-restricted MPO-HOCl system had antitumor effects in early melanoma growth in aged mice. Orthotopic melanomas grew more slowly in immunocompetent MPO+/+ host mice compared to age-matched syngeneic MPO-/- mice. Real-time intravital tumor imaging in vivo and in cell cocultures revealed a cell-cell proximity-dependent association between MDC-derived MPO enzyme activity and blockade of ligand-induced IκBα degradation in tumor cells. HOCl directly trans-inhibited IκB kinase (IKK) activity in tumor cells, thereby decreasing nuclear factor κB (NF-κB) transcriptional activation and inducing changes in the expression of genes involved in metabolic pathways, cell cycle progression, and DNA replication. By contrast, HOCl induced transcriptional changes in CD8+ T cells related to ion transport and the MAPK and PI3K-AKT signaling pathways that are associated with T cell activation. MPO increased the circulating concentrations of the myeloid cell-attracting cytokines CXCL1 and CXCL5, enhanced local infiltration by CD8+ cytotoxic T cells, and decreased tumor growth. Overall, these data reveal a role for MDC-derived HOCl as a small-molecule paracrine signaling factor that trans-inhibits IKK in melanoma tumor cells, mediating antitumor responses during early tumor progression.
Collapse
Affiliation(s)
- Tracy W Liu
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Yang
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Fuentes
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
66
|
The CXCL2/IL8/CXCR2 Pathway Is Relevant for Brain Tumor Malignancy and Endothelial Cell Function. Int J Mol Sci 2021; 22:ijms22052634. [PMID: 33807899 PMCID: PMC7961945 DOI: 10.3390/ijms22052634] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
We aimed to evaluate the angiogenic capacity of CXCL2 and IL8 affecting human endothelial cells to clarify their potential role in glioblastoma (GBM) angiogenesis. Human GBM samples and controls were stained for proangiogenic factors. Survival curves and molecule correlations were obtained from the TCGA (The Cancer Genome Atlas) database. Moreover, proliferative, migratory and angiogenic activity of peripheral (HUVEC) and brain specific (HBMEC) primary human endothelial cells were investigated including blockage of CXCR2 signaling with SB225502. Gene expression analyses of angiogenic molecules from endothelial cells were performed. Overexpression of VEGF and CXCL2 was observed in GBM patients and associated with a survival disadvantage. Molecules of the VEGF pathway correlated but no relation for CXCR1/2 and CXCL2/IL8 was found. Interestingly, receptors of endothelial cells were not induced by addition of proangiogenic factors in vitro. Proliferation and migration of HUVEC were increased by VEGF, CXCL2 as well as IL8. Their sprouting was enhanced through VEGF and CXCL2, while IL8 showed no effect. In contrast, brain endothelial cells reacted to all proangiogenic molecules. Additionally, treatment with a CXCR2 antagonist led to reduced chemokinesis and sprouting of endothelial cells. We demonstrate the impact of CXCR2 signaling on endothelial cells supporting an impact of this pathway in angiogenesis of glioblastoma.
Collapse
|
67
|
Fenton SE, Saleiro D, Platanias LC. Type I and II Interferons in the Anti-Tumor Immune Response. Cancers (Basel) 2021; 13:1037. [PMID: 33801234 PMCID: PMC7957896 DOI: 10.3390/cancers13051037] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
The interferons (IFNs) are essential components of the immune response against infections and malignancies. IFNs are potent promoters of the anti-tumor response, but there is also evidence that feedback mechanisms regulated by IFNs negatively control immune responses to avoid hyper-activation and limit inflammation. This balance of responses plays an important role in cancer surveillance, immunoediting and response to anticancer therapeutic approaches. Here we review the roles of both type I and type II IFNs on the control of the immune response against malignancies in the context of effects on both malignant cells and cells of the immune system in the tumor microenvironment.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (S.E.F.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (S.E.F.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (S.E.F.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
68
|
Zangouei AS, Hamidi AA, Rahimi HR, Saburi E, Mojarrad M, Moghbeli M. Chemokines as the critical factors during bladder cancer progression: an overview. Int Rev Immunol 2021; 40:344-358. [PMID: 33591855 DOI: 10.1080/08830185.2021.1877287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bladder cancer (BCa) is one of the most frequent urogenital malignancies which is mainly observed among men. There are various genetic and environmental risk factors associated with BCa progression. Transurethral endoscopic resection and open ablative surgery are the main treatment options for muscle invasive BCa. BCG therapy is also employed following the endoscopic resection to prevent tumor relapse. The tumor microenvironment is the main interaction site of tumor cells and immune system in which the immune cells are recruited via chemokines and chemokine receptors. In present review we summarized the main chemokines and chemokine receptors which have been associated with histopathological features of BCa patients in the world. This review highlights the chemokines and chemokine receptors as critical markers in early detection and therapeutic purposes among BCa patients and clarifies their molecular functions during BCa progression and metastasis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
69
|
Nagata M, Kosaka A, Yajima Y, Yasuda S, Ohara M, Ohara K, Harabuchi S, Hayashi R, Funakoshi H, Ueda J, Kumai T, Nagato T, Oikawa K, Harabuchi Y, Esteban C, Ohkuri T, Kobayashi H. A critical role of STING-triggered tumor-migrating neutrophils for anti-tumor effect of intratumoral cGAMP treatment. Cancer Immunol Immunother 2021; 70:2301-2312. [PMID: 33507344 DOI: 10.1007/s00262-021-02864-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/15/2021] [Indexed: 01/22/2023]
Abstract
Stimulator of interferon genes (STING) contributes to anti-tumor immunity by activating antigen-presenting cells and inducing mobilization of tumor-specific T cells. A role for tumor-migrating neutrophils in the anti-tumor effect of STING-activating therapy has not been defined. We used mouse tumor transplantation models for assessing neutrophil migration into the tumor triggered by intratumoral treatment with STING agonist, 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). Intratumoral STING activation with cGAMP enhanced neutrophil migration into the tumor in an NF-κB/CXCL1/2-dependent manner. Blocking the neutrophil migration by anti-CXCR2 monoclonal antibody impaired T cell activation in tumor-draining lymph nodes (dLNs) and efficacy of intratumoral cGAMP treatment. Moreover, the intratumoral cGAMP treatment did not show any anti-tumor effect in type I interferon (IFN) signal-impaired mice in spite of enhanced neutrophil accumulation in the tumor. These results suggest that both neutrophil migration and type I interferon (IFN) induction by intratumoral cGAMP treatment were critical for T-cell activation of dLNs and the anti-tumor effect. In addition, we also performed in vitro analysis showing enhanced cytotoxicity of neutrophils by IFN-β1. Extrinsic STING activation triggers anti-tumor immune responses by recruiting and activating neutrophils in the tumor via two signaling pathways, CXCL1/2 and type I IFNs.
Collapse
Affiliation(s)
- Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Syunsuke Yasuda
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mizuho Ohara
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kenzo Ohara
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Shohei Harabuchi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Ryusuke Hayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroshi Funakoshi
- Deprtment of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Jun Ueda
- Deprtment of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Takumi Kumai
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Celis Esteban
- Georgia Cancer Center, Augusta University Medical College of Georgia, Augusta, GA, USA
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan.
| |
Collapse
|
70
|
Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. Int J Mol Sci 2021; 22:ijms22020843. [PMID: 33467722 PMCID: PMC7830156 DOI: 10.3390/ijms22020843] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors—CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Barbara Gawrońska-Szklarz
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
71
|
Fox LE, Locke MC, Lenschow DJ. Context Is Key: Delineating the Unique Functions of IFNα and IFNβ in Disease. Front Immunol 2020; 11:606874. [PMID: 33408718 PMCID: PMC7779635 DOI: 10.3389/fimmu.2020.606874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) are critical effector cytokines of the immune system and were originally known for their important role in protecting against viral infections; however, they have more recently been shown to play protective or detrimental roles in many disease states. Type I IFNs consist of IFNα, IFNβ, IFNϵ, IFNκ, IFNω, and a few others, and they all signal through a shared receptor to exert a wide range of biological activities, including antiviral, antiproliferative, proapoptotic, and immunomodulatory effects. Though the individual type I IFN subtypes possess overlapping functions, there is growing appreciation that they also have unique properties. In this review, we summarize some of the mechanisms underlying differential expression of and signaling by type I IFNs, and we discuss examples of differential functions of IFNα and IFNβ in models of infectious disease, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Lindsey E. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Marissa C. Locke
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Deborah J. Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
72
|
Kalafati L, Mitroulis I, Verginis P, Chavakis T, Kourtzelis I. Neutrophils as Orchestrators in Tumor Development and Metastasis Formation. Front Oncol 2020; 10:581457. [PMID: 33363012 PMCID: PMC7758500 DOI: 10.3389/fonc.2020.581457] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Several lines of clinical and experimental evidence suggest that immune cell plasticity is a central player in tumorigenesis, tumor progression, and metastasis formation. Neutrophils are able to promote or inhibit tumor growth. Through their interaction with tumor cells or their crosstalk with other immune cell subsets in the tumor microenvironment, they modulate tumor cell survival. Here, we summarize current knowledge with regards to the mechanisms that underlie neutrophil–mediated effects on tumor establishment and metastasis development. We also discuss the tumor-mediated effects on granulopoiesis and neutrophil precursors in the bone marrow and the involvement of neutrophils in anti-tumor therapeutic modalities.
Collapse
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany
| | - Ioannis Mitroulis
- National Center for Tumor Diseases, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany.,Department of Hematology and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panayotis Verginis
- University of Crete, School of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Kourtzelis
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
73
|
Blank A, Kremenetskaia I, Urbantat RM, Acker G, Turkowski K, Radke J, Schneider UC, Vajkoczy P, Brandenburg S. Microglia/macrophages express alternative proangiogenic factors depending on granulocyte content in human glioblastoma. J Pathol 2020; 253:160-173. [PMID: 33044746 DOI: 10.1002/path.5569] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/27/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Myeloid cells are an inherent part of the microenvironment of glioblastoma multiforme (GBM). There is growing evidence for their participation in mechanisms of tumor escape, especially in the development of resistance following initially promising anti-VEGF/VEGFR treatment. Thus, we sought to define the capability of myeloid cells to contribute to the expression of proangiogenic molecules in human GBM. We investigated GBM specimens in comparison with anaplastic astrocytoma (WHO grade III) and epilepsy patient samples freshly obtained from surgery. Flow cytometric analyses revealed two distinct CD11b+ CD45+ cell populations in GBM tissues, which were identified as microglia/macrophages and granulocytes. Due to varied granulocyte influx, GBM samples were subdivided into groups with low (GBM-lPMNL) and high (GBM-hPMNL) numbers of granulocytes (polymorphonuclear leukocytes; PMNL), which were related to activation of the microglia/macrophage population. Microglia/macrophages of the GBM-lPMNL group were similar to those of astrocytoma specimens, but those of GBM-hPMNL tissues revealed an altered phenotype by expressing high levels of CD163, TIE2, HIF1α, VEGF, CXCL2 and CD13. Although microglia/macrophages represented the main source of alternative proangiogenic factors, additionally granulocytes participated by production of IL8 and CD13. Moreover, microglia/macrophages of the GBM-hPMNL specimens were highly associated with tumor blood vessels, accompanied by remodeling of the vascular structure. Our data emphasize that tumor-infiltrating myeloid cells might play a crucial role for limited efficacy of anti-angiogenic therapy bypassing VEGF-mediated pathways through expression of alternative proangiogenic factors. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anne Blank
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ruth M Urbantat
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Güliz Acker
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Kati Turkowski
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josefine Radke
- Berlin Institute of Health, Berlin, Germany.,Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susan Brandenburg
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
74
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
75
|
Abstract
Neutrophils are the most abundant white blood cells in the human circulation and are usually associated with inflammation and with fighting infections. In recent years, the role of these cells during cancer progression has been a matter of increasing interest. Tumor-associated neutrophils (TANs) accumulate in cancer patients and represent an important negative prognostic marker in a broad variety of neoplasms. Accordingly, TANs represent a highly attractive therapeutic target. TAN may exhibit tumor-promoting or -inhibiting functions. Pro-tumor neutrophils support tumor angiogenesis and growth and promote metastatic dissemination of tumors via establishment of the premetastatic niche. Studies in animal models have already shown that the depletion of TANs or the inhibition of their migration bears therapeutic potential. Multiple pathways and mediators that induce pro-tumoral functions in neutrophils have been identified. In this review, we provide an up-to-date overview of the pro- and anti-tumor properties of neutrophils as well as the environmental cues that regulate these distinct functions. We also report on our own work that comprehensively investigated the role of neutrophils in head and neck cancer.
Collapse
|
76
|
Fujimura T, Aiba S. Significance of Immunosuppressive Cells as a Target for Immunotherapies in Melanoma and Non-Melanoma Skin Cancers. Biomolecules 2020; 10:E1087. [PMID: 32707850 PMCID: PMC7464513 DOI: 10.3390/biom10081087] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs) have been detected in most skin cancers. TAMs produce various chemokines and angiogenic factors that promote tumor development, along with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated neutrophils. TAMs generated from monocytes develop into functional, fully activated macrophages, and TAMs obtain various immunosuppressive functions to maintain the tumor microenvironment. Since TAMs express PD1 to maintain the immunosuppressive M2 phenotype by PD1/PD-L1 signaling from tumor cells, and the blockade of PD1/PD-L1 signaling by anti-PD1 antibodies (Abs) activate and re-polarize TAMs into immunoreactive M1 phenotypes, TAMs represent a potential target for anti-PD1 Abs. The main population of TAMs comprises CD163+ M2 macrophages, and CD163+ TAMs release soluble (s)CD163 and several proinflammatory chemokines (CXCL5, CXCL10, CCL19, etc.) as a result of TAM activation to induce an immunosuppressive tumor microenvironment together with other immunosuppressive cells. Since direct blockade of PD1/PD-L1 signaling between tumor cells and tumor-infiltrating T cells (both effector T cells and Tregs) is mandatory for inducing an anti-immune response by anti-PD1 Abs, anti-PD1 Abs need to reach the tumor microenvironment to induce anti-immune responses in the tumor-bearing host. Taken together, TAM-related factors could offer a biomarker for anti-PD1 Ab-based immunotherapy. Understanding the crosstalk between TAMs and immunosuppressive cells is important for optimizing PD1 Ab-based immunotherapy.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan;
| | | |
Collapse
|
77
|
Mukaida N, Sasaki SI, Baba T. Two-Faced Roles of Tumor-Associated Neutrophils in Cancer Development and Progression. Int J Mol Sci 2020; 21:3457. [PMID: 32422991 PMCID: PMC7278934 DOI: 10.3390/ijms21103457] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans. Neutrophil infiltration into tumor tissues has long been observed but its roles have been ignored due to the presumed short life cycle and metabolic incompetence of neutrophils. Recent advances in neutrophil biology research have revealed that neutrophils have a longer life cycle with a potential to express various bioactive molecules. Clinical studies have simultaneously unraveled an increase in the neutrophil-lymphocyte ratio (NLR), a ratio of absolute neutrophil to absolute lymphocyte numbers in cancer patient peripheral blood and an association of higher NLR with more advanced or aggressive disease. As a consequence, tumor-associated neutrophils (TANs) have emerged as important players in tumor microenvironment. The elucidation of the roles of TANs, however, has been hampered by their multitude of plasticity in terms of phenotypes and functionality. Difficulties are further enhanced by the presence of a related cell population-polymorphonuclear leukocyte (PMN)-myeloid-derived suppressor cells (MDSCs)-and various dissimilar aspects of neutrophil biology between humans and mice. Here, we discuss TAN biology in various tumorigenesis processes, and particularly focus on the context-dependent functional heterogeneity of TANs.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; (S.-i.S.); (T.B.)
| | | | | |
Collapse
|
78
|
Zhang YH, Aldo P, You Y, Ding J, Kaislasuo J, Petersen JF, Lokkegaard E, Peng G, Paidas MJ, Simpson S, Pal L, Guller S, Liu H, Liao AH, Mor G. Trophoblast-secreted soluble-PD-L1 modulates macrophage polarization and function. J Leukoc Biol 2020; 108:983-998. [PMID: 32386458 DOI: 10.1002/jlb.1a0420-012rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Decidual macrophages are in close contact with trophoblast cells during placenta development, and an appropriate crosstalk between these cellular compartments is crucial for the establishment and maintenance of a healthy pregnancy. During different phases of gestation, macrophages undergo dynamic changes to adjust to the different stages of fetal development. Trophoblast-secreted factors are considered the main modulators responsible for macrophage differentiation and function. However, the phenotype of these macrophages induced by trophoblast-secreted factors and the factors responsible for their polarization has not been elucidated. In this study, we characterized the phenotype and function of human trophoblast-induced macrophages. Using in vitro models, we found that human trophoblast-educated macrophages were CD14+ CD206+ CD86- and presented an unusual transcriptional profile in response to TLR4/LPS activation characterized by the expression of type I IFN-β expression. IFN-β further enhances the constitutive production of soluble programmed cell death ligand 1 (PD-L1) from trophoblast cells. PD-1 blockage inhibited trophoblast-induced macrophage differentiation. Soluble PD-L1 (sPD-L1) was detected in the blood of pregnant women and increased throughout the gestation. Collectively, our data suggest the existence of a regulatory circuit at the maternal fetal interface wherein IFN-β promotes sPD-L1 expression/secretion by trophoblast cells, which can then initiate a PD-L1/PD-1-mediated macrophage polarization toward an M2 phenotype, consequently decreasing inflammation. Macrophages then maintain the expression of sPD-L1 by the trophoblasts through IFN-β production induced through TLR4 ligation.
Collapse
Affiliation(s)
- Yong-Hong Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Janina Kaislasuo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Obstetrics and Gynecology, University of Helsinki and the Helsinki University Hospital, Helsinki, Finland
| | - Jesper F Petersen
- Department of Obstetrics and Gynecology, North Zealand Hospital, Hilleroed, Denmark
| | - Ellen Lokkegaard
- Department of Obstetrics and Gynecology, North Zealand Hospital, Hilleroed, Denmark
| | - Gang Peng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Samantha Simpson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ai Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
79
|
Zhou J, Jiang S, Wang W, Liu R. [Research Progress of Tumor-Associated Neutrophils and Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 22:727-731. [PMID: 31771743 PMCID: PMC6885416 DOI: 10.3779/j.issn.1009-3419.2019.11.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
肺癌为全球性高发病率、高死亡率疾病,严重影响人类健康。其中肺部慢性炎症的长期存在与肺癌的发生发展关系密切,中性粒细胞不但参与急、慢性炎症反应,而且参与肿瘤微环境(tumor-microenvironment, TME)中的组成,与肿瘤的发生、发展密切相关。近年来研究发现,肿瘤相关中性粒细胞(tumor-associated neutrophils, TANs)在肺癌的发生和发展中发挥着重要的作用。本文就肿瘤相关中性粒细胞在肺癌中的作用、机制以及临床意义进行综述。
Collapse
Affiliation(s)
- Jinhua Zhou
- Jining No.1 People's Hospital, Jining 272000, China
| | | | - Wei Wang
- The Second Hospital of Shandong University, Jinan 250033, China
| | - Ruijuan Liu
- Jining No.1 People's Hospital, Jining 272000, China
| |
Collapse
|
80
|
Chang RB, Beatty GL. The interplay between innate and adaptive immunity in cancer shapes the productivity of cancer immunosurveillance. J Leukoc Biol 2020; 108:363-376. [PMID: 32272502 DOI: 10.1002/jlb.3mir0320-475r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
The immune system is a vital determinant of cancer and shapes its trajectory. Notably, the immune reaction to cancer harbors dual potential for suppressing or promoting cancer development and progression. This polarity of the immune response is determined, in part, by the character of the interplay between innate and adaptive immunity. On the one hand, the innate immune compartment is a necessary proponent of cancer immunity by supporting an immunostimulatory state that enables T cell immunosurveillance. However, in the setting of cancer, innate immune cells are commonly polarized with immune-suppressive properties and as a result, orchestrate a tolerogenic niche that interferes with the cytotoxic potential of tumor antigen-specific T cells. Here, we discuss the role of innate immunity as a positive and negative regulator of adaptive immunosurveillance; moreover, we highlight how tumor cells may skew leukocytes toward an immunosuppressive state and, as such, subvert the phenotypic plasticity of the immune compartment to advance disease progression. These observations establish the precedent for novel therapeutic strategies that aim to restore the tumor microenvironment to an immunoreactive state and, in doing so, condition and maintain the immunogenicity of tumors to yield deep and durable responses to immunotherapy.
Collapse
Affiliation(s)
- Renee B Chang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
81
|
Zhou L, Zhang Y, Wang Y, Zhang M, Sun W, Dai T, Wang A, Wu X, Zhang S, Wang S, Zhou F. A Dual Role of Type I Interferons in Antitumor Immunity. ACTA ACUST UNITED AC 2020; 4:e1900237. [PMID: 33245214 DOI: 10.1002/adbi.201900237] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFN-Is) are a family of cytokines that exert direct antiviral effects and regulate innate and adaptive immune responses through direct and indirect mechanisms. It is generally believed that IFN-Is repress tumor development via restricting tumor proliferation and inducing antitumor immune responses. However, recent emerging evidence suggests that IFN-Is play a dual role in antitumor immunity. That is, in the early stage of tumorigenesis, IFN-Is promote the antitumor immune response by enhancing antigen presentation in antigen-presenting cells and activating CD8+ T cells. However, in the late stage of tumor progression, persistent expression of IFN-Is induces the expression of immunosuppressive factors (PD-L1, IDO, and IL-10) on the surface of dendritic cells and other bone marrow cells and inhibits their antitumor immunity. This review outlines these dual functions of IFN-Is in antitumor immunity and elucidates the involved mechanisms, as well as their applications in tumor therapy.
Collapse
Affiliation(s)
- Lili Zhou
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yuqi Zhang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yongqiang Wang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Meirong Zhang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Wenhuan Sun
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Tong Dai
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Aijun Wang
- Department of Surgery, School of Medicine, UC Davis, Davis, CA, 95817, USA
| | - Xiaojin Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Suping Zhang
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, Base for international Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Shuai Wang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Fangfang Zhou
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
82
|
The role of CXCR2 in acute inflammatory responses and its antagonists as anti-inflammatory therapeutics. Curr Opin Hematol 2020; 26:28-33. [PMID: 30407218 DOI: 10.1097/moh.0000000000000476] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW CXCR2 is key stimulant of immune cell migration and recruitment, especially of neutrophils. Alleviating excessive neutrophil accumulation and infiltration could prevent prolonged tissue damage in inflammatory disorders. This review focuses on recent advances in our understanding of the role of CXCR2 in regulating neutrophil migration and the use of CXCR2 antagonists for therapeutic benefit in inflammatory disorders. RECENT FINDINGS Recent studies have provided new insights into how CXCR2 signaling regulates hematopoietic cell mobilization and function in both health and disease. We also summarize several CXCR2 regulatory mechanisms during infection and inflammation such as via Wip1, T-bet, P-selectin glycoprotein ligand-1, granulocyte-colony-stimulating factor, and microbiome. Moreover, we provide an update of studies investigating CXCR2 blockade in the laboratory and in clinical trials. SUMMARY Neutrophil homeostasis, migration, and recruitment must be precisely regulated. The CXCR2 signaling pathway is a potential target for modifying neutrophil dynamics in inflammatory disorders. We discuss the recent clinical use of CXCR2 antagonists for controlling inflammation.
Collapse
|
83
|
Acker G, Zollfrank J, Jelgersma C, Nieminen-Kelhä M, Kremenetskaia I, Mueller S, Ghori A, Vajkoczy P, Brandenburg S. The CXCR2/CXCL2 signalling pathway - An alternative therapeutic approach in high-grade glioma. Eur J Cancer 2020; 126:106-115. [PMID: 31927212 DOI: 10.1016/j.ejca.2019.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Besides VEGF, alternative signalling via CXCR2 and its ligands CXCL2/CXCL8 is a crucial part of angiogenesis in glioblastoma. Our aim was to understand the role of CXCR2 for glioma biology and elucidate the therapeutic potential of its specific inhibition. METHODS GL261 glioma cells were implanted intracranially in syngeneic mice. The 14 or 7 days of local or systemic treatment with CXCR2-antagonist (SB225002) was initiated early on the day of tumour cell implantation or delayed after 14 days of tumour growth. Glioma volume was verified using MRI before and after treatment. Immunofluorescence staining was used to investigate tumour progression, angiogenesis and microglial behaviour. Furthermore, in vitro assays and gene expression analyses of glioma and endothelial cells were performed to validate inhibitor activity. RESULTS CXCR2-blocking led to significantly reduced glioma volumes of around 50% after early and delayed local treatments. The treated tumours were comparable with controls regarding invasiveness, proliferation and apoptotic cell activity. Furthermore, no differences in CXCR2/CXCL2 expression were observed. However, immunostaining revealed reduction in vessel density and accumulation of microglia/macrophages, whereas interaction of these myeloid cells with tumour vessels was enhanced. In vitro analyses of the CXCR2-antagonist showed its direct impact on proliferation of glioma and endothelial cells if used at higher concentrations. In addition, expression of CXCR2/CXCL2 signalling genes was increased in both cell types by SB225002, but VEGF-relevant genes were unaffected. CONCLUSION The CXCR2-antagonist inhibited glioma growth during tumour initiation and progression, whereas treatment was well-tolerated by the recipients. Thus, the CXCR2/CXCL2 signalling represents a promising therapeutic target in glioma.
Collapse
Affiliation(s)
- Güliz Acker
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Julia Zollfrank
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Claudius Jelgersma
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Adnan Ghori
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susan Brandenburg
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
84
|
Distinct Roles of Interferon Alpha and Beta in Controlling Chikungunya Virus Replication and Modulating Neutrophil-Mediated Inflammation. J Virol 2019; 94:JVI.00841-19. [PMID: 31619554 DOI: 10.1128/jvi.00841-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022] Open
Abstract
Type I interferons (IFNs) are key mediators of the innate immune response. Although members of this family of cytokines signal through a single shared receptor, biochemical and functional variation exists in response to different IFN subtypes. While previous work has demonstrated that type I IFNs are essential to control infection by chikungunya virus (CHIKV), a globally emerging alphavirus, the contributions of individual IFN subtypes remain undefined. To address this question, we evaluated CHIKV pathogenesis in mice lacking IFN-β (IFN-β knockout [IFN-β-KO] mice or mice treated with an IFN-β-blocking antibody) or IFN-α (IFN regulatory factor 7 knockout [IRF7-KO] mice or mice treated with a pan-IFN-α-blocking antibody). Mice lacking either IFN-α or IFN-β developed severe clinical disease following infection with CHIKV, with a marked increase in foot swelling compared to wild-type mice. Virological analysis revealed that mice lacking IFN-α sustained elevated infection in the infected ankle and in distant tissues. In contrast, IFN-β-KO mice displayed minimal differences in viral burdens within the ankle or at distal sites and instead had an altered cellular immune response. Mice lacking IFN-β had increased neutrophil infiltration into musculoskeletal tissues, and depletion of neutrophils in IFN-β-KO but not IRF7-KO mice mitigated musculoskeletal disease caused by CHIKV. Our findings suggest disparate roles for the IFN subtypes during CHIKV infection, with IFN-α limiting early viral replication and dissemination and IFN-β modulating neutrophil-mediated inflammation.IMPORTANCE Type I interferons (IFNs) possess a range of biological activity and protect against a number of viruses, including alphaviruses. Despite signaling through a shared receptor, there are established biochemical and functional differences among the IFN subtypes. The significance of our research is in demonstrating that IFN-α and IFN-β both have protective roles during acute chikungunya virus (CHIKV) infection but do so by distinct mechanisms. IFN-α limits CHIKV replication and dissemination, whereas IFN-β protects from CHIKV pathogenesis by limiting inflammation mediated by neutrophils. Our findings support the premise that the IFN subtypes have distinct biological activities in the antiviral response.
Collapse
|
85
|
Guo LY, Yang F, Peng LJ, Li YB, Wang AP. CXCL2, a new critical factor and therapeutic target for cardiovascular diseases. Clin Exp Hypertens 2019; 42:428-437. [PMID: 31752549 DOI: 10.1080/10641963.2019.1693585] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lin-Ya Guo
- Institute of Clinical Medicine, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P.R. China
- Department of Anatomy, School of Medicine, University of South China, Hengyang, Hunan, P.R. China
| | - Fang Yang
- Institute of Pharmacy and Pharmacology, university of South China, Hengyang, Hunan, P.R. China
| | - Li-Jun Peng
- Medical Record Statistics Office and Library, The Pediatric Academy of University of South China, Changsha, Hunan, P.R. China
| | - Yan-Bing Li
- Department of Anatomy, School of Medicine, University of South China, Hengyang, Hunan, P.R. China
- National key Discipline of Human Anatomy, Southern Medical University, Guangdong, Guangdong, P.R. China
| | - Ai-Ping Wang
- Institute of Clinical Medicine, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P.R. China
- Department of Anatomy, School of Medicine, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
86
|
Masucci MT, Minopoli M, Carriero MV. Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy. Front Oncol 2019; 9:1146. [PMID: 31799175 PMCID: PMC6874146 DOI: 10.3389/fonc.2019.01146] [Citation(s) in RCA: 433] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor Associated Neutrophils (TANs) are engaged into the tumor microenvironment by cytokines and chemokines, can be distinguished according to their activation and cytokine status and effects on tumor cell growing in N1 and N2 TANs. N1 TANs exert an antitumor activity, by direct or indirect cytotoxicity. N2 TANs stimulate immunosuppression, tumor growth, angiogenesis and metastasis by DNA instability, or by cytokines and chemokines release. In tumor patients, either a high number of TANs and Neutrophil-to-Lymphocyte Ratio (NLR) do correlate with poor prognosis, and, so far, TAN counts and NLR can be regarded as biomarkers. Owing to the pivotal role of TANs in stimulating tumor progression, therapeutic strategies to target TANs have been suggested, and two major approaches have been proposed: (a) targeting the CXCL-8/CXCR-1/CXCR-2 axis, thereby blocking TANs or (b) targeting substances produced by polymorpho-nuclear cells that promote tumor growth. Many studies have been accomplished either in vitro and in animal models, whereas clinical studies are restrained, presently, due to the risk of inducing immunosuppression. In this review, we deeply discuss the anti-tumorigenic or pro-tumorigenic activity of TANs. In particular, TANs relevance in tumor prognosis and in vitro therapeutic strategies are widely described. On-going clinical trials, aimed to inhibit neutrophil recruitment into the tumor are also accurately debated.
Collapse
Affiliation(s)
- Maria Teresa Masucci
- Tumor Progression Unit, Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale" IRCCS, Naples, Italy
| | - Michele Minopoli
- Tumor Progression Unit, Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale" IRCCS, Naples, Italy
| | - Maria Vincenza Carriero
- Tumor Progression Unit, Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale" IRCCS, Naples, Italy
| |
Collapse
|
87
|
Kawakubo M, Komura H, Goso Y, Okumura M, Sato Y, Fujii C, Miyashita M, Arisaka N, Harumiya S, Yamanoi K, Yamada S, Kakuta S, Kawashima H, Fukuda MN, Fukuda M, Nakayama J. Analysis of A4gnt Knockout Mice Reveals an Essential Role for Gastric Sulfomucins in Preventing Gastritis Cystica Profunda. J Histochem Cytochem 2019; 67:759-770. [PMID: 31246144 PMCID: PMC6764063 DOI: 10.1369/0022155419860134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/06/2019] [Indexed: 12/04/2022] Open
Abstract
Gastric adenocarcinoma cells secrete sulfomucins, but their role in gastric tumorigenesis remains unclear. To address that question, we generated A4gnt/Chst4 double-knockout (DKO) mice by crossing A4gnt knockout (KO) mice, which spontaneously develop gastric adenocarcinoma, with Chst4 KO mice, which are deficient in the sulfotransferase GlcNAc6ST-2. A4gnt/Chst4 DKO mice lack gastric sulfomucins but developed gastric adenocarcinoma. Unexpectedly, severe gastric erosion occurred in A4gnt/Chst4 DKO mice at as early as 3 weeks of age, and with aging these lesions were accompanied by gastritis cystica profunda (GCP). Cxcl1, Cxcl5, Ccl2, and Cxcr2 transcripts in gastric mucosa of 5-week-old A4gnt/Chst4 DKO mice exhibiting both hyperplasia and severe erosion were significantly upregulated relative to age-matched A4gnt KO mice, which showed hyperplasia alone. However, upregulation of these genes disappeared in 50-week-old A4gnt/Chst4 DKO mice exhibiting high-grade dysplasia/adenocarcinoma and GCP. Moreover, Cxcl1 and Cxcr2 were downregulated in A4gnt/Chst4 DKO mice relative to age-matched A4gnt KO mice exhibiting adenocarcinoma alone. These combined results indicate that the presence of sulfomucins prevents severe gastric erosion followed by GCP in A4gnt KO mice by transiently regulating a set of inflammation-related genes, Cxcl1, Cxcl5, Ccl2, and Cxcr2 at 5 weeks of age, although sulfomucins were not directly associated with gastric cancer development.
Collapse
Affiliation(s)
- Masatomo Kawakubo
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| | - Hitomi Komura
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Yukinobu Goso
- Department of Biochemistry, Kitasato University
Graduate School of Medical Sciences, Sagamihara, Japan
| | - Motohiro Okumura
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Yoshiko Sato
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| | - Masaki Miyashita
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Nobuhiko Arisaka
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Satoru Harumiya
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Kazuhiro Yamanoi
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| | - Shigenori Yamada
- Division of Gastroenterology, Iiyama Red Cross
Hospital, Iiyama, Japan
| | - Shigeru Kakuta
- Research Center for Human and Environmental
Sciences, Shinshu University, Matsumoto, Japan
- Department of Biomedical Science, Graduate
School of Agricultural and Life Sciences, The University of Tokyo, Tokyo,
Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology,
Graduate School of Pharmaceutical Sciences, Chiba University, Chiba,
Japan
| | - Michiko N. Fukuda
- Tumor Microenvironment and Cancer Immunology
Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA,
USA
- Laboratory for Drug Discovery, National
Institute of Advanced Industrial Science and Technology, Tsukuba,
Japan
| | - Minoru Fukuda
- Tumor Microenvironment and Cancer Immunology
Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA,
USA
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| |
Collapse
|
88
|
Gómez-Abenza E, Ibáñez-Molero S, García-Moreno D, Fuentes I, Zon LI, Mione MC, Cayuela ML, Gabellini C, Mulero V. Zebrafish modeling reveals that SPINT1 regulates the aggressiveness of skin cutaneous melanoma and its crosstalk with tumor immune microenvironment. J Exp Clin Cancer Res 2019; 38:405. [PMID: 31519199 PMCID: PMC6743187 DOI: 10.1186/s13046-019-1389-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is the most lethal form of skin cancer and while incidence rates are declining for most cancers, they have been steadily rising for SKCM. Serine protease inhibitor, kunitz-type, 1 (SPINT1) is a type II transmembrane serine protease inhibitor that has been shown to be involved in the development of several types of cancer, such as squamous cell carcinoma and colorectal cancer. METHODS We used the unique advantages of the zebrafish to model the impact of Spint1a deficiency in early transformation, progression and metastatic invasion of SKCM together with in silico analysis of the occurrence and relevance of SPINT1 genetic alterations of the SKCM TCGA cohort. RESULTS We report here a high prevalence of SPINT1 genetic alterations in SKCM patients and their association with altered tumor immune microenvironment and poor patient survival. The zebrafish model reveals that Spint1a deficiency facilitates oncogenic transformation, regulates the tumor immune microenvironment crosstalk, accelerates the onset of SKCM and promotes metastatic invasion. Notably, Spint1a deficiency is required at both cell autonomous and non-autonomous levels to enhance invasiveness of SKCM. CONCLUSIONS These results reveal a novel therapeutic target for SKCM.
Collapse
Affiliation(s)
- Elena Gómez-Abenza
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Sofía Ibáñez-Molero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Inmaculada Fuentes
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA USA
| | - Maria C. Mione
- Laboratory of Experimental Cancer Biology, Cibio, University of Trento, Trento, Italy
| | - María L. Cayuela
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Chiara Gabellini
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
- Present Address: Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, Pisa, Italy
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| |
Collapse
|
89
|
Callejas BE, Mendoza-Rodríguez MG, Villamar-Cruz O, Reyes-Martínez S, Sánchez-Barrera CA, Rodríguez-Sosa M, Delgado-Buenrostro NL, Martínez-Saucedo D, Chirino YI, León-Cabrera SA, Pérez-Plasencia C, Vaca-Paniagua F, Arias-Romero LE, Terrazas LI. Helminth-derived molecules inhibit colitis-associated colon cancer development through NF-κB and STAT3 regulation. Int J Cancer 2019; 145:3126-3139. [PMID: 31407335 DOI: 10.1002/ijc.32626] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022]
Abstract
Inflammation is currently considered a hallmark of cancer and plays a decisive role in different stages of tumorigenesis, including initiation, promotion, progression, metastasis and resistance to antitumor therapies. Colorectal cancer is a disease widely associated with local chronic inflammation. Additionally, extrinsic factors such as infection may beneficially or detrimentally alter cancer progression. Several reports have noted the ability of various parasitic infections to modulate cancer development, favoring tumor progression in many cases and inhibiting tumorigenesis in others. The aim of our study was to determine the effects of excreted/secreted products of the helminth Taenia crassiceps (TcES) as a treatment in a murine model of colitis-associated colon cancer (CAC). Here, we found that after inducing CAC, treatment with TcES was able to reduce inflammatory cytokines such as IL-1β, TNF-α, IL-33 and IL-17 and significantly attenuate colon tumorigenesis. This effect was associated with the inhibition of signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation. Furthermore, we determined that TcES interfered with LPS-induced NF-κB p65 activation in human colonic epithelial cell lines in a Raf-1 proto-oncogene-dependent manner. Moreover, in three-dimensional cultures, TcES promoted reorganization of the actin cytoskeleton, altering cell morphology and forming colonospheres, features associated with a low grade of aggressiveness. Our study demonstrates a remarkable effect of helminth-derived molecules on suppressing ongoing colorectal cancer by downregulating proinflammatory and protumorigenic signaling pathways.
Collapse
Affiliation(s)
- Blanca E Callejas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Mónica G Mendoza-Rodríguez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Olga Villamar-Cruz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Sandy Reyes-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Cuauhtémoc Angel Sánchez-Barrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Norma L Delgado-Buenrostro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Diana Martínez-Saucedo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Sonia A León-Cabrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico.,Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico.,Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico.,Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Luis E Arias-Romero
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Luis I Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico.,Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
90
|
Kumaran Satyanarayanan S, El Kebir D, Soboh S, Butenko S, Sekheri M, Saadi J, Peled N, Assi S, Othman A, Schif-Zuck S, Feuermann Y, Barkan D, Sher N, Filep JG, Ariel A. IFN-β is a macrophage-derived effector cytokine facilitating the resolution of bacterial inflammation. Nat Commun 2019; 10:3471. [PMID: 31375662 PMCID: PMC6677895 DOI: 10.1038/s41467-019-10903-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
Abstract
The uptake of apoptotic polymorphonuclear cells (PMN) by macrophages is critical for timely resolution of inflammation. High-burden uptake of apoptotic cells is associated with loss of phagocytosis in resolution phase macrophages. Here, using a transcriptomic analysis of macrophage subsets, we show that non-phagocytic resolution phase macrophages express a distinct IFN-β-related gene signature in mice. We also report elevated levels of IFN-β in peritoneal and broncho-alveolar exudates in mice during the resolution of peritonitis and pneumonia, respectively. Elimination of endogenous IFN-β impairs, whereas treatment with exogenous IFN-β enhances, bacterial clearance, PMN apoptosis, efferocytosis and macrophage reprogramming. STAT3 signalling in response to IFN-β promotes apoptosis of human PMNs. Finally, uptake of apoptotic cells promotes loss of phagocytic capacity in macrophages alongside decreased surface expression of efferocytic receptors in vivo. Collectively, these results identify IFN-β produced by resolution phase macrophages as an effector cytokine in resolving bacterial inflammation.
Collapse
Affiliation(s)
| | - Driss El Kebir
- Department of Pathology and Cell Biology, University of Montreal, and Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, H1T 2M4, Canada
| | - Soaad Soboh
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Sergei Butenko
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Meriem Sekheri
- Department of Pathology and Cell Biology, University of Montreal, and Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, H1T 2M4, Canada
| | - Janan Saadi
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Neta Peled
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Simaan Assi
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Amira Othman
- Department of Pathology and Cell Biology, University of Montreal, and Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, H1T 2M4, Canada
| | - Sagie Schif-Zuck
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | | | - Dalit Barkan
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Noa Sher
- Tauber Bioinformatics Center, University of Haifa, Haifa, 3498838, Israel
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal, and Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, H1T 2M4, Canada.
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
91
|
Sody S, Uddin M, Grüneboom A, Görgens A, Giebel B, Gunzer M, Brandau S. Distinct Spatio-Temporal Dynamics of Tumor-Associated Neutrophils in Small Tumor Lesions. Front Immunol 2019; 10:1419. [PMID: 31293583 PMCID: PMC6603174 DOI: 10.3389/fimmu.2019.01419] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
Across a majority of cancer types tumor-associated neutrophils (TAN) are linked with poor prognosis. However, the underlying mechanisms, especially the intratumoral behavior of TAN, are largely unknown. Using intravital multiphoton imaging on a mouse model with neutrophil-specific fluorescence, we measured the migration of TAN in distinct compartments of solid tumor cell lesions in vivo. By longitudinally quantifying the infiltration and persistence of TAN into growing tumors in the same animals, we observed cells that either populated the peripheral stromal zone of the tumor (peritumoral TAN) or infiltrated into the tumor core (intratumoral TAN). Intratumoral TAN showed prolonged tumor-associated persistence and reduced motility compared to peritumoral TAN, whose velocity increased with tumor progression. Selective pharmacological blockade of CXCR2 receptors using AZD5069 profoundly inhibited recruitment of TAN into peritumoral regions, while intratumoral infiltration was only transiently attenuated and rebounded at later time points. Our findings unravel distinct spatial dynamics of TAN that are partially and differentially regulated via the CXCR2 signaling pathway.
Collapse
Affiliation(s)
- Simon Sody
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mohib Uddin
- Respiratory Global Medicines Development (GMD), AstraZeneca, Gothenburg, Sweden
| | - Anika Grüneboom
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
92
|
Umansky V, Adema GJ, Baran J, Brandau S, Van Ginderachter JA, Hu X, Jablonska J, Mojsilovic S, Papadaki HA, Pico de Coaña Y, Santegoets KCM, Santibanez JF, Serre K, Si Y, Sieminska I, Velegraki M, Fridlender ZG. Interactions among myeloid regulatory cells in cancer. Cancer Immunol Immunother 2019; 68:645-660. [PMID: 30003321 PMCID: PMC11028297 DOI: 10.1007/s00262-018-2200-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022]
Abstract
Mounting evidence has accumulated on the critical role of the different myeloid cells in the regulation of the cancerous process, and in particular in the modulation of the immune reaction to cancer. Myeloid cells are a major component of host cells infiltrating tumors, interacting with each other, with tumor cells and other stromal cells, and demonstrating a prominent plasticity. We describe here various myeloid regulatory cells (MRCs) in mice and human as well as their relevant therapeutic targets. We first address the role of the monocytes and macrophages that can contribute to angiogenesis, immunosuppression and metastatic dissemination. Next, we discuss the differential role of neutrophil subsets in tumor development, enhancing the dual and sometimes contradicting role of these cells. A heterogeneous population of immature myeloid cells, MDSCs, was shown to be generated and accumulated during tumor progression as well as to be an important player in cancer-related immune suppression. Lastly, we discuss the role of myeloid DCs, which can either contribute to effective anti-tumor responses or play a more regulatory role. We believe that MRCs play a critical role in cancer-related immune regulation and suggest that future anti-cancer therapies will focus on these abundant cells.
Collapse
Affiliation(s)
- Viktor Umansky
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jaroslaw Baran
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jo A Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Xiaoying Hu
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Slavko Mojsilovic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Helen A Papadaki
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Yago Pico de Coaña
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kim C M Santegoets
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Juan F Santibanez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Karine Serre
- Faculty of Medicine, Institute of Molecular Medicine (IMM)-João Lobo Antunes, University of Lisbon, Lisbon, Portugal
| | - Yu Si
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Isabela Sieminska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Velegraki
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
93
|
Targeting immune cells for cancer therapy. Redox Biol 2019; 25:101174. [PMID: 30917934 PMCID: PMC6859550 DOI: 10.1016/j.redox.2019.101174] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 12/29/2022] Open
Abstract
Recent years have seen a renaissance in the research linking inflammation and cancer with immune cells playing a central role in smouldering inflammation in the tumor microenvironment. Diverse immune cell types infiltrate the tumor microenvironment, and the dynamic tumor-immune cell interplay gives rise to a rich milieu of cytokines and growth factors. Fundamentally, this intricate cross-talk creates the conducive condition for tumor cell proliferation, survival and metastasis. Interestingly, the prominent impact of immune cells is expounded in their contrary pro-tumoral role, as well as their potential anti-cancer cellular weaponry. The latter is known as immunotherapy, a concept born out of evidence that tumors are susceptible to immune defence and that by manipulating the immune system, tumor growth can be successfully restrained. Naturally, a deeper understanding of the multifaceted roles of various immune cell types thus contributes toward developing innovative anti-cancer strategies. Therefore, in this review we first outline the roles played by the major immune cell types, such as macrophages, neutrophils, natural killer cells, T cells and B cells. We then explain the recently-explored strategies of immunomodulation and discuss some important approaches via an immunology perspective.
Collapse
|
94
|
Yam AO, Chtanova T. The Ins and Outs of Chemokine-Mediated Immune Cell Trafficking in Skin Cancer. Front Immunol 2019; 10:386. [PMID: 30899263 PMCID: PMC6416210 DOI: 10.3389/fimmu.2019.00386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Recent studies of the patterns of chemokine-mediated immune cell recruitment into solid tumors have enhanced our understanding of the role played by various immune cell subsets both in amplifying and inhibiting tumor cell growth and spread. Here we discuss how the chemokine/chemokine receptor networks bring together immune cells within the microenvironment of skin tumors, particularly melanomas, including their effect on disease progression, prognosis and therapeutic options.
Collapse
Affiliation(s)
- Andrew O. Yam
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
95
|
Wang Y, Yao R, Zhang L, Xie X, Chen R, Ren Z. IDO and intra-tumoral neutrophils were independent prognostic factors for overall survival for hepatocellular carcinoma. J Clin Lab Anal 2019; 33:e22872. [PMID: 30843276 PMCID: PMC6595287 DOI: 10.1002/jcla.22872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/01/2019] [Accepted: 02/10/2019] [Indexed: 12/24/2022] Open
Abstract
Background Both Indole‐amine‐2,3‐dioxygenase (IDO) and neutrophils were proved to have pro‐tumor effect in some kinds of solid tumors by immune suppression. However, little is known about their effect on hepatocellular carcinoma (HCC) and the relationship between these two immune‐suppressive factors. The aim of this study was to evaluate the prognostic significance of IDO and intra‐tumoral neutrophils and their correlations in HCC. Methods Specimens’ tissue microarray (TMA) for 153 HCC patients was used in this study. We examined intra‐tumoral expression of IDO and CD66b in TMA. The Kaplan‐Meier method and Cox regression models were used to evaluate the prognostic value of IDO expression and CD66b. Results Multivariate analysis showed both IDO expression and intra‐tumoral neutrophils infiltration were independent prognostic factors for overall survival (OS). In high IDO expression group, the percentage of intra‐tumoral neutrophils infiltration was higher than that in low IDO expression group. Conclusion Both IDO and intra‐tumoral neutrophils were independent prognostic factors for overall survival for HCC.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongrong Yao
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lan Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Xie
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongxin Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenggang Ren
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
96
|
Gershkovitz M, Fainsod-Levi T, Zelter T, Sionov RV, Granot Z. TRPM2 modulates neutrophil attraction to murine tumor cells by regulating CXCL2 expression. Cancer Immunol Immunother 2019; 68:33-43. [PMID: 30251149 PMCID: PMC11028074 DOI: 10.1007/s00262-018-2249-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023]
Abstract
In recent years, immune cells were shown to play critical roles in tumor growth and metastatic progression. In this context, neutrophils were shown to possess both pro- and anti-tumor properties. To exert their anti-tumor effect, neutrophils need to migrate towards, and form physical contact with tumor cells. Neutrophils secrete H2O2 in a contact-dependent mechanism, thereby inducing a lethal Ca2+ influx via the activation of the H2O2-dependent TRPM2 Ca2+ channel. Here, we explored the mechanism regulating neutrophil chemoattraction to tumor cells. Interestingly, we found that TRPM2 plays a role in this context as well, since it regulates the expression of potent neutrophil chemoattractants. Consequently, cells expressing reduced levels of TRPM2 are not approached by neutrophils. Together, these observations demonstrate how tumor cells expressing reduced levels of TRPM2 evade neutrophil cytotoxicity in two interrelated mechanisms-downregulation of neutrophil chemoattractants and blocking of the apoptotic Ca2+-dependent cascade. These observations demonstrate a critical role for TRPM2 in neutrophil-mediated immunosurveillance and identify cells expressing low levels of TRPM2, as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Maya Gershkovitz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Ein Kerem, 91120, Jerusalem, Israel
| | - Tanya Fainsod-Levi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Ein Kerem, 91120, Jerusalem, Israel
| | - Tamir Zelter
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Ein Kerem, 91120, Jerusalem, Israel
| | - Ronit V Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Ein Kerem, 91120, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Ein Kerem, 91120, Jerusalem, Israel.
| |
Collapse
|
97
|
Li SH, Lai HL, Tang Y, Chien CY, Fang FM, Huang TL, Chiu TJ. Neutrophil lymphocyte ratio is an independent prognosticator in patients with locally advanced head and neck squamous cell carcinoma receiving induction chemotherapy with docetaxel, cisplatin, and fluorouracil. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_12_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
98
|
SenGupta S, Subramanian BC, Parent CA. Getting TANned: How the tumor microenvironment drives neutrophil recruitment. J Leukoc Biol 2018; 105:449-462. [PMID: 30549315 DOI: 10.1002/jlb.3ri0718-282r] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/20/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
The directed migration of neutrophils to sites of injury or infection is mediated by complex networks of chemoattractant-receptor signaling cascades. The recent appreciation of neutrophils as active participants in tumor progression and metastasis has drawn attention to a number of chemokine-receptor systems that may drive their recruitment to tumors. However, the dynamic nature of the tumor microenvironment (TME) along with the phenotypic diversity among tumor-associated neutrophils (TANs) call for a more comprehensive approach to understand neutrophil trafficking to tumors. Here, we review recent advances in understanding how guidance cues underlie neutrophil migration to primary and secondary tumor sites. We also discuss how the presence of other myeloid cells, such as functionally diverse subsets of tumor-associated macrophages (TAMs), can further influence neutrophil accumulation in tumors. Finally, we highlight the importance of hypoxia sensing in localizing TAMs and TANs in the tumor niche and provide a cohesive view on how both myeloid cell types shape TME-associated extracellular matrix organization, which in turn contribute to tumor progression.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
99
|
Shi H, Han X, Sun Y, Shang C, Wei M, Ba X, Zeng X. Chemokine (C-X-C motif) ligand 1 and CXCL2 produced by tumor promote the generation of monocytic myeloid-derived suppressor cells. Cancer Sci 2018; 109:3826-3839. [PMID: 30259595 PMCID: PMC6272093 DOI: 10.1111/cas.13809] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Accumulation of myeloid‐derived suppressor cells (MDSC) in tumor‐bearing hosts is a hallmark of tumor‐associated inflammation, which is thought to be a barrier to immunosurveillance. Multiple factors secreted by tumor cells and tumor stromal cells are reported to be involved in promoting the expansion of MDSC. Herein, we showed that s.c. inoculation of tumor cells and i.v. injection of tumor‐conditioned medium increased the number of MDSC. Subsequent investigation elucidated that chemokine (C‐X‐C motif) ligand 1 (CXCL1) and CXCL2, which were originally characterized as the chemokines of neutrophils, specifically promoted the expansion of monocytic MDSC (mo‐MDSC), a subtype of MDSC, in the presence of granulocyte‐macrophage colony‐stimulating factor. Depletion of CXCL1 or CXCL2 in B16F10 cells or in B16F10‐bearing mice noticeably decreased the generation of mo‐MDSC in bone marrow. Moreover, we found that, in addition to the tumor cells, tumor‐infiltrated CD11b+ myeloid cells also expressed CXCL1 and CXCL2. Furthermore, CXCL1‐ and CXCL2‐induced increase of mo‐MDSC was not correlated with chemotaxis, proliferation or apoptosis of mo‐MDSC. These findings show a novel role of CXCL1 and CXCL2 in promoting mo‐MDSC generation by favoring the differentiation of bone marrow cells in tumor‐bearing conditions, which suggests that inhibition of CXCL1 and CXCL2 could decrease mo‐MDSC generation and improve host immunosurveillance.
Collapse
Affiliation(s)
- Huifang Shi
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China.,People's Hospital of Rizhao, Rizhao, China
| | - Xiaoqing Han
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| | - Yingying Sun
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| | - Min Wei
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| |
Collapse
|
100
|
Metabotropic glutamate receptor-1 regulates inflammation in triple negative breast cancer. Sci Rep 2018; 8:16008. [PMID: 30375476 PMCID: PMC6207734 DOI: 10.1038/s41598-018-34502-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023] Open
Abstract
Breast cancer remains a major cause of death among women. 15% of these cancers are triple negative breast cancer (TNBC), an aggressive subtype of breast cancer for which no current effective targeted therapy exists. We have previously demonstrated a role for mGluR1 in mediating tumor cell growth, endothelial cell proliferation, and tumor-induced angiogenesis in TNBC. In this study, we explore a role for mGluR1 in regulating inflammation in TNBC. GRM1 expression was silenced in MDA-MB-231 cells to study changes in expression of inflammatory genes regulated by mGluR1. Results were confirmed by ELISA using GRM1-silenced and overexpressed cells and mGluR1 inhibitors. A functional role for these differentially expressed genes was determined in vitro and in vivo. 131 genes were differentially expressed in GRM1-silenced MDA-MB-231 cells, with some of these falling into four major canonical pathways associated with acute inflammation, specifically leukocyte migration/chemotaxis. Upregulation of three of these genes (CXCL1, IL6, IL8) and their corresponding protein was confirmed by qPCR analysis and ELISA in GRM1-manipulated TNBC cells. Upregulation of these cytokines enhanced endothelial adhesion and transmigration of neutrophils in co-culture assays and in 4T1 mouse tumors. Our results suggest mGluR1 may serve as a novel endogenous regulator of inflammation in TNBC.
Collapse
|