51
|
Buelow DR, Raivio TL. Cpx signal transduction is influenced by a conserved N-terminal domain in the novel inhibitor CpxP and the periplasmic protease DegP. J Bacteriol 2005; 187:6622-30. [PMID: 16166523 PMCID: PMC1251582 DOI: 10.1128/jb.187.19.6622-6630.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In Escherichia coli, envelope stress can be overcome by three different envelope stress responses: the sigma(E) stress response and the Bae and Cpx two-component systems. The Cpx envelope stress response is controlled by the sensor kinase CpxA, the response regulator CpxR, and the novel periplasmic protein CpxP. CpxP mediates feedback inhibition of the Cpx pathway through a hypothetical interaction with the sensing domain of CpxA. No informative homologues of CpxP are known, and thus it is unclear how CpxP exerts this inhibition. Here, we identified six cpxP loss-of-function mutations using a CpxP-beta-lactamase (CpxP'-'Bla) translational fusion construct. These loss-of-function mutations identified a highly conserved, predicted alpha-helix in the N-terminal domain of CpxP that affects both the function and the stability of the protein. In the course of this study, we also found that CpxP'-'Bla stability is differentially controlled by the periplasmic protease DegP in response to inducing cues and that mutation of degP diminishes Cpx pathway activity. We propose that the N-terminal alpha-helix is an important functional domain for inhibition of the Cpx pathway and that CpxP is subject to DegP-dependent proteolysis.
Collapse
Affiliation(s)
- Daelynn R Buelow
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|
52
|
Shimohata N, Akiyama Y, Ito K. Peculiar properties of DsbA in its export across the Escherichia coli cytoplasmic membrane. J Bacteriol 2005; 187:3997-4004. [PMID: 15937162 PMCID: PMC1151732 DOI: 10.1128/jb.187.12.3997-4004.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Export of DsbA, a protein disulfide bond-introducing enzyme, across the Escherichia coli cytoplasmic membrane was studied with special reference to the effects of various mutations affecting translocation factors. It was noted that both the internalized precursor retaining the signal peptide and the periplasmic mature product fold rapidly into a protease-resistant structure and they exhibited anomalies in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in that the former migrated faster than the latter. The precursor, once accumulated, was not exported posttranslationally. DsbA export depended on the SecY translocon, the SecA ATPase, and Ffh (signal recognition particle), but not on SecB. SecY mutations, such as secY39 and secY205, that severely impair translocation of a number of secretory substrates by interfering with SecA actions only insignificantly impaired the DsbA export. In contrast, secY125, affecting a periplasmic domain and impairing a late step of translocation, exerted strong export inhibition of both classes of proteins. These results suggest that DsbA uses not only the signal recognition particle targeting pathway but also a special route of translocation through the translocon, which is hence suggested to actively discriminate pre-proteins.
Collapse
|
53
|
Abstract
In prokaryotes, disulfides are generated by the DsbA-DsbB system. DsbB functions to generate disulfides by quinone reduction. These disulfides are passed to the DsbA protein and then to folding proteins. To investigate the DsbA-DsbB catalytic system, we performed an in vivo selection for chromosomal dsbA and dsbB mutants. We rediscovered many residues previously shown to be important for the activity of these proteins. In addition, we obtained one novel DsbA mutant (M153R) and four novel DsbB mutants (L43P, H91Y, R133C, and L146R). We also mutated residues that are highly conserved within the DsbB family in an effort to identify residues important for DsbB function. We found classes of mutants that specifically affect the apparent K(m) of DsbB for either DsbA or quinones, suggesting that quinone and DsbA may interact with different regions of the DsbB protein. Our results are consistent with the interpretation that the residues Q33 and Y46 of DsbB interact with DsbA, Q95 and R48 interact with quinones, and that residue M153 of DsbA interacts with DsbB. All of these interactions could be due to direct amino acid interactions or could be indirect through, for instance, their effect on protein structure. In addition, we find that the DsbB H91Y mutant severely affects the k(cat) of the reaction between DsbA and DsbB and that the DsbB L43P mutant is inactive, suggesting that both L43 and H91 are important for the activity of DsbB. These experiments help to better define the residues important for the function of these two protein-folding catalysts.
Collapse
Affiliation(s)
- Jacqueline Tan
- Department of Molecular and Cellular Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
54
|
Kadokura H, Nichols L, Beckwith J. Mutational alterations of the key cis proline residue that cause accumulation of enzymatic reaction intermediates of DsbA, a member of the thioredoxin superfamily. J Bacteriol 2005; 187:1519-22. [PMID: 15687218 PMCID: PMC545618 DOI: 10.1128/jb.187.4.1519-1522.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DsbA-DsbB pathway introduces disulfide bonds into newly translocated proteins. Conversion of the conserved cis proline 151 of DsbA to several hydrophilic residues results in accumulation of mixed disulfides between DsbA and its dedicated oxidant, DsbB. However, only a proline-to-threonine change causes accumulation of mixed disulfides of DsbA with its substrates.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
55
|
Berkmen M, Boyd D, Beckwith J. The Nonconsecutive Disulfide Bond of Escherichia coli Phytase (AppA) Renders It Dependent on the Protein-disulfide Isomerase, DsbC. J Biol Chem 2005; 280:11387-94. [PMID: 15642731 DOI: 10.1074/jbc.m411774200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of protein disulfide bonds in the Escherichia coli periplasm by the enzyme DsbA is an inaccurate process. Many eukaryotic proteins with nonconsecutive disulfide bonds expressed in E. coli require an additional protein for proper folding, the disulfide bond isomerase DsbC. Here we report studies on a native E. coli periplasmic acid phosphatase, phytase (AppA), which contains three consecutive and one nonconsecutive disulfide bonds. We show that AppA requires DsbC for its folding. However, the activity of an AppA mutant lacking its nonconsecutive disulfide bond is DsbC-independent. An AppA homolog, Agp, a periplasmic acid phosphatase with similar structure, lacks the nonconsecutive disulfide bond but has the three consecutive disulfide bonds found in AppA. The consecutively disulfide-bonded Agp is not dependent on DsbC but is rendered dependent by engineering into it the conserved nonconsecutive disulfide bond of AppA. Taken together, these results provide support for the proposal that proteins with nonconsecutive disulfide bonds require DsbC for full activity and that disulfide bonds are formed predominantly during translocation across the cytoplasmic membrane.
Collapse
Affiliation(s)
- Mehmet Berkmen
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
56
|
Yang J, Kanter G, Voloshin A, Michel-Reydellet N, Velkeen H, Levy R, Swartz JR. Rapid expression of vaccine proteins for B-cell lymphoma in a cell-free system. Biotechnol Bioeng 2005; 89:503-11. [PMID: 15669088 DOI: 10.1002/bit.20283] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The idiotype (Id)-granulocyte-macrophage colony-stimulating factor (GM-CSF) fusion proteins are potential vaccines for immunotherapy of B-cell lymphoma. In this study, four vaccine candidates were constructed by fusing murine GM-CSF to the amino- or carboxy-terminus of the 38C13 murine B-lymphocyte Id scFv with two different arrangements of the variable regions of the heavy chain and light chain (VL-VH and VH-VL). scFv (VH-VL) and GM-CSF/scFv fusion proteins were expressed in an Escherichia coli cell-free protein synthesis system. In order to promote disulfide bond formation during cell-free expression, cell extract was pretreated with iodoacetamide (IAM), and a sulfhydryl redox buffer composed of oxidized and reduced glutathione was added. The E. coli periplasmic disulfide isomerase, DsbC, was also added to rearrange incorrectly formed disulfide linkages. The 38C13 B-lymphocyte Id scFv was expressed with 30% of its soluble yield in active form (43 microg/ml) when tested with an anti-idiotypic mAb, S1C5, as the capture antibody in radioimmunoassay. It was found that the amino-terminal GM-CSF fusion proteins, GM-VL-VH and GM-VH-VL, showed much higher activity than the carboxy-terminal GM-CSF fusion proteins, VL-VH-GM and VH-VL-GM, in stimulating the cell proliferation of a GM-CSF-dependent cell line, NFS-60. Between the two amino-terminal GM-CSF fusion proteins, GM-VL-VH showed a higher total and soluble yield than GM-VH-VL.
Collapse
Affiliation(s)
- Junhao Yang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Affiliation(s)
- T E Creighton
- European Molecular Biology Laboratory, 69012 Heidelberg, Germany
| | | |
Collapse
|
58
|
Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:299-310. [PMID: 15546673 DOI: 10.1016/j.bbamcr.2004.02.011] [Citation(s) in RCA: 322] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/13/2004] [Accepted: 02/16/2004] [Indexed: 11/17/2022]
Abstract
Bacillus subtilis is a rod-shaped, Gram-positive soil bacterium that secretes numerous enzymes to degrade a variety of substrates, enabling the bacterium to survive in a continuously changing environment. These enzymes are produced commercially and this production represents about 60% of the industrial-enzyme market. Unfortunately, the secretion of heterologous proteins, originating from Gram-negative bacteria or from eukaryotes, is often severely hampered. Several bottlenecks in the B. subtilis secretion pathway, such as poor targeting to the translocase, degradation of the secretory protein, and incorrect folding, have been revealed. Nevertheless, research into the mechanisms and control of the secretion pathways will lead to improved Bacillus protein secretion systems and broaden the applications as industrial production host. This review focuses on studies that aimed at optimizing B. subtilis as cell factory for commercially interesting heterologous proteins.
Collapse
Affiliation(s)
- Lidia Westers
- Department of Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
59
|
Affiliation(s)
- Jacqueline T Tan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
60
|
Eggenhofer E, Haslbeck M, Scharf B. MotE serves as a new chaperone specific for the periplasmic motility protein, MotC, in Sinorhizobium meliloti. Mol Microbiol 2004; 52:701-12. [PMID: 15101977 DOI: 10.1111/j.1365-2958.2004.04022.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The flagella of Sinorhizobium meliloti rotate solely clockwise and vary their rotary speed to provoke changes in the swimming path. This mode of motility control has its molecular corollary in two novel motility proteins, MotC and MotD, present in addition to the ubiquitous MotA/MotB energizing proton channel. MotC binds to the periplasmic portion of MotB, whereas MotD interacts with FliM at the cytoplasmic face of the rotor. We report here the assignment and analysis of a fifth motility protein, MotE. Deletion of motE resulted in aggregation and decay of the periplasmic MotC protein and, as a consequence, in paralysis of the cell. The 179-residue MotE protein bears an N-terminal signal peptide and is rapidly secreted to the periplasm, where it forms stable dimers that are linked by a disulphide bridge between the cysteine 53 residues. Both, the monomeric and the dimeric MotE bind to MotC, and dimerization is essential for MotE stability in the periplasm. We conclude that MotE is a periplasmic chaperone specific for MotC being responsible for its proper folding and stability. We also propose that the MotE dimer serves as a shuttle to target MotC to its binding site at MotB.
Collapse
Affiliation(s)
- Elke Eggenhofer
- Lehrstuhl für Genetik, Universität Regensburg, D-93040 Regensburg, Germany
| | | | | |
Collapse
|
61
|
Burall LS, Harro JM, Li X, Lockatell CV, Himpsl SD, Hebel JR, Johnson DE, Mobley HLT. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 2004; 72:2922-38. [PMID: 15102805 PMCID: PMC387873 DOI: 10.1128/iai.72.5.2922-2938.2004] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis, a common cause of urinary tract infections (UTI) in individuals with functional or structural abnormalities or with long-term catheterization, forms bladder and kidney stones as a consequence of urease-mediated urea hydrolysis. Known virulence factors, besides urease, are hemolysin, fimbriae, metalloproteases, and flagella. In this study we utilized the CBA mouse model of ascending UTI to evaluate the colonization of mutants of P. mirabilis HI4320 that were generated by signature-tagged mutagenesis. By performing primary screening of 2088 P. mirabilis transposon mutants, we identified 502 mutants that ranged from slightly attenuated to unrecoverable. Secondary screening of these mutants revealed that 114 transposon mutants were reproducibly attenuated. Cochallenge of 84 of these single mutants with the parent strain in the mouse model resulted in identification of 37 consistently out-competed P. mirabilis transposon mutants, 25 of which were out-competed >100-fold for colonization of the bladder and/or kidneys by the parent strain. We determined the sequence flanking the site of transposon insertion in 29 attenuated mutants and identified genes affecting motility, iron acquisition, transcriptional regulation, phosphate transport, urease activity, cell surface structure, and key metabolic pathways as requirements for P. mirabilis infection of the urinary tract. Two mutations localized to a approximately 42-kb plasmid present in the parent strain, suggesting that the plasmid is important for colonization. Isolation of disrupted genes encoding proteins with homologies to known bacterial virulence factors, especially the urease accessory protein UreF and the disulfide formation protein DsbA, showed that the CBA mouse model and mutant pools are a reliable source of attenuated mutants with mutations in virulence genes.
Collapse
Affiliation(s)
- Laurel S Burall
- Department of Microbiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Miki T, Okada N, Danbara H. Two periplasmic disulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the Salmonella pathogenicity island 2 type III secretion system. J Biol Chem 2004; 279:34631-42. [PMID: 15169785 DOI: 10.1074/jbc.m402760200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of disulfide is essential for the folding, activity, and stability of many proteins secreted by Gram-negative bacteria. The disulfide oxidoreductase, DsbA, introduces disulfide bonds into proteins exported from the cytoplasm to periplasm. In pathogenic bacteria, DsbA is required to process virulence determinants for their folding and assembly. In this study, we examined the role of the Dsb enzymes in Salmonella pathogenesis, and we demonstrated that DsbA, but not DsbC, is required for the full expression of virulence in a mouse infection model of Salmonella enterica serovar Typhimurium. Salmonella strains carrying a dsbA mutation showed reduced function mediated by type III secretion systems (TTSSs) encoded on Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). To obtain a more detailed understanding of the contribution of DsbA to both SPI-1 and SPI-2 TTSS function, we identified a protein component of the SPI-2 TTSS apparatus affected by DsbA. Although we found no substrate protein for DsbA in the SPI-1 TTSS apparatus, we identified SpiA (SsaC), an outer membrane protein of SPI-2 TTSS, as a DsbA substrate. Site-directed mutagenesis of the two cysteine residues present in the SpiA protein resulted in the loss of SPI-2 function in vitro and in vivo. Furthermore, we provided evidence that a second disulfide oxidoreductase, SrgA, also oxidizes SpiA. Analysis of in vivo mixed infections demonstrated that a Salmonella dsbA srgA double mutant strain was more attenuated than either single mutant, suggesting that DsbA acts in concert with SrgA in vivo.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | | | | |
Collapse
|
63
|
Kadokura H, Tian H, Zander T, Bardwell JCA, Beckwith J. Snapshots of DsbA in Action: Detection of Proteins in the Process of Oxidative Folding. Science 2004; 303:534-7. [PMID: 14739460 DOI: 10.1126/science.1091724] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
DsbA, a thioredoxin superfamily member, introduces disulfide bonds into newly translocated proteins. This process is thought to occur via formation of mixed disulfide complexes between DsbA and its substrates. However, these complexes are difficult to detect, probably because of their short-lived nature. Here we show that it is possible to detect such covalent intermediates in vivo by a mutation in DsbA that alters cis proline-151. Further, this mutant allowed us to identify substrates of DsbA. Alteration of the cis proline, highly conserved among thioredoxin superfamily members, may be useful for the detection of substrates and intermediate complexes in other systems.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
64
|
Flaschel E, Friehs K. Improvement of downstream processing of recombinant proteins by means of genetic engineering methods. Biotechnol Adv 2003; 11:31-77. [PMID: 14544808 DOI: 10.1016/0734-9750(93)90409-g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid advancement of genetic engineering has allowed to produce an impressive number of proteins on a scale which would not have been achieved by classical biotechnology. At the beginning of this development research was focussed on elucidating the mechanisms of protein overexpression. The appearance of inclusion bodies may illustrate the success. In the meantime, genetic engineering is not only expected to achieve overexpression, but to improve the whole process of protein production. For downstream processing of recombinant proteins, the synthesis of fusion proteins is of primary importance. Fusion with certain proteins or peptides may protect the target protein from proteolytic degradation and may alter its solubility. Intracellular proteins may be translocated by means of fusions with signal peptides. Affinity tags as fusion complements may render protein separation and purification highly selective. These methods as well as similar ones for improving the downstream processing of proteins will be discussed on the basis of recent literature.
Collapse
Affiliation(s)
- E Flaschel
- Universität Bielefeld, Technische Fakultät, Arbeitsgruppe Fermentationstechnik, Bielefeld, Germany
| | | |
Collapse
|
65
|
Abstract
Disulfide bonds formed between pairs of cysteines are important features of the structure of many proteins. Elaborate electron transfer pathways have evolved Escherichia coli to promote the formation of these covalent bonds and to ensure that the correct pairs of cysteines are joined in the final folded protein. These transfers of electrons consist, in the main, of cascades of disulfide bond formation or reduction steps between a series of proteins (DsbA, DsbB, DsbC, and DsbD). A surprising variety of mechanisms and protein structures are involved in carrying out these steps.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
66
|
Inaba K, Takahashi YH, Fujieda N, Kano K, Miyoshi H, Ito K. DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation. J Biol Chem 2003; 279:6761-8. [PMID: 14634016 DOI: 10.1074/jbc.m310765200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DsbB is an Escherichia coli plasma membrane protein that reoxidizes the Cys30-Pro-His-Cys33 active site of DsbA, the primary dithiol oxidant in the periplasm. Here we describe a novel activity of DsbB to induce an electronic transition of the bound ubiquinone molecule. This transition was characterized by a striking emergence of an absorbance peak at 500 nm giving rise to a visible pink color. The ubiquinone red-shift was observed stably for the DsbA(C33S)-DsbB complex as well as transiently by stopped flow rapid scanning spectroscopy during the reaction between wild-type DsbA and DsbB. Mutation and reconstitution experiments established that the unpaired Cys at position 44 of DsbB is primarily responsible for the chromogenic transition of ubiquinone, and this property correlates with the functional arrangement of amino acid residues in the neighborhood of Cys44. We propose that the Cys44-induced anomaly in ubiquinone represents its activated state, which drives the DsbB-mediated electron transfer.
Collapse
Affiliation(s)
- Kenji Inaba
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
67
|
Benham A. Oxidative protein folding: recent advances and some remaining challenges. Antioxid Redox Signal 2003; 5:355-7. [PMID: 13678521 DOI: 10.1089/152308603768295078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
68
|
Suntharalingam P, Spencer H, Gallant CV, Martin NL. Salmonella enterica serovar typhimurium rdoA is growth phase regulated and involved in relaying Cpx-induced signals. J Bacteriol 2003; 185:432-43. [PMID: 12511488 PMCID: PMC145337 DOI: 10.1128/jb.185.2.432-443.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The disulfide oxidoreductase, DsbA, mediates disulfide bond formation in proteins as they enter or pass through the periplasm of gram-negative bacteria. Although DsbA function has been well characterized, less is known about the factors that control its expression. Previous studies with Escherichia coli demonstrated that dsbA is part of a two-gene operon that includes an uncharacterized, upstream gene, yihE, that is positively regulated via the Cpx stress response pathway. To clarify the role of the yihE homologue on dsbA expression in Salmonella enterica serovar Typhimurium, the effect of this gene (termed rdoA) on the regulation of dsbA expression was investigated. Transcriptional assays assessing rdoA promoter activity showed growth phase-dependent expression with maximal activity in stationary phase. Significant quantities of rdoA and dsbA transcripts exist in serovar Typhimurium, but only extremely low levels of rdoA-dsbA cotranscript were detected. Activation of the Cpx system in serovar Typhimurium increased synthesis of both rdoA- and dsbA-specific transcripts but did not significantly alter the levels of detectable cotranscript. These results indicate that Cpx-mediated induction of dsbA transcription in serovar Typhimurium does not occur through an rdoA-dsbA cotranscript. A deletion of the rdoA coding region was constructed to definitively test the relevance of the rdoA-dsbA cotranscript to dsbA expression. The absence of RdoA affects DsbA expression levels when the Cpx system is activated, and providing rdoA in trans complements this phenotype, supporting the hypothesis that a bicistronic mechanism is not involved in serovar Typhimurium dsbA regulation. The rdoA null strain was also shown to be altered in flagellar phase variation. First it was found that induction of the Cpx stress response pathway switched flagellar synthesis to primarily phase 2 flagellin, and this effect was then found to be abrogated in the rdoA null strain, suggesting the involvement of RdoA in mediating Cpx-related signaling.
Collapse
Affiliation(s)
- P Suntharalingam
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
69
|
Philipps B, Glockshuber R. Randomization of the entire active-site helix alpha 1 of the thiol-disulfide oxidoreductase DsbA from Escherichia coli. J Biol Chem 2002; 277:43050-7. [PMID: 12193604 DOI: 10.1074/jbc.m207638200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DsbA from Escherichia coli is the most oxidizing member of the thiol-disulfide oxidoreductase family (E(o)' = -122 mV) and is required for efficient disulfide bond formation in the periplasm. The reactivity of the catalytic disulfide bond (Cys(30)-Pro(31)-His(32)-Cys(33)) is primarily due to an extremely low pK(a) value (3.4) of Cys(30), which is stabilized by the partial positive dipole charge of the active-site helix alpha1 (residues 30-37). We have randomized all non-cysteine residues of helix alpha1 (residues 31, 32, and 34-37) and found that two-thirds of the resulting variants complement DsbA deficiency in a dsbA deletion strain. Sequencing of 98 variants revealed a large number of non-conservative replacements in active variants, even at well conserved positions. This indicates that tertiary structure context strongly determines alpha-helical secondary structure formation of the randomized sequence. A subset of active and inactive variants was further characterized. All these variants were more reducing than wild type DsbA, but the redox potentials of active variants did not drop below -210 mV. All inactive variants had redox potentials lower than -210 mV, although some of the inactive proteins were still re-oxidized by DsbB. This demonstrates that efficient oxidation of substrate polypeptides is the crucial property of DsbA in vivo.
Collapse
Affiliation(s)
- Bjorn Philipps
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
70
|
Zhang Z, Li ZH, Wang F, Fang M, Yin CC, Zhou ZY, Lin Q, Huang HL. Overexpression of DsbC and DsbG markedly improves soluble and functional expression of single-chain Fv antibodies in Escherichia coli. Protein Expr Purif 2002; 26:218-28. [PMID: 12406675 DOI: 10.1016/s1046-5928(02)00502-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Single-chain Fv antibodies (scFv), a group of reconstructed molecules with several disulfide bonds, are prone to aggregate as inclusion bodies, the insoluble species of natural proteins, when expressed in Escherichia coli, especially at high level. Recovery of functionally active products from inclusion bodies is onerous and ineffective. We have increased the soluble and functional scFv yields by fusing either DsbC or DsbG, two E. coli disulfide isomerases with general chaperone function, to scFvs. Compared to the totally insoluble inclusion bodies of scFvs expressed separately, more than half of each fusion protein DsbC-scFv or DsbG-scFv was soluble, according to SDS-PAGE analysis. The more effective solubility was obtained when the fused protein DsbG-scFv was co-expressed simultaneously with DsbC under the same promoter. Under this condition, the soluble portion of DsbG-scFv increased from about 50% to 90% measured by scanning SDS-PAGE gel. Co-expression of DsbC can change fusion protein CBD-scFv from totally insoluble when expressed in E. coli separately to a considerable portion of soluble CBD-scFv. Antigen-binding activity assay showed that scFvs retained full affinity to specific antigens. We also determined that general molecular chaperones GroEL and GroES had no effects on the solubility of scFvs when co-expressed with scFv in E. coli. We propose that the correct formation of disulfide bonds in scFvs is the crucial factor responsible for solubility of scFvs.
Collapse
Affiliation(s)
- Zhong Zhang
- Group 102, Institute of Genetics and Developmental Biology, Academia Sinica, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
71
|
McBride JW, Ndip LM, Popov VL, Walker DH. Identification and functional analysis of an immunoreactive DsbA-like thio-disulfide oxidoreductase of Ehrlichia spp. Infect Immun 2002; 70:2700-3. [PMID: 11953415 PMCID: PMC127935 DOI: 10.1128/iai.70.5.2700-2703.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel homologous DsbA-like disulfide bond formation (Dsb) proteins of Ehrlichia chaffeensis and Ehrlichia canis were identified which restored DsbA activity in complemented Escherichia coli dsbA mutants. Recombinant Ehrlichia Dsb (eDsb) proteins were recognized by sera from E. canis-infected dogs but not from E. chaffeensis-infected patients. The eDsb proteins were observed primarily in the periplasm of E. chaffeensis and E. canis.
Collapse
Affiliation(s)
- Jere W McBride
- Department of Pathology and WHO Collaborating Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA.
| | | | | | | |
Collapse
|
72
|
Abstract
Ten years ago it was thought that disulphide bond formation in prokaryotes occurred spontaneously. Now two pathways involved in disulphide bond formation have been well characterized, the oxidative pathway, which is responsible for the formation of disulphides, and the isomerization pathway, which shuffles incorrectly formed disulphides. Disulphide bonds are donated directly to unfolded polypeptides by the DsbA protein; DsbA is reoxidized by DsbB. DsbB generates disulphides de novo from oxidized quinones. These quinones are reoxidized by the electron transport chain, showing that disulphide bond formation is actually driven by electron transport. Disulphide isomerization requires that incorrect disulphides be attacked using a reduced catalyst, followed by the redonation of the disulphide, allowing alternative disulphide pairing. Two isomerases exist in Escherichia coli, DsbC and DsbG. The membrane protein DsbD maintains these disulphide isomerases in their reduced and thereby active form. DsbD is kept reduced by cytosolic thioredoxin in an NADPH-dependent reaction.
Collapse
Affiliation(s)
- Jean-Francois Collet
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
73
|
Cattani-Scholz A, Renner C, Cabrele C, Behrendt R, Oesterhelt D, Moroder L. Photoschaltbare cyclische Bis(cysteinyl)peptide katalysieren die oxidative Proteinfaltung. Angew Chem Int Ed Engl 2002. [DOI: 10.1002/1521-3757(20020118)114:2<299::aid-ange299>3.0.co;2-n] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
74
|
Abstract
Envelope stress responses play important physiological roles in a variety of processes, including protein folding, cell wall biosynthesis, and pathogenesis. Many of these responses are controlled by extracytoplasmic function (ECF) sigma factors that respond to external signals by means of a membrane-localized anti-sigma factor. One of the best-characterized, ECF-regulated responses is the sigma(E) envelope stress response of Escherichia coli. The sigma(E) pathway ensures proper assembly of outer-membrane proteins (OMP) by controlling expression of genes involved in OMP folding and degradation in response to envelope stresses that disrupt these processes. Prevailing evidence suggests that, in E. coli, a second envelope stress response controlled by the Cpx two-component system ensures proper pilus assembly. The sensor kinase CpxA recognizes misfolded periplasmic proteins, such as those generated during pilus assembly, and transduces this signal to the response regulator CpxR through conserved phosphotransfer reactions. Phosphorylated CpxR activates transcription of periplasmic factors necessary for pilus assembly.
Collapse
Affiliation(s)
- T L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9; Canada.
| | | |
Collapse
|
75
|
Krupp R, Chan C, Missiakas D. DsbD-catalyzed transport of electrons across the membrane of Escherichia coli. J Biol Chem 2001; 276:3696-701. [PMID: 11085993 DOI: 10.1074/jbc.m009500200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dsb proteins catalyze folding and oxidation of polypeptides in the periplasm of Escherichia coli. DsbC reduces wrongly paired disulfides by transferring electrons from its catalytic dithiol motif (98)CGYC. Genetic evidence suggests that recycling of this motif requires at least three proteins, the cytoplasmic thioredoxin reductase (TrxB) and thioredoxin (TrxA) as well as the DsbD membrane protein. We demonstrate here that electrons are transferred directly from thioredoxin to DsbD and from DsbD to DsbC. Three cysteine pairs within DsbD undergo reversible disulfide rearrangements. Our results suggest a novel mechanism for electron transport across membranes whereby electrons are transferred sequentially from cysteine pairs arranged in a thioredoxin-like motif (CXXC) to a cognate reactive disulfide.
Collapse
Affiliation(s)
- R Krupp
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
76
|
Urban A, Leipelt M, Eggert T, Jaeger KE. DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa. J Bacteriol 2001; 183:587-96. [PMID: 11133952 PMCID: PMC94914 DOI: 10.1128/jb.183.2.587-596.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DsbA and DsbC proteins involved in the periplasmic formation of disulfide bonds in Pseudomonas aeruginosa were identified and shown to play an important role for the formation of extracellular enzymes. Mutants deficient in either dsbA or dsbC or both genes were constructed, and extracellular elastase, alkaline phosphatase, and lipase activities were determined. The dsbA mutant no longer produced these enzymes, whereas the lipase activity was doubled in the dsbC mutant. Also, extracellar lipase production was severely reduced in a P. aeruginosa dsbA mutant in which an inactive DsbA variant carrying the mutation C34S was expressed. Even when the lipase gene lipA was constitutively expressed in trans in a lipA dsbA double mutant, lipase activity in cell extracts and culture supernatants was still reduced to about 25%. Interestingly, the presence of dithiothreitol in the growth medium completely inhibited the formation of extracellular lipase whereas the addition of dithiothreitol to a cell-free culture supernatant did not affect lipase activity. We conclude that the correct formation of the disulfide bond catalyzed in vivo by DsbA is necessary to stabilize periplasmic lipase. Such a stabilization is the prerequisite for efficient secretion using the type II pathway.
Collapse
Affiliation(s)
- A Urban
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
77
|
Fabianek RA, Hennecke H, Thöny-Meyer L. Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli. FEMS Microbiol Rev 2000; 24:303-16. [PMID: 10841975 DOI: 10.1111/j.1574-6976.2000.tb00544.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Disulfide bond formation is part of the folding pathway for many periplasmic and outer membrane proteins that contain structural disulfide bonds. In Escherichia coli, a broad variety of periplasmic protein thiol:disulfide oxidoreductases have been identified in recent years, which substantially contribute to this pathway. Like the well-known cytoplasmic thioredoxins and glutaredoxins, these periplasmic protein thiol:disulfide oxidoreductases contain the conserved C-X-X-C motif in their active site. Most of them have a domain that displays the thioredoxin-like fold. In contrast to the cytoplasmic system, which consists exclusively of reducing proteins, the periplasmic oxidoreductases have either an oxidising, a reducing or an isomerisation activity. Apart from understanding their physiological role, it is of interest to learn how these proteins interact with their target molecules and how they are recycled as electron donors or acceptors. This review reflects the recently made efforts to elucidate the sources of oxidising and reducing power in the periplasm as well as the different properties of certain periplasmic protein thiol:disulfide oxidoreductases of E. coli.
Collapse
Affiliation(s)
- R A Fabianek
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092, Zurich, Switzerland
| | | | | |
Collapse
|
78
|
Hayashi S, Abe M, Kimoto M, Furukawa S, Nakazawa T. The dsbA-dsbB disulfide bond formation system of Burkholderia cepacia is involved in the production of protease and alkaline phosphatase, motility, metal resistance, and multi-drug resistance. Microbiol Immunol 2000; 44:41-50. [PMID: 10711598 DOI: 10.1111/j.1348-0421.2000.tb01244.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In a previous study, we isolated a dsbB mutant of Burkholderia cepacia KF1 and showed that phenotypes of protease production and motility are dependent on DsbB, a membrane-bound disulfide bond oxidoreductase. We have now isolated a dsbA mutant by transposon mutagenesis, cloned the dsbA gene encoding a periplasmic disulfide bond oxidoreductase, and characterized the function of the DsbA-DsbB disulfide bond formation system in B. cepacia. The complementing DNA fragment had an open reading frame for a 212-amino acid polypeptide with a potential redox-active site sequence of Cys-Pro-His-Cys that is homologous to Escherichia coli DsbA. The dsbA mutant, as well as the previously isolated dsbB mutant, was defective in the production of extracellular protease and alkaline phosphatase, as well as in motility. In addition, mutation in the DsbA-DsbB system resulted in an increase in sensitivity to Cd2+ and Zn2+ as well as a variety of antibiotics including beta-lactams, kanamycin, erythromycin, novobiocin, ofloxacin and sodium dodecyl sulfate. These results suggested that the DsbA-DsbB system might be involved in the formation of a metal efflux system as well as a multi-drug resistance system.
Collapse
Affiliation(s)
- S Hayashi
- Department of Microbiology, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | |
Collapse
|
79
|
Chung J, Chen T, Missiakas D. Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm. Mol Microbiol 2000; 35:1099-109. [PMID: 10712691 DOI: 10.1046/j.1365-2958.2000.01778.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduction of non-native protein disulphides in the periplasm of Escherichia coli is catalysed by three enzymes, DsbC, DsbG and DsbE, each of which harbours a catalytic Cys-X-X-Cys dithiol motif. This dithiol motif requires continuous reduction for activity. Genetic evidence suggests that the source of periplasmic reducing power resides within the cytoplasm, provided by thioredoxin (trxA) and thioredoxin reductase (trxB). Cytoplasmic electrons donated by thioredoxin are thought to be transferred into the periplasm via the DsbD membrane protein. To understand the molecular nature of electron transfer, we have analysed the membrane topology of DsbD. DsbD is exported by an N-terminal signal peptide. The N- and C-terminal domains are positioned in the periplasmic space, connected by eight transmembrane segments. Electron transfer was shown to require five cysteine sulphydryl of DsbD. Trans complementation of mutant DsbD molecules revealed intermolecular electron transfer. We discuss a model whereby the membrane-embedded disulphides of DsbD accept electrons from cytoplasmic thioredoxin and transfer them to the C-terminal periplasmic dithiol motif of DsbD.
Collapse
Affiliation(s)
- J Chung
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Molecular Sciences Building 1601, 609 Circle Drive East, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
80
|
Stafford SJ, Lund PA. Mutagenic studies on human protein disulfide isomerase by complementation of Escherichia coli dsbA and dsbC mutants. FEBS Lett 2000; 466:317-22. [PMID: 10682851 DOI: 10.1016/s0014-5793(99)01728-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein disulfide isomerase (PDI) exhibits both an oxido-reductase and an isomerase activity on proteins containing cysteine residues. These activities arise from two active sites, both of which contain pairs of redox active cysteines. We have developed two simple in vivo assays for these activities of PDI, based on the demonstration that PDI can complement both a dsbA mutation and a dsbC mutation when expressed to the periplasm of Escherichia coli. We constructed a variety of mutants in and around the active sites of PDI and analysed them using these complementation assays. Our analysis showed that the active site amino acid residues have a major role in determining the activities exhibited by PDI, particularly the N-terminal cysteine of the N-terminal active site. The roles of the histidine residue at position 38 and the glutamic acid residue at position 30 were also studied using these assays. The results show that these two in vivo assays should be useful for rapid screening of mutants in PDI prior to purification and detailed biochemical analysis.
Collapse
Affiliation(s)
- S J Stafford
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | | |
Collapse
|
81
|
Huber O, Huber-Wunderlich M. Recombinant Proteins. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0301-4770(08)60541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
82
|
Bessette PH, Aslund F, Beckwith J, Georgiou G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 1999; 96:13703-8. [PMID: 10570136 PMCID: PMC24128 DOI: 10.1073/pnas.96.24.13703] [Citation(s) in RCA: 493] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Under physiological conditions, the Escherichia coli cytoplasm is maintained in a reduced state that strongly disfavors the formation of stable disulfide bonds in proteins. However, mutants in which the reduction of both thioredoxins and glutathione is impaired (trxB gor mutants) accumulate oxidized, enzymatically active alkaline phosphatase in the cytoplasm. These mutants grow very poorly in the absence of an exogenous reductant and accumulate extragenic suppressors at a high frequency. One such suppressor strain, FA113, grows almost as rapidly as the wild type in the absence of reductant, exhibits slightly faster kinetics of disulfide bond formation, and has fully induced activity of the transcriptional activator, OxyR. FA113 gave substantially higher yields of properly oxidized proteins compared with wild-type or trxB mutant strains. For polypeptides with very complex patterns of disulfide bonds, such as vtPA and the full-length tPA, the amount of active protein was further enhanced up to 15-fold by co-expression of TrxA (thioredoxin 1) mutants with different redox potentials, or 20-fold by the protein disulfide isomerase, DsbC. Remarkably, higher yields of oxidized, biologically active proteins were obtained by expression in the cytoplasm of E. coli FA113 compared with what could be achieved via secretion into the periplasm of a wild-type strain, even under optimized conditions. These results demonstrate that the cytoplasm can be rendered sufficiently oxidizing to allow efficient formation of native disulfide bonds without compromising cell viability.
Collapse
Affiliation(s)
- P H Bessette
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
83
|
Sillen A, Hennecke J, Roethlisberger D, Glockshuber R, Engelborghs Y. Fluorescence quenching in the DsbA protein from Escherichia coli: complete picture of the excited-state energy pathway and evidence for the reshuffling dynamics of the microstates of tryptophan. Proteins 1999; 37:253-63. [PMID: 10584070 DOI: 10.1002/(sici)1097-0134(19991101)37:2<253::aid-prot10>3.0.co;2-j] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The disulfide oxidoreductase DsbA is a strong oxidant of protein thiols and is required for efficient disulfide bond formation in the bacterial periplasm. DsbA contains two tryptophans: W76 and W126. The fluorescence of W76 changes upon reduction of the disulfide bridge, as analyzed previously (Hennecke et al., Biochemistry 1997;36:6391-6400). The fluorescence of W126 is highly quenched. The only two potential side chain quenchers are Q74 and N127, and these were replaced by alanine, resulting in a threefold increase in fluorescence intensity. The fluorescence intensity increase is not due to the removal of dynamic quenchers but to an increase in the population with the longest lifetime. In this report, the possibility of a change in the conformation of W126 is investigated theoretically by using molecular mechanics and dynamic simulations and experimentally by using a reaction with N-bromosuccinimide. This reacts preferably with the most exposed microstate of tryptophan, which is responsible for the longest lifetime. The simulations and the experimental results reveal that the amino acid replacements allow W126 to increase the population of its antiperpendicular conformation. The selectivity of the N-bromosuccinimide reaction allows the visualization of the reshuffling kinetics at exhausting reagent concentration. To the authors' knowledge, this is the first time that the kinetics of Trp population reshuffling have been measured.
Collapse
Affiliation(s)
- A Sillen
- Laboratory of Biomolecular Dynamics, University of Leuven, Belgium
| | | | | | | | | |
Collapse
|
84
|
Raivio TL, Popkin DL, Silhavy TJ. The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol 1999; 181:5263-72. [PMID: 10464196 PMCID: PMC94031 DOI: 10.1128/jb.181.17.5263-5272.1999] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In Escherichia coli, the Cpx two-component regulatory system activates expression of protein folding and degrading factors in response to misfolded proteins in the bacterial envelope (inner membrane, periplasm, and outer membrane). It is comprised of the histidine kinase CpxA and the response regulator CpxR. This response plays a role in protection from stresses, such as elevated pH, as well as in the biogenesis of virulence factors. Here, we show that the Cpx periplasmic stress response is subject to amplification and repression through positive and negative autofeedback mechanisms. Western blot and operon fusion analyses demonstrated that the cpxRA operon is autoactivated. Conditions that lead to elevated levels of phosphorylated CpxR cause a concomitant increase in transcription of cpxRA. Conversely, overproduction of CpxP, a small, Cpx-regulated protein of previously unknown function, represses the regulon and can block activation of the pathway. This repression is dependent on an intact CpxA sensing domain. The ability to autoactivate and then subsequently repress allows for a temporary amplification of the Cpx response that may be important in rescuing cells from transitory stresses and cueing the appropriately timed elaboration of virulence factors.
Collapse
Affiliation(s)
- T L Raivio
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
85
|
Bolhuis A, Venema G, Quax WJ, Bron S, van Dijl JM. Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis. J Biol Chem 1999; 274:24531-8. [PMID: 10455116 DOI: 10.1074/jbc.274.35.24531] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vivo formation of disulfide bonds, which is critical for the stability and/or activity of many proteins, is catalyzed by thiol-disulfide oxidoreductases. In the present studies, we show that the Gram-positive eubacterium Bacillus subtilis contains three genes, denoted bdbA, bdbB, and bdbC, for thiol-disulfide oxidoreductases. Escherichia coli alkaline phosphatase, containing two disulfide bonds, was unstable when secreted by B. subtilis cells lacking BdbB or BdbC, and notably, the expression levels of bdbB and bdbC appeared to set a limit for the secretion of active alkaline phosphatase. Cells lacking BdbC also showed decreased stability of cell-associated forms of E. coli TEM-beta-lactamase, containing one disulfide bond. In contrast, BdbA was not required for the stability of alkaline phosphatase or beta-lactamase. Because BdbB and BdbC are typical membrane proteins, our findings suggest that they promote protein folding at the membrane-cell wall interface. Interestingly, pre-beta-lactamase processing to its mature form was stimulated in cells lacking BdbC, suggesting that the unfolded form of this precursor is a preferred substrate for signal peptidase. Surprisingly, cells lacking BdbC did not develop competence for DNA uptake, indicating the involvement of disulfide bond-containing proteins in this process. Unlike E. coli and yeast, none of the thiol-disulfide oxidoreductases of B. subtilis was required for growth in the presence of reducing agents. In conclusion, our observations indicate that BdbB and BdbC have a general role in disulfide bond formation, whereas BdbA may be dedicated to a specific process.
Collapse
Affiliation(s)
- A Bolhuis
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
86
|
Hu HY, Cheng HQ, Li Q, Zou YS, Xu GJ. Study of the redox properties of metallothionein in vitro by reacting with DsbA protein. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:665-70. [PMID: 10609642 DOI: 10.1023/a:1020654206878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mammalian metallothionein (MT) contains 20 cysteine residues involved in the two metal clusters without a disulfide bond. The redox reaction of the Cys thiols was proposed to be associated with the metal distribution of MT. The E. coli DsbA protein is extremely active in facilitating thiol/disulfide exchange both in vivo and in vitro. To further investigate the redox properties of MT, reaction between MT and DsbA was carried out in vitro by fluorescence detection. Equilibrium characterization indicates that the reaction is stoichiometric (1:1) under certain conditions. Kinetic study gives a rate constant of the redox reaction of 4.42 x 10(5) sec(-1) M(-1), which is 10(3)-fold larger than that of glutathione reacting with DsbA. Metal-free MT (apo-MT) shows a higher equilibrium reduction potential than MT, but exhibits an indistinguishable kinetic rate. Oxidation of MT by DsbA leads to metal release from the clusters. The characteristic fluorescence increase during reduction of DsbA may provide a sensitive probe for exploring the redox properties of some reductants of biological interest. The result also implies that oxidation of Cys thiols may influence the metal release or delivery from MT.
Collapse
Affiliation(s)
- H Y Hu
- Shanghai Institute of Biochemistry, Chinese Academy of Sciences.
| | | | | | | | | |
Collapse
|
87
|
Stafford SJ, Humphreys DP, Lund PA. Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg2+ and Cd2+. FEMS Microbiol Lett 1999; 174:179-84. [PMID: 10234837 DOI: 10.1111/j.1574-6968.1999.tb13566.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The Dsb proteins are involved in disulfide bond formation, reduction and isomerisation in a number of Gram-negative bacteria. Mutations in dsbA or dsbB, but not dsbC, increase the proportion of proteins with free thiols in the periplasm compared to wild-type. We investigated the effects of mutations in these genes on the bacterial resistance to mercuric and cadmium salts. Mutations in genes involved primarily in disulfide formation (dsbA and dsbB) generally enhanced the sensitivity to Hg2+ and Cd2+ while a mutation of the dsbC gene (primarily an isomerase of disulfide bonds) had no effect. Mutations of the dsb genes had no effect on the expression of the mercury-resistance determinants of the transposon Tn501.
Collapse
Affiliation(s)
- S J Stafford
- School of Biological Sciences, University of Birmingham, Edgbaston, UK
| | | | | |
Collapse
|
88
|
Raivio TL, Silhavy TJ. The sigmaE and Cpx regulatory pathways: overlapping but distinct envelope stress responses. Curr Opin Microbiol 1999; 2:159-65. [PMID: 10322173 DOI: 10.1016/s1369-5274(99)80028-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Cpx and sigmaE extracytoplasmic stress responses sense and respond to misfolded proteins in the bacterial envelope. Recent studies have highlighted differences between these regulatory pathways in terms of activating signals, mechanisms of signal transduction and the nature of the responses. Cumulatively, the findings suggest distinct physiological roles for these partially overlapping envelope stress responses. The sigmaE pathway is essential for survival and is primarily responsible for monitoring and responding to alterations in outer membrane protein folding. Mounting evidence suggests that the Cpx regulon may have been adapted to ensure properly timed expression and assembly of adhesive organelles.
Collapse
Affiliation(s)
- T L Raivio
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
89
|
Aslund F, Beckwith J. The thioredoxin superfamily: redundancy, specificity, and gray-area genomics. J Bacteriol 1999; 181:1375-9. [PMID: 10049365 PMCID: PMC93523 DOI: 10.1128/jb.181.5.1375-1379.1999] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- F Aslund
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
90
|
Abstract
Disulfide bonds are required for the stability and function of a large number of proteins. Genetic analysis in combination with biochemical studies have elucidated the main catalysts involved in facilitating these processes in the cell. All enzymes involved in thiol-disulfide metabolism have a conserved active site that consists of two cysteine residues, separated by two intervening amino acids, the Cys-Xaa-Xaa-Cys motif. While these enzymes are capable of catalyzing both disulfide bond formation and reduction, they have evolved to perform one or the other reaction more efficiently. In the cytoplasm, multiple pathways are involved in the reduction of disulfide bonds that occur as part of the catalytic cycle of a variety of metabolic enzymes. In the bacterial periplasm, a system for the efficient introduction as well as isomerization of disulfide bonds is in place. In eukaryotes, disulfide bonds are introduced into proteins in the endoplasmic reticulum. Genetic studies have recently begun to reveal new features of this process. While the enzyme mechanisms of thiol-disulfide oxidoreductases have been the subject of much scrutiny, questions remain regarding where and when they act in vivo, their specificities, and the maintenance of the redox environment that determines their function.
Collapse
Affiliation(s)
- A Rietsch
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
91
|
Hennecke J, Glockshuber R. Conversion of a catalytic into a structural disulfide bond by circular permutation. Biochemistry 1998; 37:17590-7. [PMID: 9860875 DOI: 10.1021/bi981888v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thiol-disulfide oxidoreductase DsbA from Escherichia coli is the strongest oxidant of the enzyme family and required for disulfide bond formation in the bacterial periplasm. The catalytic domain of this 189-residue protein has a thioredoxin-like fold and contains a catalytic disulfide bridge that is located within the sequence Cys30-Pro31-His32-Cys33 at the N-terminus of an alpha-helix. The Cys30-Cys33 disulfide bond destabilizes DsbA by about 16 kJ/mol at pH 7.0, which appears to be caused by the extremely low pKa value of approximately 3.4 of the nucleophilic Cys30 thiol. Here we report the characterization of a circularly permuted variant of DsbA, termed H32-P31, in which the natural termini are connected by a Gly3-Thr-Gly linker and the new termini are located between the active-site cysteines (first residue His32, last residue Pro31). The disulfide bond in the variant thus connects the second with the penultimate residue. H32-P31 adopts a wild-type-like structure and folds reversibly and cooperatively in both redox forms. However, the permuted variant is catalytically inactive as dithiol oxidase in vivo and in vitro. Both cysteine thiols have pKa values > 8; the variant is 500-fold more reducing than the wild type and more stable in its oxidized form. Thus, the Cys30-Cys33 disulfide in the variant H32-P31 has adopted properties of a structural disulfide bond.
Collapse
Affiliation(s)
- J Hennecke
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland
| | | |
Collapse
|
92
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
93
|
Debarbieux L, Beckwith J. The reductive enzyme thioredoxin 1 acts as an oxidant when it is exported to the Escherichia coli periplasm. Proc Natl Acad Sci U S A 1998; 95:10751-6. [PMID: 9724776 PMCID: PMC27967 DOI: 10.1073/pnas.95.18.10751] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/1998] [Indexed: 11/18/2022] Open
Abstract
Thioredoxin 1 is a major thiol-disulfide oxidoreductase in the cytoplasm of Escherichia coli. One of its functions is presumed to be the reduction of the disulfide bond in the active site of the essential enzyme ribonucleotide reductase. Thioredoxin 1 is kept in a reduced state by thioredoxin reductase. In a thioredoxin reductase null mutant however, most of thioredoxin 1 is in the oxidized form; recent reports have suggested that this oxidized form might promote disulfide bond formation in vivo. In the Escherichia coli periplasm, the protein disulfide isomerase DsbC is maintained in the reduced and active state by the membrane protein DsbD. In a dsbD null mutant, DsbC accumulates in the oxidized form. This oxidized form is then able to promote disulfide bond formation. In both these cases, the inversion of the function of these thiol oxidoreductases appears to be due to an altered redox balance of the environment in which they find themselves. Here, we show that thioredoxin 1 attached to the alkaline phosphatase signal sequence can be exported into the E. coli periplasm. In this new environment for thioredoxin 1, we show that thioredoxin 1 can promote disulfide bond formation and, therefore, partially complement a dsbA strain defective for disulfide bond formation. Thus, we provide evidence that by changing the location of thioredoxin 1 from cytoplasm to periplasm, we change its function from a reductant to an oxidant. We conclude that the in vivo redox function of thioredoxin 1 depends on the redox environment in which it is localized.
Collapse
Affiliation(s)
- L Debarbieux
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
94
|
Guédin S, Willery E, Locht C, Jacob-Dubuisson F. Evidence that a globular conformation is not compatible with FhaC-mediated secretion of the Bordetella pertussis filamentous haemagglutinin. Mol Microbiol 1998; 29:763-74. [PMID: 9723916 DOI: 10.1046/j.1365-2958.1998.00970.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 220 kDa Bordetella pertussis filamentous haemagglutinin (FHA) is the major extracellular protein of this organism. It is exported using a signal peptide-dependent pathway, and its secretion depends on one specific outer membrane accessory protein, FhaC. In this work, we have investigated the influence of conformation on the FhaC-mediated secretion of FHA using an 80kDa N-terminal FHA derivative, Fha44. In contrast to many signal peptide-dependent secretory proteins, no soluble periplasmic intermediate of Fha44 could be isolated. In addition, cell-associated Fha44 synthesized in the absence of FhaC did not remain competent for extracellular secretion upon delayed expression of FhaC, indicating that the translocation steps across the cytoplasmic and the outer membrane might be coupled. A chimeric protein, in which the globular B subunit of the cholera toxin, CtxB, was fused at the C-terminus of Fha44, was not secreted in B. pertussis or in Escherichia coli expressing FhaC. The hybrid protein was only secreted when both disulphide bond-forming cysteines of CtxB were replaced by serines or when it was produced in DsbA- E. coli. The Fha44 portion of the secretion-incompetent hybrid protein was partly exposed on the cell surface. These results argue that the Fha44-CtxB hybrid protein transited through the periplasmic space, where disulphide bond formation is specifically catalysed, and that secretion across the outer membrane was initiated. The folded CtxB portion prevented extracellular release of the hybrid, in contrast to the more flexible CtxB domain devoid of cysteines. We propose a secretion model whereby Fha44 transits through the periplasmic space on its way to the cell surface and initiates its translocation through the outer membrane before being released from the cytoplasmic membrane. Coupling of Fha44 translocation across both membranes would delay the acquisition of its folded structure until the protein emerges from the outer membrane. Such a model would be consistent with the extensive intracellular proteolysis of FHA derivatives in B. pertussis.
Collapse
Affiliation(s)
- S Guédin
- INSERM U447, IBL, Institut Pasteur de Lille, France
| | | | | | | |
Collapse
|
95
|
Gill RT, Cha HJ, Jain A, Rao G, Bentley WE. Generating controlled reducing environments in aerobic recombinantEscherichia coli fermentations: Effects on cell growth, oxygen uptake, heat shock protein expression, and in vivo CAT activity. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19980720)59:2<248::aid-bit12>3.0.co;2-a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
96
|
Huber-Wunderlich M, Glockshuber R. A single dipeptide sequence modulates the redox properties of a whole enzyme family. FOLDING & DESIGN 1998; 3:161-71. [PMID: 9562546 DOI: 10.1016/s1359-0278(98)00024-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Disulfide exchange reactions are catalyzed by thiol/disulfide oxidoreductases. These enzymes possess a thioredoxin fold and contain a catalytic disulfide with the sequence Cys-X-X-Cys at the N terminus of an alpha helix. Despite these similarities, the various members differ strongly in their redox potentials (-122 mV to -270 mV). Using the strong oxidant DsbA from Escherichia coli as a model system, we investigated whether the redox properties of these enzymes can be modulated rationally by exchange of the X-X dipeptide. RESULTS The X-X dipeptide of DsbA (Cys30-Pro31-His32-Cys33) was exchanged by the dipeptides of eukaryotic protein disulfide isomerase (PDI; Gly-His), glutaredoxin (Pro-Tyr), and thioredoxin (Gly-Pro) from E. coli. All variants were less oxidizing than wild-type DsbA and their redox potentials were in the order of the related natural enzymes (DsbA > PDI > glutaredoxin > thioredoxin). The equilibrium constant between glutathione and the thioredoxin-like variant increased 1200-fold compared with wild-type DsbA. The variants also showed a strong increase in the pKa of the nucleophilic cysteine (Cys30). As for glutaredoxin and thioredoxin, the catalytic disulfide stabilized the corresponding variants while destabilizing wild-type DsbA and the PDI-like variant. CONCLUSIONS The X-X dipeptide in the active site of thiol/disulfide oxidoreductases appears to be the main determinant of the redox properties of these enzymes. This empirical finding should be very useful for the design of new thiol/disulfide oxidoreductases with altered redox potentials and for studying the function of these enzymes in vivo.
Collapse
Affiliation(s)
- M Huber-Wunderlich
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule, Hönggerberg CH-8093, Zürich, Switzerland
| | | |
Collapse
|
97
|
Schirra HJ, Renner C, Czisch M, Huber-Wunderlich M, Holak TA, Glockshuber R. Structure of reduced DsbA from Escherichia coli in solution. Biochemistry 1998; 37:6263-76. [PMID: 9572841 DOI: 10.1021/bi980136y] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The three-dimensional structure of reduced DsbA from Escherichia coli in aqueous solution has been determined by nuclear magnetic resonance (NMR) spectroscopy and is compared with the crystal structure of oxidized DsbA [Guddat, L. W., Bardwell, J. C. A., Zander, T., and Martin, J. L. (1997) Protein Sci. 6, 1148-1156]. DsbA is a monomeric 21 kDa protein which consists of 189 residues and is required for disulfide bond formation in the periplasm of E. coli. On the basis of sequence-specific 1H NMR assignments, 1664 nuclear Overhauser enhancement distance constraints, 118 hydrogen bond distance constraints, and 293 dihedral angle constraints were obtained as the input for the structure calculations by simulated annealing with the program X-PLOR. The enzyme is made up of two domains. The catalytic domain has a thioredoxin-like fold with a five-stranded beta-sheet and three alpha-helices, and the second domain consists of four alpha-helices and is inserted into the thioredoxin motif. The active site between Cys30 and Cys33 is located at the N terminus of the first alpha-helix in the thioredoxin-like domain. The solution structure of reduced DsbA is rather similar to the crystal structure of the oxidized enzyme but exhibits a different relative orientation of both domains. In addition, the conformations of the active site and a loop between strand beta5 and helix alpha7 are slightly different. These structural differences may reflect important functional requirements in the reaction cycle of DsbA as they appear to facilitate the release of oxidized polypeptides from reduced DsbA. The extremely low pKa value of the nucleophilic active site thiol of Cys30 in reduced DsbA is most likely caused by its interactions with the dipole of the active site helix and the side chain of His32, as no other charged residues are located next to the sulfur atom of Cys30 in the solution structure.
Collapse
Affiliation(s)
- H J Schirra
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
98
|
Poquet I, Ehrlich SD, Gruss A. An export-specific reporter designed for gram-positive bacteria: application to Lactococcus lactis. J Bacteriol 1998; 180:1904-12. [PMID: 9537391 PMCID: PMC107106 DOI: 10.1128/jb.180.7.1904-1912.1998] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The identification of exported proteins by fusion studies, while well developed for gram-negative bacteria, is limited for gram-positive bacteria, in part due to drawbacks of available export reporters. In this work, we demonstrate the export specificity and use of the Staphylococcus aureus secreted nuclease (Nuc) as a reporter for gram-positive bacteria. Nuc devoid of its export signal (called delta(SP)Nuc) was used to create two fusions whose locations could be differentiated. Nuclease activity was shown to require an extracellular location in Lactococcus lactis, thus demonstrating the suitability of delta(SP)Nuc to report protein export. The shuttle vector pFUN was designed to construct delta(SP)Nuc translational fusions whose expression signals are provided by inserted DNA. The capacity of delta(SP)Nuc to reveal and identify exported proteins was tested by generating an L. lactis genomic library in pFUN and by screening for Nuc activity directly in L. lactis. All delta(SP)Nuc fusions displaying a strong Nuc+ phenotype contained a classical or a lipoprotein-type signal peptide or single or multiple transmembrane stretches. The function of some of the predicted signals was confirmed by cell fractionation studies. The fusions analyzed included long (up to 455-amino-acid) segments of the exported proteins, all previously unknown in L. lactis. Homology searches indicate that several of them may be implicated in different cell surface functions, such as nutrient uptake, peptidoglycan assembly, environmental sensing, and protein folding. Our results with L. lactis show that delta(SP)Nuc is well suited to report both protein export and membrane protein topology.
Collapse
Affiliation(s)
- I Poquet
- Laboratoire de Génétique Appliquée-URLGA, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy en Josas, France.
| | | | | |
Collapse
|
99
|
Yamanaka H, Nomura T, Okamoto K. Involvement of glutamic acid residue at position 7 in the formation of the intramolecular disulfide bond of Escherichia coli heat-stable enterotoxin Ip in vivo. Microb Pathog 1998; 24:145-54. [PMID: 9514636 DOI: 10.1006/mpat.1997.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli heat-stable enterotoxin Ip (STIp) is a small peptide toxin composed of 18 amino acid residues containing three intramolecular disulfide bonds. We found previously that the bonds are formed by the catalysis of DsbA (a oxidoreductase) in periplasm [1]. To interact with DsbA, the STIp in periplasm must have a structure suitable as substrate. However, the amino acid residues contributing to the construction of this structure have not been elucidated. We mutated the codon for the glutamic acid at position 7 of STIp by oligonucleotide site-specific mutagenesis in vivo and analysed the STIp produced from the mutant gene. The intramolecular disulfide bonds were not formed in mutant STIp (Glu-7-->Ala), but were formed in mutant STIp (Glu-7-->Asp). Furthermore, we found that replacing the asparagine residue at position 11 and the proline residue at position 12 did not affect the disulfide bond formation of STIp. The results indicate that a negative charge at position 7 in the sequence of STIp is necessary for STIp to interact with DsbA in periplasm.
Collapse
Affiliation(s)
- H Yamanaka
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro, Tokushima, 770-8514, Japan
| | | | | |
Collapse
|
100
|
Raivio TL, Silhavy TJ. Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol 1997; 179:7724-33. [PMID: 9401031 PMCID: PMC179735 DOI: 10.1128/jb.179.24.7724-7733.1997] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Disruption of normal protein trafficking in the Escherichia coli cell envelope (inner membrane, periplasm, outer membrane) can activate two parallel, but distinct, signal transduction pathways. This activation stimulates the expression of a number of genes whose products function to fold or degrade the mislocalized proteins. One of these signal transduction pathways is a two-component regulatory system comprised of the histidine kinase CpxA and the response regulator, CpxR. In this study we characterized gain-of-function Cpx* mutants in order to learn more about Cpx signal transduction. Sequencing demonstrated that the cpx* mutations cluster in either the periplasmic, the transmembrane, or the H-box domain of CpxA. Intriguingly, most of the periplasmic cpx* gain-of-function mutations cluster in the central region of this domain, and one encodes a deletion of 32 amino acids. Strains harboring these mutations are rendered insensitive to a normally activating signal. In vivo and in vitro characterization of maltose-binding-protein fusions between the wild-type CpxA and a representative cpx* mutant, CpxA101, showed that the mutant CpxA is altered in phosphotransfer reactions with CpxR. Specifically, while both CpxA and CpxA101 function as autokinases and CpxR kinases, CpxA101 is devoid of a CpxR-P phosphatase activity normally present in the wild-type protein. Taken together, the data support a model for Cpx-mediated signal transduction in which the kinase/phosphatase ratio is elevated by stress. Further, the sequence and phenotypes of periplasmic cpx* mutations suggest that interactions with a periplasmic signaling molecule may normally dictate a decreased kinase/phosphatase ratio under nonstress conditions.
Collapse
Affiliation(s)
- T L Raivio
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|