51
|
Elgner F, Hildt E, Bender D. Relevance of Rab Proteins for the Life Cycle of Hepatitis C Virus. Front Cell Dev Biol 2018; 6:166. [PMID: 30564577 PMCID: PMC6288913 DOI: 10.3389/fcell.2018.00166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Although potent direct-acting antiviral drugs for the treatment of chronic hepatitis C virus (HCV) infection are licensed, there are more than 70 million individuals suffering from chronic HCV infection. In light of the limited access to these drugs, high costs, and a lot of undiagnosed cases, it is expected that the number of HCV cases will not decrease worldwide in the next years. Therefore, and due to the paradigmatic character of HCV for deciphering the crosstalk between viral pathogens and the host cell, characterization of HCV life cycle remains a challenge. HCV belongs to the family of Flaviviridae. As an enveloped virus HCV life cycle depends in many steps on intracellular trafficking. Rab GTPases, a large family of small GTPases, play a central role in intracellular trafficking processes controlling fusion, uncoating, vesicle budding, motility by recruiting specific effector proteins. This review describes the relevance of various Rab proteins for the different steps of the HCV life cycle.
Collapse
Affiliation(s)
- Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
52
|
Håversen L, Sundelin JP, Mardinoglu A, Rutberg M, Ståhlman M, Wilhelmsson U, Hultén LM, Pekny M, Fogelstrand P, Bentzon JF, Levin M, Borén J. Vimentin deficiency in macrophages induces increased oxidative stress and vascular inflammation but attenuates atherosclerosis in mice. Sci Rep 2018; 8:16973. [PMID: 30451917 PMCID: PMC6242955 DOI: 10.1038/s41598-018-34659-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
The aim was to clarify the role of vimentin, an intermediate filament protein abundantly expressed in activated macrophages and foam cells, in macrophages during atherogenesis. Global gene expression, lipid uptake, ROS, and inflammation were analyzed in bone-marrow derived macrophages from vimentin-deficient (Vim-/-) and wild-type (Vim+/+) mice. Atherosclerosis was induced in Ldlr-/- mice transplanted with Vim-/- and Vim+/+ bone marrow, and in Vim-/- and Vim+/+ mice injected with a PCSK9 gain-of-function virus. The mice were fed an atherogenic diet for 12-15 weeks. We observed impaired uptake of native LDL but increased uptake of oxLDL in Vim-/- macrophages. FACS analysis revealed increased surface expression of the scavenger receptor CD36 on Vim-/- macrophages. Vim-/- macrophages also displayed increased markers of oxidative stress, activity of the transcription factor NF-κB, secretion of proinflammatory cytokines and GLUT1-mediated glucose uptake. Vim-/- mice displayed decreased atherogenesis despite increased vascular inflammation and increased CD36 expression on macrophages in two mouse models of atherosclerosis. We demonstrate that vimentin has a strong suppressive effect on oxidative stress and that Vim-/- mice display increased vascular inflammation with increased CD36 expression on macrophages despite decreased subendothelial lipid accumulation. Thus, vimentin has a key role in regulating inflammation in macrophages during atherogenesis.
Collapse
Affiliation(s)
- Liliana Håversen
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jeanna Perman Sundelin
- Strategic planning and operations, Cardiovascular and metabolic diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, SE1 9RT, United Kingdom
| | - Mikael Rutberg
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulrika Wilhelmsson
- Department of Clinical Neuroscience/Center for Brain Repair, University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Milos Pekny
- Department of Clinical Neuroscience/Center for Brain Repair, University of Gothenburg, Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jacob Fog Bentzon
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark, and Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Malin Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
53
|
Prokšová PG, Lipov J, Zelenka J, Hunter E, Langerová H, Rumlová M, Ruml T. Mason-Pfizer Monkey Virus Envelope Glycoprotein Cycling and Its Vesicular Co-Transport with Immature Particles. Viruses 2018; 10:E575. [PMID: 30347798 PMCID: PMC6212865 DOI: 10.3390/v10100575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022] Open
Abstract
The envelope glycoprotein (Env) plays a crucial role in the retroviral life cycle by mediating primary interactions with the host cell. As described previously and expanded on in this paper, Env mediates the trafficking of immature Mason-Pfizer monkey virus (M-PMV) particles to the plasma membrane (PM). Using a panel of labeled RabGTPases as endosomal markers, we identified Env mostly in Rab7a- and Rab9a-positive endosomes. Based on an analysis of the transport of recombinant fluorescently labeled M-PMV Gag and Env proteins, we propose a putative mechanism of the intracellular trafficking of M-PMV Env and immature particles. According to this model, a portion of Env is targeted from the trans-Golgi network (TGN) to Rab7a-positive endosomes. It is then transported to Rab9a-positive endosomes and back to the TGN. It is at the Rab9a vesicles where the immature particles may anchor to the membranes of the Env-containing vesicles, preventing Env recycling to the TGN. These Gag-associated vesicles are then transported to the plasma membrane.
Collapse
Affiliation(s)
- Petra Grznárová Prokšová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
- Imaging methods core facility at BIOCEV, Faculty of Science, Charles University, 252 50 Prague, Czech Republic.
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Eric Hunter
- Emory Vaccine Center at the Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Hana Langerová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| |
Collapse
|
54
|
Verma K, Srivastava VK, Datta S. Rab GTPases take centre stage in understanding Entamoeba histolytica biology. Small GTPases 2018; 11:320-333. [PMID: 30273093 DOI: 10.1080/21541248.2018.1528840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases constitute the largest subgroup in the Ras superfamily of GTPases. It is well established that different Rab GTPases are localized in discrete subcellular localization and regulate the membrane trafficking in nearly all eukaryotic cells. Rab GTPase diversity is often regarded as an expression of vesicular trafficking complexity. The pathogenic amoeba Entamoeba histolytica harbours 91 Rab GTPases which is the highest among the currently available genome sequences from the eukaryotic kingdom. Here, we review the current status of amoebic Rab GTPases diversity, unique biochemical and structural features and summarise their predicted regulators. We discuss how amoebic Rab GTPases are involved in cellular processes such as endocytosis, phagocytosis, and invasion of host cellular components, which are essential for parasite survival and virulence.
Collapse
Affiliation(s)
- Kuldeep Verma
- Institute of Science, Nirma University , Ahmedabad, Gujarat, India.,Regional Centre for Biotechnology, NCR Biotech Science Cluster , Faridabad, India
| | | | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri, India
| |
Collapse
|
55
|
Constantino‐Jonapa LA, Hernández‐Ramírez VI, Osorio‐Trujillo C, Talamás‐Rohana P. Eh
Rab21 mobilization during erythrophagocytosis in
Entamoeba histolytica. Microsc Res Tech 2018; 81:1024-1035. [DOI: 10.1002/jemt.23069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 05/03/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Luis A. Constantino‐Jonapa
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| | - Verónica Ivonne Hernández‐Ramírez
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| | - Carlos Osorio‐Trujillo
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| | - Patricia Talamás‐Rohana
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| |
Collapse
|
56
|
Cheng XT, Xie YX, Zhou B, Huang N, Farfel-Becker T, Sheng ZH. Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons. J Cell Biol 2018; 217:3127-3139. [PMID: 29695488 PMCID: PMC6123004 DOI: 10.1083/jcb.201711083] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/20/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023] Open
Abstract
Despite widespread distribution of LAMP1 and the heterogeneous nature of LAMP1-labeled compartments, LAMP1 is routinely used as a lysosomal marker, and LAMP1-positive organelles are often referred to as lysosomes. In this study, we use immunoelectron microscopy and confocal imaging to provide quantitative analysis of LAMP1 distribution in various autophagic and endolysosomal organelles in neurons. Our study demonstrates that a significant portion of LAMP1-labeled organelles do not contain detectable lysosomal hydrolases including cathepsins D and B and glucocerebrosidase. A bovine serum albumin-gold pulse-chase assay followed by ultrastructural analysis suggests a heterogeneity of degradative capacity in LAMP1-labeled endolysosomal organelles. Gradient fractionation displays differential distribution patterns of LAMP1/2 and cathepsins D/B in neurons. We further reveal that LAMP1 intensity in familial amyotrophic lateral sclerosis-linked motor neurons does not necessarily reflect lysosomal deficits in vivo. Our study suggests that labeling a set of lysosomal hydrolases combined with various endolysosomal markers would be more accurate than simply relying on LAMP1/2 staining to assess neuronal lysosome distribution, trafficking, and functionality under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Yu-Xiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Bing Zhou
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Tamar Farfel-Becker
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
57
|
Gireud-Goss M, Reyes S, Wilson M, Farley M, Memarzadeh K, Srinivasan S, Sirisaengtaksin N, Yamashita S, Tsunoda S, Lang FF, Waxham MN, Bean AJ. Distinct mechanisms enable inward or outward budding from late endosomes/multivesicular bodies. Exp Cell Res 2018; 372:1-15. [PMID: 30144444 DOI: 10.1016/j.yexcr.2018.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022]
Abstract
Regulating the residence time of membrane proteins on the cell surface can modify their response to extracellular cues and allow for cellular adaptation in response to changing environmental conditions. The fate of membrane proteins that are internalized from the plasma membrane and arrive at the limiting membrane of the late endosome/multivesicular body (MVB) is dictated by whether they remain on the limiting membrane, bud into internal MVB vesicles, or bud outwardly from the membrane. The molecular details underlying the disposition of membrane proteins that transit this pathway and the mechanisms regulating these trafficking events are unclear. We established a cell-free system that reconstitutes budding of membrane protein cargo into internal MVB vesicles and onto vesicles that bud outwardly from the MVB membrane. Both budding reactions are cytosol-dependent and supported by Saccharomyces cerevisiae (yeast) cytosol. We observed that inward and outward budding from the MVB membrane are mechanistically distinct but may be linked, such that inhibition of inward budding triggers a re-routing of cargo from inward to outward budding vesicles, without affecting the number of vesicles that bud outwardly from MVBs.
Collapse
Affiliation(s)
- Monica Gireud-Goss
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Sahily Reyes
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Marenda Wilson
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Madeline Farley
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Kimiya Memarzadeh
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | | | - Natalie Sirisaengtaksin
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Shinji Yamashita
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Andrew J Bean
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Biochemistry and Cell Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA; Department of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
58
|
Retrograde Transport by Clathrin-Coated Vesicles is Involved in Intracellular Transport of PrP Sc in Persistently Prion-Infected Cells. Sci Rep 2018; 8:12241. [PMID: 30115966 PMCID: PMC6095914 DOI: 10.1038/s41598-018-30775-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular dynamics of an abnormal isoform of prion protein (PrPSc) are tightly associated with prion propagation. However, the machineries involved in the intracellular trafficking of PrPSc are not fully understood. Our previous study suggested that PrPSc in persistently prion-infected cells dynamically circulates between endocytic-recycling compartments (ERCs) and peripheral regions of the cells. To investigate these machineries, we focused on retrograde transport from endosomes to the trans-Golgi network, which is one of the pathways involved in recycling of molecules. PrPSc was co-localized with components of clathrin-coated vesicles (CCVs) as well as those of the retromer complex, which are known as machineries for retrograde transport. Fractionation of intracellular compartments by density gradient centrifugation showed the presence of PrPSc and the components of CCVs in the same fractions. Furthermore, PrPSc was detected in CCVs isolated from intracellular compartments of prion-infected cells. Knockdown of clathrin interactor 1, which is one of the clathrin adaptor proteins involved in retrograde transport, did not change the amount of PrPSc, but it altered the distribution of PrPSc from ERCs to peripheral regions, including late endosomes/lysosomes. These data demonstrated that some PrPSc is transported from endosomes to ERCs by CCVs, which might be involved in the recycling of PrPSc.
Collapse
|
59
|
Langemeyer L, Fröhlich F, Ungermann C. Rab GTPase Function in Endosome and Lysosome Biogenesis. Trends Cell Biol 2018; 28:957-970. [PMID: 30025982 DOI: 10.1016/j.tcb.2018.06.007] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
Eukaryotic cells maintain a highly organized endolysosomal system. This system regulates the protein and lipid content of the plasma membrane, it participates in the intracellular quality control machinery and is needed for the efficient removal of damaged organelles. This complex network comprises an endosomal membrane system that feeds into the lysosomes, yet also allows recycling of membrane proteins, and probably lipids. Moreover, lysosomal degradation provides the cell with macromolecules for further growth. In this review, we focus primarily on the role of the small Rab GTPases Rab5 and Rab7 as organelle markers and interactors of multiple effectors on endosomes and lysosomes and highlight their role in membrane dynamics, particularly fusion along the endolysosomal pathway.
Collapse
Affiliation(s)
- Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics of the University of Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany; Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics of the University of Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany.
| |
Collapse
|
60
|
A versatile nanobody-based toolkit to analyze retrograde transport from the cell surface. Proc Natl Acad Sci U S A 2018; 115:E6227-E6236. [PMID: 29915061 DOI: 10.1073/pnas.1801865115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retrograde transport of membranes and proteins from the cell surface to the Golgi and beyond is essential to maintain homeostasis, compartment identity, and physiological functions. To study retrograde traffic biochemically, by live-cell imaging or by electron microscopy, we engineered functionalized anti-GFP nanobodies (camelid VHH antibody domains) to be bacterially expressed and purified. Tyrosine sulfation consensus sequences were fused to the nanobody for biochemical detection of trans-Golgi arrival, fluorophores for fluorescence microscopy and live imaging, and APEX2 (ascorbate peroxidase 2) for electron microscopy and compartment ablation. These functionalized nanobodies are specifically captured by GFP-modified reporter proteins at the cell surface and transported piggyback to the reporters' homing compartments. As an application of this tool, we have used it to determine the contribution of adaptor protein-1/clathrin in retrograde transport kinetics of the mannose-6-phosphate receptors from endosomes back to the trans-Golgi network. Our experiments establish functionalized nanobodies as a powerful tool to demonstrate and quantify retrograde transport pathways.
Collapse
|
61
|
Charfi I, Abdallah K, Gendron L, Pineyro G. Delta opioid receptors recycle to the membrane after sorting to the degradation path. Cell Mol Life Sci 2018; 75:2257-2271. [PMID: 29288293 PMCID: PMC11105734 DOI: 10.1007/s00018-017-2732-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 01/24/2023]
Abstract
Soon after internalization delta opioid receptors (DOPrs) are committed to the degradation path by G protein-coupled receptor (GPCR)-associated binding protein. Here we provide evidence that this classical post-endocytic itinerary may be rectified by downstream sorting decisions which allow DOPrs to regain to the membrane after having reached late endosomes (LE). The LE sorting mechanism involved ESCRT accessory protein Alix and the TIP47/Rab9 retrieval complex which supported translocation of the receptor to the TGN, from where it subsequently regained the cell membrane. Preventing DOPrs from completing this itinerary precipitated acute analgesic tolerance to the agonist DPDPE, supporting the relevance of this recycling path in maintaining the analgesic response by this receptor. Taken together, these findings reveal a post-endocytic itinerary where GPCRs that have been sorted for degradation can still recycle to the membrane.
Collapse
Affiliation(s)
- Iness Charfi
- Department of Pharmacology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Ste-Justine Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Khaled Abdallah
- Department of Pharmacology-physiology, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-physiology, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Graciela Pineyro
- Department of Pharmacology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada.
- Department of Psychiatry, University of Montreal, Montreal, Quebec, H3T 1J4, Canada.
- Ste-Justine Hospital, Montreal, Quebec, H3T 1C5, Canada.
| |
Collapse
|
62
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
63
|
Cardoso R, Wang J, Müller J, Rupp S, Leitão A, Hemphill A. Modulation of cis- and trans- Golgi and the Rab9A-GTPase during infection by Besnoitia besnoiti, Toxoplasma gondii and Neospora caninum. Exp Parasitol 2018; 187:75-85. [PMID: 29499180 DOI: 10.1016/j.exppara.2018.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/08/2018] [Accepted: 02/26/2018] [Indexed: 01/08/2023]
Abstract
Like most intracellular pathogens, the apicomplexan parasites Besnoitia besnoiti, Toxoplasma gondii and Neospora caninum scavenge metabolites from their host cells. Recruitment of the Golgi complex to the vicinity of the parasitophorous vacuole (PV) is likely to aid in this process. In this work, we comparatively assessed B. besnoiti, T. gondii and N. caninum infected human retinal pigmented epithelial (hTERT-RPE-1) cells at 24 h post-infection and used antibodies to confirm Golgi ribbon compaction in B. besnoiti, and Golgi ribbon dispersion in T. gondii, while no alteration in Golgi morphology was seen in N. caninum infected cells. In either case, the Golgi stacks of infected cells contained both cis- (GM130) and trans- (TGN46) Golgi proteins. The localization of Rab9A, an important regulator of endosomal trafficking, was also studied. GFP-tagged Rab9A was recruited to the vicinity of the PV of all three parasites. Toxoplasma-infected cells exhibited increased expression of Rab9A in comparison to non-infected cells. However, Rab9A expression levels remained unaltered upon infection with N. caninum and B. besnoiti tachyzoites. In contrast to Rab9A, a GFP-tagged dominant negative mutant form of Rab9A (Rab9A DN), was not recruited to the PV, and the expression of Rab9A DN did not affect host cell invasion nor replication by all three parasites. Thus, B. besnoiti, T. gondii and N. caninum show similarities but also differences in how they affect constituents of the endosomal/secretory pathways.
Collapse
Affiliation(s)
- Rita Cardoso
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland; Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
| | - Junhua Wang
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland
| | - Sebastian Rupp
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland; Graduate School for Cellular and Biomedical Sciences, Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, 3012, Switzerland
| | - Alexandre Leitão
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland
| |
Collapse
|
64
|
Makaraci P, Kim K. trans-Golgi network-bound cargo traffic. Eur J Cell Biol 2018; 97:137-149. [PMID: 29398202 DOI: 10.1016/j.ejcb.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Cargo following the retrograde trafficking are sorted at endosomes to be targeted the trans-Golgi network (TGN), a central receiving organelle. Though molecular requirements and their interaction networks have been somewhat established, the complete understanding of the intricate nature of their action mechanisms in every step of the retrograde traffic pathway remains unachieved. This review focuses on elucidating known functions of key regulators, including scission factors at the endosome and tethering/fusion mediators at the receiving dock, TGN, as well as a diverse range of cargo.
Collapse
Affiliation(s)
- Pelin Makaraci
- Department of Biology, Missouri State University, 901 S National Ave., Springfield, MO 65807, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National Ave., Springfield, MO 65807, USA.
| |
Collapse
|
65
|
Autophagy Modulation in Cancer: Current Knowledge on Action and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8023821. [PMID: 29643976 PMCID: PMC5831833 DOI: 10.1155/2018/8023821] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/13/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022]
Abstract
In the last two decades, accumulating evidence pointed to the importance of autophagy in various human diseases. As an essential evolutionary catabolic process of cytoplasmatic component digestion, it is generally believed that modulating autophagic activity, through targeting specific regulatory actors in the core autophagy machinery, may impact disease processes. Both autophagy upregulation and downregulation have been found in cancers, suggesting its dual oncogenic and tumor suppressor properties during malignant transformation. Identification of the key autophagy targets is essential for the development of new therapeutic agents. Despite this great potential, no therapies are currently available that specifically focus on autophagy modulation. Although drugs like rapamycin, chloroquine, hydroxychloroquine, and others act as autophagy modulators, they were not originally developed for this purpose. Thus, autophagy may represent a new and promising pharmacologic target for future drug development and therapeutic applications in human diseases. Here, we summarize our current knowledge in regard to the interplay between autophagy and malignancy in the most significant tumor types: pancreatic, breast, hepatocellular, colorectal, and lung cancer, which have been studied in respect to autophagy manipulation as a promising therapeutic strategy. Finally, we present an overview of the most recent advances in therapeutic strategies involving autophagy modulators in cancer.
Collapse
|
66
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
67
|
Romano JD, Nolan SJ, Porter C, Ehrenman K, Hartman EJ, Hsia RC, Coppens I. The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network. J Cell Biol 2017; 216:4235-4254. [PMID: 29070609 PMCID: PMC5716271 DOI: 10.1083/jcb.201701108] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/28/2017] [Accepted: 09/08/2017] [Indexed: 02/01/2023] Open
Abstract
Many intracellular pathogens subvert host membrane trafficking pathways to promote their replication. Toxoplasma multiplies in a membrane-bound parasitophorous vacuole (PV) that interacts with mammalian host organelles and intercepts Golgi Rab vesicles to acquire sphingolipids. The mechanisms of host vesicle internalization and processing within the PV remain undefined. We demonstrate that Toxoplasma sequesters a broad range of Rab vesicles into the PV. Correlative light and electron microscopy analysis of infected cells illustrates that intravacuolar Rab1A vesicles are surrounded by the PV membrane, suggesting a phagocytic-like process for vesicle engulfment. Rab11A vesicles concentrate to an intravacuolar network (IVN), but this is reduced in Δgra2 and Δgra2Δgra6 parasites, suggesting that tubules stabilized by the TgGRA2 and TgGRA6 proteins secreted by the parasite within the PV contribute to host vesicle sequestration. Overexpression of a phospholipase TgLCAT, which is localized to the IVN, results in a decrease in the number of intravacuolar GFP-Rab11A vesicles, suggesting that TgLCAT controls lipolytic degradation of Rab vesicles for cargo release.
Collapse
Affiliation(s)
- Julia D Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Sabrina J Nolan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Corey Porter
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Karen Ehrenman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Eric J Hartman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Ru-Ching Hsia
- Electron Microscopy Core Imaging Facility, University of Maryland Baltimore, Baltimore, MD
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
68
|
Bärlocher K, Welin A, Hilbi H. Formation of the Legionella Replicative Compartment at the Crossroads of Retrograde Trafficking. Front Cell Infect Microbiol 2017; 7:482. [PMID: 29226112 PMCID: PMC5706426 DOI: 10.3389/fcimb.2017.00482] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Retrograde trafficking from the endosomal system through the Golgi apparatus back to the endoplasmic reticulum is an essential pathway in eukaryotic cells, serving to maintain organelle identity and to recycle empty cargo receptors delivered by the secretory pathway. Intracellular replication of several bacterial pathogens, including Legionella pneumophila, is restricted by the retrograde trafficking pathway. L. pneumophila employs the Icm/Dot type IV secretion system (T4SS) to form the replication-permissive Legionella-containing vacuole (LCV), which is decorated with multiple components of the retrograde trafficking machinery as well as retrograde cargo receptors. The L. pneumophila effector protein RidL is secreted by the T4SS and interferes with retrograde trafficking. Here, we review recent evidence that the LCV interacts with the retrograde trafficking pathway, discuss the possible sites of action and function of RidL in the retrograde route, and put forth the hypothesis that the LCV is an acceptor compartment of retrograde transport vesicles.
Collapse
Affiliation(s)
- Kevin Bärlocher
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Amanda Welin
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
69
|
Simonetti B, Danson CM, Heesom KJ, Cullen PJ. Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J Cell Biol 2017; 216:3695-3712. [PMID: 28935633 PMCID: PMC5674890 DOI: 10.1083/jcb.201703015] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/19/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Endosomal recycling of transmembrane proteins requires sequence-dependent recognition of motifs present within their intracellular cytosolic domains. In this study, we have reexamined the role of retromer in the sequence-dependent endosome-to-trans-Golgi network (TGN) transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Although the knockdown or knockout of retromer does not perturb CI-MPR transport, the targeting of the retromer-linked sorting nexin (SNX)-Bin, Amphiphysin, and Rvs (BAR) proteins leads to a pronounced defect in CI-MPR endosome-to-TGN transport. The retromer-linked SNX-BAR proteins comprise heterodimeric combinations of SNX1 or SNX2 with SNX5 or SNX6 and serve to regulate the biogenesis of tubular endosomal sorting profiles. We establish that SNX5 and SNX6 associate with the CI-MPR through recognition of a specific WLM endosome-to-TGN sorting motif. From validating the CI-MPR dependency of SNX1/2-SNX5/6 tubular profile formation, we provide a mechanism for coupling sequence-dependent cargo recognition with the biogenesis of tubular profiles required for endosome-to-TGN transport. Therefore, the data presented in this study reappraise retromer's role in CI-MPR transport.
Collapse
Affiliation(s)
- Boris Simonetti
- School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Chris M Danson
- School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Peter J Cullen
- School of Biochemistry, University of Bristol, Bristol, England, UK
| |
Collapse
|
70
|
Lesteberg K, Orange J, Makedonas G. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin. Immunol Res 2017; 65:1031-1045. [PMID: 28822075 PMCID: PMC5834944 DOI: 10.1007/s12026-017-8945-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein, we aimed to determine how new perforin transits to the synapse if not via lytic granules. We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response.
Collapse
Affiliation(s)
- Kelsey Lesteberg
- Center for Human Immunobiology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jordan Orange
- Center for Human Immunobiology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology, Baylor College of Medicine, Houston, TX, USA
| | - George Makedonas
- Center for Human Immunobiology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA.
- Graduate Program in Immunology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
71
|
Abstract
Macroautophagy is an intracellular pathway used for targeting of cellular components to the lysosome for their degradation and involves sequestration of cytoplasmic material into autophagosomes formed from a double membrane structure called the phagophore. The nucleation and elongation of the phagophore is tightly regulated by several autophagy-related (ATG) proteins, but also involves vesicular trafficking from different subcellular compartments to the forming autophagosome. Such trafficking must be tightly regulated by various intra- and extracellular signals to respond to different cellular stressors and metabolic states, as well as the nature of the cargo to become degraded. We are only starting to understand the interconnections between different membrane trafficking pathways and macroautophagy. This review will focus on the membrane trafficking machinery found to be involved in delivery of membrane, lipids, and proteins to the forming autophagosome and in the subsequent autophagosome fusion with endolysosomal membranes. The role of RAB proteins and their regulators, as well as coat proteins, vesicle tethers, and SNARE proteins in autophagosome biogenesis and maturation will be discussed.
Collapse
|
72
|
Kage F, Steffen A, Ellinger A, Ranftler C, Gehre C, Brakebusch C, Pavelka M, Stradal T, Rottner K. FMNL2 and -3 regulate Golgi architecture and anterograde transport downstream of Cdc42. Sci Rep 2017; 7:9791. [PMID: 28852060 PMCID: PMC5575334 DOI: 10.1038/s41598-017-09952-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
The Rho-family small GTPase Cdc42 localizes at plasma membrane and Golgi complex and aside from protrusion and migration operates in vesicle trafficking, endo- and exocytosis as well as establishment and/or maintenance of cell polarity. The formin family members FMNL2 and -3 are actin assembly factors established to regulate cell edge protrusion during migration and invasion. Here we report these formins to additionally accumulate and function at the Golgi apparatus. As opposed to lamellipodia, Golgi targeting of these proteins required both their N-terminal myristoylation and the interaction with Cdc42. Moreover, Golgi association of FMNL2 or -3 induced a phalloidin-detectable actin meshwork around the Golgi. Importantly, functional interference with FMNL2/3 formins by RNAi or CRISPR/Cas9-mediated gene deletion invariably induced Golgi fragmentation in different cell lines. Furthermore, absence of these proteins led to enlargement of endosomes as well as defective maturation and/or sorting into late endosomes and lysosomes. In line with Cdc42 - recently established to regulate anterograde transport through the Golgi by cargo sorting and carrier formation - FMNL2/3 depletion also affected anterograde trafficking of VSV-G from the Golgi to the plasma membrane. Our data thus link FMNL2/3 formins to actin assembly-dependent functions of Cdc42 in anterograde transport through the Golgi apparatus.
Collapse
Affiliation(s)
- Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Adolf Ellinger
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Carmen Ranftler
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Christian Gehre
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Cord Brakebusch
- Biomedical Institute, BRIC, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Margit Pavelka
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany. .,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| |
Collapse
|
73
|
Pham CD, Smith CE, Hu Y, Hu JCC, Simmer JP, Chun YHP. Endocytosis and Enamel Formation. Front Physiol 2017; 8:529. [PMID: 28824442 PMCID: PMC5534449 DOI: 10.3389/fphys.2017.00529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Enamel formation requires consecutive stages of development to achieve its characteristic extreme mineral hardness. Mineralization depends on the initial presence then removal of degraded enamel proteins from the matrix via endocytosis. The ameloblast membrane resides at the interface between matrix and cell. Enamel formation is controlled by ameloblasts that produce enamel in stages to build the enamel layer (secretory stage) and to reach final mineralization (maturation stage). Each stage has specific functional requirements for the ameloblasts. Ameloblasts adopt different cell morphologies during each stage. Protein trafficking including the secretion and endocytosis of enamel proteins is a fundamental task in ameloblasts. The sites of internalization of enamel proteins on the ameloblast membrane are specific for every stage. In this review, an overview of endocytosis and trafficking of vesicles in ameloblasts is presented. The pathways for internalization and routing of vesicles are described. Endocytosis is proposed as a mechanism to remove debris of degraded enamel protein and to obtain feedback from the matrix on the status of the maturing enamel.
Collapse
Affiliation(s)
- Cong-Dat Pham
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
| | - Charles E. Smith
- Department of Anatomy and Cell Biology, McGill UniversityMontreal, QC, Canada
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Jan C-C. Hu
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Yong-Hee P. Chun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
| |
Collapse
|
74
|
Siupka P, Hersom MN, Lykke-Hartmann K, Johnsen KB, Thomsen LB, Andresen TL, Moos T, Abbott NJ, Brodin B, Nielsen MS. Bidirectional apical-basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells. J Cereb Blood Flow Metab 2017; 37:2598-2613. [PMID: 28337939 PMCID: PMC5531359 DOI: 10.1177/0271678x17700665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brain capillary endothelium mediates the exchange of nutrients between blood and brain parenchyma. This barrier function of the brain capillaries also limits passage of pharmaceuticals from blood to brain, which hinders treatment of several neurological disorders. Receptor-mediated transport has been suggested as a potential pharmaceutical delivery route across the brain endothelium, e.g. reports have shown that the transferrin receptor (TfR) facilitates transcytosis of TfR antibodies, but it is not known whether this recycling receptor itself traffics from apical to basal membrane in the process. Here, we elucidate the endosomal trafficking of the retrograde transported cation-independent mannose-6-phosphate receptor (MPR300) in primary cultures of brain endothelial cells (BECs) of porcine and bovine origin. Receptor expression and localisation of MPR300 in the endo-lysosomal system and trafficking of internalised receptor are analysed. We also demonstrate that MPR300 can undergo bidirectional apical-basal trafficking in primary BECs in co-culture with astrocytes. This is, to our knowledge, the first detailed study of retrograde transported receptor trafficking in BECs, and the study demonstrates that MPR300 can be transported from the luminal to abluminal membrane and reverse. Such trafficking of MPR300 suggests that retrograde transported receptors in general may provide a mechanism for transport of pharmaceuticals into the brain.
Collapse
Affiliation(s)
- Piotr Siupka
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark.,2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark
| | - Maria Ns Hersom
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,3 Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Kasper B Johnsen
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,4 Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,5 Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Denmark
| | - Louiza B Thomsen
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,4 Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas L Andresen
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,5 Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Denmark
| | - Torben Moos
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,4 Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - N Joan Abbott
- 6 Institute of Pharmaceutical Science, King's College London, London, UK
| | - Birger Brodin
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,3 Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Nielsen
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark.,2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark
| |
Collapse
|
75
|
Chichger H, Braza J, Duong H, Boni G, Harrington EO. Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin. Am J Respir Cell Mol Biol 2017; 54:769-81. [PMID: 26551054 DOI: 10.1165/rcmb.2015-0286oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Huetran Duong
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Geraldine Boni
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
76
|
The basolateral vesicle sorting machinery and basolateral proteins are recruited to the site of enteropathogenic E. coli microcolony growth at the apical membrane. PLoS One 2017. [PMID: 28636623 PMCID: PMC5479554 DOI: 10.1371/journal.pone.0179122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Foodborne Enteropathogenic Escherichia coli (EPEC) infections of the small intestine cause diarrhea especially in children and are a major cause of childhood death in developing countries. EPEC infects the apical membrane of the epithelium of the small intestine by attaching, effacing the microvilli under the bacteria and then forming microcolonies on the cell surface. We first asked the question where on epithelial cells EPEC attaches and grows. Using models of polarized epithelial monolayers, we evaluated the sites of initial EPEC attachment to the apical membrane and found that EPEC preferentially attached over the cell-cell junctions and formed microcolonies preferentially where three cells come together at tricellular tight junctions. The ability of EPEC to adhere increased when host cell polarity was compromised yielding EPEC access to basolateral proteins. EPEC pedestals contain basolateral cytoskeletal proteins. Thus, we asked if attached EPEC causes reorganization the protein composition of the host cell plasma membrane at sites of microcolony formation. We found that EPEC microcolony growth at the apical membrane resulted in a local accumulation of basolateral plasma membrane proteins surrounding the microcolony. Basolateral marker protein aquaporin-3 localized to forming EPEC microcolonies. Components of the basolateral vesicle targeting machinery were re-routed. The Exocyst (Exo70) was recruited to individual EPEC as was the basolateral vesicle SNARE VAMP-3. Moreover, several Rab variants were also recruited to the infection site, and their dominant-negative equivalents were not. To quantitatively study the recruitment of basolateral proteins, we created a pulse of the temperature sensitive basolateral VSVG, VSVG3-SP-GFP, from the trans-Golgi Network. We found that after release from the TGN, significantly more VSVG3-SP-GFP accumulated at the site of microcolony growth than on equivalent membrane regions of uninfected cells. This suggests that trafficking of vesicles destined for the basolateral membrane are redirected to the apical site of microcolony growth. Thus, in addition to disrupting host cell fence function, local host cell plasma membrane protein composition is changed by altered protein trafficking and recruitment of basolateral proteins to the apical microcolony. This may aid EPEC attachment and subsequent microcolony growth.
Collapse
|
77
|
Pérez-Montesinos G, López-Ortega O, Piedra-Reyes J, Bonifaz LC, Moreno J. Dynamic Changes in the Intracellular Association of Selected Rab Small GTPases with MHC Class II and DM during Dendritic Cell Maturation. Front Immunol 2017; 8:340. [PMID: 28396666 PMCID: PMC5367080 DOI: 10.3389/fimmu.2017.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/09/2017] [Indexed: 01/13/2023] Open
Abstract
Antigen processing for presentation by major histocompatibility complex class II (MHCII) molecules requires the latter to travel through the endocytic pathway together with its chaperons: the invariant chain (Ii) and DM. Nevertheless, the nature of the compartments where MHCII molecules travel to acquire peptides lacks definition regarding molecules involved in intracellular vesicular trafficking, such as Rab small GTPases. We aimed to define which Rab proteins are present during the intracellular transport of MHCII, DM, and Ii through the endocytic pathway on their route to the cell surface during dendritic cell (DC) maturation. We examined, by means of three-color confocal microscopy, the association of MHCII, DM, and Ii with Rab5, Rab7, Rab9, and Rab11 during the maturation of bone marrow-derived or spleen DC in response to LPS as an inflammatory stimulus. Prior to the stage of immature DC, MHCII migrated from diffuse small cytoplasmic vesicles, predominantly Rab5+Rab7- and Rab5+Rab7+ into a pericentriolar Rab5+Rab7+Rab9+ cluster, with Rab11+ areas. As DC reached the mature phenotype, MHCII left the pericentriolar endocytic compartments toward the cell surface in Rab11+ and Rab9+Rab11+ vesicles. The invariant chain and MHCII transport pathways were not identical. DM and MHCII appeared to arrive to pericentriolar endocytic compartments of immature DC through partially different routes. The association of MHCII molecules with distinct Rab GTPases during DC maturation suggests that after leaving the biosynthetic pathway, MHCII sequentially traffic from typical early endosomes to multivesicular late endosomes to finally arrive at the cell surface in Rab11+ recycling-type endosomes. In immature DCs, DM encounters transiently MHCII in the Rab5+Rab7+Rab9+ compartments, to remain there in mature DC.
Collapse
Affiliation(s)
- Gibrán Pérez-Montesinos
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
- Centro Dermatológico “Dr. Ladislao de la Pascua”, Secretaría de Salud del Distrito Federal, Mexico City, Distrito Federal, Mexico
| | - Orestes López-Ortega
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| | - Jessica Piedra-Reyes
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| | - Laura C. Bonifaz
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
| | - José Moreno
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| |
Collapse
|
78
|
Luo J, Jiang L, Yang H, Song BL. Routes and mechanisms of post-endosomal cholesterol trafficking: A story that never ends. Traffic 2017; 18:209-217. [DOI: 10.1111/tra.12471] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Luyi Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| |
Collapse
|
79
|
Maringer K, Yarbrough A, Sims-Lucas S, Saheb E, Jawed S, Bush J. Dictyostelium discoideum RabS and Rab2 colocalize with the Golgi and contractile vacuole system and regulate osmoregulation. J Biosci 2017; 41:205-17. [PMID: 27240981 DOI: 10.1007/s12038-016-9610-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Small-molecular-weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and is required for protein transport from the ER to the Golgi complex; however, Rab2 has yet to be characterized in Dictyostelium discoideum. DdRabS is a Dictyostelium Rab that is 80 percent homologous to DdRab1 which is required for protein transport between the ER and Golgi. Expression of GFP-tagged DdRab2 and DdRabS proteins showed localization to Golgi membranes and to the contractile vacuole system (CV) in Dictyostelium. Microscopic imaging indicates that the DdRab2 and DdRabS proteins localize at, and are essential for, the proper structure of Golgi membranes and the CV system. Dominant negative (DN) forms show fractionation of Golgi membranes, supporting their role in the structure and function of it. DdRab2 and DdRabS proteins, and their dominant negative and constitutively active (CA) forms, affect osmoregulation of the cells, possibly by the influx and discharge of fluids, which suggests a role in the function of the CV system. This is the first evidence of GTPases being localized to both Golgi membranes and the CV system in Dictyostelium.
Collapse
Affiliation(s)
- Katherine Maringer
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | | | | | | | | | | |
Collapse
|
80
|
Caviglia S, Flores-Benitez D, Lattner J, Luschnig S, Brankatschk M. Rabs on the fly: Functions of Rab GTPases during development. Small GTPases 2017; 10:89-98. [PMID: 28118081 PMCID: PMC6380344 DOI: 10.1080/21541248.2017.1279725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The organization of intracellular transport processes is adapted specifically to different cell types, developmental stages, and physiologic requirements. Some protein traffic routes are universal to all cells and constitutively active, while other routes are cell-type specific, transient, and induced under particular conditions only. Small GTPases of the Rab (Ras related in brain) subfamily are conserved across eukaryotes and regulate most intracellular transit pathways. The complete sets of Rab proteins have been identified in model organisms, and molecular principles underlying Rab functions have been uncovered. Rabs provide intracellular landmarks that define intracellular transport sequences. Nevertheless, it remains a challenge to systematically map the subcellular distribution of all Rabs and their functional interrelations. This task requires novel tools to precisely describe and manipulate the Rab machinery in vivo. Here we discuss recent findings about Rab roles during development and we consider novel approaches to investigate Rab functions in vivo.
Collapse
Affiliation(s)
- Sara Caviglia
- a Danish Stem Cell Center (DanStem), University of Copenhagen , Copenhagen , Denmark.,c Institute of Molecular Life Sciences and Ph.D. Program in Molecular Life Sciences, University of Zurich , Zurich , Switzerland
| | - David Flores-Benitez
- b Max Planck Institute for Cell Biology and Genetics (MPI-CBG) , Dresden , Germany
| | - Johanna Lattner
- b Max Planck Institute for Cell Biology and Genetics (MPI-CBG) , Dresden , Germany
| | - Stefan Luschnig
- c Institute of Molecular Life Sciences and Ph.D. Program in Molecular Life Sciences, University of Zurich , Zurich , Switzerland.,d Institute of Neurobiology and Cluster of Excellence Cells-in-Motion (EXC 1003 - CiM), University of Münster , Münster , Germany
| | - Marko Brankatschk
- e The Biotechnological Center of the TU Dresden (BIOTEC) , Dresden , Germany
| |
Collapse
|
81
|
Medvedev R, Hildt E, Ploen D. Look who's talking-the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol 2016; 33:211-231. [PMID: 27987184 DOI: 10.1007/s10565-016-9376-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/04/2016] [Indexed: 12/12/2022]
Abstract
Autophagy is a highly conserved and regulated intracellular lysosomal degradation pathway that is essential for cell survival. Dysregulation has been linked to the development of various human diseases, including neurodegeneration and tumorigenesis, infection, and aging. Besides, many viruses hijack the autophagosomal pathway to support their life cycle. The hepatitis C virus (HCV), a major cause of chronic liver diseases worldwide, has been described to induce autophagy. The autophagosomal pathway can be further activated in response to elevated levels of reactive oxygen species (ROS). HCV impairs the Nrf2/ARE-dependent induction of ROS-detoxifying enzymes by a so far unprecedented mechanism. In line with this, this review aims to discuss the relevance of HCV-dependent elevated ROS levels for the induction of autophagy as a result of the impaired Nrf2 signaling and the described crosstalk between p62 and the Nrf2/Keap1 signaling pathway. Moreover, autophagy is functionally connected to the endocytic pathway as components of the endosomal trafficking are involved in the maturation of autophagosomes. The release of HCV particles is still not fully understood. Recent studies suggest an involvement of exosomes that originate from the endosomal pathway in viral release. In line with this, it is tempting to speculate whether HCV-dependent elevated ROS levels induce autophagy to support exosome-mediated release of viral particles. Based on recent findings, in this review, we will further highlight the impact of HCV-induced autophagy and its interplay with the endosomal pathway as a novel mechanism for the release of HCV particles.
Collapse
Affiliation(s)
- Regina Medvedev
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Gießen, Marburg, Langen, Germany
| | - Daniela Ploen
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
| |
Collapse
|
82
|
Progida C, Bakke O. Bidirectional traffic between the Golgi and the endosomes - machineries and regulation. J Cell Sci 2016; 129:3971-3982. [PMID: 27802132 DOI: 10.1242/jcs.185702] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The bidirectional transport between the Golgi complex and the endocytic pathway has to be finely regulated in order to ensure the proper delivery of newly synthetized lysosomal enzymes and the return of sorting receptors from degradative compartments. The high complexity of these routes has led to experimental difficulties in properly dissecting and separating the different pathways. As a consequence, several models have been proposed during the past decades. However, recent advances in our understanding of endosomal dynamics have helped to unify these different views. We provide here an overview of the current insights into the transport routes between Golgi and endosomes in mammalian cells. The focus of the Commentary is on the key molecules involved in the trafficking pathways between these intracellular compartments, such as Rab proteins and sorting receptors, and their regulation. A proper understanding of the bidirectional traffic between the Golgi complex and the endolysosomal system is of uttermost importance, as several studies have demonstrated that mutations in the factors involved in these transport pathways result in various pathologies, in particular lysosome-associated diseases and diverse neurological disorders, such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|
83
|
Mahanty S, Ravichandran K, Chitirala P, Prabha J, Jani RA, Setty SRG. Rab9A is required for delivery of cargo from recycling endosomes to melanosomes. Pigment Cell Melanoma Res 2016; 29:43-59. [PMID: 26527546 PMCID: PMC4690521 DOI: 10.1111/pcmr.12434] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/19/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023]
Abstract
Melanosomes are a type of lysosome-related organelle that is commonly defective in Hermansky–Pudlak syndrome. Biogenesis of melanosomes is regulated by BLOC-1, -2, -3, or AP-1, -3 complexes, which mediate cargo transport from recycling endosomes to melanosomes. Although several Rab GTPases have been shown to regulate these trafficking steps, the precise role of Rab9A remains unknown. Here, we found that a cohort of Rab9A associates with the melanosomes and its knockdown in melanocytes results in hypopigmented melanosomes due to mistargeting of melanosomal proteins to lysosomes. In addition, the Rab9A-depletion phenotype resembles Rab38/32-inactivated or BLOC-3-deficient melanocytes, suggesting that Rab9A works in line with BLOC-3 and Rab38/32 during melanosome cargo transport. Furthermore, silencing of Rab9A, Rab38/32 or its effector VARP, or BLOC-3-deficiency in melanocytes decreased the length of STX13-positive recycling endosomal tubules and targeted the SNARE to lysosomes. This result indicates a defect in directing recycling endosomal tubules to melanosomes. Thus, Rab9A and its co-regulatory GTPases control STX13-mediated cargo delivery to maturing melanosomes.
Collapse
Affiliation(s)
- Sarmistha Mahanty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Keerthana Ravichandran
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Praneeth Chitirala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Jyothi Prabha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Riddhi Atul Jani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
84
|
Kucera A, Bakke O, Progida C. The multiple roles of Rab9 in the endolysosomal system. Commun Integr Biol 2016; 9:e1204498. [PMID: 27574541 PMCID: PMC4988448 DOI: 10.1080/19420889.2016.1204498] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
The small GTPase Rab9 has long been described as a protein that mediates endosome-to-trans-Golgi Network (TGN) transport, and specifically mannose-6-phospate receptor (MPR) recycling. However, studies have challenged this view by showing that Rab9 also is connected to sorting pathways toward the endolysosomal compartments. We recently characterized the spatio-temporal dynamics of Rab9 and, by using live cell imaging, we showed that it enters the endosomal pathway together with CI-MPR at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. More so, the Rab9 constitutively active mutant, Rab9Q66L, accumulates on late endosomes and promotes carrier formation at the TGN. Here, we discuss our findings in light of previous reports on Rab9 in the retrograde transport pathway.
Collapse
Affiliation(s)
- Ana Kucera
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| |
Collapse
|
85
|
Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M, Fazel A, Bergeron JJ, Trudeau LE, Burelle Y, Gagnon E, McBride HM, Desjardins M. Parkinson's Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation. Cell 2016; 166:314-327. [PMID: 27345367 DOI: 10.1016/j.cell.2016.05.039] [Citation(s) in RCA: 424] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/22/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
Antigen presentation is essential for establishing immune tolerance and for immune responses against infectious disease and cancer. Although antigen presentation can be mediated by autophagy, here we demonstrate a pathway for mitochondrial antigen presentation (MitAP) that relies on the generation and trafficking of mitochondrial-derived vesicles (MDVs) rather than on autophagy/mitophagy. We find that PINK1 and Parkin, two mitochondrial proteins linked to Parkinson's disease (PD), actively inhibit MDV formation and MitAP. In absence of PINK1 or Parkin, inflammatory conditions trigger MitAP in immune cells, both in vitro and in vivo. MitAP and the formation of MDVs require Rab9 and Sorting nexin 9, whose recruitment to mitochondria is inhibited by Parkin. The identification of PINK1 and Parkin as suppressors of an immune-response-eliciting pathway provoked by inflammation suggests new insights into PD pathology.
Collapse
Affiliation(s)
- Diana Matheoud
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Ayumu Sugiura
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, QC H3A 2B4, Canada
| | - Angélique Bellemare-Pelletier
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Annie Laplante
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Christiane Rondeau
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Magali Chemali
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Ali Fazel
- Department of Medicine, McGill University Hospital Research Institute, Montreal, QC H4A 3J1, Canada
| | - John J Bergeron
- Department of Medicine, McGill University Hospital Research Institute, Montreal, QC H4A 3J1, Canada
| | - Louis-Eric Trudeau
- Departments of Pharmacology and Neurosciences, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Yan Burelle
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Etienne Gagnon
- Institute for Research in Immunology and Cancer and Department of Immunology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, QC H3A 2B4, Canada.
| | - Michel Desjardins
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
86
|
Schreij AMA, Fon EA, McPherson PS. Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci 2016; 73:1529-45. [PMID: 26721251 PMCID: PMC11108351 DOI: 10.1007/s00018-015-2105-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are amongst the most devastating of human disorders. New technologies have led to a rapid increase in the identification of disease-related genes with an enhanced appreciation of the key roles played by genetics in the etiology of these disorders. Importantly, pinpointing the normal function of disease gene proteins leads to new understanding of the cellular machineries and pathways that are altered in the disease process. One such emerging pathway is membrane trafficking in the endosomal system. This key cellular process controls the localization and levels of a myriad of proteins and is thus critical for normal cell function. In this review we will focus on three neurodegenerative diseases; Parkinson disease, amyotrophic lateral sclerosis, and hereditary spastic paraplegias, for which a large number of newly discovered disease genes encode proteins that function in endosomal membrane trafficking. We will describe how alterations in these proteins affect endosomal function and speculate on the contributions of these disruptions to disease pathophysiology.
Collapse
Affiliation(s)
- Andrea M A Schreij
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
87
|
Personnic N, Bärlocher K, Finsel I, Hilbi H. Subversion of Retrograde Trafficking by Translocated Pathogen Effectors. Trends Microbiol 2016; 24:450-462. [PMID: 26924068 DOI: 10.1016/j.tim.2016.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Intracellular bacterial pathogens subvert the endocytic bactericidal pathway to form specific replication-permissive compartments termed pathogen vacuoles or inclusions. To this end, the pathogens employ type III or type IV secretion systems, which translocate dozens, if not hundreds, of different effector proteins into their host cells, where they manipulate vesicle trafficking and signaling pathways in favor of the intruders. While the distinct cocktail of effectors defines the specific processes by which a pathogen vacuole is formed, the different pathogens commonly target certain vesicle trafficking routes, including the endocytic or secretory pathway. Recently, the retrograde transport pathway from endosomal compartments to the trans-Golgi network emerged as an important route affecting pathogen vacuole formation. Here, we review current insight into the host cell's retrograde trafficking pathway and how vacuolar pathogens of the genera Legionella, Coxiella, Salmonella, Chlamydia, and Simkania employ mechanistically distinct strategies to subvert this pathway, thus promoting intracellular survival and replication.
Collapse
Affiliation(s)
- Nicolas Personnic
- Institute of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Kevin Bärlocher
- Institute of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Ivo Finsel
- Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland; Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany.
| |
Collapse
|
88
|
Larkin H, Costantino S, Seaman MNJ, Lavoie C. Calnuc Function in Endosomal Sorting of Lysosomal Receptors. Traffic 2016; 17:416-32. [DOI: 10.1111/tra.12374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Heidi Larkin
- Department of Pharmacology, Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke QC Canada
| | - Santiago Costantino
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont; Université de Montréal; Montréal H1T 2M Canada
| | - Matthew N. J. Seaman
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, Wellcome Trust/MRC Building, Addenbrookes Hospital; University of Cambridge; Cambridge CB2 0XY UK
| | - Christine Lavoie
- Department of Pharmacology, Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke QC Canada
| |
Collapse
|
89
|
Hayes CN, Zhang Y, Makokha GN, Hasan MZ, Omokoko MD, Chayama K. Early events in hepatitis B virus infection: From the cell surface to the nucleus. J Gastroenterol Hepatol 2016; 31:302-9. [PMID: 26414381 DOI: 10.1111/jgh.13175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
While most adults are able to clear acute hepatitis B virus (HBV) infection, chronic HBV infection is recalcitrant to current therapy because of the persistence of covalently closed circular DNA in the nucleus. Complete clearance of the virus in these patients is rare, and long-term therapy with interferon and/or nucleoside analogues may be required in an attempt to suppress viral replication and prevent progressive liver damage. The difficulty of establishing HBV infection in cell culture and experimental organisms has hindered efforts to elucidate details of the HBV life cycle, but it has also revealed the importance of the cellular microenvironment required for HBV binding and entry. Recent studies have demonstrated an essential role of sodium-taurocholate cotransporting polypeptide as a functional receptor in HBV infection, which has facilitated the development of novel infection systems and opened the way for more detailed understanding of the early steps of HBV infection as well as a potential new therapeutic target. However, many gaps remain in understanding of how HBV recognizes and attaches to hepatocytes prior to binding to sodium-taurocholate cotransporting polypeptide, as well as events that are triggered after binding, including entry into the cell, intracellular transport, and passage through the nuclear pore complex. This review summarizes current knowledge of the initial stages of HBV infection leading to the establishment of covalently closed circular DNA in the nucleus.
Collapse
Affiliation(s)
- C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Yizhou Zhang
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Grace Naswa Makokha
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Md Zobaer Hasan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Magot D Omokoko
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
90
|
Kucera A, Borg Distefano M, Berg-Larsen A, Skjeldal F, Repnik U, Bakke O, Progida C. Spatiotemporal Resolution of Rab9 and CI-MPR Dynamics in the Endocytic Pathway. Traffic 2016; 17:211-29. [PMID: 26663757 DOI: 10.1111/tra.12357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose-6-phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation-independent (CI-MPR) away from the Golgi yet, has no effect on the retrograde transport of CI-MPR. We also show that CI-MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. CI-MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI-MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI-MPR to the endosomal pathway, entering the maturing endosome at the early-to-late transition.
Collapse
Affiliation(s)
- Ana Kucera
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Marita Borg Distefano
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Axel Berg-Larsen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway.,Current address: Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Frode Skjeldal
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Urska Repnik
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|
91
|
Chapter Five - Ubiquitination of Ion Channels and Transporters. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:161-223. [DOI: 10.1016/bs.pmbts.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
92
|
Dollerup P, Thomsen TM, Nejsum LN, Færch M, Österbrand M, Gregersen N, Rittig S, Christensen JH, Corydon TJ. Partial nephrogenic diabetes insipidus caused by a novel AQP2 variation impairing trafficking of the aquaporin-2 water channel. BMC Nephrol 2015; 16:217. [PMID: 26714855 PMCID: PMC4696136 DOI: 10.1186/s12882-015-0213-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/21/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Autosomal dominant inheritance of congenital nephrogenic diabetes insipidus (CNDI) is rare and usually caused by variations in the AQP2 gene. We have investigated the genetic and molecular background underlying symptoms of diabetes insipidus (DI) in a Swedish family with autosomal dominant inheritance of the condition. METHODS The proband and her father were subjected to water deprivation testing and direct DNA sequencing of the coding regions of the AQP2 and AVP genes. Madin-Darby canine kidney (MDCK) cells stably expressing AQP2 variant proteins were generated by lentiviral gene delivery. Localization of AQP2 variant proteins in the cells under stimulated and unstimulated conditions was analyzed by means of immunostaining and confocal laser scanning microscopy. Intracellular trafficking of AQP2 variant proteins was studied using transient expression of mutant dynamin2-K44A-GFP protein and AQP2 variant protein phosphorylation levels were assessed by Western blotting analysis. RESULTS Clinical and genetic data suggest that the proband and her father suffer from partial nephrogenic DI due to a variation (g.4807C > T) in the AQP2 gene. The variation results in substitution of arginine-254 to tryptophan (p.R254W) in AQP2. Analysis of MDCK cells stably expressing AQP2 variant proteins revealed disabled phosphorylation, impaired trafficking and intracellular accumulation of AQP2-R254W protein. Notably, blocking of the endocytic pathway demonstrated impairment of AQP2-R254W to reach the cell surface. CONCLUSIONS Partial CNDI in the Swedish family is caused by an AQP2 variation that seems to disable the encoded AQP2-R254W protein to reach the subapical vesicle population as well as impairing its phosphorylation at S256. The AQP2-R254W protein is thus unable to reach the plasma membrane to facilitate AVP mediated urine concentration.
Collapse
Affiliation(s)
- Pia Dollerup
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| | - Troels Møller Thomsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| | - Lene N Nejsum
- Department of Molecular Biology and Genetics and iNANO, Aarhus University, Aarhus, Denmark.
| | - Mia Færch
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark.
| | - Martin Österbrand
- Department of Pediatrics, Queen Silvia Children's Hospital, Gothenburg, Sweden.
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Søren Rittig
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark.
| | - Jane H Christensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| |
Collapse
|
93
|
Tang BL. Rab, Arf, and Arl-Regulated Membrane Traffic in Cortical Neuron Migration. J Cell Physiol 2015; 231:1417-23. [DOI: 10.1002/jcp.25261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| |
Collapse
|
94
|
Cheung PYP, Limouse C, Mabuchi H, Pfeffer SR. Protein flexibility is required for vesicle tethering at the Golgi. eLife 2015; 4. [PMID: 26653856 PMCID: PMC4721967 DOI: 10.7554/elife.12790] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/13/2015] [Indexed: 01/27/2023] Open
Abstract
The Golgi is decorated with coiled-coil proteins that may extend long distances to help vesicles find their targets. GCC185 is a trans Golgi-associated protein that captures vesicles inbound from late endosomes. Although predicted to be relatively rigid and highly extended, we show that flexibility in a central region is required for GCC185’s ability to function in a vesicle tethering cycle. Proximity ligation experiments show that that GCC185’s N-and C-termini are within <40 nm of each other on the Golgi. In physiological buffers without fixatives, atomic force microscopy reveals that GCC185 is shorter than predicted, and its flexibility is due to a central bubble that represents local unwinding of specific sequences. Moreover, 85% of the N-termini are splayed, and the splayed N-terminus can capture transport vesicles in vitro. These unexpected features support a model in which GCC185 collapses onto the Golgi surface, perhaps by binding to Rab GTPases, to mediate vesicle tethering.
Collapse
Affiliation(s)
| | - Charles Limouse
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Hideo Mabuchi
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
95
|
Cheung PYP, Pfeffer SR. Molecular and cellular characterization of GCC185: a tethering protein of the trans-Golgi network. Methods Mol Biol 2015; 1270:179-90. [PMID: 25702118 DOI: 10.1007/978-1-4939-2309-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Transport vesicle tethers are proteins that link partner membranes together to permit subsequent SNARE protein pairing and fusion. Despite the identification of a relatively large number of tethering proteins, little is known about the precise mechanisms by which they act. Biochemical isolation of tethers permits direct analysis of their physical characteristics and molecular interactions. Here, we describe the expression and purification of GCC185, a trans-Golgi-localized, 190-kDa coiled-coil tethering protein. In addition, we present a gene rescue approach to analyze the function of this tether after its depletion from cells using siRNA.
Collapse
Affiliation(s)
- Pak-Yan Patricia Cheung
- Department of Biochemistry, Stanford University School of Medicine, Beckman Center, Stanford University, Stanford, CA, 94305-5307, USA
| | | |
Collapse
|
96
|
Alenquer M, Amorim MJ. Exosome Biogenesis, Regulation, and Function in Viral Infection. Viruses 2015; 7:5066-83. [PMID: 26393640 PMCID: PMC4584306 DOI: 10.3390/v7092862] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022] Open
Abstract
Exosomes are extracellular vesicles released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation. This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system, which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and defining their functions will ultimately provide additional insights into the virulence and persistence of infections.
Collapse
Affiliation(s)
- Marta Alenquer
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2778-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2778-156 Oeiras, Portugal.
| |
Collapse
|
97
|
Chichger H, Braza J, Duong H, Stark M, Harrington EO. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. Am J Physiol Lung Cell Mol Physiol 2015; 309:L700-9. [PMID: 26254426 DOI: 10.1152/ajplung.00235.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022] Open
Abstract
Neovascularization, the formation of new blood vessels, requires multiple processes including vascular leak, migration, and adhesion. Endosomal proteins, such as Rabs, regulate trafficking of key signaling proteins involved in neovascularization. The novel endosome protein, p18, enhances vascular endothelial (VE)-cadherin recycling from early endosome to cell junction to improve pulmonary endothelial barrier function. Since endothelial barrier integrity is vital in neovascularization, we sought to elucidate the role for endosome proteins p18 and Rab4, Rab7, and Rab9 in the process of vessel formation within the pulmonary vasculature. Overexpression of wild-type p18 (p18(wt)), but not the nonendosomal-binding mutant (p18(N39)), significantly increased lung microvascular endothelial cell migration, adhesion, and both in vitro and in vivo tube formation. Chemical inhibition of mTOR or p38 attenuated the proneovascularization role of p18(wt). Similar to the effect of p18(wt), overexpression of prorecycling wild-type (Rab4(WT)) and endosome-anchored (Rab4(Q67L)) Rab4 enhanced neovascularization processes, whereas molecular inhibition of Rab4, by using the nonendosomal-binding mutant (Rab4(S22N)) attenuated VEGF-induced neovascularization. Unlike p18, Rab4-induced neovascularization was independent of mTOR or p38 inhibition but was dependent on p18 expression. This study shows for the first time that neovascularization within the pulmonary vasculature is dependent on the prorecycling endocytic proteins Rab4 and p18.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Huetran Duong
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Myranda Stark
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
98
|
Kern B, Jain U, Utsch C, Otto A, Busch B, Jiménez-Soto L, Becher D, Haas R. Characterization of Helicobacter pylori VacA-containing vacuoles (VCVs), VacA intracellular trafficking and interference with calcium signalling in T lymphocytes. Cell Microbiol 2015; 17:1811-32. [PMID: 26078003 DOI: 10.1111/cmi.12474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
Abstract
The human pathogen Helicobacter pylori colonizes half of the global population. Residing at the stomach epithelium, it contributes to the development of diseases such as gastritis, duodenal and gastric ulcers, and gastric cancer. A major factor is the secreted vacuolating toxin VacA, which forms anion-selective channels in the endosome membrane that cause the compartment to swell, but the composition and purpose of the resulting VacA-containing vacuoles (VCVs) are still unknown. VacA exerts influence on the host immune response in various ways, including inhibition of T-cell activation and proliferation and suppression of the host immune response. In this study, for the first time the composition of VCVs from T cells was comprehensively analysed to investigate VCV function. VCVs were successfully isolated via immunomagnetic separation, and the purified vacuoles were analysed by mass spectrometry. We detected a set of 122 VCV-specific proteins implicated among others in immune response, cell death and cellular signalling processes, all of which VacA is known to influence. One of the individual proteins studied further was stromal interaction molecule (STIM1), a calcium sensor residing in the endoplasmic reticulum (ER) that is important in store-operated calcium entry. Live cell imaging microscopy data demonstrated colocalization of VacA with STIM1 in the ER and indicated that VacA may interfere with the movement of STIM1 towards the plasma membrane-localized calcium release activated calcium channel protein ORAI1 in response to Ca(2+) store depletion. Furthermore, VacA inhibited the increase of cytosolic-free Ca(2+) in the Jurkat E6-1 T-cell line and human CD4(+) T cells. The presence of VacA in the ER and its trafficking to the Golgi apparatus was confirmed in HeLa cells, identifying these two cellular compartments as novel VacA target structures.
Collapse
Affiliation(s)
- Beate Kern
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Utkarsh Jain
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Ciara Utsch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Benjamin Busch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Luisa Jiménez-Soto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Rainer Haas
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
99
|
Klinger SC, Siupka P, Nielsen MS. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters. MEMBRANES 2015; 5:288-306. [PMID: 26154780 PMCID: PMC4584283 DOI: 10.3390/membranes5030288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022]
Abstract
Transport between the endoplasmatic reticulum, the Golgi-network, the endo-lysosomal system and the cell surface can be categorized as anterograde or retrograde, describing traffic that goes forward or backward, respectively. Traffic going from the plasma membrane to endosomes and lysosomes or the trans-Golgi network (TGN) constitutes the major retrograde transport routes. Several transmembrane proteins undergo retrograde transport as part of a recycling mechanism that contributes to reutilization and maintenance of a steady-state protein localization. In addition, some receptors are hijacked by exotoxins and used for entry and intracellular transport. The physiological relevance of retrograde transport cannot be overstated. Retrograde trafficking of the amyloid precursor protein determines the distribution between organelles, and hence the possibility of cleavage by γ-secretase. Right balancing of the pathways is critical for protection against Alzheimer’s disease. During embryonic development, retrograde transport of Wntless to the TGN is essential for the following release of Wnt from the plasma membrane. Furthermore, overexpression of Wntless has been linked to oncogenesis. Here, we review relevant aspects of the retrograde trafficking of mammalian transmembrane receptors and transporters, with focus on the retromer-mediated transport between endosomes and the TGN.
Collapse
Affiliation(s)
- Stine C Klinger
- The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Piotr Siupka
- The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Morten S Nielsen
- The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
100
|
Endocytosis of Nanomedicines: The Case of Glycopeptide Engineered PLGA Nanoparticles. Pharmaceutics 2015; 7:74-89. [PMID: 26102358 PMCID: PMC4491652 DOI: 10.3390/pharmaceutics7020074] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/15/2015] [Accepted: 06/10/2015] [Indexed: 01/03/2023] Open
Abstract
The success of nanomedicine as a new strategy for drug delivery and targeting prompted the interest in developing approaches toward basic and clinical neuroscience. Despite enormous advances on brain research, central nervous system (CNS) disorders remain the world's leading cause of disability, in part due to the inability of the majority of drugs to reach the brain parenchyma. Many attempts to use nanomedicines as CNS drug delivery systems (DDS) were made; among the various non-invasive approaches, nanoparticulate carriers and, particularly, polymeric nanoparticles (NPs) seem to be the most interesting strategies. In particular, the ability of poly-lactide-co-glycolide NPs (PLGA-NPs) specifically engineered with a glycopeptide (g7), conferring to NPs' ability to cross the blood brain barrier (BBB) in rodents at a concentration of up to 10% of the injected dose, was demonstrated in previous studies using different routes of administrations. Most of the evidence on NP uptake mechanisms reported in the literature about intracellular pathways and processes of cell entry is based on in vitro studies. Therefore, beside the particular attention devoted to increasing the knowledge of the rate of in vivo BBB crossing of nanocarriers, the subsequent exocytosis in the brain compartments, their fate and trafficking in the brain surely represent major topics in this field.
Collapse
|