51
|
Reeves JA, De Alwis Watuthanthrige N, Boyer C, Konkolewicz D. Intrinsic and Catalyzed Photochemistry of Phenylvinylketone for Wavelength‐Sensitive Controlled Polymerization. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jennifer A. Reeves
- Department of Chemistry and BiochemistryMiami University 651 E High St Oxford OH 45056 Miami USA
| | | | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering, and Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
| | - Dominik Konkolewicz
- Department of Chemistry and BiochemistryMiami University 651 E High St Oxford OH 45056 Miami USA
| |
Collapse
|
52
|
Jalili K, Abbasi F, Behboodpour L. In situ probing of switchable nanomechanical properties of responsive high-density polymer brushes on poly(dimethylsiloxane): An AFM nanoindentation approach. J Mech Behav Biomed Mater 2019; 93:118-129. [PMID: 30785077 DOI: 10.1016/j.jmbbm.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 12/01/2022]
Abstract
Nanomechanical characteristics of end grafted polymer brushes were studied by AFM based, colloidal probe nanoindentation measurements. A high-density polymer brush of poly(2-hydroxyethyl methacrylate) (PHEMA) was precisely prepared on the surface of a flexible poly(dimethylsiloxane) (PDMS) substrate oxidized in ultraviolet/ozone (UVO). Exposure times less than 10min resulted in laterally homogeneous oxidized surfaces, characterized by a SiOx thickness ∼35nm and an increased modulus up to 9MPa, as shown by AFM nanoindentation measurements. We have demonstrated that a high surface density of up to ∼0.63chains/nm2 of the well-defined PHEMA brushes can be grown from the surface of oxidized PDMS by surface-initiated atom transfer radical polymerization (SI-ATRP) from trimethoxysilane derivatives mixed-SAM. The reversible nanomechanical changes of PHEMA layer between extended (hydrated state) and collapsed (dehydrated state) chain upon immersing in selective and non-selective solvents were investigated by in situ AFM nanoindentation analysis in liquid environments. The elastic modulus derived from force-indentation curves obtained for swollen PHEMA grafted chains in water was estimated to be equal 2.7±0.2MPa, which is almost two orders of magnitude smaller than the modulus of dry PHEMA brush. Additionally, under cyclohexane immersion, the modulus of the PHEMA layer decreased by one order of magnitude, indicating a more compact chain packing at the PDMS surface.
Collapse
Affiliation(s)
- K Jalili
- Institute of Polymeric Materials, Sahand University of Technology, P.O.Box 51335-1996, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran; Max Planck Institute for Polymer Research, 10 Ackermannweg, 55128 Mainz, Germany.
| | - F Abbasi
- Institute of Polymeric Materials, Sahand University of Technology, P.O.Box 51335-1996, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - L Behboodpour
- Institute of Polymeric Materials, Sahand University of Technology, P.O.Box 51335-1996, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
53
|
Zhao H, Xu K, Zhu P, Wang C, Chi Q. Smart hydrogels with high tunability of stiffness as a biomimetic cell carrier. Cell Biol Int 2019; 43:84-97. [DOI: 10.1002/cbin.11091] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/23/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Han Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Kang Xu
- Department of Cardiovascular Surgery; Union Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Peng Zhu
- Department of Cardiovascular Surgery; Union Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Chunli Wang
- “111 ” Project Laboratory of Biomechanics and Tissue Repair; Bioengineering College; Chongqing University; Chongqing China
| | - Qingjia Chi
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics; Department of Mechanics and Engineering Structure; Wuhan University of Technology; Wuhan China
| |
Collapse
|
54
|
Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M. The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polym Chem 2019. [DOI: 10.1039/c9py00890j] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Light-controlling of phase separation in temperature-responsive polymer solutions by using light-responsive materials for reversible controlling physical and chemical properties of the media with an out-of-system stimulus with tunable intensity.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
- Institute of Polymeric Materials
| | - Bahareh Razavi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
- Institute of Polymeric Materials
| |
Collapse
|
55
|
Li L, Wu Y, Du F, Li Z. Modular synthesis of photodegradable polymers with different sensitive wavelengths as UV/NIR responsive nanocarriers. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lei Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & EngineeringCollege of Chemistry and Molecular Engineering, Center for Soft Matter Science & Engineering, Peking University Beijing 100871 China
| | - Yuhuan Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & EngineeringCollege of Chemistry and Molecular Engineering, Center for Soft Matter Science & Engineering, Peking University Beijing 100871 China
| | - Fu‐Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & EngineeringCollege of Chemistry and Molecular Engineering, Center for Soft Matter Science & Engineering, Peking University Beijing 100871 China
| | - Zi‐Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & EngineeringCollege of Chemistry and Molecular Engineering, Center for Soft Matter Science & Engineering, Peking University Beijing 100871 China
| |
Collapse
|
56
|
Bagheri A, Boyer C, Lim M. Synthesis of Light-Responsive Pyrene-Based Polymer Nanoparticles via Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2018; 40:e1800510. [PMID: 30176080 DOI: 10.1002/marc.201800510] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Indexed: 12/20/2022]
Abstract
The use of an in situ, one-pot polymerization-induced self-assembly method to synthesize light-responsive pyrene-containing nanoparticles is reported. The strategy is based on the chain extension of a hydrophilic macromolecular chain transfer agent, poly(oligo(ethylene glycol) methyl ether methacrylate), using a light-responsive monomer, 1-pyrenemethyl methacrylate (PyMA), via a reversible addition-fragmentation chain transfer dispersion polymerization; yielding nanoparticles of various morphologies (spherical micelles and worm-like micelles). In this process, addition of comonomers, such as butyl methacrylate (BuMA) or methyl methacrylate (MMA), are required to obtain high PyMA monomer conversion (>80% in 24 h). The addition of comonomers reduces the π-π stacking of the pyrene moieties, which facilitates the diffusion of monomers in the nanoparticle core. The addition of BuMA (as a comonomer) offers P(PyMA-co-BuMA) core-forming chains with high mobility that enables the reorganization of chains and then the evolution of morphology to form vesicles. In contrast, when MMA comonomer is used, kinetically trapped spheres are obtained; this is due to the low mobility of the core-forming chains inhibiting in situ morphological evolution. Finally, the UV-light-induced dissociation of these light-responsive nanoparticles due to the gradual cleavage of the pyrene moieties and the subsequent hydrophobic-to-hydrophilic transitions of the core-forming blocks is demonstrated.
Collapse
Affiliation(s)
- Ali Bagheri
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - May Lim
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
57
|
Peterson JA, Wijesooriya C, Gehrmann EJ, Mahoney KM, Goswami PP, Albright TR, Syed A, Dutton AS, Smith EA, Winter AH. Family of BODIPY Photocages Cleaved by Single Photons of Visible/Near-Infrared Light. J Am Chem Soc 2018; 140:7343-7346. [PMID: 29775298 DOI: 10.1021/jacs.8b04040] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photocages are light-sensitive chemical protecting groups that provide external control over when, where, and how much of a biological substrate is activated in cells using targeted light irradiation. Regrettably, most popular photocages (e.g., o-nitrobenzyl groups) absorb cell-damaging ultraviolet wavelengths. A challenge with achieving longer wavelength bond-breaking photochemistry is that long-wavelength-absorbing chromophores have shorter excited-state lifetimes and diminished excited-state energies. However, here we report the synthesis of a family of BODIPY-derived photocages with tunable absorptions across the visible/near-infrared that release chemical cargo under irradiation. Derivatives with appended styryl groups feature absorptions above 700 nm, yielding photocages cleaved with the highest known wavelengths of light via a direct single-photon-release mechanism. Photorelease with red light is demonstrated in living HeLa cells, Drosophila S2 cells, and bovine GM07373 cells upon ∼5 min irradiation. No cytotoxicity is observed at 20 μM photocage concentration using the trypan blue exclusion assay. Improved B-alkylated derivatives feature improved quantum efficiencies of photorelease ∼20-fold larger, on par with the popular o-nitrobenzyl photocages (εΦ = 50-100 M-1 cm-1), but absorbing red/near-IR light in the biological window instead of UV light.
Collapse
Affiliation(s)
- Julie A Peterson
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Chamari Wijesooriya
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Elizabeth J Gehrmann
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Kaitlyn M Mahoney
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Pratik P Goswami
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Toshia R Albright
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Aleem Syed
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Andrew S Dutton
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Emily A Smith
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Arthur H Winter
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| |
Collapse
|
58
|
Yang HY, Li Y, Lee DS. Multifunctional and Stimuli-Responsive Magnetic Nanoparticle-Based Delivery Systems for Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering; Jilin Institute of Chemical Technology; Jilin City 132022 P. R. China
| | - Yi Li
- Theranostic Macromolecules Research Center and School of Chemical Engineering; Sungkyunkwan University; Suwon Gyeonggi-do 16419 South Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering; Sungkyunkwan University; Suwon Gyeonggi-do 16419 South Korea
| |
Collapse
|
59
|
Zhang X, Ma X, Wang K, Lin S, Zhu S, Dai Y, Xia F. Recent Advances in Cyclodextrin-Based Light-Responsive Supramolecular Systems. Macromol Rapid Commun 2018; 39:e1800142. [DOI: 10.1002/marc.201800142] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/13/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Xin Ma
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Kang Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Shijun Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Shitai Zhu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| |
Collapse
|
60
|
Jin Y, Shen Y, Yin J, Qian J, Huang Y. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10461-10470. [PMID: 29493213 DOI: 10.1021/acsami.8b00806] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Stimuli-responsive hydrogels and/or composite hydrogels have been of great interest for various printing applications including four-dimensional printing. Although various responsive hydrogels and/or composite hydrogels have been found to respond to given stimuli and change shapes as designed, the fabrication of three-dimensional (3D) structures from such responsive hydrogels is still a challenge due to their poor 3D printability, and most of the responsive material-based patterns are two-dimensional (2D) in nature. In this study, Laponite nanoclay is studied as an effective additive to improve the self-supporting printability of N-isopropylacrylamide (NIPAAm), a thermoresponsive hydrogel precursor while keeping the responsive functionality of NIPAAm. Graphene oxide (GO) is further added as a nanoscale heater, responding to near-infrared radiation. Due to the different shrinking ratios and mechanical properties of the poly( N-isopropylacrylamide) (pNIPAAm)-Laponite and pNIPAAm-Laponite-GO nanocomposite hydrogels, printed 2D patterns deform in a predictable way. In addition, 3D microfluidic valves are directly printed and cured in air, which can effectively control the flow directions in response to different stimuli as validated in a microfluidic system. Because Laponite nanoclay can be mixed with various responsive hydrogel precursors to improve their 3D printability, the proposed Laponite nanoclay-based nanocomposite hydrogels can be further expanded to prepare various 3D printable responsive nanocomposite hydrogels.
Collapse
|
61
|
Rose JC, De Laporte L. Hierarchical Design of Tissue Regenerative Constructs. Adv Healthc Mater 2018; 7:e1701067. [PMID: 29369541 DOI: 10.1002/adhm.201701067] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Indexed: 02/05/2023]
Abstract
The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues.
Collapse
Affiliation(s)
- Jonas C. Rose
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| | - Laura De Laporte
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| |
Collapse
|
62
|
Huang Y, Chen C, Li H, Xiao A, Guo T, Guan BO. Insight into the local near-infrared photothermal dynamics of graphene oxide functionalized polymers through optical microfibers. Phys Chem Chem Phys 2018; 20:5256-5263. [PMID: 29400386 DOI: 10.1039/c7cp07915j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, although great attention has been paid to the design and exploitation of new classes of near-infrared (NIR) light-induced materials, the photothermal dynamics of these materials have not been fully explored. However, understanding the photothermal dynamics of NIR-light-responsive composites is of fundamental importance from the viewpoint of smart material design and processing at the nanoscale, and for the understanding of a number of related phenomena. Herein, an alternative approach to observe the dynamics of the photothermal process is developed, which relies on probing the local refractive index change in the nanocomposite matrix with a silica microfiber interferometer. In this approach, the light-induced morphological change of the polymer is captured by the microfiber because of the strong evanescent-field interaction, and is translated into a significant wavelength shift in the interferometric fringe. Therefore, probing the matrix to study the local photothermal dynamics is possible. The optical microfiber records various phase-transformation stages of the photothermal nanocomposites induced by different optothermal mechanisms, especially revealing the reconstruction process of Ag@reduced graphene oxide (Ag@G) nanosheets during the initial stage of the photothermal process. The feasibility of using optical fibers for studying the inner mechanism of material phase change is presented herein and it provides a new approach for fundamental investigations into smart material development at the nanoscales.
Collapse
Affiliation(s)
- Yunyun Huang
- Guangdong Provincial Key laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 210632, China.
| | | | | | | | | | | |
Collapse
|
63
|
Pennacchio FA, Fedele C, De Martino S, Cavalli S, Vecchione R, Netti PA. Three-Dimensional Microstructured Azobenzene-Containing Gelatin as a Photoactuable Cell Confining System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:91-97. [PMID: 29260543 DOI: 10.1021/acsami.7b13176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In materials science, there is a considerable interest in the fabrication of highly engineered biomaterials that can interact with cells and control their shape. In particular, from the literature, the role played by physical cell confinement in cellular structural organization and thus in the regulation of its functions has been well-established. In this context, the addition of a dynamic feature to physically confining platforms aiming at reproducing in vitro the well-known dynamic interaction between the cells and their microenvironment would be highly desirable. To this aim, we have developed an advanced gelatin-based hydrogel that can be finely micropatterned by two-photon polymerization and stimulated in a controlled way by light irradiation thanks to the presence of an azobenzene cross-linker. Light-triggered expansion of gelatin microstructures induced an in-plane nuclear deformation of physically confined NIH-3T3 cells. The microfabricated photoactuable gelatin shown in this work paves the way to new "dynamic" caging culture systems that can find applications, for example, as "engineered stem cell niches".
Collapse
Affiliation(s)
- Fabrizio A Pennacchio
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II , Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Chiara Fedele
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II , Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Selene De Martino
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II , Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Silvia Cavalli
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II , Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II , Piazzale Tecchio, 80, 80125 Napoli, Italy
| |
Collapse
|
64
|
|
65
|
Darwish WM, Bayoumi NA, El-Kolaly MT. Laser-responsive liposome for selective tumor targeting of nitazoxanide nanoparticles. Eur J Pharm Sci 2017; 111:526-533. [PMID: 29097304 DOI: 10.1016/j.ejps.2017.10.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/07/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Nitazoxanide [2-(Acetyloxy)-N-(5-nitro-2-thiazolyl)benzamide], usually referred as NTZ, is an antiparasites drug with a potential anti-cancer reactivity. However, the bioavailability of nitazoxanide is limited due to its poor water solubility. In this study, nitazoxanide could be successfully incorporated in a stable biocompatible liposome (NTZ-LP) using a modified thin film hydration technique. Further, a novel lipophilic phthalocyanine star polymer R4PcZn was prepared as photosensitizer and in situ incorporated with NTZ in the liposome formulation affording a laser-responsive liposome (NTZ-ZnPc-LP). Both (NTZ-LP) and (NTZ-ZnPc-LP) showed high entrapment efficiency (EE) and high in vitro drug release rates. Transmission electron microscope (TEM) images and dynamic light scattering (DLS) measurements of (NTZ-LP) and (NTZ-ZnPc-LP) showed unilamellar vesicles of mean diameter 192.2 and 87.4nm, respectively. In addition, NTZ nanoparticles (NTZ NPs) were prepared via membrane extrusion method using DMF and water as solvents. All formulations were similarly prepared using radiolabeled nitazoxanide 125I-NTZ. After induction of solid tumor in mices using Ehrlich Ascites Carcinoma, the prepared formulations were injected in the tail vein of the mices. Tumor sites of the animal injected with (125I-NTZ-ZnPc-LP) were illuminated with a HeNe laser (λ=630nm). Afterwards, the biodistriburtion of 125I-NTZ was tagged using γ counter. Results showed that the light-responsive formulation (125I-NTZ-ZnPc-LP) affords a higher accumulation of 125I NTZ in the tumor sites after illumination. This can be attributed to the rupture of liposome lipid bilayer as a result of the photosensitization process and the singlet oxygen species resulted thereof. Despite (NTZ NPs) formulation showed a rapid accumulation of NTZ in tumor, it showed unfavoured rapid blood clearance rate.
Collapse
Affiliation(s)
- Wael M Darwish
- Laser Technology Group, Center of Excellence for Advanced Sciences, Department of Polymers and Pigments, National Research Centre, Elbohooth Street, Dokki, 12622 Giza, Egypt.
| | - Noha A Bayoumi
- Department of Radiolabeled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Mohamed T El-Kolaly
- Department of Radiolabeled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
66
|
B 12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc Natl Acad Sci U S A 2017; 114:5912-5917. [PMID: 28533376 DOI: 10.1073/pnas.1621350114] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thanks to the precise control over their structural and functional properties, genetically engineered protein-based hydrogels have emerged as a promising candidate for biomedical applications. Given the growing demand for creating stimuli-responsive "smart" hydrogels, here we show the synthesis of entirely protein-based photoresponsive hydrogels by covalently polymerizing the adenosylcobalamin (AdoB12)-dependent photoreceptor C-terminal adenosylcobalamin binding domain (CarHC) proteins using genetically encoded SpyTag-SpyCatcher chemistry under mild physiological conditions. The resulting hydrogel composed of physically self-assembled CarHC polymers exhibited a rapid gel-sol transition on light exposure, which enabled the facile release/recovery of 3T3 fibroblasts and human mesenchymal stem cells (hMSCs) from 3D cultures while maintaining their viability. A covalently cross-linked CarHC hydrogel was also designed to encapsulate and release bulky globular proteins, such as mCherry, in a light-dependent manner. The direct assembly of stimuli-responsive proteins into hydrogels represents a versatile strategy for designing dynamically tunable materials.
Collapse
|
67
|
Fang T, Fang L, Chen S, Li L, Huang H, Lu C, Xu Z. Synthesis and Study of Shape-Memory Polymers Selectively Induced by Near-Infrared Lights via In Situ Copolymerization. Polymers (Basel) 2017; 9:E181. [PMID: 30970860 PMCID: PMC6432236 DOI: 10.3390/polym9050181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/25/2022] Open
Abstract
Shape-memory polymers (SMPs) selectively induced by near-infrared lights of 980 or 808 nm were synthesized via free radical copolymerization. Methyl methacrylate (MMA) monomer, ethylene glycol dimethylacrylate (EGDMA) as a cross-linker, and organic complexes of Yb(TTA)2AAPhen or Nd(TTA)2AAPhen containing a reactive ligand of acrylic acid (AA) were copolymerized in situ. The dispersion of the organic complexes in the copolymer matrix was highly improved, while the transparency of the copolymers was negligibly influenced in comparison with the pristine cross-linked PMMA. In addition, the thermal resistance of the copolymers was enhanced with the complex loading, while their glass transition temperature, cross-linking level, and mechanical properties were to some extent reduced. Yb(TTA)2AAPhen and Nd(TTA)2AAPhen provided the prepared copolymers with selective photothermal effects and shape-memory functions for 980 and 808 nm NIR lights, respectively. Finally, smart optical devices which exhibited localized transparency or diffraction evolution procedures were demonstrated based on the prepared copolymers, owing to the combination of good transparency and selective light wavelength responsivity.
Collapse
Affiliation(s)
- Tianyu Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| | - Liang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| | - Shunping Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| | - Lingyu Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| | - Hengming Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| | - Chunhua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| | - Zhongzi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
68
|
Guo X, You J. Near infrared light-controlled therapeutic molecules release of nanocarriers in cancer therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0321-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
69
|
Cheng B, Lu B, Liu X, Meng T, Tan Y, Zhu Y, Liu N, Yuan H, Huang X, Hu F. A pH-responsive glycolipid-like nanocarrier for optimising the time-dependent distribution of free chemical drugs in focal cells. Int J Pharm 2017; 522:210-221. [PMID: 28259679 DOI: 10.1016/j.ijpharm.2017.02.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
Abstract
Though Drug delivery systems have achieved accumulation at tumor sites via passive targeting and active targeting, the therapeutic effects are far from perfect. The unsatisfactory results are mainly due to limited drug release from the nanocarriers at tumor sites, while the pharmacological activities of the drug are attributed to the concentration of the free drug and the time maintained at the pharmacological targets. A pH-responsive chitosan based glycolipid-like nanocarrier (CSO-FBA-SA) was fabricated by conjugating stearyl alcohol (SA) to chitosan oligosaccharide (CSO) with the linkage of 4-formylbenzoic acid (FBA). FBA was a kind of aromatic aldehyde carbonyl compounds, which can form the benzoic-imine bond. In the presence of a Schiff's base structure, the carrier showed improved properties and could be quickly degraded in an acidic environment. In order to explore the process and mechanism of the nanocarriers in focal cells, the method for determining the intracellular concentration of released free doxorubicin was established, and the time-dependent change of the DOX-loaded micelles was revealed. The sight of drug release was also obtained with CLSM. The cytotoxicity of the CSO-FBA-SA/DOX against human breast cancer MCF-7 cells increased by 2.75-fold and 3.77-fold in comparison with the CSO-SA/DOX and DOX, respectively. Furthermore, the CSO-FBA-SA/DOX showed a 2.12-fold higher cytotoxicity against the MCF-7 cells than that treated against human ovarian cancer SKOV-3 cells with lower intracellular pH value, which indicated that the cellular inhibition positively correlated with the intracellular pH value. High tumor accumulation and fast drug release of the CSO-FBA-SA/DOX in tumor was responsible for the remarkable tumor growth inhibitory effect. Moreover, the CSO-FBA-SA/DOX could selectively respond to the acidic environment and release DOX in tumor only, which had relatively minimal cytotoxicity towards normal tissues. The results showed that this newly developed glycolipid-like nanocarrier could act as a potential vector for delivering the drug effectively with a low systemic toxicity.
Collapse
Affiliation(s)
- Bolin Cheng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Binbin Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Xuan Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Tingting Meng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Yanan Tan
- Ocean College, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Yun Zhu
- Ocean College, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Na Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Hong Yuan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Xuan Huang
- Department of Pharmacy, School of Medicine Science, Jiaxing University, Zhejiang 314001, People's Republic of China
| | - Fuqiang Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
70
|
Fan B, Trant JF, Hemery G, Sandre O, Gillies ER. Thermo-responsive self-immolative nanoassemblies: direct and indirect triggering. Chem Commun (Camb) 2017; 53:12068-12071. [DOI: 10.1039/c7cc06410a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new thermo-responsive end-cap was developed and applied to self-immolative vesicles and micelles with both direct and indirect thermal triggering.
Collapse
Affiliation(s)
- Bo Fan
- Department of Chemical and Biochemical Engineering
- The University of Western Ontario
- London
- N6A 5B9 Canada
| | - John F. Trant
- Department of Chemistry
- The University of Western Ontario
- London
- N6A 5B9 Canada
| | - Gauvin Hemery
- Laboratoire de Chimie des Polymères Organiques (LCPO)
- Université de Bordeaux
- Bordeaux INP
- ENSCBP
- Pessac
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO)
- Université de Bordeaux
- Bordeaux INP
- ENSCBP
- Pessac
| | - Elizabeth R. Gillies
- Department of Chemical and Biochemical Engineering
- The University of Western Ontario
- London
- N6A 5B9 Canada
- Department of Chemistry
| |
Collapse
|
71
|
Chen Z, Lv Z, Qing G, Sun T. Exploring the role of molecular chirality in the photo-responsiveness of dipeptide-based gels. J Mater Chem B 2017; 5:3163-3171. [DOI: 10.1039/c7tb00402h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chiral effect: upon UV light irradiation, the l-gel has a markedly faster gel–sol transition than the d-gel.
Collapse
Affiliation(s)
- Zhonghui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Ziyu Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- School of Chemistry
| |
Collapse
|
72
|
Yeh MY, Zhao JY, Hsieh YR, Lin JH, Chen FY, Chakravarthy RD, Chung PC, Lin HC, Hung SC. Reverse thermo-responsive hydrogels prepared from Pluronic F127 and gelatin composite materials. RSC Adv 2017. [DOI: 10.1039/c7ra01118k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of F127–gelatin composite hydrogels with reverse thermo-responsive and tunable mechanical properties were developed.
Collapse
Affiliation(s)
- Mei-Yu Yeh
- Graduate Institute of Biomedical Sciences
- China Medical University
- Taichung 40402
- Taiwan
- Integrative Stem Cell Center
| | - Jiong-Yao Zhao
- Graduate Institute of Biomedical Sciences
- China Medical University
- Taichung 40402
- Taiwan
| | - Yi-Ru Hsieh
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Jhong-Hua Lin
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Fang-Yi Chen
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | | | - Pei-Chun Chung
- Integrative Stem Cell Center
- China Medical University Hospital
- Taichung 40447
- Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Shih-Chieh Hung
- Integrative Stem Cell Center
- China Medical University Hospital
- Taichung 40447
- Taiwan
- Institute of New Drug Development
| |
Collapse
|
73
|
Lyu S, Fang J, Duan T, Fu L, Liu J, Li H. Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem Commun (Camb) 2017; 53:13375-13378. [DOI: 10.1039/c7cc06991j] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploiting the optically controlled association and dissociation behavior of a photoswitchable fluorescent protein, Dronpa145N, here we demonstrate the engineering of an optically switchable reversible protein hydrogel using Dronpa145N-based protein building blocks.
Collapse
Affiliation(s)
- Shanshan Lyu
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- State Key Laboratory of Organic–Inorganic Composite Materials
| | - Jing Fang
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Tianyu Duan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Linglan Fu
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Junqiu Liu
- State Key Lab for Supramolecular Structure and Materials
- Jilin University Changchun
- Jilin
- P. R. China
| | - Hongbin Li
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
74
|
Park H, Yang S, Kang JY, Park MH. On-Demand Drug Delivery System Using Micro-organogels with Gold Nanorods. ACS Med Chem Lett 2016; 7:1087-1091. [PMID: 27994743 PMCID: PMC5150663 DOI: 10.1021/acsmedchemlett.6b00293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/10/2016] [Indexed: 11/29/2022] Open
Abstract
In this study, we designed a biocompatible drug carrier: micro-organogels prepared by emulsification using vegetable oils and self-assembled gelator fibers. Flurbiprofen was chosen as a hydrophobic model drug and is classified as a nonsteroidal anti-inflammatory drug. In the absence of NIR light, flurbiprofen encapsulated in micro-organogels with gold nanorods (GNRs) was released slowly, while release was accelerated in the presence of NIR light due to the increase in the temperature surrounding the GNRs that transforms the gels into liquid. These results suggest that our system can be efficiently used as a versatile scaffold for on-demand drug delivery systems.
Collapse
Affiliation(s)
- Honglual Park
- Department of Chemistry and Department of Pharmacy, Sahmyook University, Hwarangro 815, Nowon-gu, Seoul 01795, Republic of Korea
| | - Soojung Yang
- Department of Chemistry and Department of Pharmacy, Sahmyook University, Hwarangro 815, Nowon-gu, Seoul 01795, Republic of Korea
| | - Jin Yang Kang
- Department of Chemistry and Department of Pharmacy, Sahmyook University, Hwarangro 815, Nowon-gu, Seoul 01795, Republic of Korea
| | - Myoung-Hwan Park
- Department of Chemistry and Department of Pharmacy, Sahmyook University, Hwarangro 815, Nowon-gu, Seoul 01795, Republic of Korea
| |
Collapse
|
75
|
Bagheri A, Arandiyan H, Boyer C, Lim M. Lanthanide-Doped Upconversion Nanoparticles: Emerging Intelligent Light-Activated Drug Delivery Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500437. [PMID: 27818904 PMCID: PMC5069703 DOI: 10.1002/advs.201500437] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/20/2016] [Indexed: 05/20/2023]
Abstract
The development of drug delivery systems (DDSs) using near infrared (NIR) light and upconversion nanoparticles (UCNPs) has generated intensive interest over the past five years. These NIR-initiated DDSs not only offer a high degree of spatial and temporal determination of therapeutic release but also provide precise control over the released dosage. Furthermore, these nanoplatforms confer several advantages over conventional light-based DDSs-NIR offers better tissue penetration depth and a reduced risk of cellular photo-damage caused by exposure to light at high-energy wavelengths (e.g., ultraviolet light, <400 nm). The development of DDSs that can be activated by low intensity NIR illumination is highly desirable to avoid exposing living tissues to excessive heat that can limit the in vivo application of these DDSs. This encompasses research in three directions: (i) enhancing the quantum yield of the UCNPs; (ii) incorporation of photo-responsive materials with red-shifted absorptions into the UCNPs; and (iii) tuning the UCNPs excitation wavelength. This review focuses on recent advances in the development of NIR-initiated DDS, with emphasis on the use of photo-responsive compounds and polymeric materials conjugated onto UCNPs. The challenges that limit UCNPs clinical applications, alongside with the aforementioned techniques that have emerged to overcome these limitations, are highlighted.
Collapse
Affiliation(s)
- Ali Bagheri
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Hamidreza Arandiyan
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Center for Advanced Macromolecular Design (CAMD) and Australian Center for Nano Medicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - May Lim
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
76
|
Zhang X, Zhuo R. Dual UV- and pH-Responsive Supramolecular Vesicles Mediated by Host-Guest Interactions for Drug Controlled Release. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaojin Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education; Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education; Department of Chemistry; Wuhan University; Wuhan 430072 China
| |
Collapse
|
77
|
Bagheri A, Yeow J, Arandiyan H, Xu J, Boyer C, Lim M. Polymerization of a Photocleavable Monomer Using Visible Light. Macromol Rapid Commun 2016; 37:905-10. [DOI: 10.1002/marc.201600127] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/23/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Ali Bagheri
- School of Chemical Engineering; The University of New South Wales; Sydney NSW 2052 Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN); School of Chemical Engineering; UNSW Australia; Sydney NSW 2052 Australia
| | | | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN); School of Chemical Engineering; UNSW Australia; Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN); School of Chemical Engineering; UNSW Australia; Sydney NSW 2052 Australia
| | - May Lim
- School of Chemical Engineering; The University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
78
|
Opoku-Damoah Y, Wang R, Zhou J, Ding Y. Versatile Nanosystem-Based Cancer Theranostics: Design Inspiration and Predetermined Routing. Theranostics 2016; 6:986-1003. [PMID: 27217832 PMCID: PMC4876623 DOI: 10.7150/thno.14860] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/24/2016] [Indexed: 01/10/2023] Open
Abstract
The relevance of personalized medicine, aimed at a more individualized drug therapy, has inspired research into nano-based concerted diagnosis and therapeutics (theranostics). As the intention is to "kill two birds with one stone", scientists have already described the emerging concept as a treasured tailor for the future of cancer therapy, wherein the main idea is to design "smart" nanosystems to concurrently discharge both therapeutic and diagnostic roles. These nanosystems are expected to offer a relatively clearer view of the ingenious cellular trafficking pathway, in-situ diagnosis, and therapeutic efficacy. We herein present a detailed review of versatile nanosystems, with prominent examples of recently developed intelligent delivery strategies which have gained attention in the field of theranostics. These nanotheranostics include various mechanisms programmed in novel platforms to enable predetermined delivery of cargo to specific sites, as well as techniques to overcome the notable challenges involved in the efficacy of theranostics.
Collapse
Affiliation(s)
| | | | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
79
|
Cheng Q, Liu Y. Multifunctional platinum-based nanoparticles for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1410] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/07/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Qinqin Cheng
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry; University of Science and Technology of China; Hefei China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry; University of Science and Technology of China; Hefei China
| |
Collapse
|
80
|
Hu J, Whittaker MR, Quinn JF, Davis TP. Nitric Oxide (NO) Endows Arylamine-Containing Block Copolymers with Unique Photoresponsive and Switchable LCST Properties. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jinming Hu
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry ULCV4 7AL, U.K
| |
Collapse
|
81
|
Near-IR photoactivation using mesoporous silica–coated NaYF4:Yb,Er/Tm upconversion nanoparticles. Nat Protoc 2016; 11:688-713. [DOI: 10.1038/nprot.2016.035] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
82
|
Photo-responsive polyethyleneimine microcapsules cross-linked by ortho -nitrobenzyl derivatives. J Colloid Interface Sci 2016; 463:22-8. [DOI: 10.1016/j.jcis.2015.10.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
|
83
|
Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem Rev 2016; 116:2826-85. [DOI: 10.1021/acs.chemrev.5b00148] [Citation(s) in RCA: 1014] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guanying Chen
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Indrajit Roy
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Chunhui Yang
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Paras N. Prasad
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
84
|
Goulet-Hanssens A, Magdesian MH, Lopez-Ayon GM, Grutter P, Barrett CJ. Reversing adhesion with light: a general method for functionalized bead release from cells. Biomater Sci 2016; 4:1193-6. [DOI: 10.1039/c6bm00168h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Coated beads retain great importance in the study of cell adhesion and intracellular communication; we present a generally applicable method permitting spatiotemporal control of bead adhesion from cells.
Collapse
Affiliation(s)
| | | | | | - Peter Grutter
- Program in NeuroEngineering
- McGill University
- Montreal
- Canada
- Department of Physics
| | | |
Collapse
|
85
|
Yadav S, Deka SR, Verma G, Sharma AK, Kumar P. Photoresponsive amphiphilic azobenzene–PEG self-assembles to form supramolecular nanostructures for drug delivery applications. RSC Adv 2016. [DOI: 10.1039/c5ra26658k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Self-assembled smart nanostructures have emerged as controlled and site-specific systems for drug delivery applications.
Collapse
Affiliation(s)
- Santosh Yadav
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi 110007
- India
- Academy of Scientific and Innovative Research
| | - Smriti Rekha Deka
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi 110007
- India
| | - Geeta Verma
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi 110007
- India
| | - Ashwani Kumar Sharma
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi 110007
- India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi 110007
- India
| |
Collapse
|
86
|
Yan L, Li X. Biodegradable Stimuli-Responsive Polymeric Micelles for Treatment of Malignancy. Curr Pharm Biotechnol 2016; 17:227-36. [PMID: 26873075 PMCID: PMC5973479 DOI: 10.2174/138920101703160206142821] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/10/2015] [Accepted: 07/20/2015] [Indexed: 01/26/2023]
Abstract
In the past decade, drug delivery systems that can respond to the tumor microenvironment or external stimuli have emerged as promising platforms for treating malignancies due to their improved antitumor efficacy and reduced side effects. In particular, biodegradable polymeric micelles have attracted increasing attention and been rapidly developed as a distinct therapeutic to overcome limitations of conventional chemotherapeutic anticancer drugs. Because of their advantages with respect to biocompatibility, degradability, circulation time, and tumor accumulation, considerable effort has been dedicated to the developing and optimizing micellar systems during the past few years. This review highlights recent advances concerning stimuli-responsive micelles made of biodegradable polypeptide and polyester as nanocarries for drug delivery, and especially limits the content to pH sensitive, redox sensitive, and photo-sensitive micellar systems for safe and efficient cancer chemotherapy.
Collapse
Affiliation(s)
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
87
|
Cornwell DJ, Daubney OJ, Smith DK. Photopatterned Multidomain Gels: Multi-Component Self-Assembled Hydrogels Based on Partially Self-Sorting 1,3:2,4-Dibenzylidene-d-sorbitol Derivatives. J Am Chem Soc 2015; 137:15486-92. [DOI: 10.1021/jacs.5b09691] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel J. Cornwell
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Oliver J. Daubney
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - David K. Smith
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| |
Collapse
|
88
|
Fang JY, Lin YK, Wang SW, Li YC, Lee RS. Synthesis and characterization of dual-stimuli-responsive micelles based on poly(N-isopropylacrylamide) and polycarbonate with photocleavable moieties. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
89
|
de Gracia Lux C, Lux J, Collet G, He S, Chan M, Olejniczak J, Foucault-Collet A, Almutairi A. Short Soluble Coumarin Crosslinkers for Light-Controlled Release of Cells and Proteins from Hydrogels. Biomacromolecules 2015; 16:3286-96. [DOI: 10.1021/acs.biomac.5b00950] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Caroline de Gracia Lux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Jacques Lux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Guillaume Collet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Sha He
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Minnie Chan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Jason Olejniczak
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Alexandra Foucault-Collet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of NanoEngineering, ‡Department of Chemistry
and Biochemistry, and ∥Center for Excellence in Nanomedicine and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| |
Collapse
|
90
|
Abstract
When one brings "polymeric materials" and "mechanical action" into the same conversation, the topic of this discussion might naturally focus on everyday circumstances such as failure of fibers, fatigue of composites, abrasion of coatings, etc. This intuitive viewpoint reflects the historic consensus in both academia and industry that mechanically induced chemical changes are destructive, leading to polymer degradation that limits materials lifetime on both macroscopic and molecular levels. In the 1930s, Staudinger observed mechanical degradation of polymers, and Melville later discovered that polymer chain scission caused the degradation. Inspired by these historical observations, we sought to redirect the destructive mechanical energy to a productive form that enables mechanoresponsive functions. In this Account, we provide a personal perspective on the origin, barriers, developments, and key advancements of polymer mechanochemistry. We revisit the seminal events that offered molecular-level insights into the mechanochemical behavior of polymers and influenced our thinking. We also highlight the milestones achieved by our group along with the contributions from key comrades at the frontier of this field. We present a workflow for the design, evaluation, and development of new "mechanophores", a term that has come to mean a molecular unit that chemically responds in a selective manner to a mechanical perturbation. We discuss the significance of computation in identifying pairs of points on the mechanophore that promote stretch-induced activation. Attaching polymer chains to the mechanophore at the most sensitive pair and locating the mechanophore near the center of a linear polymer are thought to maximize the efficiency of mechanical-to-chemical energy transduction. We also emphasize the importance of control experiments to validate mechanochemical transformations, both in solution and in the solid state, to differentiate "mechanical" from "thermal" activation. This Account offers our first-hand perspective of the change-in-thinking in polymer mechanochemistry from "destructive" to "productive" and looks at future advances that will stimulate this growing field.
Collapse
Affiliation(s)
- Jun Li
- Beckman
Institute for Advanced
Science and Technology, Department of Materials Science and Engineering,
Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chikkannagari Nagamani
- Beckman
Institute for Advanced
Science and Technology, Department of Materials Science and Engineering,
Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S. Moore
- Beckman
Institute for Advanced
Science and Technology, Department of Materials Science and Engineering,
Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
91
|
Singh RS, Kaur N, Kennedy JF. Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohydr Polym 2015; 123:190-207. [DOI: 10.1016/j.carbpol.2015.01.032] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/03/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
|
92
|
DeForest CA, Tirrell DA. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. NATURE MATERIALS 2015; 14:523-31. [PMID: 25707020 DOI: 10.1038/nmat4219] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/15/2015] [Indexed: 05/25/2023]
Abstract
Although biochemically patterned hydrogels are capable of recapitulating many critical aspects of the heterogeneous cellular niche, exercising spatial and temporal control of the presentation and removal of biomolecular signalling cues in such systems has proved difficult. Here, we demonstrate a synthetic strategy that exploits two bioorthogonal photochemistries to achieve reversible immobilization of bioactive full-length proteins with good spatial and temporal control within synthetic, cell-laden biomimetic scaffolds. A photodeprotection-oxime-ligation sequence permits user-defined quantities of proteins to be anchored within distinct subvolumes of a three-dimensional matrix, and an ortho-nitrobenzyl ester photoscission reaction facilitates subsequent protein removal. By using this approach to pattern the presentation of the extracellular matrix protein vitronectin, we accomplished reversible differentiation of human mesenchymal stem cells to osteoblasts in a spatially defined manner. Our protein-patterning approach should provide further avenues to probe and direct changes in cell physiology in response to dynamic biochemical signalling.
Collapse
Affiliation(s)
- Cole A DeForest
- 1] Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 East California Boulevard Pasadena, California 91125, USA [2] Department of Chemical Engineering, University of Washington, 4000 15th Avenue NE Seattle, Washington 98195, USA
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 East California Boulevard Pasadena, California 91125, USA
| |
Collapse
|
93
|
Wang HC, Zhang Y, Possanza CM, Zimmerman SC, Cheng J, Moore JS, Harris K, Katz JS. Trigger chemistries for better industrial formulations. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6369-6382. [PMID: 25768973 DOI: 10.1021/acsami.5b00485] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, innovations and consumer demands have led to increasingly complex liquid formulations. These growing complexities have provided industrial players and their customers access to new markets through product differentiation, improved performance, and compatibility/stability with other products. One strategy for enabling more complex formulations is the use of active encapsulation. When encapsulation is employed, strategies are required to effect the release of the active at the desired location and time of action. One particular route that has received significant academic research effort is the employment of triggers to induce active release upon a specific stimulus, though little has translated for industrial use to date. To address emerging industrial formulation needs, in this review, we discuss areas of trigger release chemistries and their applications specifically as relevant to industrial use. We focus the discussion on the use of heat, light, shear, and pH triggers as applied in several model polymeric systems for inducing active release. The goal is that through this review trends will emerge for how technologies can be better developed to maximize their value through industrial adaptation.
Collapse
Affiliation(s)
- Hsuan-Chin Wang
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yanfeng Zhang
- ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine M Possanza
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Steven C Zimmerman
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- §Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Keith Harris
- ∥Formulation Science, Corporate Research and Development, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Joshua S Katz
- ⊥Formulation Science, Corporate Research and Development, The Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
94
|
Goswami PP, Syed A, Beck CL, Albright TR, Mahoney KM, Unash R, Smith EA, Winter AH. BODIPY-derived photoremovable protecting groups unmasked with green light. J Am Chem Soc 2015; 137:3783-6. [PMID: 25751156 DOI: 10.1021/jacs.5b01297] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photoremovable protecting groups derived from meso-substituted BODIPY dyes release acetic acid with green wavelengths >500 nm. Photorelease is demonstrated in cultured S2 cells. The photocaging structures were identified by our previously proposed strategy of computationally searching for carbocations with low-energy diradical states as a possible indicator of a nearby productive conical intersection. The superior optical properties of these photocages make them promising alternatives to the popular o-nitrobenzyl photocage systems.
Collapse
Affiliation(s)
- Pratik P Goswami
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, Iowa 50011, United States
| | - Aleem Syed
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, Iowa 50011, United States
| | - Christie L Beck
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, Iowa 50011, United States
| | - Toshia R Albright
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, Iowa 50011, United States
| | - Kaitlyn M Mahoney
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, Iowa 50011, United States
| | - Ryan Unash
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, Iowa 50011, United States
| | - Emily A Smith
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, Iowa 50011, United States
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, Iowa 50011, United States
| |
Collapse
|
95
|
Wang M, Kim JC. Physicochemical properties of mixed micelles composed of chitosan–cinnamic acid conjugate and Pluronic F127-cinnamic acid conjugate. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
96
|
Paret N, Trachsel A, Berthier DL, Herrmann A. Controlled release of encapsulated bioactive volatiles by rupture of the capsule wall through the light-induced generation of a gas. Angew Chem Int Ed Engl 2015; 54:2275-9. [PMID: 25589352 DOI: 10.1002/anie.201410778] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 12/31/2022]
Abstract
The encapsulation of photolabile 2-oxoacetates in core-shell microcapsules allows the light-induced, controlled release of bioactive compounds. On irradiation with UVA light these compounds degrade to generate an overpressure of gas inside the capsules, which expands or breaks the capsule wall. Headspace measurements confirmed the light-induced formation of CO and CO2 and the successful release of the bioactive compound, while optical microscopy demonstrated the formation of gas bubbles, the cleavage of the capsule wall, and the leakage of the oil phase out of the capsule. The efficiency of the delivery system depends on the structure of the 2-oxoacetate, the quantity used with respect to the thickness of the capsule wall, and the intensity of the irradiating UVA light.
Collapse
Affiliation(s)
- Nicolas Paret
- Firmenich SA, Division Recherche et Développement, Route des Jeunes 1, B. P. 239, 1211 Genève 8 (Switzerland) http://www.firmenich.com
| | | | | | | |
Collapse
|
97
|
Paret N, Trachsel A, Berthier DL, Herrmann A. Kontrollierte Freisetzung von verkapselten flüchtigen bioaktiven Verbindungen durch Brechen der Kapselwand als Folge einer lichtinduzierten Gasbildung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
98
|
Zhang H, Kim JC. Doxorubicin-loaded microgels composed of cinnamic acid–gelatin conjugate and cinnamic acid–Pluronic F127 conjugate. Pharm Dev Technol 2015; 21:296-301. [DOI: 10.3109/10837450.2014.999787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hong Zhang
- Department of Medical Biomaterials Engineering, School of Medical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Jin-Chul Kim
- Department of Medical Biomaterials Engineering, School of Medical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| |
Collapse
|
99
|
Meléndez-Ortiz HI, Varca GHC, Lugão AB, Bucio E. Smart Polymers and Coatings Obtained by Ionizing Radiation: Synthesis and Biomedical Applications. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojpchem.2015.53003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
100
|
Luo R, Chen CH. A one-step hydrothermal route to programmable stimuli-responsive hydrogels. Chem Commun (Camb) 2015; 51:6617-20. [DOI: 10.1039/c4cc10342d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An effective one-step hydrothermal route to program the structure, swelling and responsiveness properties of stimuli-responsive hydrogels is developed.
Collapse
Affiliation(s)
- Rongcong Luo
- Department of Biomedical Engineering
- Singapore Institute for Neurotechnology
- National University of Singapore
- Singapore 117575
| | - Chia-Hung Chen
- Department of Biomedical Engineering
- Singapore Institute for Neurotechnology
- National University of Singapore
- Singapore 117575
| |
Collapse
|