51
|
Liu X, Liu Y, Liu J, Zhang H, Shan C, Guo Y, Gong X, Cui M, Li X, Tang M. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res 2024; 19:833-845. [PMID: 37843219 PMCID: PMC10664138 DOI: 10.4103/1673-5374.382223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 10/17/2023] Open
Abstract
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mengmeng Cui
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
52
|
Yay E, Yilmaz M, Toygar H, Balci N, Alvarez Rivas C, Bolluk Kılıç B, Zirh A, Paster BJ, Kantarci A. Oral and gut microbial profiling in periodontitis and Parkinson's disease. J Oral Microbiol 2024; 16:2331264. [PMID: 38528960 PMCID: PMC10962298 DOI: 10.1080/20002297.2024.2331264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
Objectives We tested the hypothesis that Parkinson's disease (PA) alters the periodontitis-associated oral microbiome. Method Patients with periodontitis with Parkinson's disease (PA+P) and without PA (P) and systemically and periodontally healthy individuals (HC) were enrolled. Clinical, periodontal and neurological parameters were recorded. The severity of PA motor functions was measured. Unstimulated saliva samples and stool samples were collected. Next-generation sequencing of 16S ribosomal RNA (V1-V3 regions) was performed. Results PA patients had mild-to-moderate motor dysfunction and comparable plaque scores as those without, indicating that oral hygiene was efficient in the PA+P group. In saliva, there were statistically significant differences in beta diversity between HC and PA+P (p = 0.001), HC and P (p = 0.001), and P and PA+P (p = 0.028). The microbial profiles of saliva and fecal samples were distinct. Mycoplasma faucium, Tannerella forsythia, Parvimonas micra, and Saccharibacteria (TM7) were increased in P; Prevotella pallens, Prevotella melaninogenica, Neisseria multispecies were more abundant in PA+P group, Ruthenibacterium lactatiformans, Dialister succinatiphilus, Butyrivibrio crossotus and Alloprevotella tannerae were detected in fecal samples in P groups compared to healthy controls. Conclusions No significant differences were detected between Parkinson's and non-Parkinson's gut microbiomes, suggesting that Parkinson's disease modifies the oral microbiome in periodontitis subjects independent of the gut microbiome.
Collapse
Affiliation(s)
- Ekin Yay
- Department of Applied Oral Sciences, The ADA Forsyth Institute, Cambridge, MA, USA
- Periodontist, Private Practice, Istanbul, Turkey
| | - Melis Yilmaz
- Department of Applied Oral Sciences, The ADA Forsyth Institute, Cambridge, MA, USA
- Department of Periodontology, Istanbul Medipol University, Istanbul, Turkey
| | - Hilal Toygar
- Department of Periodontology, Istanbul Medipol University, Istanbul, Turkey
| | - Nur Balci
- Department of Periodontology, Istanbul Medipol University, Istanbul, Turkey
| | - Carla Alvarez Rivas
- Department of Applied Oral Sciences, The ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, MA, USA
| | | | - Ali Zirh
- Department of Neurology, Istanbul Medipol University, Istanbul, Turkey
| | - Bruce J. Paster
- Department of Applied Oral Sciences, The ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, MA, USA
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
53
|
de Lope EG, Loo RTJ, Rauschenberger A, Ali M, Pavelka L, Marques TM, Gomes CPC, Krüger R, Glaab E. Comprehensive blood metabolomics profiling of Parkinson's disease reveals coordinated alterations in xanthine metabolism. NPJ Parkinsons Dis 2024; 10:68. [PMID: 38503737 PMCID: PMC10951366 DOI: 10.1038/s41531-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous disorder influenced by several environmental and genetic factors. Effective disease-modifying therapies and robust early-stage biomarkers are still lacking, and an improved understanding of the molecular changes in PD could help to reveal new diagnostic markers and pharmaceutical targets. Here, we report results from a cohort-wide blood plasma metabolic profiling of PD patients and controls in the Luxembourg Parkinson's Study to detect disease-associated alterations at the level of systemic cellular process and network alterations. We identified statistically significant changes in both individual metabolite levels and global pathway activities in PD vs. controls and significant correlations with motor impairment scores. As a primary observation when investigating shared molecular sub-network alterations, we detect pronounced and coordinated increased metabolite abundances in xanthine metabolism in de novo patients, which are consistent with previous PD case/control transcriptomics data from an independent cohort in terms of known enzyme-metabolite network relationships. From the integrated metabolomics and transcriptomics network analysis, the enzyme hypoxanthine phosphoribosyltransferase 1 (HPRT1) is determined as a potential key regulator controlling the shared changes in xanthine metabolism and linking them to a mechanism that may contribute to pathological loss of cellular adenosine triphosphate (ATP) in PD. Overall, the investigations revealed significant PD-associated metabolome alterations, including pronounced changes in xanthine metabolism that are mechanistically congruent with alterations observed in independent transcriptomics data. The enzyme HPRT1 may merit further investigation as a main regulator of these network alterations and as a potential therapeutic target to address downstream molecular pathology in PD.
Collapse
Affiliation(s)
- Elisa Gómez de Lope
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rebecca Ting Jiin Loo
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Armin Rauschenberger
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Muhammad Ali
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lukas Pavelka
- Parkinson's Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Tainá M Marques
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Clarissa P C Gomes
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Parkinson's Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
54
|
Midya V, Nagdeo K, Lane JM, Torres-Olascoaga LA, Torres-Calapiz M, Gennings C, Horton MK, Téllez-Rojo MM, Wright RO, Arora M, Eggers S. Prenatal metal exposures and childhood gut microbial signatures are associated with depression score in late childhood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170361. [PMID: 38278245 PMCID: PMC10922719 DOI: 10.1016/j.scitotenv.2024.170361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Childhood depression is a major public health issue worldwide. Previous studies have linked both prenatal metal exposures and the gut microbiome to depression in children. However, few, if any, have studied their interacting effect in specific subgroups of children. OBJECTIVES Using an interpretable machine-learning method, this study investigates whether children with specific combinations of prenatal metals and childhood microbial signatures (cliques or groups of metals and microbes) were more likely to have higher depression scores at 9-11 years of age. METHODS We leveraged data from a well-characterized pediatric longitudinal birth cohort in Mexico City and its microbiome substudy (n = 112). Eleven metal exposures were measured in maternal whole blood samples in the second and third trimesters of pregnancy. The gut microbial abundances were measured at 9-11-year-olds using shotgun metagenomic sequencing. Depression symptoms were assessed using the Child Depression Index (CDI) t-scores at 9-11 years of age. We used Microbial and Chemical Exposure Analysis (MiCxA), which combines interpretable machine-learning into a regression framework to identify and estimate joint associations of metal-microbial cliques in specific subgroups. Analyses were adjusted for relevant covariates. RESULTS We identified a subgroup of children (11.6 % of the sample) characterized by a four-component metal-microbial clique that had a significantly high depression score (15.4 % higher than the rest) in late childhood. This metal-microbial clique consisted of high Zinc in the second trimester, low Cobalt in the third trimester, a high abundance of Bacteroides fragilis, a high abundance of Faecalibacterium prausnitzii. All combinations of cliques (two-, three-, and four-components) were significantly associated with increased log-transformed t-scored CDI (β = 0.14, 95%CI = [0.05,0.23], P < 0.01 for the four-component clique). SIGNIFICANCE This study offers a new approach to chemical-microbial analysis and a novel demonstration that children with specific gut microbiome cliques and metal exposures during pregnancy may have a higher likelihood of elevated depression scores.
Collapse
Affiliation(s)
- Vishal Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kiran Nagdeo
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jamil M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Libni A Torres-Olascoaga
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Mariana Torres-Calapiz
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shoshannah Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| |
Collapse
|
55
|
Trubitsina NP, Matiiv AB, Rogoza TM, Zudilova AA, Bezgina MD, Zhouravleva GA, Bondarev SA. Role of the Gut Microbiome and Bacterial Amyloids in the Development of Synucleinopathies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:523-542. [PMID: 38648770 DOI: 10.1134/s0006297924030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 04/25/2024]
Abstract
Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson's disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson's disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson's disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.
Collapse
Affiliation(s)
- Nina P Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anton B Matiiv
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Tatyana M Rogoza
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- St. Petersburg Branch of the Vavilov Institute of General Genetics, Saint Petersburg, 198504, Russia
| | - Anna A Zudilova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Mariya D Bezgina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
56
|
Liu J, Lv X, Ye T, Zhao M, Chen Z, Zhang Y, Yang W, Xie H, Zhan L, Chen L, Liu WC, Su KP, Sun J. Microbiota-microglia crosstalk between Blautia producta and neuroinflammation of Parkinson's disease: A bench-to-bedside translational approach. Brain Behav Immun 2024; 117:270-282. [PMID: 38211635 DOI: 10.1016/j.bbi.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Parkinson's disease (PD) is intricately linked to abnormal gut microbiota, yet the specific microbiota influencing clinical outcomes remain poorly understood. Our study identified a deficiency in the microbiota genus Blautia and a reduction in fecal short-chain fatty acid (SCFA) butyrate level in PD patients compared to healthy controls. The abundance of Blautia correlated with the clinical severity of PD. Supplementation with butyrate-producing bacterium B. producta demonstrated neuroprotective effects, attenuating neuroinflammation and dopaminergic neuronal death in mice, consequently ameliorating motor dysfunction. A pivotal inflammatory signaling pathway, the RAS-related pathway, modulated by butyrate, emerged as a key mechanism inhibiting microglial activation in PD. The change of RAS-NF-κB pathway in PD patients was observed. Furthermore, B. producta-derived butyrate demonstrated the inhibition of microglial activation in PD through regulation of the RAS-NF-κB pathway. These findings elucidate the causal relationship between specific gut microbiota and PD, presenting a novel microbiota-based treatment perspective for PD.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xinhuang Lv
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Ye
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Zhao
- Department of Neurosurgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, Zhejiang, China
| | - Zhibo Chen
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yang Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenwen Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huijia Xie
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Zhan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liuzhu Chen
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Chun Liu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan.
| | - Jing Sun
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
57
|
Sun X, Feng S, Qin B, Ye J, Xie L, Gui J, Sang M. Integrated multi-omics profiling highlights the benefits of resveratrol hydroxypropyl-β-cyclodextrin inclusion complex for A53T transgenic mice through the microbiota-gut-brain axis. Food Funct 2024; 15:1489-1512. [PMID: 38227477 DOI: 10.1039/d3fo03667g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor and gastrointestinal dysfunctions. Resveratrol is a potent antioxidant and anti-inflammatory phytoalexin known for its health-promoting benefits. However, little is known about its potential in treating PD by modulating the microbial gut-brain axis, and its clinical application has been limited due to poor water solubility, rapid metabolism, and limited systemic bioavailability. Our study aimed to evaluate the therapeutic potential of RHSD, a resveratrol-cyclodextrin inclusion complex, in treating PD through the gut-brain axis in human SNCA-transgenic (A53T) mice PD models. Building on our previous study, we prepared RHSD and compared its efficacy with uncoated resveratrol for PD treatment. The study results demonstrated that RHSD exhibited several advantages in improving motor function, alleviating cognitive impairment, restoring intestinal barrier function, and inhibiting neuropathy. Subsequently, a series of analyses, including fecal microbiota metagenomic sequencing, non-target metabolic assays, host transcriptome sequencing, and integrative analysis were performed to reveal the potential therapeutic pathways of RHSD in A53T mice. The metagenomic sequencing results indicated a significant increase in the levels of Lactobacillus murinus, Lactobacillus reuteri, Enterorhabduscaecimuris, Lactobacillus taiwanensis, and Lactobacillus animals following RHSD administration. Furthermore, metabolomics profiling showed that the levels of gut microbiome metabolites were reversed after RHSD treatment, and differential metabolites were significantly correlated with motor function and intestinal function in PD mice. The integrated analysis of microbial metabolites and host transcriptomics suggested that abnormal amino acid metabolism, mitochondrial dysfunction, oxidative stress, and neuroinflammation in the PD model were associated with the diffusion of abnormal metabolites. This study illustrates the profound impact of RHSD administration on rectifying gut microbiota dysbiosis and improving the A53T mouse model. Notably, we observed significant alterations in the proliferation and metabolism of multiple probiotic strains of Lactobacillus. Furthermore, our research supports the hypothesis that microbiota-related metabolites may regulate the transcription of host genes, including dopamine receptors and calcium stabilization. Consequently, our findings underscore the potential of RHSD as a promising therapeutic candidate for the treatment of PD through the modulation of several signaling pathways within the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Xiaodong Sun
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, China.
| | - Shenglan Feng
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, China.
| | - Bingqing Qin
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, China.
| | - Junjie Ye
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, China.
- Clinical Laboratory, Wuhan Asia Heart Hospital, Wuhan 430022, China
| | - Lixia Xie
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, China.
| | - Jianjun Gui
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, China.
| | - Ming Sang
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, China.
| |
Collapse
|
58
|
Forero-Rodríguez J, Zimmermann J, Taubenheim J, Arias-Rodríguez N, Caicedo-Narvaez JD, Best L, Mendieta CV, López-Castiblanco J, Gómez-Muñoz LA, Gonzalez-Santos J, Arboleda H, Fernandez W, Kaleta C, Pinzón A. Changes in Bacterial Gut Composition in Parkinson's Disease and Their Metabolic Contribution to Disease Development: A Gut Community Reconstruction Approach. Microorganisms 2024; 12:325. [PMID: 38399728 PMCID: PMC10893096 DOI: 10.3390/microorganisms12020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease with the major symptoms comprising loss of movement coordination (motor dysfunction) and non-motor dysfunction, including gastrointestinal symptoms. Alterations in the gut microbiota composition have been reported in PD patients vs. controls. However, it is still unclear how these compositional changes contribute to disease etiology and progression. Furthermore, most of the available studies have focused on European, Asian, and North American cohorts, but the microbiomes of PD patients in Latin America have not been characterized. To address this problem, we obtained fecal samples from Colombian participants (n = 25 controls, n = 25 PD idiopathic cases) to characterize the taxonomical community changes during disease via 16S rRNA gene sequencing. An analysis of differential composition, diversity, and personalized computational modeling was carried out, given the fecal bacterial composition and diet of each participant. We found three metabolites that differed in dietary habits between PD patients and controls: carbohydrates, trans fatty acids, and potassium. We identified six genera that changed significantly in their relative abundance between PD patients and controls, belonging to the families Lachnospiraceae, Lactobacillaceae, Verrucomicrobioaceae, Peptostreptococcaceae, and Streptococcaceae. Furthermore, personalized metabolic modeling of the gut microbiome revealed changes in the predicted production of seven metabolites (Indole, tryptophan, fructose, phenylacetic acid, myristic acid, 3-Methyl-2-oxovaleric acid, and N-Acetylneuraminic acid). These metabolites are associated with the metabolism of aromatic amino acids and their consumption in the diet. Therefore, this research suggests that each individual's diet and intestinal composition could affect host metabolism. Furthermore, these findings open the door to the study of microbiome-host interactions and allow us to contribute to personalized medicine.
Collapse
Affiliation(s)
- Johanna Forero-Rodríguez
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Johannes Zimmermann
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Jan Taubenheim
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Natalia Arias-Rodríguez
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
| | - Juan David Caicedo-Narvaez
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
- Neurosciences Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Lena Best
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Cindy V. Mendieta
- PhD Program in Clinical Epidemiology, Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Julieth López-Castiblanco
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
| | - Laura Alejandra Gómez-Muñoz
- Neurosciences Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Cell Death Research Group, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Janneth Gonzalez-Santos
- Structural Biochemistry and Bioinformatics Laboratory, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Humberto Arboleda
- Cell Death Research Group, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - William Fernandez
- Neurosciences Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Cell Death Research Group, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Christoph Kaleta
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Andrés Pinzón
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
| |
Collapse
|
59
|
Shih LC, Lin RJ, Chen YL, Fu SC. Unravelling the mechanisms of underweight in Parkinson's disease by investigating into the role of gut microbiome. NPJ Parkinsons Dis 2024; 10:28. [PMID: 38267447 PMCID: PMC10808448 DOI: 10.1038/s41531-023-00587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 01/26/2024] Open
Abstract
Approximately half of patients with Parkinson's disease (PD) suffer from unintentional weight loss and are underweight, complicating the clinical course of PD patients. Gut microbiota alteration has been proven to be associated with PD, and recent studies have shown that gut microbiota could lead to muscle wasting, implying a possible role of gut microbiota in underweight PD. In this study, we aimed to (1) investigate the mechanism underlying underweight in PD patients with respect to gut microbiota and (2) estimate the extent to which gut microbiota may mediate PD-related underweight through mediation analysis. The data were adapted from Hill-Burns et al., in which 330 participants (199 PD, 131 controls) were enrolled in the study. Fecal samples were collected from participants for microbiome analysis. 16S rRNA gene sequence data were processed using DADA2. Mediation analysis was performed to quantify the effect of intestinal microbial alteration on the causal effect of PD on underweight and to identify the key bacteria that significantly mediated PD-related underweight. The results showed that the PD group had significantly more underweight patients (body mass index (BMI) < 18.5) after controlling for age and sex. Ten genera and four species were significantly different in relative abundance between the underweight and non-underweight individuals in the PD group. Mediation analysis showed that 42.29% and 37.91% of the effect of PD on underweight was mediated through intestinal microbial alterations at the genus and species levels, respectively. Five genera (Agathobacter, Eisenbergiella, Fusicatenibacter, Roseburia, Ruminococcaceae_UCG_013) showed significant mediation effects. In conclusion, we found that up to 42.29% of underweight PD cases are mediated by gut microbiota, with increased pro-inflammatory bacteria and decreased SCFA-producing bacteria, which indicates that the pro-inflammatory state, disturbance of metabolism, and interference of appetite regulation may be involved in the mechanism of underweight PD.
Collapse
Affiliation(s)
| | - Ru-Jen Lin
- National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan, ROC
| | - Yan-Lin Chen
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan, ROC
| | - Shih-Chen Fu
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC.
| |
Collapse
|
60
|
Yuan XY, Chen YS, Liu Z. Relationship among Parkinson's disease, constipation, microbes, and microbiological therapy. World J Gastroenterol 2024; 30:225-237. [PMID: 38314132 PMCID: PMC10835526 DOI: 10.3748/wjg.v30.i3.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
This comprehensive review elucidates the complex interplay between gut microbiota and constipation in Parkinson's disease (PD), a prevalent non-motor symptom contributing significantly to patients' morbidity. A marked alteration in the gut microbiota, predominantly an increase in the abundance of Proteobacteria and Bacteroidetes, is observed in PD-related constipation. Conventional treatments, although safe, have failed to effectively alleviate symptoms, thereby necessitating the development of novel therapeutic strategies. Microbiological interventions such as prebiotics, probiotics, and fecal microbiota transplantation (FMT) hold therapeutic potential. While prebiotics improve bowel movements, probiotics are effective in enhancing stool consistency and alleviating abdominal discomfort. FMT shows potential for significantly alleviating constipation symptoms by restoring gut microbiota balance in patients with PD. Despite promising developments, the causal relationship between changes in gut microbiota and PD-related constipation remains elusive, highlighting the need for further research in this expanding field.
Collapse
Affiliation(s)
- Xin-Yang Yuan
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Yu-Sen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Zhou Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| |
Collapse
|
61
|
Nassar A, Kodi T, Satarker S, Gurram PC, Fayaz SM, Nampoothiri M. Astrocytic transcription factors REST, YY1, and putative microRNAs in Parkinson's disease and advanced therapeutic strategies. Gene 2024; 892:147898. [PMID: 37832803 DOI: 10.1016/j.gene.2023.147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Transcription factors (TF) and microRNAs are regulatory factors in astrocytes and are linked to several Parkinson's disease (PD) progression causes, such as disruption of glutamine transporters in astrocytes and concomitant disrupted glutamine uptake and inflammation. REST, a crucial TF, has been documented as an epigenetic repressor that limits the expression of neuronal genes in non-neural cells. REST activity is significantly linked to its corepressors in astrocytes, specifically histone deacetylases (HDACs), CoREST, and MECP2. Another REST-regulating TF, YY1, has been studied in astrocytes, and its interaction with REST has been investigated. In this review, the molecular processes that support the astrocytic control of REST and YY1 in terms of the regulation of glutamate transporter EAAT2 were addressed in a more detailed and comprehensive manner. Both TFs' function in astrocytes and how astrocyte abnormalities cause PD is still a mystery. Moreover, microRNAs (short non-coding RNAs) are key regulators that have been correlated to the expression and regulation of numerous genes linked to PD. The identification of numerous miRs that are engaged in astrocyte dysfunction that triggers PD has been shown. The term "Gut-brain axis" refers to the two systems' mutual communication. Gut microbial dysbiosis, which mediates an imbalance of the gut-brain axis, might contribute to neurodegenerative illnesses through altered astrocytic regulation. New treatment approaches to modify the gut-brain axis and prevent astrocytic repercussions have also been investigated in this review.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
62
|
Bicknell B, Liebert A, Herkes G. Parkinson's Disease and Photobiomodulation: Potential for Treatment. J Pers Med 2024; 14:112. [PMID: 38276234 PMCID: PMC10819946 DOI: 10.3390/jpm14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease and is increasing in incidence. The combination of motor and non-motor symptoms makes this a devastating disease for people with Parkinson's disease and their care givers. Parkinson's disease is characterised by mitochondrial dysfunction and neuronal death in the substantia nigra, a reduction in dopamine, accumulation of α-synuclein aggregates and neuroinflammation. The microbiome-gut-brain axis is also important in Parkinson's disease, involved in the spread of inflammation and aggregated α-synuclein. The mainstay of Parkinson's disease treatment is dopamine replacement therapy, which can reduce some of the motor signs. There is a need for additional treatment options to supplement available medications. Photobiomodulation (PBM) is a form of light therapy that has been shown to have multiple clinical benefits due to its enhancement of the mitochondrial electron transport chain and the subsequent increase in mitochondrial membrane potential and ATP production. PBM also modulates cellular signalling and has been shown to reduce inflammation. Clinically, PBM has been used for decades to improve wound healing, treat pain, reduce swelling and heal deep tissues. Pre-clinical experiments have indicated that PBM has the potential to improve the clinical signs of Parkinson's disease and to provide neuroprotection. This effect is seen whether the PBM is directed to the head of the animal or to other parts of the body (remotely). A small number of clinical trials has given weight to the possibility that using PBM can improve both motor and non-motor clinical signs and symptoms of Parkinson's disease and may potentially slow its progression.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
- Sydney Adventist Hospital, Wahroonga 2076, Australia
- Faculty of medicine and Health, Sydney University, Camperdown 2050, Australia
| | - Geoffrey Herkes
- Neurologist, Sydney Adventist Hospital, Wahroonga 2076, Australia;
- College of Health and Medicine, Australian National University, Canberra 2600, Australia
| |
Collapse
|
63
|
Higinbotham AS, Kilbane CW. The gastrointestinal tract and Parkinson's disease. Front Cell Infect Microbiol 2024; 13:1158986. [PMID: 38292855 PMCID: PMC10825967 DOI: 10.3389/fcimb.2023.1158986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Alissa S. Higinbotham
- Parkinson's disease and Movement Disorders Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Camilla W. Kilbane
- Parkinson's disease and Movement Disorders Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
64
|
Blewett TA, Ackerly KL, Schlenker LS, Martin S, Nielsen KM. Implications of biotic factors for toxicity testing in laboratory studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168220. [PMID: 37924878 DOI: 10.1016/j.scitotenv.2023.168220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
There is an emerging call from scientists globally to advance the environmental relevance of laboratory studies, particularly within the field of ecotoxicology. To answer this call, we must carefully examine and elucidate the shortcomings of standardized toxicity testing methods that are used in the derivation of toxicity values and regulatory criteria. As a consequence of rapidly accelerating climate change, the inclusion of abiotic co-stressors are increasingly being incorporated into toxicity studies, with the goal of improving the representativeness of laboratory-derived toxicity values used in ecological risk assessments. However, much less attention has been paid to the influence of biotic factors that may just as meaningfully impact our capacity to evaluate and predict risks within impacted ecosystems. Therefore, the overarching goal is to highlight key biotic factors that should be taken into consideration during the experimental design and model selection phase. SYNOPSIS: Scientists are increasingly finding that lab reared results in toxicology might not be reflective of the external wild environment, we highlight in this review some key considerations when working between the lab and field.
Collapse
Affiliation(s)
- Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Canada.
| | - Kerri Lynn Ackerly
- The University of Texas at Austin, Marine Science Institute, United States of America
| | - Lela S Schlenker
- East Carolina University, Department of Biology, United States of America
| | - Sidney Martin
- University of Alberta, Department of Biological Sciences, Canada
| | - Kristin M Nielsen
- The University of Texas at Austin, Marine Science Institute, United States of America
| |
Collapse
|
65
|
Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110861. [PMID: 37690584 DOI: 10.1016/j.pnpbp.2023.110861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
There is a lot of evidence establishing that nervous system development is related to the composition and functions of the gut microbiome. In addition, the central nervous system (CNS) controls the imbalance of the intestinal microbiota, constituting a bidirectional communication system. At present, various gut-brain crosstalk routes have been described, including immune, endocrine and neural circuits via the vagal pathway. Several empirical data have associated gut microbiota alterations (dysbiosis) with neuropsychiatric diseases, such as Alzheimer's disease, autism and Parkinson's disease, and with other psychological disorders, like anxiety and depression. Fecal microbiota transplantation (FMT) therapy has shown that the gut microbiota can transfer behavioral features to recipient animals, which provides strong evidence to establish a causal-effect relationship. Interventions, based on prebiotics, probiotics or synbiotics, have demonstrated an important influence of microbiota on neurological disorders by the synthesis of neuroactive compounds that interact with the nervous system and by the regulation of inflammatory and endocrine processes. Further research is needed to demonstrate the influence of gut microbiota dysbiosis on psychiatric and psychological disorders, and how microbiota-based interventions may be used as potential therapeutic tools.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Facultad de Psicología, UNED, Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
66
|
Huang CH, Yu S, Yu HS, Tu HP, Yeh YT, Yu HS. Chronic blue light-emitting diode exposure harvests gut dysbiosis related to cholesterol dysregulation. Front Cell Infect Microbiol 2024; 13:1320713. [PMID: 38259967 PMCID: PMC10800827 DOI: 10.3389/fcimb.2023.1320713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Night shift workers have been associated with circadian dysregulation and metabolic disorders, which are tightly coevolved with gut microbiota. The chronic impacts of light-emitting diode (LED) lighting at night on gut microbiota and serum lipids were investigated. Male C57BL/6 mice were exposed to blue or white LED lighting at Zeitgeber time 13.5-14 (ZT; ZT0 is the onset of "lights on" and ZT12 is the "lights off" onset under 12-hour light, 12-hour dark schedule). After 33 weeks, only the high irradiance (7.2 J/cm2) of blue LED light reduced the alpha diversity of gut microbiota. The high irradiance of white LED light and the low irradiance (3.6 J/cm2) of both lights did not change microbial alpha diversity. However, the low irradiance, but not the high one, of both blue and white LED illuminations significantly increased serum total cholesterol (TCHO), but not triglyceride (TG). There was no significant difference of microbial abundance between two lights. The ratio of beneficial to harmful bacteria decreased at a low irradiance but increased at a high irradiance of blue light. Notably, this ratio was negatively correlated with serum TCHO but positively correlated with bile acid biosynthesis pathway. Therefore, chronic blue LED lighting at a high irradiance may harvest gut dysbiosis in association with decreased alpha diversity and the ratio of beneficial to harmful bacteria to specifically dysregulates TCHO metabolism in mice. Night shift workers are recommended to be avoid of blue LED lighting for a long and lasting time.
Collapse
Affiliation(s)
- Cheng-Hsieh Huang
- Ph. D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsu-Sheng Yu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Hsin-Su Yu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
67
|
Abu YF, Singh S, Tao J, Chupikova I, Singh P, Meng J, Roy S. Opioid-induced dysbiosis of maternal gut microbiota during gestation alters offspring gut microbiota and pain sensitivity. Gut Microbes 2024; 16:2292224. [PMID: 38108125 PMCID: PMC10730209 DOI: 10.1080/19490976.2023.2292224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a rapid increase in neonates born with a history of prenatal opioid exposure. How prenatal opioid exposure affects pain sensitivity in offspring is of interest, as this may perpetuate the opioid epidemic. While few studies have reported hypersensitivity to thermal pain, potential mechanisms have not been described. This study posits that alterations in the gut microbiome may underly hypersensitivity to pain in prenatally methadone-exposed 3-week-old male offspring, which were generated using a mouse model of prenatal methadone exposure. Fecal samples collected from dams and their offspring were subjected to 16s rRNA sequencing. Thermal and mechanical pain were assessed using the tail flick and Von Frey assays. Transcriptomic changes in whole brain samples of opioid or saline-exposed offspring were investigated using RNA-sequencing, and midbrain sections from these animals were subjected to qPCR profiling of genes related to neuropathic and inflammatory pain pathways. Prenatal methadone exposure increased sensitivity to thermal and mechanical pain and elevated serum levels of IL-17a. Taxonomical analysis revealed that prenatal methadone exposure resulted in significant alterations in fecal gut microbiota composition, including depletion of Lactobacillus, Bifidobacterium, and Lachnospiracea sp and increased relative abundance of Akkermansia, Clostridium sensu stricto 1, and Lachnoclostridium. Supplementation of the probiotic VSL#3 in dams rescued hypersensitivity to thermal and mechanical pain in prenatally methadone-exposed offspring. Similarly, cross-fostering prenatally methadone-exposed offspring to control dams also attenuated hypersensitivity to thermal pain in opioid-exposed offspring. Modulation of the maternal and neonatal gut microbiome with probiotics resulted in transcriptional changes in genes related to neuropathic and immune-related signaling in whole brain and midbrain samples of prenatally methadone-exposed offspring. Together, our work provides compelling evidence of the gut-brain-axis in mediating pain sensitivity in prenatally opioid-exposed offspring.
Collapse
Affiliation(s)
- Yaa F. Abu
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, University of Miami, Miami, FL, USA
| | | | - Praveen Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL, USA
| |
Collapse
|
68
|
Filho AMC, Gomes NS, Lós DB, Leite IB, Tremblay MÈ, Macêdo DS. Microglia and Microbiome-Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2024; 37:303-331. [PMID: 39207699 DOI: 10.1007/978-3-031-55529-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammalian gut contains a community of microorganisms called gut microbiome. The gut microbiome is integrated into mammalian physiology, contributing to metabolism, production of metabolites, and promoting immunomodulatory actions. Microglia, the brain's resident innate immune cells, play an essential role in homeostatic neurogenesis, synaptic remodeling, and glial maturation. Microglial dysfunction has been implicated in the pathogenesis of several neuropsychiatric disorders. Recent findings indicate that microglia are influenced by the gut microbiome and their derived metabolites throughout life. The pathways by which microbiota regulate microglia have only started to be understood, but this discovery has the potential to provide valuable insights into the pathogenesis of brain disorders associated with an altered microbiome. Here, we discuss the recent literature on the role of the gut microbiome in modulating microglia during development and adulthood and summarize the key findings on this bidirectional crosstalk in selected examples of neuropsychiatric and neurodegenerative disorders. We also highlight some current caveats and perspectives for the field.
Collapse
Affiliation(s)
- Adriano Maia Chaves Filho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Deniele Bezerra Lós
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Isabel Bessa Leite
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Molecular Medicine, Université de Laval, Québec City, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Danielle S Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
69
|
Koukoulis TF, Beauchamp LC, Kaparakis-Liaskos M, McQuade RM, Purnianto A, Finkelstein DI, Barnham KJ, Vella LJ. Do Bacterial Outer Membrane Vesicles Contribute to Chronic Inflammation in Parkinson's Disease? JOURNAL OF PARKINSON'S DISEASE 2024; 14:227-244. [PMID: 38427502 PMCID: PMC10977405 DOI: 10.3233/jpd-230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Parkinson's disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact. Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Tiana F. Koukoulis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Leah C. Beauchamp
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Ann Romney Center for Neurologic Diseases, Brighamand Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
| | - Rachel M. McQuade
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, Gut-Axis Injury and Repair Laboratory, Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE), Sunshine Hospital, St Albans, VIC, Australia
| | - Adityas Purnianto
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin J. Barnham
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Laura J. Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
70
|
Cui C, Song H, Han Y, Yu H, Li H, Yang Y, Zhang B. Gut microbiota-associated taurine metabolism dysregulation in a mouse model of Parkinson's disease. mSphere 2023; 8:e0043123. [PMID: 37819112 PMCID: PMC10732050 DOI: 10.1128/msphere.00431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE PD is recognized as a multisystem disease concerning GI dysfunction and microbiota dysbiosis but still lacks ideal therapies. Recently, aberrant microbiota-derived metabolites are emerging as important participants in PD etiology. However, the alterations of gut microbiota community and serum untargeted metabolite profile have not been fully investigated in a PD mice model. Here, we discover sharply reduced levels of Lactobacillus and taurine in MPTP-treated mice. Moreover, Lactobacillus, Adlercreutzia, and taurine-related metabolites showed the most significant correlation with pathological and GI performance of PD mice. The abundances of microbial transporter and enzymes participating in the degeneration of taurine were disturbed in PD mice. Most importantly, taurine supplement ameliorates MPTP-induced motor deficits, DA neuron loss, and microglial activation. Our data highlight the impaired taurine-based microbiome-metabolism axis during the progression of PD and reveal a novel and previously unrecognized role of genera in modulating taurine metabolism.
Collapse
Affiliation(s)
- Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huan Song
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yumei Yang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
71
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
72
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
73
|
Hong JT, Jung HK, Lee KJ, Gong EJ, Shin CM, Kim JW, Youn YH, Lee B. Potential risk of proton pump inhibitors for Parkinson's disease: A nationwide nested case-control study. PLoS One 2023; 18:e0295981. [PMID: 38096177 PMCID: PMC10721081 DOI: 10.1371/journal.pone.0295981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
Proton pump inhibitor (PPI) use is a potential risk factor for neurodegenerative disease development; however, its role in Parkinson's disease (PD) remains unclear. This study aimed to investigate the association between PPI use and PD risk. A total of 31,326 patients with newly diagnosed PD were matches by age, sex, body mass index, diabetes, and hypertension with 125,304 controls at a ratio of 1:4. The data were collected from the Korean National Health Insurance Services Database from January 2010 to December 2019. Cumulative defined daily doses of PPIs were extracted from treatment claims. We examined the association between PPI use and PD risk using conditional logistic regression. To prevent protopathic bias, we excluded patients diagnosed with PD within a 1-year lag period after PPI exposure. We applied 2- and 3-year lag periods for sensitivity analysis. PPI use was associated with an increased risk of PD when a 1-year lag period was applied between PPI exposure and PD development (adjusted odds ratio, 1.10; 95% confidence interval, 1.07-1.13). A significant positive dose-response relationship existed between the cumulative defined daily doses of PPIs and PD development (P<0.001). Similar results were obtained for the 2- or 3-year lag periods. The association did not vary based on gender. Older age, a higher Charlson Comorbidity Index score, no alcohol consumption, and a non-smoking status were associated with a significantly increased PD risk with PPI use. We observed an association between PPI use and PD risk, although long-term follow-up studies are necessary to verify this association.
Collapse
Affiliation(s)
- Ji Taek Hong
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hye-Kyung Jung
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kwang Jae Lee
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Eun Jeong Gong
- Department of Internal Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Gangwon-do, Republic of Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jong Wook Kim
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Young Hoon Youn
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bora Lee
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- RexSoft Corp., Seoul, Republic of Korea
| |
Collapse
|
74
|
Chen SJ, Wu YJ, Chen CC, Wu YW, Liou JM, Wu MS, Kuo CH, Lin CH. Plasma metabolites of aromatic amino acids associate with clinical severity and gut microbiota of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:165. [PMID: 38097625 PMCID: PMC10721883 DOI: 10.1038/s41531-023-00612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Gut microbial proteolytic metabolism has been reportedly altered in Parkinson's disease (PD). However, the circulating aromatic amino acids (AAA) described in PD are inconsistent. Here we aimed to investigate plasma AAA profiles in a large cohort of PD patients, and examine their correlations with clinical severity and gut microbiota changes. We enrolled 500 participants including 250 PD patients and 250 neurologically normal controls. Plasma metabolites were measured using liquid chromatography mass spectrometry. Faecal samples were newly collected from 154 PD patients for microbiota shotgun metagenomic sequencing combined with data derived from 96 PD patients reported before. Data were collected regarding diet, medications, and motor and non-motor symptoms of PD. Compared to controls, PD patients had higher plasma AAA levels, including phenylacetylglutamine (PAGln), p-cresol sulfate (Pcs), p-cresol glucuronide (Pcg), and indoxyl sulfate (IS). Multivariable linear regression analyses, with adjustment for age, sex, and medications, revealed that the plasma levels of PAGln (coefficient 4.49, 95% CI 0.40-8.58, P = 0.032) and Pcg (coefficient 1.79, 95% CI 0.07-3.52, P = 0.042) positively correlated with motor symptom severity but not cognitive function. After correcting for abovementioned potential confounders, these AAA metabolites were also associated with the occurrence of constipation in PD patients (all P < 0.05). Furthermore, plasma levels of AAA metabolites were correlated with the abundance of specific gut microbiota species, including Bacteroides sp. CF01-10NS, Bacteroides vulgatus, and Clostridium sp. AF50-3. In conclusion, elevated plasma AAA metabolite levels correlated with disease characteristics in PD, suggesting that upregulated proteolytic metabolism may contribute to the pathophysiology of PD.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Jun Wu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh-Chang Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hua Kuo
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- The Metabolomics Core Laboratory, NTU Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
75
|
Santos-Rebouças CB, Cordovil Cotrin J, Dos Santos Junior GC. Exploring the interplay between metabolomics and genetics in Parkinson's disease: Insights from ongoing research and future avenues. Mech Ageing Dev 2023; 216:111875. [PMID: 37748695 DOI: 10.1016/j.mad.2023.111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder, whose complex aetiology remains under construction. While rare variants have been associated with the monogenic PD form, most PD cases are influenced by multiple genetic and environmental aspects. Nonetheless, the pathophysiological pathways and molecular networks involved in monogenic/idiopathic PD overlap, and genetic variants are decisive in elucidating the convergent underlying mechanisms of PD. In this scenario, metabolomics has furnished a dynamic and systematic picture of the synergy between the genetic background and environmental influences that impact PD, making it a valuable tool for investigating PD-related metabolic dysfunctions. In this review, we performed a brief overview of metabolomics current research in PD, focusing on significant metabolic alterations observed in idiopathic PD from different biofluids and strata and exploring how they relate to genetic factors associated with monogenic PD. Dysregulated amino acid metabolism, lipid metabolism, and oxidative stress are the critical metabolic pathways implicated in both genetic and idiopathic PD. By merging metabolomics and genetics data, it is possible to distinguish metabolic signatures of specific genetic backgrounds and to pinpoint subgroups of PD patients who could derive personalized therapeutic benefits. This approach holds great promise for advancing PD research and developing innovative, cost-effective treatments.
Collapse
Affiliation(s)
- Cíntia Barros Santos-Rebouças
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Juliana Cordovil Cotrin
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Gilson Costa Dos Santos Junior
- LabMet, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
76
|
Cui C, Shi Y, Hong H, Zhou Y, Qiao C, Zhao L, Jia X, Zhao W, Shen Y. 5-HT4 Receptor is Protective for MPTP-induced Parkinson's Disease Mice Via Altering Gastrointestinal Motility or Gut Microbiota. J Neuroimmune Pharmacol 2023; 18:610-627. [PMID: 37782386 DOI: 10.1007/s11481-023-10085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Serotonergic dysfunction is related to both motor and nonmotor symptoms in Parkinson's disease (PD). As a 5-HT receptor, 5-HT4 receptor (5-HT4R) is well-studied and already-used in clinical therapy of constipation, which is a typical non-motor symptom in PD. In this study, we investigated the role of 5-HT4R as a regulator of gut function in MPTP-induced acute PD mice model. Daily intraperitoneal injection of GR 125487 (5-HT4R antagonist) was administered 3 days before MPTP treatment until sacrifice. Seven days post-MPTP treatment, feces were collected and gastrointestinal transit time (GITT) was measured, 8 days post-MPTP treatment, behavioral tests were performed, and then animals were sacrificed for the further analysis. We found GR 125487 pretreatment not only increased GITT, but also aggravated MPTP-induced motor bradykinesia. In addition, GR 125487 pretreatment exacerbated the loss of dopaminergic neurons probably by suppressing JAK2/PKA/CREB signaling pathway and increased reactive glia and neuroinflammation in the striatum. 16 S rRNA sequencing of fecal microbiota showed that GR 125487 pretreatment altered the composition of gut microbiota, in which the abundance of Akkermansia muciniphila and Clostridium clostridioforme was increased, whereas that of Parabacteroides distasonis and Bacteroides fragilis was decreased, which are closely associated with inflammation condition. Taken together, we demonstrated that GR 125487 pretreatment exacerbates MPTP-induced striatal neurodegenerative processes possibly via the JAK2/PKA/CREB pathway and neuroinflammation by altering gut microbiota composition. In the microbiota-gut-brain axis of PD, 5-HT4R should be further explored and might serve as a target for PD diagnosis and treatment.
Collapse
Affiliation(s)
- Chun Cui
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Yun Shi
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hui Hong
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yu Zhou
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chenmeng Qiao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Liping Zhao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xuebing Jia
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Weijiang Zhao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yanqin Shen
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
77
|
Li Z, Hu E, Zheng F, Wang S, Zhang W, Luo J, Tang T, Huang Q, Wang Y. The effects of astragaloside IV on gut microbiota and serum metabolism in a mice model of intracerebral hemorrhage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155086. [PMID: 37783132 DOI: 10.1016/j.phymed.2023.155086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Astragaloside IV (AS-IV) is the main active component of "Astragalus membranaceus (Fisch.) Bunge, a synonym of Astragalus propinquus Schischkin (Fabaceae)", which demonstrated to be useful for the treatment of intracerebral hemorrhage (ICH). However, due to the low bioavailability and barrier permeability of AS-IV, the gut microbiota may be an important key regulator for AS-IV to work. OBJECTIVE To explore the influences of gut microbiota on the effects of AS-IV on ICH. METHODS Mice were randomly divided into five groups: sham, ICH, and AS-IV-treated groups (25 mg/kg, 50 mg/kg, and 100 mg/kg). Behavioral tests, brain histopathology, and immunohistochemistry analysis were used to evaluate the degree of brain injury. Western blot was employed to verify peri‑hematoma inflammation. The plasma lipopolysaccharide (LPS) leakage, the fluorescein isothiocyanate-dextran permeability, the colonic histopathology, and immunohistochemistry were detected to evaluate the barrier function of intestinal mucosal. Moreover, 16S rDNA sequencing and metabolomic analysis was applied to screen differential bacteria and metabolites, respectively. The correlation analysis was adopted to determine the potential relationship between differential bacteria and critical metabolites or neurological deficits. RESULTS AS-IV alleviated neurological deficits, neuronal injury and apoptosis, and blood-brain barrier disruption. This compound reduced tumor necrosis factor (TNF)-α expression, increased arginase (Arg)-1 and interleukin (IL)-33 levels around the hematoma. Next, 16S rRNA sequencing indicated that AS-IV altered the gut microbiota, and inhibited the production of conditional pathogenic bacteria. Metabolomic analysis demonstrated that AS-IV regulated the serum metabolic profiles, especially the aminoacid metabolism and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Additionally, AS-IV mitigated intestinal barrier damage and LPS leakage. CONCLUSION This study provides a new perspective on the use of AS-IV for the treatment of ICH. Among them, gut microbiota and its metabolites may be the key regulator of AS-IV in treating ICH.
Collapse
Affiliation(s)
- Zhilin Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Hospital, Central South University, Jiangxi 330004, China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Song Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Stroke Center, Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiekun Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Hospital, Central South University, Jiangxi 330004, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Hospital, Central South University, Jiangxi 330004, China
| | - Qing Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Stroke Center, Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Hospital, Central South University, Jiangxi 330004, China.
| |
Collapse
|
78
|
Mi N, Ma L, Li X, Fu J, Bu X, Liu F, Yang F, Zhang Y, Yao L. Metabolomic analysis of serum short-chain fatty acid concentrations in a mouse of MPTP-induced Parkinson's disease after dietary supplementation with branched-chain amino acids. Open Med (Wars) 2023; 18:20230849. [PMID: 38045857 PMCID: PMC10693015 DOI: 10.1515/med-2023-0849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
The gut microbiota and microbial metabolites influence the enteric nervous system and the central nervous system via the microbial-gut-brain axis. Increasing body of evidence suggests that disturbances in the metabolism of peripheral branched-chain amino acids (BCAAs) can contribute to the development of neurodegenerative diseases through neuroinflammatory signaling. Preliminary research has shown that longitudinal changes in serum amino acid levels in mouse models of Parkinson's disease (PD) are negatively correlated with disease progression. Therefore, the aim of the present study was to determine the changes in serum levels of short-chain fatty acids (SCFAs) in a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD after dietary BCAA supplementation. In our research, gas chromatography-mass spectrometry was used to detect serum SCFA concentrations. The data were then analyzed with principal component analysis and orthogonal partial least squares discriminant analysis. Finally, the correlations of serum SCFA levels with gut and motor function in MPTP-induced PD mice were explored. Propionic acid, acetic acid, butyric acid, and isobutyric acid concentrations were elevated in MPTP + H-BCAA mice compared with MPTP mice. Propionic acid concentration was increased the most, while the isovaleric acid concentration was decreased. Propionic acid concentration was positively correlated with fecal weight and water content and negatively correlated with the pole-climbing duration. In conclusion, these results not only suggest that propionic acid may be a potential biomarker for PD, but also indicate the possibility that PD may be treated by altering circulating levels of SCFA.
Collapse
Affiliation(s)
- Na Mi
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin150007, China
- Department of Neurology, Chifeng Municipal Hospital, Inner Mongolia Autonomous Region, 024000, China
| | - Lili Ma
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin150007, China
| | - Xueying Li
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin150007, China
| | - Jia Fu
- Department of Neurology, Chifeng Municipal Hospital, Inner Mongolia Autonomous Region, 024000, China
| | - Xinxin Bu
- Department of Neurology, Chifeng Municipal Hospital, Inner Mongolia Autonomous Region, 024000, China
| | - Fei Liu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin150007, China
| | - Fan Yang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin150007, China
| | - Yali Zhang
- Department of Neurology, Chifeng Municipal Hospital, No. 1, Middle Section of Zhaowuda Road, Hongshan District, Chifeng City, Inner Mongolia Autonomous Region, 024000, China
| | - Lifen Yao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150007, China
| |
Collapse
|
79
|
Cirstea MS, Creus-Cuadros A, Lo C, Yu AC, Serapio-Palacios A, Neilson S, Appel-Cresswell S, Finlay BB. A novel pathway of levodopa metabolism by commensal Bifidobacteria. Sci Rep 2023; 13:19155. [PMID: 37932328 PMCID: PMC10628163 DOI: 10.1038/s41598-023-45953-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The gold-standard treatment for Parkinson's disease is levodopa (L-DOPA), which is taken orally and absorbed intestinally. L-DOPA must reach the brain intact to exert its clinical effect; peripheral metabolism by host and microbial enzymes is a clinical management issue. The gut microbiota is altered in PD, with one consistent and unexplained observation being an increase in Bifidobacterium abundance among patients. Recently, certain Bifidobacterium species were shown to have the ability to metabolize L-tyrosine, an L-DOPA structural analog. Using both clinical cohort data and in vitro experimentation, we investigated the potential for commensal Bifidobacteria to metabolize this drug. In PD patients, Bifidobacterium abundance was positively correlated with L-DOPA dose and negatively with serum tyrosine concentration. In vitro experiments revealed that certain species, including B. bifidum, B. breve, and B. longum, were able to metabolize this drug via deamination followed by reduction to the compound 3,4-dihydroxyphenyl lactic acid (DHPLA) using existing tyrosine-metabolising genes. DHPLA appears to be a waste product generated during regeneration of NAD +. This metabolism occurs at low levels in rich medium, but is significantly upregulated in nutrient-limited minimal medium. Discovery of this novel metabolism of L-DOPA to DHPLA by a common commensal may help inform medication management in PD.
Collapse
Affiliation(s)
- M S Cirstea
- Department of Microbiology and Immunology, University of British Columbia (UBC), Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - A Creus-Cuadros
- Department of Microbiology and Immunology, University of British Columbia (UBC), Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - C Lo
- Department of Microbiology and Immunology, University of British Columbia (UBC), Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - A C Yu
- Pacific Parkinson's Research Centre, UBC, Vancouver, BC, Canada
| | - A Serapio-Palacios
- Department of Microbiology and Immunology, University of British Columbia (UBC), Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - S Neilson
- Pacific Parkinson's Research Centre, UBC, Vancouver, BC, Canada
| | - S Appel-Cresswell
- Pacific Parkinson's Research Centre, UBC, Vancouver, BC, Canada
- Division of Neurology, Faculty of Medicine, UBC, Vancouver, BC, Canada
| | - B B Finlay
- Department of Microbiology and Immunology, University of British Columbia (UBC), Vancouver, BC, Canada.
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, UBC, Vancouver, BC, Canada.
| |
Collapse
|
80
|
Pavan S, Gorthi SP, Prabhu AN, Das B, Mutreja A, Vasudevan K, Shetty V, Ramamurthy T, Ballal M. Dysbiosis of the Beneficial Gut Bacteria in Patients with Parkinson's Disease from India. Ann Indian Acad Neurol 2023; 26:908-916. [PMID: 38229613 PMCID: PMC10789430 DOI: 10.4103/aian.aian_460_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 01/18/2024] Open
Abstract
Objectives Recent advancement in understanding neurological disorders has revealed the involvement of dysbiosis of the gut microbiota in the pathophysiology of Parkinson's disease (PD). We sequenced microbial DNA using fecal samples collected from PD cases and healthy controls (HCs) to evaluate the role of gut microbiota. Methods Full-length bacterial 16S rRNA gene sequencing of fecal samples was performed using amplified polymerase chain reaction (PCR) products on the GridION Nanopore sequencer. Sequenced data were analyzed using web-based tools BugSeq and MicrobiomeAnalyst. Results We found that certain bacterial families like Clostridia UCG 014, Cristensenellaceae, and Oscillospiraceae are higher in abundance, and Lachinospiracea, Coriobacteriaceae and genera associated with short-chain fatty acid production, Faecalibacterium, Fusicatenibacter, Roseburia and Blautia, are lower in abundance among PD cases when compared with the HC. Genus Akkermansia, Dialister, Bacteroides, and Lachnospiraceae NK4A136 group positively correlated with constipation in PD. Conclusion Observations from this study support the other global research on the PD gut microbiome background and provide fresh insight into the gut microbial composition of PD patients from a south Indian population. We report a higher abundance of Clostridia UCG 014 group, previously not linked to PD.
Collapse
Affiliation(s)
- Sujith Pavan
- Enteric Diseases Division, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sankar Prasad Gorthi
- Department of Neurology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Neurology, Bharati Vidyapeeth Medical College and Hospital, Pune, Maharashtra, India
| | - Arvind N. Prabhu
- Department of Neurology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ankur Mutreja
- Enteric Diseases Division, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, Karnataka, India
| | - Vignesh Shetty
- Enteric Diseases Division, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mamatha Ballal
- Enteric Diseases Division, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
81
|
Kleine Bardenhorst S, Cereda E, Severgnini M, Barichella M, Pezzoli G, Keshavarzian A, Desideri A, Pietrucci D, Aho VTE, Scheperjans F, Hildebrand F, Weis S, Egert M, Karch A, Vital M, Rübsamen N. Gut microbiota dysbiosis in Parkinson disease: A systematic review and pooled analysis. Eur J Neurol 2023; 30:3581-3594. [PMID: 36593694 DOI: 10.1111/ene.15671] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE The role of the gut microbiome in the pathogenesis of Parkinson disease (PD) is under intense investigation, and the results presented are still very heterogeneous. These discrepancies arise not only from the highly heterogeneous pathology of PD, but also from widely varying methodologies at all stages of the workflow, from sampling to final statistical analysis. The aim of the present work is to harmonize the workflow across studies to reduce the methodological heterogeneity and to perform a pooled analysis to account for other sources of heterogeneity. METHODS We performed a systematic review to identify studies comparing the gut microbiota of PD patients to healthy controls. A workflow was designed to harmonize processing across all studies from bioinformatics processing to final statistical analysis using a Bayesian random-effects meta-analysis based on individual patient-level data. RESULTS The results show that harmonizing workflows minimizes differences between statistical methods and reveals only a small set of taxa being associated with the pathogenesis of PD. Increased shares of the genera Akkermansia and Bifidobacterium and decreased shares of the genera Roseburia and Faecalibacterium were most characteristic for PD-associated microbiota. CONCLUSIONS Our study summarizes evidence that reduced levels of butyrate-producing taxa in combination with possible degradation of the mucus layer by Akkermansia may promote intestinal inflammation and reduced permeability of the gut mucosal layer. This may allow potentially pathogenic metabolites to transit and enter the enteric nervous system.
Collapse
Affiliation(s)
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, Italian National Research Council, Milan, Italy
| | | | - Gianni Pezzoli
- Parkinson Institute, ASST-Pini-CTO, Milan, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome & Chronobiology Research, Chicago, Illinois, USA
- Departments of Medicine, Physiology, Anatomy, and Cell Biology, Rush University, Chicago, Illinois, USA
| | | | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-food, and Forest Systems, University of Tuscia, Viterbo, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, Italian National Research Council, Bari, Italy
| | - Velma T E Aho
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | | | - Severin Weis
- Microbiology and Hygiene Group, Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - Markus Egert
- Microbiology and Hygiene Group, Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - André Karch
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Nicole Rübsamen
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
82
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
83
|
Li R, Roy R. Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review. Appl Biochem Biotechnol 2023; 195:6809-6823. [PMID: 36930406 DOI: 10.1007/s12010-023-04423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The gut microbiota widely varies from individual to individual, but the variation shows stability over a period of time. The presence of abundant bacterial taxa is a common structure that determines the microbiota of human being. The presence of this microbiota greatly varies from geographic location, sex, food habits and age. Microbiota existing within the gut plays a significant role in nutrient absorption, development of immunity, curing of diseases and various developmental phases. With change in age, chronology diversification and variation of gut microbiota are observed within human being. But it has been observed that with the enhancement of age the richness of the microbial diversity has shown a sharp decline. The enhancement of age also results in the drift of the characteristic of the microbes associated with the microbiota from commensals to pathogenic. Various studies have shown that age associated gut-dysbiosis may result in decrease in tlongevity along with unhealthy aging. The host signalling pathways regulate the presence of the gut microbiota and their longevity. The presence of various nutrients regulates the presence of various microbial species. Innate immunity can be triggered due to the mechanism of gut dysbiosis resulting in the development of various age-related pathological syndromes and early aging. The gut microbiota possesses the ability to communicate with the host system with the help of various types of biomolecules, epigenetic mechanisms and various types of signalling-independent pathways. Drift in this mechanism of communication may affect the life span along with the health of the host. Thus, this review would focus on the use of gut-microbiota in anti-aging and healthy conditions of the host system.
Collapse
Affiliation(s)
- Ruishan Li
- Guiyang Healthcare Vocational University, Guiyang, China.
| | - Rupak Roy
- SHRM Biotechnologies Pvt. Ltd, Kolkata, India
| |
Collapse
|
84
|
Jiang L, Li JC, Tang BS, Guo JF. Associations between gut microbiota and Parkinson disease: A bidirectional Mendelian randomization analysis. Eur J Neurol 2023; 30:3471-3477. [PMID: 37159496 DOI: 10.1111/ene.15848] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND PURPOSE Parkinson disease (PD)-associated alterations in the gut microbiome have been observed in clinical and animal studies. However, it remains unclear whether this association reflects a causal effect in humans. METHODS We performed two-sample bidirectional Mendelian randomization using summary statistics from the international consortium MiBioGen (N = 18,340), the Framingham Heart Study (N = 2076), and the International Parkinson's Disease Genomics Consortium for PD (33,674 cases and 449,056 controls) and PD age at onset (17,996 cases). RESULTS Twelve microbiota features presented suggestive associations with PD risk or age at onset. Genetically increased Bifidobacterium levels correlated with decreased PD risk (odds ratio = 0.77, 95% confidence interval [CI] = 0.60-0.99, p = 0.040). Conversely, high levels of five short-chain fatty acid (SCFA)-producing bacteria (LachnospiraceaeUCG010, RuminococcaceaeUCG002, Clostridium sensustricto1, Eubacterium hallii group, and Bacillales) correlated with increased PD risk, and three SCFA-producing bacteria (Roseburia, RuminococcaceaeUCG002, and Erysipelatoclostridium) correlated with an earlier age at PD onset. Gut production of serotonin was associated with an earlier age at PD onset (beta = -0.64, 95% CI = -1.15 to -0.13, p = 0.013). In the reverse direction, genetic predisposition to PD was related to altered gut microbiota composition. CONCLUSIONS These results support a bidirectional relationship between gut microbiome dysbiosis and PD, and highlight the role of elevated endogenous SCFAs and serotonin in PD pathogenesis. Future clinical studies and experimental evidence are needed to explain the observed associations and to suggest new therapeutic approaches, such as dietary probiotic supplementation.
Collapse
Affiliation(s)
- Li Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Chen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
85
|
Zhou X, Lian P, Liu H, Wang Y, Zhou M, Feng Z. Causal Associations between Gut Microbiota and Different Types of Dyslipidemia: A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:4445. [PMID: 37892520 PMCID: PMC10609956 DOI: 10.3390/nu15204445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The determination of a causal association between gut microbiota and a range of dyslipidemia remains uncertain. To clarify these associations, we employed a two-sample Mendelian randomization (MR) analysis utilizing the inverse-variance weighted (IVW) method. This comprehensive analysis investigated the genetic variants that exhibited a significant association (p < 5 × 10-8) with 129 distinct gut microbiota genera and their potential link to different types of dyslipidemia. The results indicated a potential causal association between 22 gut microbiota genera and dyslipidemia in humans. Furthermore, these findings suggested that the impact of gut microbiota on dyslipidemia regulation is dependent on the specific phylum, family, and genus. Bacillota phylum demonstrated the greatest diversity, with 15 distinct genera distributed among eight families. Notably, gut microbiota-derived from the Lachnospiraceae and Lactobacillaceae families exhibit statistically significant associations with lipid levels that contribute to overall health (p < 0.05). The sensitivity analysis indicated that our findings possess robustness (p > 0.05). The findings of our investigation provide compelling evidence that substantiates a causal association between the gut microbiota and dyslipidemia in the human body. It is noteworthy to highlight the significant influence of the Bacillota phylum as a crucial regulator of lipid levels, and the families Lachnospiraceae and Lactobacillaceae should be recognized as probiotics that significantly contribute to this metabolic process.
Collapse
Affiliation(s)
| | | | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| |
Collapse
|
86
|
Craig CF, Finkelstein DI, McQuade RM, Diwakarla S. Understanding the potential causes of gastrointestinal dysfunctions in multiple system atrophy. Neurobiol Dis 2023; 187:106296. [PMID: 37714308 DOI: 10.1016/j.nbd.2023.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare, progressive neurodegenerative disorder characterised by autonomic, pyramidal, parkinsonian and/or cerebellar dysfunction. Autonomic symptoms of MSA include deficits associated with the gastrointestinal (GI) system, such as difficulty swallowing, abdominal pain and bloating, nausea, delayed gastric emptying, and constipation. To date, studies assessing GI dysfunctions in MSA have primarily focused on alterations of the gut microbiome, however growing evidence indicates other structural components of the GI tract, such as the enteric nervous system, the intestinal barrier, GI hormones, and the GI-driven immune response may contribute to MSA-related GI symptoms. Here, we provide an in-depth exploration of the physiological, structural, and immunological changes theorised to underpin GI dysfunction in MSA patients and highlight areas for future research in order to identify more suitable pharmaceutical treatments for GI symptoms in patients with MSA.
Collapse
Affiliation(s)
- Colin F Craig
- Gut Barrier and Disease Laboratory, Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David I Finkelstein
- Parkinson's Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Rachel M McQuade
- Gut Barrier and Disease Laboratory, Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE), Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Shanti Diwakarla
- Gut Barrier and Disease Laboratory, Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE), Sunshine Hospital, St Albans, VIC 3021, Australia.
| |
Collapse
|
87
|
Stolzer I, Scherer E, Süß P, Rothhammer V, Winner B, Neurath MF, Günther C. Impact of Microbiome-Brain Communication on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2023; 24:14925. [PMID: 37834373 PMCID: PMC10573483 DOI: 10.3390/ijms241914925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The gut microbiome plays a pivotal role in maintaining human health, with numerous studies demonstrating that alterations in microbial compositions can significantly affect the development and progression of various immune-mediated diseases affecting both the digestive tract and the central nervous system (CNS). This complex interplay between the microbiota, the gut, and the CNS is referred to as the gut-brain axis. The role of the gut microbiota in the pathogenesis of neurodegenerative diseases has gained increasing attention in recent years, and evidence suggests that gut dysbiosis may contribute to disease development and progression. Clinical studies have shown alterations in the composition of the gut microbiota in multiple sclerosis patients, with a decrease in beneficial bacteria and an increase in pro-inflammatory bacteria. Furthermore, changes within the microbial community have been linked to the pathogenesis of Parkinson's disease and Alzheimer's disease. Microbiota-gut-brain communication can impact neurodegenerative diseases through various mechanisms, including the regulation of immune function, the production of microbial metabolites, as well as modulation of host-derived soluble factors. This review describes the current literature on the gut-brain axis and highlights novel communication systems that allow cross-talk between the gut microbiota and the host that might influence the pathogenesis of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eveline Scherer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
88
|
Mao Z, Hui H, Zhao X, Xu L, Qi Y, Yin L, Qu L, Han L, Peng J. Protective effects of dioscin against Parkinson's disease via regulating bile acid metabolism through remodeling gut microbiome/GLP-1 signaling. J Pharm Anal 2023; 13:1153-1167. [PMID: 38024855 PMCID: PMC10657977 DOI: 10.1016/j.jpha.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 12/01/2023] Open
Abstract
It is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease (PD). Dioscin, a bioactive steroidal saponin, shows various activities. However, its effects and mechanisms against PD are limited. In this study, dioscin dramatically alleviated neuroinflammation and oxidative stress, and restored the disorders of mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 16 S rDNA sequencing assay demonstrated that dioscin reversed MPTP-induced gut dysbiosis to decrease Firmicutes-to-Bacteroidetes ratio and the abundances of Enterococcus, Streptococcus, Bacteroides and Lactobacillus genera, which further inhibited bile salt hydrolase (BSH) activity and blocked bile acid (BA) deconjugation. Fecal microbiome transplantation test showed that the anti-PD effect of dioscin was gut microbiota-dependent. In addition, non-targeted fecal metabolomics assays revealed many differential metabolites in adjusting steroid biosynthesis and primary bile acid biosynthesis. Moreover, targeted bile acid metabolomics assay indicated that dioscin increased the levels of ursodeoxycholic acid, tauroursodeoxycholic acid, taurodeoxycholic acid and β-muricholic acid in feces and serum. In addition, ursodeoxycholic acid administration markedly improved the protective effects of dioscin against PD in mice. Mechanistic test indicated that dioscin significantly up-regulated the levels of takeda G protein-coupled receptor 5 (TGR5), glucagon-like peptide-1 receptor (GLP-1R), GLP-1, superoxide dismutase (SOD), and down-regulated NADPH oxidases 2 (NOX2) and nuclear factor-kappaB (NF-κB) levels. Our data indicated that dioscin ameliorated PD phenotype by restoring gut dysbiosis and regulating bile acid-mediated oxidative stress and neuroinflammation via targeting GLP-1 signal in MPTP-induced PD mice, suggesting that the compound should be considered as a prebiotic agent to treat PD in the future.
Collapse
Affiliation(s)
- Zhang Mao
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Haochen Hui
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Xuerong Zhao
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Lina Xu
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Yan Qi
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Lianhong Yin
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
| | - Liping Qu
- Innovation Materials Research and Development Center, Botanee Research Institute, Yunnan Botanee Bio-technology Group Co., Ltd., Kunming, 650106, China
| | - Lan Han
- Department of Traditional Chinese Medicine Pharmacology, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinyong Peng
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, Shenyang, 116044, China
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, China
| |
Collapse
|
89
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
90
|
Liu X, Yang M, Liu R, Zhou F, Zhu H, Wang X. The impact of Parkinson's disease-associated gut microbiota on the transcriptome in Drosophila. Microbiol Spectr 2023; 11:e0017623. [PMID: 37754772 PMCID: PMC10581176 DOI: 10.1128/spectrum.00176-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people, and many studies have confirmed that the disorder of gut microbiota is involved in the pathophysiological process of PD. However, the molecular mechanism of gut microbiota in regulating the pathogenesis of PD is still lacking. In this study, to investigate the impact of PD-associated gut microbiota on host transcriptome, we established various PD models with fecal microbiota transplantation (FMT) in the model organism Drosophila followed by integrative data analysis of microbiome and transcriptome. We first constructed rotenone-induced PD models in Drosophila followed by FMT in different groups. Microbial analysis by 16S rDNA sequencing showed that gut microbiota from PD Drosophila could affect bacterial structure of normal Drosophila, and gut microbiota from normal Drosophila could affect bacterial structure of PD Drosophila. Transcriptome analysis revealed that PD-associated gut microbiota influenced expression patterns of genes enriched in neuroactive ligand-receptor interaction, lysosome, and diverse metabolic pathways. Importantly, to verify our findings, we transplanted Drosophila with fecal samples from clinical PD patients. Compared to the control, Drosophila transplanted with fecal samples from PD patients had reduced microbiota Acetobacter and Lactobacillus, and differentially expressed genes enriched in diverse metabolic pathways. In summary, our results reveal the influence of PD-associated gut microbiota on host gene expression, and this study can help better understand the link between gut microbiota and PD pathogenesis through gut-brain axis. IMPORTANCE Gut microbiota plays important roles in regulating host gene expression and physiology through complex mechanisms. Recently, it has been suggested that disorder of gut microbiota is involved in the pathophysiological process of Parkinson's disease (PD). However, the molecular mechanism of gut microbiota in regulating the pathogenesis of PD is still lacking. In this study, to investigate the impact of PD-associated gut microbiota on host transcriptome, we established various PD models with fecal microbiota transplantation in the model organism Drosophila followed by integrative data analysis of microbiome and transcriptome. We also verified our findings by transplanting Drosophila with fecal samples from clinical PD patients. Our results demonstrated that PD-associated gut microbiota can induce differentially expressed genes enriched in diverse metabolic pathways. This study can help better understand the link between gut microbiota and PD pathogenesis through gut-brain axis.
Collapse
Affiliation(s)
- Xin Liu
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Meng Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Runzhou Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fan Zhou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haibing Zhu
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Psychiatry, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xiaoyun Wang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
91
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
92
|
Li Y, Wu M, Kong M, Sui S, Wang Q, He Y, Gu J. Impact of Donepezil Supplementation on Alzheimer's Disease-like Pathology and Gut Microbiome in APP/PS1 Mice. Microorganisms 2023; 11:2306. [PMID: 37764150 PMCID: PMC10537997 DOI: 10.3390/microorganisms11092306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Based on published information, the occurrence and development of Alzheimer's disease (AD) are potentially related to gut microbiota changes. Donepezil hydrochloride (DH), which enhances cholinergic activity by blocking acetylcholinesterase (AChE), is one of the first-line drugs for AD treatment approved by the Food and Drug Administration (FDA) of the USA. However, the potential link between the effects of DH on the pathophysiological processes of AD and the gut microbiota remains unclear. In this study, pathological changes in the brain and colon, the activities of superoxide dismutase (SOD) and AChE, and changes in intestinal flora were observed. The results showed that Aβ deposition in the prefrontal cortex and hippocampus of AD mice was significantly decreased, while colonic inflammation was significantly alleviated by DH treatment. Concomitantly, SOD activity was significantly improved, while AChE was significantly reduced after DH administration. In addition, the gut microbiota community composition of AD mice was significantly altered after DH treatment. The relative abundance of Akkermansia in the AD group was 54.8% higher than that in the N group. The relative abundance of Akkermansia was increased by 18.3% and 53.8% in the AD_G group and the N_G group, respectively. Interestingly, Akkermansia showed a potential predictive value and might be a biomarker for AD. Molecular docking revealed the binding mode and major forces between DH and membrane proteins of Akkermansia. The overall results suggest a novel therapeutic mechanism for treating AD and highlight the critical role of gut microbiota in AD pathology.
Collapse
Affiliation(s)
- Yuan Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (Y.L.); (M.W.); (M.K.)
| | - Mengyao Wu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (Y.L.); (M.W.); (M.K.)
| | - Mengmeng Kong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (Y.L.); (M.W.); (M.K.)
| | - Shaomei Sui
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; (S.S.); (Q.W.)
| | - Qi Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; (S.S.); (Q.W.)
| | - Yan He
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; (S.S.); (Q.W.)
| | - Jinsong Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (Y.L.); (M.W.); (M.K.)
| |
Collapse
|
93
|
Palacios N, Wilkinson J, Bjornevik K, Schwarzschild MA, McIver L, Ascherio A, Huttenhower C. Metagenomics of the Gut Microbiome in Parkinson's Disease: Prodromal Changes. Ann Neurol 2023; 94:486-501. [PMID: 37314861 PMCID: PMC10538421 DOI: 10.1002/ana.26719] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Prior studies on the gut microbiome in Parkinson's disease (PD) have yielded conflicting results, and few studies have focused on prodromal (premotor) PD or used shotgun metagenomic profiling to assess microbial functional potential. We conducted a nested case-control study within 2 large epidemiological cohorts to examine the role of the gut microbiome in PD. METHODS We profiled the fecal metagenomes of 420 participants in the Nurses' Health Study and the Health Professionals Follow-up Study with recent onset PD (N = 75), with features of prodromal PD (N = 101), controls with constipation (N = 113), and healthy controls (N = 131) to identify microbial taxonomic and functional features associated with PD and features suggestive of prodromal PD. Omnibus and feature-wise analyses identified bacterial species and pathways associated with prodromal and recently onset PD. RESULTS We observed depletion of several strict anaerobes associated with reduced inflammation among participants with PD or features of prodromal PD. A microbiome-based classifier had moderate accuracy (area under the curve [AUC] = 0.76 for species and 0.74 for pathways) to discriminate between recently onset PD cases and controls. These taxonomic shifts corresponded with functional shifts indicative of carbohydrate source preference. Similar, but less marked, changes were observed in participants with features of prodromal PD, in both microbial features and functions. INTERPRETATION PD and features of prodromal PD were associated with similar changes in the gut microbiome. These findings suggest that changes in the microbiome could represent novel biomarkers for the earliest phases of PD. ANN NEUROL 2023;94:486-501.
Collapse
Affiliation(s)
- Natalia Palacios
- Department of Public Health, University of Massachusetts Lowell, Lowell, MA
- Department of Veterans Affairs, ENRM VA Hospital, Bedford, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Harvard Chan Microbiome in Public Health Center (HCMPH)
| | | | - Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Harvard Chan Microbiome in Public Health Center (HCMPH)
| | | | - Lauren McIver
- Harvard Chan Microbiome in Public Health Center (HCMPH)
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Harvard Chan Microbiome in Public Health Center (HCMPH)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center (HCMPH)
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
94
|
Liu Z, Lemus J, Smirnova IV, Liu W. Rehabilitation for non-motor symptoms for patients with Parkinson's disease from an α-synuclein perspective: a narrative review. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:235-257. [PMID: 37920444 PMCID: PMC10621781 DOI: 10.37349/ent.2023.00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder affecting aged population around the world. PD is characterized by neuronal Lewy bodies present in the substantia nigra of the midbrain and the loss of dopaminergic neurons with various motor and non-motor symptoms associated with the disease. The protein α-synuclein has been extensively studied for its contribution to PD pathology, as α-synuclein aggregates form the major component of Lewy bodies, a hallmark of PD. In this narrative review, the authors first focus on a brief explanation of α-synuclein aggregation and circumstances under which aggregation can occur, then present a hypothesis for PD pathogenesis in the peripheral nervous system (PNS) and how PD can spread to the central nervous system from the PNS via the transport of α-synuclein aggregates. This article presents arguments both for and against this hypothesis. It also presents various non-pharmacological rehabilitation approaches and management techniques for both motor and non-motor symptoms of PD and the related pathology. This review seeks to examine a possible hypothesis of PD pathogenesis and points to a new research direction focus on rehabilitation therapy for patients with PD. As various non-motor symptoms of PD appear to occur earlier than motor symptoms, more focus on the treatment of non-motor symptoms as well as a better understanding of the biochemical mechanisms behind those non-motor symptoms may lead to better long-term outcomes for patients with PD.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica Lemus
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Irina V. Smirnova
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen Liu
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
95
|
Schmitt V, Masanetz RK, Weidenfeller M, Ebbinghaus LS, Süß P, Rosshart SP, von Hörsten S, Zunke F, Winkler J, Xiang W. Gut-to-brain spreading of pathology in synucleinopathies: A focus on molecular signalling mediators. Behav Brain Res 2023; 452:114574. [PMID: 37423320 DOI: 10.1016/j.bbr.2023.114574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Synucleinopathies are a group of neurodegenerative disorders, classically characterized by the accumulation of aggregated alpha synuclein (aSyn) in the central nervous system. Parkinson's disease (PD) and multiple system atrophy (MSA) are the two prominent members of this family. Current treatment options mainly focus on the motor symptoms of these diseases. However, non-motor symptoms, including gastrointestinal (GI) symptoms, have recently gained particular attention, as they are frequently associated with synucleinopathies and often arise before motor symptoms. The gut-origin hypothesis has been proposed based on evidence of an ascending spreading pattern of aggregated aSyn from the gut to the brain, as well as the comorbidity of inflammatory bowel disease and synucleinopathies. Recent advances have shed light on the mechanisms underlying the progression of synucleinopathies along the gut-brain axis. Given the rapidly expanding pace of research in the field, this review presents a summary of the latest findings on the gut-to-brain spreading of pathology and potential pathology-reinforcing mediators in synucleinopathies. Here, we focus on 1) gut-to-brain communication pathways, including neuronal pathways and blood circulation, and 2) potential molecular signalling mediators, including bacterial amyloid proteins, microbiota dysbiosis-induced alterations in gut metabolites, as well as host-derived effectors, including gut-derived peptides and hormones. We highlight the clinical relevance and implications of these molecular mediators and their possible mechanisms in synucleinopathies. Moreover, we discuss their potential as diagnostic markers in distinguishing the subtypes of synucleinopathies and other neurodegenerative diseases, as well as for developing novel individualized therapeutic options for synucleinopathies.
Collapse
Affiliation(s)
- Verena Schmitt
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Martin Weidenfeller
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lara Savannah Ebbinghaus
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany.
| |
Collapse
|
96
|
Pedro Amorim Neto D, Vitor Pereira de Godoy J, Tostes K, Pelegrini Bosque B, Vieira Rodrigues P, Aparecida Rocco S, Luis Sforça M, de Castro Fonseca M. Metabolic Disturbances in the Gut-brain Axis of a Mouse Model of MPTP-induced Parkinsonism Evaluated by Nuclear Magnetic Resonance. Neuroscience 2023; 526:21-34. [PMID: 37331688 DOI: 10.1016/j.neuroscience.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Parkinson's Disease is a synucleinopathy that primarily affects the dopaminergic cells of the central nervous system, leading to motor and gastrointestinal disturbances. However, intestinal peripheral neurons undergo a similar neurodegeneration process, marked by α-synuclein (αSyn) accumulation and loss of mitochondrial homeostasis. We investigated the metabolic alterations in different biometrics that compose the gut-brain axis (blood, brain, large intestine, and feces) in an MPTP-induced mouse model of sporadic Parkinson's Disease. Animals received escalating administration of MPTP. Tissues and fecal pellets were collected, and the metabolites were identified through the untargeted Nuclear Magnetic Resonance spectroscopic (1H NMR) technique. We found differences in many metabolites from all the tissues evaluated. The differential expression of metabolites in these samples mainly reflects inflammatory aspects, cytotoxicity, and mitochondrial impairment (oxidative stress and energy metabolism) in the animal model used. The direct evaluation of fecal metabolites revealed changes in several classes of metabolites. This data reinforces previous studies showing that Parkinson's disease is associated with metabolic perturbation not only in brain-related tissues, but also in periphery structures such as the gut. In addition, the evaluation of the microbiome and metabolites from gut and feces emerge as promising sources of information for understanding the evolution and progression of sporadic Parkinson's Disease.
Collapse
Affiliation(s)
- Dionísio Pedro Amorim Neto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Katiane Tostes
- Hospital de Amor, Hospital de Cancer de Barretos, Barretos, São Paulo, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Paulla Vieira Rodrigues
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Silvana Aparecida Rocco
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mauricio Luis Sforça
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Matheus de Castro Fonseca
- Laboratory of Sarkis Mazmanian, Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
97
|
Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front Neurosci 2023; 17:1225875. [PMID: 37600019 PMCID: PMC10436500 DOI: 10.3389/fnins.2023.1225875] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Chang-qing Liu
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Qijie
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ka Li
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
98
|
Wu S, Cheng L, Pennhag AAL, Seifert M, Guðnadóttir U, Engstrand L, Mints M, Andersson S, Du J. The salivary microbiota is altered in cervical dysplasia patients and influenced by conization. IMETA 2023; 2:e108. [PMID: 38867925 PMCID: PMC10989756 DOI: 10.1002/imt2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 06/14/2024]
Abstract
This study supports the correlation between the salivary microbiota and cervical dysplasia and suggests that smoking influences the salivary microbiota.
Collapse
Affiliation(s)
- Shengru Wu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Alexandra A. L. Pennhag
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Maike Seifert
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Unnur Guðnadóttir
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
- Science for Life LaboratoryKarolinska InstituteStockholmSweden
| | - Miriam Mints
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Sonia Andersson
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| |
Collapse
|
99
|
Peterson CT, Iablokov SN, Rodionov DA, Peterson SN. Personalized Response of Parkinson's Disease Gut Microbiota to Nootropic Medicinal Herbs In Vitro: A Proof of Concept. Microorganisms 2023; 11:1979. [PMID: 37630539 PMCID: PMC10457923 DOI: 10.3390/microorganisms11081979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons. Although the etiology of PD remains elusive, it has been hypothesized that initial dysregulation may occur in the gastrointestinal tract and may be accompanied by gut barrier defects. A strong clinical interest in developing therapeutics exists, including for the treatment of gut microbiota and physiology. We previously reported the impact of healthy fecal microbiota anaerobic cultures supplemented with nootropic herbs. Here, we evaluated the effect of nootropic Ayurvedic herbs on fecal microbiota derived from subjects with PD in vitro using 16S rRNA sequencing. The microbiota underwent substantial change in response to each treatment, comparable in magnitude to that observed from healthy subjects. However, the fecal samples derived from each participant displayed unique changes, consistent with a personalized response. We used genome-wide metabolic reconstruction to predict the community's metabolic potential to produce products relevant to PD pathology, including SCFAs, vitamins and amino acid degradation products. These results suggest the potential value of conducting in vitro cultivation and analyses of PD stool samples as a means of prescreening patients to select the medicinal herbs for which that individual is most likely to respond and derive benefit.
Collapse
Affiliation(s)
- Christine Tara Peterson
- Center of Excellence for Research and Training in Integrative Health, Department of Family Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92023, USA
| | | | - Dmitry A. Rodionov
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Scott N. Peterson
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| |
Collapse
|
100
|
Aktas B. Gut Microbial Alteration in MPTP Mouse Model of Parkinson Disease is Administration Regimen Dependent. Cell Mol Neurobiol 2023; 43:2815-2829. [PMID: 36708421 PMCID: PMC9883829 DOI: 10.1007/s10571-023-01319-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
Parkinson Disease (PD) is one of the most common neurodegenerative disorders characterized by loss of dopaminergic neurons involved in motor functions. Growing evidence indicates that gut microbiota communicates with the brain known as the gut-brain axis (GBA). Mitochondrial toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used in animal studies to investigate the GBA in PD. Various MPTP administration regimens are performed in PD mouse models involving one to multiple injections in 1 day or one injection per day for several days. The aim of this study is to investigate if the impact of MPTP on gut microbiota differs depending on the administration regimen. C57BL/6 mice were treated with acute or subchronic regimens of MPTP. Motor functions were assessed by open-field, catalepsy, and wire hanging tests. The cecum and the brain samples were obtained for microbiota and gene expression analyses, respectively. MPTP administration regimens differed in their ability to alter the gut microbiota. Firmicutes and Bacteroidota were both increased in subchronic mice while did not change and decreased, respectively, in acute mice. Verrucomicrobiota was elevated in acute MPTP mice but dropped in subchronic MPTP mice. Muribaculaceae was the predominant genus in all groups but acute mice. In acute mice, Akkermansia was increased and Colidextribacter was decreased; however, they showed an opposite trend in subchronic mice. These data suggest that MPTP mouse model cause a gut microbiota dysbiosis in an administration regimen dependent manner, and it is important to take consideration of mouse model to investigate the GBA in neurodegenerative diseases including PD.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University Burdur, 15030, Burdur, Turkey.
| |
Collapse
|