51
|
Lange LM, Avenali M, Ellis M, Illarionova A, Keller Sarmiento IJ, Tan AH, Madoev H, Galandra C, Junker J, Roopnarain K, Solle J, Wegel C, Fang ZH, Heutink P, Kumar KR, Lim SY, Valente EM, Nalls M, Blauwendraat C, Singleton A, Mencacci N, Lohmann K, Klein C. Elucidating causative gene variants in hereditary Parkinson's disease in the Global Parkinson's Genetics Program (GP2). NPJ Parkinsons Dis 2023; 9:100. [PMID: 37369645 PMCID: PMC10300084 DOI: 10.1038/s41531-023-00526-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
The Monogenic Network of the Global Parkinson's Genetics Program (GP2) aims to create an efficient infrastructure to accelerate the identification of novel genetic causes of Parkinson's disease (PD) and to improve our understanding of already identified genetic causes, such as reduced penetrance and variable clinical expressivity of known disease-causing variants. We aim to perform short- and long-read whole-genome sequencing for up to 10,000 patients with parkinsonism. Important features of this project are global involvement and focusing on historically underrepresented populations.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Micol Avenali
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Melina Ellis
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | | | | | - Ai-Huey Tan
- Division of Neurology, Department of Medicine, and the Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Harutyun Madoev
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Caterina Galandra
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Johanna Junker
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Justin Solle
- Department of Clinical Research, Michael J. Fox Foundation for Parkinson's Research, New York City, NY, USA
| | - Claire Wegel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Kishore R Kumar
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, The University of Sydney, Concord, NSW, Australia
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, and the Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mike Nalls
- Data Tecnica International, Washington, DC, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Integrative Genomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Niccolo Mencacci
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
52
|
Martinez-Carrasco A, Real R, Lawton M, Iwaki H, Tan MMX, Wu L, Williams NM, Carroll C, Hu MT, Grosset DG, Hardy J, Ryten M, Foltynie T, Ben-Shlomo Y, Shoai M, Morris HR. Genetic meta-analysis of levodopa induced dyskinesia in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.24.23290362. [PMID: 37425912 PMCID: PMC10327264 DOI: 10.1101/2023.05.24.23290362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Importance Forty percent of Parkinson's disease patients develop levodopa-induced-dyskinesia (LiD) within 4 years of starting levodopa. The genetic basis of LiD remains poorly understood, and there have been few well powered studies. Objective To discover common genetic variants in the PD population that increase the probability of developing LiD. Design setting and Participants We performed survival analyses to study the development of LiD in 5 separate longitudinal cohorts. We performed a meta-analysis to combine the results of genetic association from each study based on a fixed effects model weighting the effect sizes by the inverse of their standard error. The selection criteria was specific to each cohort. We studied individuals that were genotyped from each cohort and that passed our analysis specific inclusion criteria. Main Outcomes and Measures We measured the time for PD patients on levodopa treatment to develop LiD as defined by reaching a score higher or equal than 2 from the MDS-UPDRS part IV, item 1, which is equivalent to a range of 26%-50% of the waking time with dyskinesia. We carried out a genome-wide analysis of the hazard ratio and the association of genome-wide SNPs with the probability of developing LiD using cox proportional hazard models (CPH). Results This study included 2,784 PD patients of European ancestry, of whom 14.6% developed LiD. Consistent with previous studies, we found female gender (HR = 1.35, SE = 0.11, P = 0.007) and younger age at onset (HR = 1.8, SE = 0.14, P = 2 × 10 -5 ) to increase the probability of developing LiD. We identified three loci significantly associated with time-to-LiD onset. rs72673189 on chromosome 1 (HR = 2.77, SE = 0.18, P = 1.53 × 10 -8 ) located in the LRP8 locus, rs189093213 on chromosome 4 (HR = 3.06,, SE = 0.19, P = 2.81 × 10 -9 ) in the non-coding RNA LINC02353 locus, and rs180924818 on chromosome 16 (HR = 3.13, SE = 0.20, P = 6.27 × 10 -9 ) in the XYLT1 locus. Subsequent colocalization analyses on chromosome 1 identified DNAJB4 as a candidate gene associated with LiD through a change in gene expression. We computed a PRS based on our GWAS meta-analysis and found high accuracy to stratify between PD-LID and PD (AUC 83.9). We also performed a stepwise regression analysis for baseline features selection associated with LiD status. We found baseline anxiety status to be significantly associated with LiD (OR = 1.14, SE = 0.03, P = 7.4 × 10 -5 ). Finally, we performed a candidate variant analysis and found that genetic variability in ANKK1 ( rs1800497 , Beta = 0.24, SE = 0.09, P = 8.89 × 10 -3 ) and BDNF ( rs6265 , Beta = 0.19, SE = 0.10, P = 4.95 × 10 -2 ) loci were significantly associated with time to LiD in our large meta-analysis. Conclusion In this association study, we have found three novel genetic variants associated with LiD, as well as confirming reports that variability in ANKK1 and BDNF loci were significantly associated with LiD probability. A PRS nominated from our time-to-LiD meta-analysis significantly differentiated between PD-LiD and PD. In addition, we have found female gender, young PD onset and anxiety to be significantly associated with LiD.
Collapse
Affiliation(s)
- Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Michael Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, Maryland, USA
| | | | - Lesley Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Nigel M. Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Camille Carroll
- Faculty of Health, University of Plymouth, Plymouth, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Michele T.M. Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, UK
| | - Donald G. Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - John Hardy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mina Ryten
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Tom Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maryam Shoai
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
53
|
Rizig M, Bandres-Ciga S, Makarious MB, Ojo O, Crea PW, Abiodun O, Levine KS, Abubakar S, Achoru C, Vitale D, Adeniji O, Agabi O, Koretsky MJ, Agulanna U, Hall DA, Akinyemi R, Xie T, Ali M, Shamim EA, Ani-Osheku I, Padmanaban M, Arigbodi O, Standaert DG, Bello A, Dean M, Erameh C, Elsayed I, Farombi T, Okunoye O, Fawale M, Billingsley KJ, Imarhiagbe F, Jerez PA, Iwuozo E, Baker B, Komolafe M, Malik L, Nwani P, Daida K, Nwazor E, Miano-Burkhardt A, Nyandaiti Y, Fang ZH, Obiabo Y, Kluss JH, Odeniyi O, Hernandez D, Odiase F, Tayebi N, Ojini F, Sidranksy E, Onwuegbuzie G, D’Souza AM, Osaigbovo G, Berhe B, Osemwegie N, Reed X, Oshinaike O, Leonard H, Otubogun F, Alvarado CX, Oyakhire S, Ozomma S, Samuel S, Taiwo F, Wahab K, Zubair Y, Iwaki H, Kim JJ, Morris HR, Hardy J, Nalls M, Heilbron K, Norcliffe-Kaufmann L, Disease Research Network, International Parkinson’s Disease Genomics Consortium - Africa (IPDGC Africa), Black and African American Connections to Parkinson’s Disease (BLAAC PD) Study Group, the 23andMe Research Team, Blauwendraat C, Houlden H, Singleton A, Okubadejo N. Genome-wide Association Identifies Novel Etiological Insights Associated with Parkinson's Disease in African and African Admixed Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.05.23289529. [PMID: 37398408 PMCID: PMC10312852 DOI: 10.1101/2023.05.05.23289529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Understanding the genetic mechanisms underlying diseases in ancestrally diverse populations is a critical step towards the realization of the global application of precision medicine. The African and African admixed populations enable mapping of complex traits given their greater levels of genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. Methods Here we perform a comprehensive genome-wide assessment of Parkinson's disease (PD) in 197,918 individuals (1,488 cases; 196,430 controls) of African and African admixed ancestry, characterizing population-specific risk, differential haplotype structure and admixture, coding and structural genetic variation and polygenic risk profiling. Findings We identified a novel common risk factor for PD and age at onset at the GBA1 locus (risk, rs3115534-G; OR=1.58, 95% CI = 1.37 - 1.80, P=2.397E-14; age at onset, BETA =-2.004, SE =0.57, P = 0.0005), that was found to be rare in non-African/African admixed populations. Downstream short- and long-read whole genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. However, we identified that this signal mediates PD risk via expression quantitative trait locus (eQTL) mechanisms. While previously identified GBA1 associated disease risk variants are coding mutations, here we suggest a novel functional mechanism consistent with a trend in decreasing glucocerebrosidase activity levels. Given the high population frequency of the underlying signal and the phenotypic characteristics of the homozygous carriers, we hypothesize that this variant may not cause Gaucher disease. Additionally, the prevalence of Gaucher's disease in Africa is low. Interpretation The present study identifies a novel African-ancestry genetic risk factor in GBA1 as a major mechanistic basis of PD in the African and African admixed populations. This striking result contrasts to previous work in Northern European populations, both in terms of mechanism and attributable risk. This finding highlights the importance of understanding population-specific genetic risk in complex diseases, a particularly crucial point as the field moves toward precision medicine in PD clinical trials and while recognizing the need for equitable inclusion of ancestrally diverse groups in such trials. Given the distinctive genetics of these underrepresented populations, their inclusion represents a valuable step towards insights into novel genetic determinants underlying PD etiology. This opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk. Research in Context Evidence Before this Study Our current understanding of Parkinson's disease (PD) is disproportionately based on studying populations of European ancestry, leading to a significant gap in our knowledge about the genetics, clinical characteristics, and pathophysiology in underrepresented populations. This is particularly notable in individuals of African and African admixed ancestries. Over the last two decades, we have witnessed a revolution in the research area of complex genetic diseases. In the PD field, large-scale genome-wide association studies in the European, Asian, and Latin American populations have identified multiple risk loci associated with disease. These include 78 loci and 90 independent signals associated with PD risk in the European population, nine replicated loci and two novel population-specific signals in the Asian population, and a total of 11 novel loci recently nominated through multi-ancestry GWAS efforts.Nevertheless, the African and African admixed populations remain completely unexplored in the context of PD genetics. Added Value of this Study To address the lack of diversity in our research field, this study aimed to conduct the first genome-wide assessment of PD genetics in the African and African admixed populations. Here, we identified a genetic risk factor linked to PD etiology, dissected African-specific differences in risk and age at onset, characterized known genetic risk factors, and highlighted the utility of the African and African admixed risk haplotype substructure for future fine-mapping efforts. We identified a novel disease mechanism via expression changes consistent with decreased GBA1 activity levels. Future large scale single cell expression studies should investigate the neuronal populations in which expression differences are most prominent. This novel mechanism may hold promise for future efficient RNA-based therapeutic strategies such as antisense oligonucleotides or short interfering RNAs aimed at preventing and decreasing disease risk. We envisage that these data generated under the umbrella of the Global Parkinson's Genetics Program (GP2) will shed light on the molecular mechanisms involved in the disease process and might pave the way for future clinical trials and therapeutic interventions. This work represents a valuable resource in an underserved population, supporting pioneering research within GP2 and beyond. Deciphering causal and genetic risk factors in all these ancestries will help determine whether interventions, potential targets for disease modifying treatment, and prevention strategies that are being studied in the European populations are relevant to the African and African admixed populations. Implications of all the Available Evidence We nominate a novel signal impacting GBA1 as the major genetic risk factor for PD in the African and African admixed populations. The present study could inform future GBA1 clinical trials, improving patient stratification. In this regard, genetic testing can help to design trials likely to provide meaningful and actionable answers. It is our hope that these findings may ultimately have clinical utility for this underrepresented population.
Collapse
Affiliation(s)
- Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London, WC1N 3BG, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Mary B Makarious
- UCL Movement Disorders Centre, University College London, London, WC1N 3BG, UK
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Oluwadamilola Ojo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Peter Wild Crea
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Kristin S Levine
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | - Sani Abubakar
- Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Charles Achoru
- Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Dan Vitale
- Data Tecnica International, Washington, DC, USA
| | | | - Osigwe Agabi
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Mathew J Koretsky
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Uchechi Agulanna
- Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Mohammed Ali
- Federal Teaching Hospital Gombe, Gombe State, Nigeria
| | - Ejaz A. Shamim
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Kaiser Permanente Mid-Atlantic States, Largo, Maryland, USA
- MidAtlantic Permanente Research Institute, Rockville, Maryland, USA
| | | | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | | | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abiodun Bello
- University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Marissa Dean
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cyril Erameh
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wadmadani, 20, Sudan
| | | | - Olaitan Okunoye
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Michael Fawale
- Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Kimberley J Billingsley
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Pilar Alvarez Jerez
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | | | - Breeana Baker
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | | | - Laksh Malik
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Paul Nwani
- Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Kensuke Daida
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ernest Nwazor
- Rivers State University Teaching Hospital, Port Harcourt, Rivers State, Nigeria
| | - Abigail Miano-Burkhardt
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Yakub Nyandaiti
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State, Nigeria
| | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Yahaya Obiabo
- Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - Jillian H. Kluss
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis Ojini
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Ellen Sidranksy
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Andrea M. D’Souza
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Bahafta Berhe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Xylena Reed
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | | | - Hampton Leonard
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | | | - Chelsea X Alvarado
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | | | - Simon Ozomma
- University of Calabar Teaching Hospital, Calabar, Cross River State, Nigeria
| | - Sarah Samuel
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State, Nigeria
| | | | - Kolawole Wahab
- University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
- University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Yusuf Zubair
- National Hospital, Abuja, Federal Capital Territory, Nigeria
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | - Jonggeol Jeffrey Kim
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Huw R Morris
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London, WC1N 3BG, UK
| | - John Hardy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mike Nalls
- Data Tecnica International, Washington, DC, USA
| | | | | | | | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Andrew Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Njideka Okubadejo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| |
Collapse
|
54
|
Senkevich K, Zorca CE, Dworkind A, Rudakou U, Somerville E, Yu E, Ermolaev A, Nikanorova D, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Grenn FP, Chiang MSR, Sardi SP, Vanderperre B, Blauwendraat C, Trempe JF, Fon EA, Durcan TM, Alcalay RN, Gan-Or Z. GALC variants affect galactosylceramidase enzymatic activity and risk of Parkinson's disease. Brain 2023; 146:1859-1872. [PMID: 36370000 PMCID: PMC10151180 DOI: 10.1093/brain/awac413] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
The association between glucocerebrosidase, encoded by GBA, and Parkinson's disease (PD) highlights the role of the lysosome in PD pathogenesis. Genome-wide association studies in PD have revealed multiple associated loci, including the GALC locus on chromosome 14. GALC encodes the lysosomal enzyme galactosylceramidase, which plays a pivotal role in the glycosphingolipid metabolism pathway. It is still unclear whether GALC is the gene driving the association in the chromosome 14 locus and, if so, by which mechanism. We first aimed to examine whether variants in the GALC locus and across the genome are associated with galactosylceramidase activity. We performed a genome-wide association study in two independent cohorts from (i) Columbia University; and (ii) the Parkinson's Progression Markers Initiative study, followed by a meta-analysis with a total of 976 PD patients and 478 controls with available data on galactosylceramidase activity. We further analysed the effects of common GALC variants on expression and galactosylceramidase activity using genomic colocalization methods. Mendelian randomization was used to study whether galactosylceramidase activity may be causal in PD. To study the role of rare GALC variants, we analysed sequencing data from 5028 PD patients and 5422 controls. Additionally, we studied the functional impact of GALC knockout on alpha-synuclein accumulation and on glucocerebrosidase activity in neuronal cell models and performed in silico structural analysis of common GALC variants associated with altered galactosylceramidase activity. The top hit in PD genome-wide association study in the GALC locus, rs979812, is associated with increased galactosylceramidase activity (b = 1.2; SE = 0.06; P = 5.10 × 10-95). No other variants outside the GALC locus were associated with galactosylceramidase activity. Colocalization analysis demonstrated that rs979812 was also associated with increased galactosylceramidase expression. Mendelian randomization suggested that increased galactosylceramidase activity may be causally associated with PD (b = 0.025, SE = 0.007, P = 0.0008). We did not find an association between rare GALC variants and PD. GALC knockout using CRISPR-Cas9 did not lead to alpha-synuclein accumulation, further supporting that increased rather than reduced galactosylceramidase levels may be associated with PD. The structural analysis demonstrated that the common variant p.I562T may lead to improper maturation of galactosylceramidase affecting its activity. Our results nominate GALC as the gene associated with PD in this locus and suggest that the association of variants in the GALC locus may be driven by their effect of increasing galactosylceramidase expression and activity. Whether altering galactosylceramidase activity could be considered as a therapeutic target should be further studied.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
| | - Cornelia E Zorca
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Aliza Dworkind
- Department of Physiology, McGill University, Montréal H3A 1A1, Canada
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal H3A 1A1, Canada
| | - Emma Somerville
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal H3A 1A1, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal H3A 1A1, Canada
| | - Alexey Ermolaev
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow 127550, Russia
- ȃResearch Department, Bioinformatics Institute, Saint-Petersburg 194100, Russia
| | - Daria Nikanorova
- ȃResearch Department, Bioinformatics Institute, Saint-Petersburg 194100, Russia
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal H3A 1A1, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032-3784, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032-3784, USA
| | - Oury Monchi
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary T2N 1N4, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary T2N 4N1, Canada
| | - Yves Dauvilliers
- ȃNational Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, 34090 Montpellier, France
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec—Université Laval, Quebec City G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec G1V 0A6, Canada
| | - Lior Greenbaum
- ȃThe Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer 52621, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Neurology, The Movement Disorders Institute, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Francis P Grenn
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ming Sum Ruby Chiang
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, MA 01701, USA
| | - S Pablo Sardi
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, MA 01701, USA
| | - Benoît Vanderperre
- Département des sciences biologiques, Université du Québec à Montréal, Montréal H2X 1Y4, Canada
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montreal H3A 1A3, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032-3784, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal H3A 1A1, Canada
| |
Collapse
|
55
|
Billingsley KJ, Ding J, Jerez PA, Illarionova A, Levine K, Grenn FP, Makarious MB, Moore A, Vitale D, Reed X, Hernandez D, Torkamani A, Ryten M, Hardy J, UK Brain Expression Consortium (UKBEC), Chia R, Scholz SW, Traynor BJ, Dalgard CL, Ehrlich DJ, Tanaka T, Ferrucci L, Beach T, Serrano GE, Quinn JP, Bubb VJ, Collins RL, Zhao X, Walker M, Pierce-Hoffman E, Brand H, Talkowski ME, Casey B, Cookson MR, Markham A, Nalls MA, Mahmoud M, Sedlazeck FJ, Blauwendraat C, Gibbs JR, Singleton AB. Genome-Wide Analysis of Structural Variants in Parkinson Disease. Ann Neurol 2023; 93:1012-1022. [PMID: 36695634 PMCID: PMC10192042 DOI: 10.1002/ana.26608] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Identification of genetic risk factors for Parkinson disease (PD) has to date been primarily limited to the study of single nucleotide variants, which only represent a small fraction of the genetic variation in the human genome. Consequently, causal variants for most PD risk are not known. Here we focused on structural variants (SVs), which represent a major source of genetic variation in the human genome. We aimed to discover SVs associated with PD risk by performing the first large-scale characterization of SVs in PD. METHODS We leveraged a recently developed computational pipeline to detect and genotype SVs from 7,772 Illumina short-read whole genome sequencing samples. Using this set of SV variants, we performed a genome-wide association study using 2,585 cases and 2,779 controls and identified SVs associated with PD risk. Furthermore, to validate the presence of these variants, we generated a subset of matched whole-genome long-read sequencing data. RESULTS We genotyped and tested 3,154 common SVs, representing over 412 million nucleotides of previously uncatalogued genetic variation. Using long-read sequencing data, we validated the presence of three novel deletion SVs that are associated with risk of PD from our initial association analysis, including a 2 kb intronic deletion within the gene LRRN4. INTERPRETATION We identified three SVs associated with genetic risk of PD. This study represents the most comprehensive assessment of the contribution of SVs to the genetic risk of PD to date. ANN NEUROL 2023;93:1012-1022.
Collapse
Affiliation(s)
- Kimberley J. Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | | | | | - Francis P. Grenn
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Anni Moore
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Daniel Vitale
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
- Data Tecnica International, Washington, DC, USA
| | - Xylena Reed
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Ali Torkamani
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Mina Ryten
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - John Hardy
- UK Dementia Research Institute and Department of Neurodegenerative Disease and Reta Lila Weston Institute, UCL Queen Square Institute of Neurology and UCL Movement Disorders Centre, University College London, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, Maryland, USA
| | - Bryan J. Traynor
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, Maryland, USA
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Clifton L. Dalgard
- Department of Anatomy Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Debra J. Ehrlich
- Parkinson’s Disease Clinic, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Thomas.G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ
| | - Geidy E. Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Vivien J. Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
- Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
| | - Mark Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
- Data Sciences Platform, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
| | - Emma Pierce-Hoffman
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
- Data Sciences Platform, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
- Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Michael E. Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T) and Harvard USA Cambridge, MA 02142, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bradford Casey
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY 10001
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | | | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
- Data Tecnica International, Washington, DC, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005, US
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| |
Collapse
|
56
|
Senkevich K, Bandres-Ciga S, Cisterna-García A, Yu E, Bustos BI, Krohn L, Lubbe SJ, Botía JA, the International Parkinson’s Disease Genomics Consortium (IPDGC), Gan-Or Z. Genome-wide association study stratified by MAPT haplotypes identifies potential novel loci in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.14.23288478. [PMID: 37292720 PMCID: PMC10246147 DOI: 10.1101/2023.04.14.23288478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective To identify genetic factors that may modify the effects of the MAPT locus in Parkinson's disease (PD). Methods We used data from the International Parkinson's Disease Genomics Consortium (IPDGC) and the UK biobank (UKBB). We stratified the IPDGC cohort for carriers of the H1/H1 genotype (PD patients n=8,492 and controls n=6,765) and carriers of the H2 haplotype (with either H1/H2 or H2/H2 genotypes, patients n=4,779 and controls n=4,849) to perform genome-wide association studies (GWASs). Then, we performed replication analyses in the UKBB data. To study the association of rare variants in the new nominated genes, we performed burden analyses in two cohorts (Accelerating Medicines Partnership - Parkinson Disease and UKBB) with a total sample size PD patients n=2,943 and controls n=18,486. Results We identified a novel locus associated with PD among MAPT H1/H1 carriers near EMP1 (rs56312722, OR=0.88, 95%CI= 0.84-0.92, p= 1.80E-08), and a novel locus associated with PD among MAPT H2 carriers near VANGL1 (rs11590278, OR=1.69 95%CI=1.40-2.03, p=2.72E-08). Similar analysis of the UKBB data did not replicate these results and rs11590278 near VANGL1 did have similar effect size and direction in carriers of H2 haplotype, albeit not statistically significant (OR= 1.32, 95%CI= 0.94-1.86, p=0.17). Rare EMP1 variants with high CADD scores were associated with PD in the MAPT H2 stratified analysis (p=9.46E-05), mainly driven by the p.V11G variant. Interpretation We identified several loci potentially associated with PD stratified by MAPT haplotype and larger replication studies are required to confirm these associations.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Washington DC, USA
| | - Alejandro Cisterna-García
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Bernabe I. Bustos
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lynne Krohn
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Steven J. Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Juan A. Botía
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | | | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
57
|
Alvarez Jerez P, Alcantud JL, de Los Reyes-Ramírez L, Moore A, Ruz C, Vives Montero F, Rodriguez-Losada N, Saini P, Gan-Or Z, Alvarado CX, Makarious MB, Billingsley KJ, Blauwendraat C, Noyce AJ, Singleton AB, Duran R, Bandres-Ciga S. Exploring the genetic and genomic connection underlying neurodegeneration with brain iron accumulation and the risk for Parkinson's disease. NPJ Parkinsons Dis 2023; 9:54. [PMID: 37024536 PMCID: PMC10079978 DOI: 10.1038/s41531-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) represents a group of neurodegenerative disorders characterized by abnormal iron accumulation in the brain. In Parkinson's Disease (PD), iron accumulation is a cardinal feature of degenerating regions in the brain and seems to be a key player in mechanisms that precipitate cell death. The aim of this study was to explore the genetic and genomic connection between NBIA and PD. We screened for known and rare pathogenic mutations in autosomal dominant and recessive genes linked to NBIA in a total of 4481 PD cases and 10,253 controls from the Accelerating Medicines Partnership Parkinsons' Disease Program and the UKBiobank. We examined whether a genetic burden of NBIA variants contributes to PD risk through single-gene, gene-set, and single-variant association analyses. In addition, we assessed publicly available expression quantitative trait loci (eQTL) data through Summary-based Mendelian Randomization and conducted transcriptomic analyses in blood of 1886 PD cases and 1285 controls. Out of 29 previously reported NBIA screened coding variants, four were associated with PD risk at a nominal p value < 0.05. No enrichment of heterozygous variants in NBIA-related genes risk was identified in PD cases versus controls. Burden analyses did not reveal a cumulative effect of rare NBIA genetic variation on PD risk. Transcriptomic analyses suggested that DCAF17 is differentially expressed in blood from PD cases and controls. Due to low mutation occurrence in the datasets and lack of replication, our analyses suggest that NBIA and PD may be separate molecular entities.
Collapse
Affiliation(s)
- Pilar Alvarez Jerez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jose Luis Alcantud
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Lucia de Los Reyes-Ramírez
- Laboratory of Neuropharmacology. Dept. Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anni Moore
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Clara Ruz
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco Vives Montero
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Noela Rodriguez-Losada
- Department Human Physiology, Faculty of Medicine, Biomedicine Research Institute of Malaga (IBIMA C07), University of Malaga, Malaga, Spain
| | - Prabhjyot Saini
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Kimberley J Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Preventive Neurology Unit, Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Raquel Duran
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
58
|
Senkevich K, Beletskaia M, Dworkind A, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Nagornov I, Tyurin A, Miliukhina I, Timofeeva A, Emelyanov A, Zakharova E, Alcalay RN, Pchelina S, Gan-Or Z. Association of rare variants in ARSA with Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.08.23286773. [PMID: 36993451 PMCID: PMC10055435 DOI: 10.1101/2023.03.08.23286773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Background Several lysosomal genes are associated with Parkinson's disease (PD), yet the association between PD and ARSA , which encodes for the enzyme arylsulfatase A, remains controversial. Objectives To evaluate the association between rare ARSA variants and PD. Methods To study possible association of rare variants (minor allele frequency<0.01) in ARSA with PD, we performed burden analyses in six independent cohorts with a total of 5,801 PD patients and 20,475 controls, using optimized sequence Kernel association test (SKAT-O), followed by a meta-analysis. Results We found evidence for an association between functional ARSA variants and PD in four independent cohorts (P≤0.05 in each) and in the meta-analysis (P=0.042). We also found an association between loss-of-function variants and PD in the UKBB cohort (P=0.005) and in the meta-analysis (P=0.049). However, despite replicating in four independent cohorts, these results should be interpreted with caution as no association survived correction for multiple comparisons. Additionally, we describe two families with potential co-segregation of the ARSA variant p.E384K and PD. Conclusions Rare functional and loss-of-function ARSA variants may be associated with PD. Further replication in large case-control cohorts and in familial studies is required to confirm these associations.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Mariia Beletskaia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Aliza Dworkind
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, T2N 4N1 Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Guide-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Ilya Nagornov
- Research Centre for Medical Genetics, Moscow, Russia
| | - Alexandr Tyurin
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | | | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center; Tel Aviv, Israel
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
59
|
Leonard HL, Murtadha R, Martinez-Carrasco A, Jama A, Müller-Nedebock AC, Gil-Martinez AL, Illarionova A, Moore A, Bustos BI, Jadhav B, Huxford B, Storm C, Towns C, Vitale D, Chetty D, Yu E, Grenn FP, Salazar G, Rateau G, Iwaki H, Elsayed I, Foote IF, Jansen van Rensburg Z, Kim JJ, Yuan J, Lake J, Brolin K, Senkevich K, Wu L, Tan MMX, Periñán MT, Makarious MB, Ta M, Pillay NS, Betancor OL, Reyes-Pérez PR, Alvarez Jerez P, Saini P, Al-Ouran R, Sivakumar R, Real R, Reynolds RH, Hu R, Abrahams S, Rao SC, Antar T, Leal TP, Iankova V, Scotton WJ, Song Y, Singleton A, Nalls MA, Dey S, Bandres-Ciga S, Blauwendraat C, Noyce AJ. The IPDGC/GP2 Hackathon - an open science event for training in data science, genomics, and collaboration using Parkinson's disease data. NPJ Parkinsons Dis 2023; 9:33. [PMID: 36871034 PMCID: PMC9984758 DOI: 10.1038/s41531-023-00472-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Open science and collaboration are necessary to facilitate the advancement of Parkinson's disease (PD) research. Hackathons are collaborative events that bring together people with different skill sets and backgrounds to generate resources and creative solutions to problems. These events can be used as training and networking opportunities, thus we coordinated a virtual 3-day hackathon event, during which 49 early-career scientists from 12 countries built tools and pipelines with a focus on PD. Resources were created with the goal of helping scientists accelerate their own research by having access to the necessary code and tools. Each team was allocated one of nine different projects, each with a different goal. These included developing post-genome-wide association studies (GWAS) analysis pipelines, downstream analysis of genetic variation pipelines, and various visualization tools. Hackathons are a valuable approach to inspire creative thinking, supplement training in data science, and foster collaborative scientific relationships, which are foundational practices for early-career researchers. The resources generated can be used to accelerate research on the genetics of PD.
Collapse
Affiliation(s)
- Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International LLC, Washington, DC, USA.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Ruqaya Murtadha
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alina Jama
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Amica Corda Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Ana-Luisa Gil-Martinez
- Department of Neurodegenerative Disease, University College London, London, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | | | - Anni Moore
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bernabe I Bustos
- The Ken & Ruth Davee Department of Neurology and Simpson Querrey Center of Neurogenetics, Feinberg Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bharati Jadhav
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, New York, NY, 10029, USA
| | - Brook Huxford
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Catherine Storm
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clodagh Towns
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Dan Vitale
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
| | - Devina Chetty
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Eric Yu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
| | - Francis P Grenn
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Gabriela Salazar
- INNCOSYS, Col. Morelos Second Section, 50120, Toluca de Lerdo, México
| | - Geoffrey Rateau
- Institut du Cerveau - Institute of Brain and Spine (ICM), Hôpital Pitié, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
| | - Inas Elsayed
- Faculty of pharmacy, University of Gezira, Wad Medani, P.O. Box 20, Sudan
- International Parkinson Disease Genomics Consortium (IPDGC)-Africa, University of Gezira, Wad Medani, P.O. Box 20, Sudan
| | - Isabelle Francesca Foote
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Unit for Psychological Medicine, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Zuné Jansen van Rensburg
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jonggeol Jeff Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Jie Yuan
- Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kajsa Brolin
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Konstantin Senkevich
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Lesley Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Manuela M X Tan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - María Teresa Periñán
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- CIBERNED, Madrid, Spain
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michael Ta
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Nikita Simone Pillay
- South African National Bioinformatics Institute (SANBI), South African Medical Research Council Bioinformatics Unit, University of the Western Cape, Bellville, South Africa
| | - Oswaldo Lorenzo Betancor
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Paula R Reyes-Pérez
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de, México, Juriquilla, México
| | - Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Prabhjyot Saini
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
| | - Rami Al-Ouran
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Regina H Reynolds
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
- Department of Neurodegenerative Disease, University College London, London, UK
| | - Ruifneg Hu
- Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shameemah Abrahams
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Shilpa C Rao
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Tarek Antar
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Thiago Peixoto Leal
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Vassilena Iankova
- Department of Neurology With Friedrich Baur Institut, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - William J Scotton
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Yeajin Song
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
| | - Sumit Dey
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| |
Collapse
|
60
|
Real R, Martinez-Carrasco A, Reynolds RH, Lawton MA, Tan MMX, Shoai M, Corvol JC, Ryten M, Bresner C, Hubbard L, Brice A, Lesage S, Faouzi J, Elbaz A, Artaud F, Williams N, Hu MTM, Ben-Shlomo Y, Grosset DG, Hardy J, Morris HR. Association between the LRP1B and APOE loci in the development of Parkinson's disease dementia. Brain 2022; 146:1873-1887. [PMID: 36348503 PMCID: PMC10151192 DOI: 10.1093/brain/awac414] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3,923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazards ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazards ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazards ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid β42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.
Collapse
Affiliation(s)
- Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Regina H Reynolds
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Maryam Shoai
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Mina Ryten
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Johann Faouzi
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Centre Inria de Paris, 75012 Paris, France
| | - Alexis Elbaz
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Fanny Artaud
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Nigel Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow G51 4TF, UK
| | - John Hardy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
61
|
Senkevich K, Gan-Or Z. No Association Between Rare TWNK Variants and Parkinson's Disease in European Cohorts. Mov Disord 2022; 37:2318-2319. [PMID: 36059153 DOI: 10.1002/mds.29216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
62
|
Grenn FP, Makarious MB, Bandres-Ciga S, Iwaki H, Singleton AB, Nalls MA, Blauwendraat C, The International Parkinson Disease Genomics Consortium (IPDGC). Analysis of Y chromosome haplogroups in Parkinson's disease. Brain Commun 2022; 4:fcac277. [PMID: 36387750 PMCID: PMC9665271 DOI: 10.1093/braincomms/fcac277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/01/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease is a complex neurodegenerative disorder that is about 1.5 times more prevalent in males than females. Extensive work has been done to identify the genetic risk factors behind Parkinson's disease on autosomes and more recently on Chromosome X, but work remains to be done on the male-specific Y chromosome. In an effort to explore the role of the Y chromosome in Parkinson's disease, we analysed whole-genome sequencing data from the Accelerating Medicines Partnership-Parkinson's disease initiative (1466 cases and 1664 controls), genotype data from NeuroX (3491 cases and 3232 controls) and genotype data from UKBiobank (182 517 controls, 1892 cases and 3783 proxy cases), all consisting of male European ancestry samples. We classified sample Y chromosomes by haplogroup using three different tools for comparison (Snappy, Yhaplo and Y-LineageTracker) and meta-analysed this data to identify haplogroups associated with Parkinson's disease. This was followed up with a Y-chromosome association study to identify specific variants associated with disease. We also analysed blood-based RNASeq data obtained from the Accelerating Medicines Partnership-Parkinson's disease initiative (1020 samples) and RNASeq data obtained from the North American Brain Expression Consortium (171 samples) to identify Y-chromosome genes differentially expressed in cases, controls, specific haplogroups and specific tissues. RNASeq analyses suggest Y-chromosome gene expression differs between brain and blood tissues but does not differ significantly in cases, controls or specific haplogroups. Overall, we did not find any strong associations between Y-chromosome genetics and Parkinson's disease, suggesting the explanation for the increased prevalence in males may lie elsewhere.
Collapse
Affiliation(s)
- Francis P Grenn
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Hirotaka Iwaki
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
63
|
Sadaei HJ, Cordova-Palomera A, Lee J, Padmanabhan J, Chen SF, Wineinger NE, Dias R, Prilutsky D, Szalma S, Torkamani A. Genetically-informed prediction of short-term Parkinson's disease progression. NPJ Parkinsons Dis 2022; 8:143. [PMID: 36302787 PMCID: PMC9613892 DOI: 10.1038/s41531-022-00412-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) treatments modify disease symptoms but have not been shown to slow progression, characterized by gradual and varied motor and non-motor changes overtime. Variation in PD progression hampers clinical research, resulting in long and expensive clinical trials prone to failure. Development of models for short-term PD progression prediction could be useful for shortening the time required to detect disease-modifying drug effects in clinical studies. PD progressors were defined by an increase in MDS-UPDRS scores at 12-, 24-, and 36-months post-baseline. Using only baseline features, PD progression was separately predicted across all timepoints and MDS-UPDRS subparts in independent, optimized, XGBoost models. These predictions plus baseline features were combined into a meta-predictor for 12-month MDS UPDRS Total progression. Data from the Parkinson's Progression Markers Initiative (PPMI) were used for training with independent testing on the Parkinson's Disease Biomarkers Program (PDBP) cohort. 12-month PD total progression was predicted with an F-measure 0.77, ROC AUC of 0.77, and PR AUC of 0.76 when tested on a hold-out PPMI set. When tested on PDBP we achieve a F-measure 0.75, ROC AUC of 0.74, and PR AUC of 0.73. Exclusion of genetic predictors led to the greatest loss in predictive accuracy; ROC AUC of 0.66, PR AUC of 0.66-0.68 for both PPMI and PDBP testing. Short-term PD progression can be predicted with a combination of survey-based, neuroimaging, physician examination, and genetic predictors. Dissection of the interplay between genetic risk, motor symptoms, non-motor symptoms, and longer-term expected rates of progression enable generalizable predictions.
Collapse
Affiliation(s)
- Hossein J Sadaei
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
| | | | - Jonghun Lee
- Takeda Development Center Americas, Inc., Cambridge, MA, 02139, USA
| | - Jaya Padmanabhan
- Takeda Development Center Americas, Inc., Cambridge, MA, 02139, USA
| | - Shang-Fu Chen
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
| | - Nathan E Wineinger
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
| | - Raquel Dias
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
| | - Daria Prilutsky
- Takeda Development Center Americas, Inc., Cambridge, MA, 02139, USA
| | - Sandor Szalma
- Takeda Development Center Americas, Inc., San Diego, CA, 92121, USA
| | - Ali Torkamani
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA.
| |
Collapse
|
64
|
Al-Mubarak B, Ahmed Nour M, Schumacher-Schuh A, Bandres-Ciga S. Globalizing research towards diverse representation in Alzheimer's and Parkinson's disease. Ann Neurol 2022; 92:711-714. [PMID: 36003053 DOI: 10.1002/ana.26483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Bashayer Al-Mubarak
- Center for Genomic Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Artur Schumacher-Schuh
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| |
Collapse
|
65
|
Toffoli M, Chen X, Sedlazeck FJ, Lee CY, Mullin S, Higgins A, Koletsi S, Garcia-Segura ME, Sammler E, Scholz SW, Schapira AHV, Eberle MA, Proukakis C. Comprehensive short and long read sequencing analysis for the Gaucher and Parkinson's disease-associated GBA gene. Commun Biol 2022; 5:670. [PMID: 35794204 PMCID: PMC9259685 DOI: 10.1038/s42003-022-03610-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
GBA variants carriers are at increased risk of Parkinson's disease (PD) and Lewy body dementia (LBD). The presence of pseudogene GBAP1 predisposes to structural variants, complicating genetic analysis. We present two methods to resolve recombinant alleles and other variants in GBA: Gauchian, a tool for short-read, whole-genome sequencing data analysis, and Oxford Nanopore sequencing after PCR enrichment. Both methods were concordant for 42 samples carrying a range of recombinants and GBAP1-related mutations, and Gauchian outperformed the GATK Best Practices pipeline. Applying Gauchian to sequencing of over 10,000 individuals shows that copy number variants (CNVs) spanning GBAP1 are relatively common in Africans. CNV frequencies in PD and LBD are similar to controls. Gains may coexist with other mutations in patients, and a modifying effect cannot be excluded. Gauchian detects more GBA variants in LBD than PD, especially severe ones. These findings highlight the importance of accurate GBA analysis in these patients.
Collapse
Affiliation(s)
- Marco Toffoli
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Xiao Chen
- Illumina Inc., San Diego, CA, USA
- Pacific Biosciences, 1305 O'Brien Dr., Menlo Park, CA, 94025, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Chiao-Yin Lee
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Stephen Mullin
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
- Institute of Translational and Stratified Medicine, University of Plymouth School of Medicine, Plymouth, United Kingdom
| | - Abigail Higgins
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Sofia Koletsi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Monica Emili Garcia-Segura
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Esther Sammler
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, 21287, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Michael A Eberle
- Illumina Inc., San Diego, CA, USA.
- Pacific Biosciences, 1305 O'Brien Dr., Menlo Park, CA, 94025, USA.
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom.
| |
Collapse
|
66
|
Zhu W, Huang X, Yoon E, Bandres-Ciga S, Blauwendraat C, Billingsley KJ, Cade JH, Wu BP, Williams VH, Schindler AB, Brooks J, Gibbs JR, Hernandez DG, Ehrlich D, Singleton AB, Narendra DP. Heterozygous PRKN mutations are common but do not increase the risk of Parkinson's disease. Brain 2022; 145:2077-2091. [PMID: 35640906 PMCID: PMC9423714 DOI: 10.1093/brain/awab456] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022] Open
Abstract
PRKN mutations are the most common recessive cause of Parkinson's disease and are a promising target for gene and cell replacement therapies. Identification of biallelic PRKN patients at the population scale, however, remains a challenge, as roughly half are copy number variants and many single nucleotide polymorphisms are of unclear significance. Additionally, the true prevalence and disease risk associated with heterozygous PRKN mutations is unclear, as a comprehensive assessment of PRKN mutations has not been performed at a population scale. To address these challenges, we evaluated PRKN mutations in two cohorts with near complete genotyping of both single nucleotide polymorphisms and copy number variants: the NIH-PD + AMP-PD cohort, the largest Parkinson's disease case-control cohort with whole genome sequencing data from 4094 participants, and the UK Biobank, the largest cohort study with whole exome sequencing and genotyping array data from 200 606 participants. Using the NIH-PD participants, who were genotyped using whole genome sequencing, genotyping array, and multi-plex ligation-dependent probe amplification, we validated genotyping array for the detection of copy number variants. Additionally, in the NIH-PD cohort, functional assays of patient fibroblasts resolved variants of unclear significance in biallelic carriers and suggested that cryptic loss of function variants in monoallelic carriers are not a substantial confounder for association studies. In the UK Biobank, we identified 2692 PRKN copy number variants from genotyping array data from nearly half a million participants (the largest collection to date). Deletions or duplications involving exon 2 accounted for roughly half of all copy number variants and the vast majority (88%) involved exons 2, 3, or 4. In the UK Biobank, we found a pathogenic PRKN mutation in 1.8% of participants and two mutations in ∼1/7800 participants. Those with one PRKN pathogenic variant were as likely as non-carriers to have Parkinson's disease [odds ratio = 0.91 (0.58-1.38), P-value 0.76] or a parent with Parkinson's disease [odds ratio = 1.12 (0.94-1.31), P-value = 0.19]. Similarly, those in the NIH-PD + AMP + PD cohort with one PRKN pathogenic variant were as likely as non-carriers to have Parkinson's disease [odds ratio = 1.29 (0.74-2.38), P-value = 0.43]. Together our results demonstrate that heterozygous pathogenic PRKN mutations are common in the population but do not increase the risk of Parkinson's disease.
Collapse
Affiliation(s)
- William Zhu
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Xiaoping Huang
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Esther Yoon
- Parkinson’s Disease Clinic, Office of the Clinical Director, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Kimberly J Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Joshua H Cade
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Beverly P Wu
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Victoria H Williams
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Alice B Schindler
- National Institute of Neurological Disorders and Stroke, Neurogenetics Branch, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Janet Brooks
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - J Raphael Gibbs
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Dena G Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Debra Ehrlich
- Parkinson’s Disease Clinic, Office of the Clinical Director, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Derek P Narendra
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| |
Collapse
|
67
|
Liu Z, Yang N, Dong J, Tian W, Chang L, Ma J, Guo J, Tan J, Dong A, He K, Zhou J, Cinar R, Wu J, Salinas AG, Sun L, Kumar M, Sullivan BT, Oldham BB, Pitz V, Makarious MB, Ding J, Kung J, Xie C, Hawes SL, Wang L, Wang T, Chan P, Zhang Z, Le W, Chen S, Lovinger DM, Blauwendraat C, Singleton AB, Cui G, Li Y, Cai H, Tang B. Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction. Nat Commun 2022; 13:3490. [PMID: 35715418 PMCID: PMC9205912 DOI: 10.1038/s41467-022-31168-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Endocannabinoid (eCB), 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain, regulates diverse neural functions. Here we linked multiple homozygous loss-of-function mutations in 2-AG synthase diacylglycerol lipase β (DAGLB) to an early onset autosomal recessive Parkinsonism. DAGLB is the main 2-AG synthase in human and mouse substantia nigra (SN) dopaminergic neurons (DANs). In mice, the SN 2-AG levels were markedly correlated with motor performance during locomotor skill acquisition. Genetic knockdown of Daglb in nigral DANs substantially reduced SN 2-AG levels and impaired locomotor skill learning, particularly the across-session learning. Conversely, pharmacological inhibition of 2-AG degradation increased nigral 2-AG levels, DAN activity and dopamine release and rescued the locomotor skill learning deficits. Together, we demonstrate that DAGLB-deficiency contributes to the pathogenesis of Parkinsonism, reveal the importance of DAGLB-mediated 2-AG biosynthesis in nigral DANs in regulating neuronal activity and dopamine release, and suggest potential benefits of 2-AG augmentation in alleviating Parkinsonism.
Collapse
Affiliation(s)
- Zhenhua Liu
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Nannan Yang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jie Dong
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, 116011, Dalian, Liaoning, China
| | - Wotu Tian
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 20025, Shanghai, China
| | - Lisa Chang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
| | - Ao Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Kaikai He
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, 100871, Beijing, China
| | - Jingheng Zhou
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Junbing Wu
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Armando G Salinas
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mantosh Kumar
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Breanna T Sullivan
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Braden B Oldham
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vanessa Pitz
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Justin Kung
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengsong Xie
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah L Hawes
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lupeng Wang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, Hubei, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
| | - Zhuohua Zhang
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
- Department of Neurosciences, University of South China Medical School, 421200, Hengyang, Hunan, China
| | - Weidong Le
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, 116011, Dalian, Liaoning, China
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Medical School of University of Electronics & Technology of China, 610045, Chengdu, Sichuan, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 20025, Shanghai, China
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guohong Cui
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
68
|
Straniero L, Rimoldi V, Monfrini E, Bonvegna S, Melistaccio G, Lake J, Soldà G, Aureli M, Shankaracharya, Keagle P, Foroud T, Landers JE, Blauwendraat C, Zecchinelli A, Cilia R, Di Fonzo A, Pezzoli G, Duga S, Asselta R. Role of Lysosomal Gene Variants in Modulating GBA-Associated Parkinson's Disease Risk. Mov Disord 2022; 37:1202-1210. [PMID: 35262230 PMCID: PMC9310717 DOI: 10.1002/mds.28987] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To date, variants in the GBA gene represent the most frequent large-effect genetic factor associated with Parkinson's disease (PD). However, the reason why individuals with the same GBA variant may or may not develop neurodegeneration and PD is still unclear. OBJECTIVES Therefore, we evaluated the contribution of rare variants in genes responsible for lysosomal storage disorders (LSDs) to GBA-PD risk, comparing the burden of deleterious variants in LSD genes in PD patients versus asymptomatic subjects, all carriers of deleterious variants in GBA. METHODS We used a custom next-generation sequencing panel, including 50 LSD genes, to screen 305 patients and 207 controls (discovery cohort). Replication and meta-analysis were performed in two replication cohorts of GBA-variant carriers, of 250 patients and 287 controls, for whom exome or genome data were available. RESULTS Statistical analysis in the discovery cohort revealed a significantly increased burden of deleterious variants in LSD genes in patients (P = 0.0029). Moreover, our analyses evidenced that the two strongest modifiers of GBA penetrance are a second variation in GBA (5.6% vs. 1.4%, P = 0.023) and variants in genes causing mucopolysaccharidoses (6.9% vs. 1%, P = 0.0020). These results were confirmed in the meta-analysis, where we observed pooled odds ratios of 1.42 (95% confidence interval [CI] = 1.10-1.83, P = 0.0063), 4.36 (95% CI = 2.02-9.45, P = 0.00019), and 1.83 (95% CI = 1.04-3.22, P = 0.038) for variants in LSD genes, GBA, and mucopolysaccharidosis genes, respectively. CONCLUSION The identification of genetic lesions in lysosomal genes increasing PD risk may have important implications in terms of patient stratification for future therapeutic trials. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Letizia Straniero
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Humanitas Clinical and Research CenterIRCCSMilanItaly
| | - Valeria Rimoldi
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Humanitas Clinical and Research CenterIRCCSMilanItaly
| | - Edoardo Monfrini
- IRCCS Foundation Ca' Granda Ospedale Maggiore PoliclinicoNeurology UnitMilanItaly
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | | | | | - Julie Lake
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Giulia Soldà
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Humanitas Clinical and Research CenterIRCCSMilanItaly
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Shankaracharya
- Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Pamela Keagle
- Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - John E. Landers
- Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Cornelis Blauwendraat
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | | | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo BestaParkinson and Movement Disorders UnitMilanItaly
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore PoliclinicoNeurology UnitMilanItaly
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Gianni Pezzoli
- Parkinson InstituteASST Gaetano Pini‐CTOMilanItaly
- Fondazione Grigioni per il Morbo di ParkinsonMilanItaly
| | - Stefano Duga
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Humanitas Clinical and Research CenterIRCCSMilanItaly
| | - Rosanna Asselta
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Humanitas Clinical and Research CenterIRCCSMilanItaly
| |
Collapse
|
69
|
Schalkamp AK, Rahman N, Monzón-Sandoval J, Sandor C. Deep phenotyping for precision medicine in Parkinson's disease. Dis Model Mech 2022; 15:dmm049376. [PMID: 35647913 PMCID: PMC9178512 DOI: 10.1242/dmm.049376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major challenge in medical genomics is to understand why individuals with the same disorder have different clinical symptoms and why those who carry the same mutation may be affected by different disorders. In every complex disorder, identifying the contribution of different genetic and non-genetic risk factors is a key obstacle to understanding disease mechanisms. Genetic studies rely on precise phenotypes and are unable to uncover the genetic contributions to a disorder when phenotypes are imprecise. To address this challenge, deeply phenotyped cohorts have been developed for which detailed, fine-grained data have been collected. These cohorts help us to investigate the underlying biological pathways and risk factors to identify treatment targets, and thus to advance precision medicine. The neurodegenerative disorder Parkinson's disease has a diverse phenotypical presentation and modest heritability, and its underlying disease mechanisms are still being debated. As such, considerable efforts have been made to develop deeply phenotyped cohorts for this disorder. Here, we focus on Parkinson's disease and explore how deep phenotyping can help address the challenges raised by genetic and phenotypic heterogeneity. We also discuss recent methods for data collection and computation, as well as methodological challenges that have to be overcome.
Collapse
Affiliation(s)
| | | | | | - Cynthia Sandor
- UK Dementia Research Institute at Cardiff University,Division of Psychological Medicine and Clinical Neuroscience, Haydn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
70
|
Makarious MB, Leonard HL, Vitale D, Iwaki H, Sargent L, Dadu A, Violich I, Hutchins E, Saffo D, Bandres-Ciga S, Kim JJ, Song Y, Maleknia M, Bookman M, Nojopranoto W, Campbell RH, Hashemi SH, Botia JA, Carter JF, Craig DW, Van Keuren-Jensen K, Morris HR, Hardy JA, Blauwendraat C, Singleton AB, Faghri F, Nalls MA. Multi-modality machine learning predicting Parkinson's disease. NPJ Parkinsons Dis 2022; 8:35. [PMID: 35365675 PMCID: PMC8975993 DOI: 10.1038/s41531-022-00288-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Personalized medicine promises individualized disease prediction and treatment. The convergence of machine learning (ML) and available multimodal data is key moving forward. We build upon previous work to deliver multimodal predictions of Parkinson's disease (PD) risk and systematically develop a model using GenoML, an automated ML package, to make improved multi-omic predictions of PD, validated in an external cohort. We investigated top features, constructed hypothesis-free disease-relevant networks, and investigated drug-gene interactions. We performed automated ML on multimodal data from the Parkinson's progression marker initiative (PPMI). After selecting the best performing algorithm, all PPMI data was used to tune the selected model. The model was validated in the Parkinson's Disease Biomarker Program (PDBP) dataset. Our initial model showed an area under the curve (AUC) of 89.72% for the diagnosis of PD. The tuned model was then tested for validation on external data (PDBP, AUC 85.03%). Optimizing thresholds for classification increased the diagnosis prediction accuracy and other metrics. Finally, networks were built to identify gene communities specific to PD. Combining data modalities outperforms the single biomarker paradigm. UPSIT and PRS contributed most to the predictive power of the model, but the accuracy of these are supplemented by many smaller effect transcripts and risk SNPs. Our model is best suited to identifying large groups of individuals to monitor within a health registry or biobank to prioritize for further testing. This approach allows complex predictive models to be reproducible and accessible to the community, with the package, code, and results publicly available.
Collapse
Affiliation(s)
- Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
| | - Lana Sargent
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- School of Nursing, Virginia Commonwealth University, Richmond, VA, USA
- Geriatric Pharmacotherapy Program, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Anant Dadu
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ivo Violich
- Institute of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - David Saffo
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jonggeol Jeff Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Yeajin Song
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
| | | | - Matt Bookman
- Verily Life Sciences, South San Francisco, CA, USA
| | | | - Roy H Campbell
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sayed Hadi Hashemi
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Juan A Botia
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | | | - David W Craig
- Institute of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | | | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - John A Hardy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- UK Dementia Research Institute and Department of Neurodegenerative Disease and Reta Lila Weston Institute, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Faraz Faghri
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International LLC, Glen Echo, MD, USA.
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International LLC, Glen Echo, MD, USA.
| |
Collapse
|
71
|
Pal G, Mangone G, Hill EJ, Ouyang B, Liu Y, Lythe V, Ehrlich D, Saunders-Pullman R, Shanker V, Bressman S, Alcalay RN, Garcia P, Marder KS, Aasly J, Mouradian MM, Link S, Rosenbaum M, Anderson S, Bernard B, Wilson R, Stebbins G, Nichols WC, Welter ML, Sani S, Afshari M, Verhagen L, de Bie RM, Foltynie T, Hall D, Corvol JC, Goetz CG. Parkinson Disease and Subthalamic Nucleus Deep Brain Stimulation: Cognitive Effects in GBA Mutation Carriers. Ann Neurol 2022; 91:424-435. [PMID: 34984729 PMCID: PMC8857042 DOI: 10.1002/ana.26302] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease. METHODS Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS). Subjects were examined for mutations in GBA and categorized as GBA carriers with or without DBS (GBA+DBS+, GBA+DBS-), and noncarriers with or without DBS (GBA-DBS+, GBA-DBS-). GBA mutation carriers were subcategorized according to mutation severity (risk variant, mild, severe). Linear mixed modeling was used to compare rate of change in MDRS scores over time among the groups according to GBA and DBS status and then according to GBA severity and DBS status. RESULTS Data were available for 366 subjects (58 GBA+DBS+, 82 GBA+DBS-, 98 GBA-DBS+, and 128 GBA-DBS- subjects), who were longitudinally followed (range = 36-60 months after surgery). Using the MDRS, GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects (95% confidence interval [CI] = -2.35 to -1.69), 1.71 points/yr more than GBA+DBS- subjects (95% CI = -2.14 to -1.28), and 1.49 points/yr more than GBA-DBS+ subjects (95% CI = -1.80 to -1.18). INTERPRETATION Although not randomized, this composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. We advise that DBS candidates be screened for GBA mutations as part of the presurgical decision-making process. We advise that GBA mutation carriers be counseled regarding potential risks associated with STN-DBS so that alternative options may be considered. ANN NEUROL 2022;91:424-435.
Collapse
Affiliation(s)
- Gian Pal
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Graziella Mangone
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
| | - Emily J. Hill
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Vanessa Lythe
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Debra Ehrlich
- Parkinson’s Disease Clinic, Office of the Clinical Director, NIH/NINDS, Bethesda, MD, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vicki Shanker
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Priscilla Garcia
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - Karen S. Marder
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Jan Aasly
- Department of Neurology, St. Olavs Hospital and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, 7030, Norway
| | - M. Maral Mouradian
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Samantha Link
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Marc Rosenbaum
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sharlet Anderson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Bryan Bernard
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robert Wilson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Glenn Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marie-Laure Welter
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
- Normandie Univ, CHU Rouen, Department of Neurophysiology, Rouen, France
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Mitra Afshari
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Leo Verhagen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rob M.A. de Bie
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Tom Foltynie
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Deborah Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jean-Christophe Corvol
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
| | - Christopher G. Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
72
|
Lungu C, Cedarbaum JM, Dawson TM, Dorsey ER, Faraco C, Federoff HJ, Fiske B, Fox R, Goldfine AM, Kieburtz K, Macklin EA, Matthews H, Rafaloff G, Saunders-Pullman R, Schor NF, Schwarzschild MA, Sieber BA, Simuni T, Surmeier DJ, Tamiz A, Werner MH, Wright CB, Wyse R. Seeking progress in disease modification in Parkinson disease. Parkinsonism Relat Disord 2021; 90:134-141. [PMID: 34561166 PMCID: PMC11770554 DOI: 10.1016/j.parkreldis.2021.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Disease modification in Parkinson disease (PD) has remained an elusive goal, in spite of large investments over several decades. Following a large meeting of experts, this review article discusses the state of the science, possible reasons for past PD trials' failures to demonstrate disease-modifying benefit, and potential solutions. METHODS The National Institute of Neurological Disorders and Stroke (NINDS) convened a meeting including leaders in the field and representatives of key stakeholder groups to discuss drug therapy with the goal of disease modification in PD. RESULTS Important lessons can be learned from previous attempts, as well as from other fields. The selection process for therapeutic targets and agents differs among various organizations committed to therapeutic development. The areas identified as critical to target in future research include the development of relevant biomarkers, refinements of the targeted patient populations, considerations of novel trial designs, and improving collaborations between all stakeholders. CONCLUSIONS We identify potential barriers to progress in disease modification for Parkinson's and propose a set of research priorities that may improve the likelihood of success.
Collapse
Affiliation(s)
- Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 6001 Executive Blvd, #2188, Rockville, MD, 20852, USA.
| | | | - Ted M Dawson
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - E Ray Dorsey
- University of Rochester Medical Center, Rochester, NY, USA
| | - Carlos Faraco
- Division of Clinical Research, NINDS, NIH, Bethesda, MD, USA
| | | | - Brian Fiske
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Robert Fox
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Karl Kieburtz
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | | | | | - Tanya Simuni
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dalton J Surmeier
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amir Tamiz
- Division of Translational Research, NINDS, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|