51
|
Sova M, Saso L. Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites. Nutrients 2020; 12:E2190. [PMID: 32717940 PMCID: PMC7468728 DOI: 10.3390/nu12082190] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Hydroxycinnamic acids (HCAs) are important natural phenolic compounds present in high concentrations in fruits, vegetables, cereals, coffee, tea and wine. Many health beneficial effects have been acknowledged in food products rich in HCAs; however, food processing, dietary intake, bioaccessibility and pharmacokinetics have a high impact on HCAs to reach the target tissue in order to exert their biological activities. In particular, metabolism is of high importance since HCAs' metabolites could either lose the activity or be even more potent compared to the parent compounds. In this review, natural sources and pharmacokinetic properties of HCAs and their esters are presented and discussed. The main focus is on their metabolism along with biological activities and health benefits. Special emphasis is given on specific effects of HCAs' metabolites in comparison with their parent compounds.
Collapse
Affiliation(s)
- Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
52
|
Nazzaro F, Fratianni F, De Feo V, Battistelli A, Da Cruz AG, Coppola R. Polyphenols, the new frontiers of prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:35-89. [PMID: 32892838 DOI: 10.1016/bs.afnr.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a growing interest in the identification of molecules capable to promote health and with a concurrent potential for technological applications. Prebiotics are functional ingredients naturally occurring in some plant and animal foods that since many decades stimulated considerable attention from the pharmaceutical and food industries due to their positive health effects. Together the well-known biomolecules with ascertained prebiotic effect, in last year new molecules were finally recognized as prebiotics, so capable to improve the health of an organism, also through the positive effect exerted on host microbiota. Among the so-called prebiotics, a special mention should be given to polyphenols, probably the most important, or at least among the most important secondary metabolites produced by the vegetal kingdom. This short chapter wants to emphasize polyphenols and, after briefly describing the individual microbiome, to illustrate how polyphenols can, through their influence on the microbiome, have a positive effect on the health of the individual in general, and on some pathologies in particular, for which the role of a bad status of the individual microbiome has been definitively established.
Collapse
Affiliation(s)
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | - Adriano Gomes Da Cruz
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro, Brazil
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, DiAAA-University of Molise, Campobasso, Italy
| |
Collapse
|
53
|
Márquez Campos E, Jakobs L, Simon MC. Antidiabetic Effects of Flavan-3-ols and Their Microbial Metabolites. Nutrients 2020; 12:nu12061592. [PMID: 32485837 PMCID: PMC7352288 DOI: 10.3390/nu12061592] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Diet is one of the pillars in the prevention and management of diabetes mellitus. Particularly, eating patterns characterized by a high consumption of foods such as fruits or vegetables and beverages such as coffee and tea could influence the development and progression of type 2 diabetes. Flavonoids, whose intake has been inversely associated with numerous negative health outcomes in the last few years, are a common constituent of these food items. Therefore, they could contribute to the observed positive effects of certain dietary habits in individuals with type 2 diabetes. Of all the different flavonoid subclasses, flavan-3-ols are consumed the most in the European region. However, a large proportion of the ingested flavan-3-ols is not absorbed. Therefore, the flavan-3-ols enter the large intestine where they become available to the colonic bacteria and are metabolized by the microbiota. For this reason, in addition to the parent compounds, the colonic metabolites of flavan-3-ols could take part in the prevention and management of diabetes. The aim of this review is to present the available literature on the effect of both the parent flavan-3-ol compounds found in different food sources as well as the specific microbial metabolites of diabetes in order to better understand their potential role in the prevention and treatment of the disease.
Collapse
|
54
|
Polyphenols in Alzheimer's Disease and in the Gut-Brain Axis. Microorganisms 2020; 8:microorganisms8020199. [PMID: 32023969 PMCID: PMC7074796 DOI: 10.3390/microorganisms8020199] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphenolic antioxidants, including dietary plant lignans, modulate the gut-brain axis, which involves transformation of these polyphenolic compounds into physiologically active and neuroprotector compounds (called human lignans) through gut bacterial metabolism. These gut bacterial metabolites exert their neuroprotective effects in various neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), and also have protective effects against other diseases, such as cardiovascular diseases, cancer, and diabetes. For example, enterolactone and enterodiol, the therapeutically relevant polyphenols, are formed as the secondary gut bacterial metabolites of lignans, the non-flavonoid polyphenolic compounds found in plant-based foods. These compounds are also acetylcholinesterase inhibitors, and thereby have potential applications as therapeutics in AD and other neurological diseases. Polyphenols are also advanced glycation end product (AGE) inhibitors (antiglycating agents), and thereby exert neuroprotective effects in cases of AD. Thus, gut bacterial metabolism of lignans and other dietary polyphenolic compounds results in the formation of neuroprotective polyphenols-some of which have enhanced blood-brain barrier permeability. It is hypothesized that gut bacterial metabolism-derived polyphenols, when combined with the nanoparticle-based blood-brain barrier (BBB)-targeted drug delivery, may prove to be effective therapeutics for various neurological disorders, including traumatic brain injury (TBI), AD, and PD. This mini-review addresses the role of polyphenolic compounds in the gut-brain axis, focusing on AD.
Collapse
|
55
|
Kujawska M, Jourdes M, Kurpik M, Szulc M, Szaefer H, Chmielarz P, Kreiner G, Krajka-Kuźniak V, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Neuroprotective Effects of Pomegranate Juice against Parkinson's Disease and Presence of Ellagitannins-Derived Metabolite-Urolithin A-In the Brain. Int J Mol Sci 2019; 21:ijms21010202. [PMID: 31892167 PMCID: PMC6981883 DOI: 10.3390/ijms21010202] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Pomegranate juice is a rich source of ellagitannins (ETs) believed to contribute to a wide range of pomegranate’s health benefits. While a lot of experimental studies have been devoted to Alzheimer disease and hypoxic-ischemic brain injury, our knowledge of pomegranate’s effects against Parkinson’s disease (PD) is very limited. It is suggested that its neuroprotective effects are mediated by ETs-derived metabolites—urolithins. In this study, we examined the capability of pomegranate juice for protection against PD in a rat model of parkinsonism induced by rotenone. To evaluate its efficiency, assessment of postural instability, visualization of neurodegeneration, determination of oxidative damage to lipids and α-synuclein level, as well as markers of antioxidant defense status, inflammation, and apoptosis, were performed in the midbrain. We also check the presence of plausible active pomegranate ETs-derived metabolite, urolithin A, in the plasma and brain. Our results indicated that pomegranate juice treatment provided neuroprotection as evidenced by the postural stability improvement, enhancement of neuronal survival, its protection against oxidative damage and α-synuclein aggregation, the increase in mitochondrial aldehyde dehydrogenase activity, and maintenance of antiapoptotic Bcl-xL protein at the control level. In addition, we have provided evidence for the distribution of urolithin A to the brain.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
- Correspondence: ; Tel.: +48-61-847-20-81 (ext. 156)
| | - Michael Jourdes
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | | | - Pierre-Louis Teissedre
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| |
Collapse
|
56
|
Marhuenda-Muñoz M, Laveriano-Santos EP, Tresserra-Rimbau A, Lamuela-Raventós RM, Martínez-Huélamo M, Vallverdú-Queralt A. Microbial Phenolic Metabolites: Which Molecules Actually Have an Effect on Human Health? Nutrients 2019; 11:nu11112725. [PMID: 31717653 PMCID: PMC6893422 DOI: 10.3390/nu11112725] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The role of gut microbiota in human health has been investigated extensively in recent years. The association of dysbiosis, detrimental changes in the colonic population, with several health conditions has led to the development of pro-, pre- and symbiotic foods. If not absorbed in the small intestine or secreted in bile, polyphenols and other food components can reach the large intestine where they are susceptible to modification by the microbial population, resulting in molecules with potentially beneficial health effects. This review provides an overview of studies that have detected and/or quantified microbial phenolic metabolites using high-performance liquid chromatography as the separation technique, followed by detection through mass spectrometry. Both in vitro experimental studies and human clinical trials are covered. Although many of the microbial phenolic metabolites (MPM) reported in in vitro studies were identified in human samples, further research is needed to associate them with clinical health outcomes.
Collapse
Affiliation(s)
- María Marhuenda-Muñoz
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Emily P. Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
| | - Anna Tresserra-Rimbau
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Hospital Universitari San Joan de Reus, Institut d’Investigació Pere Virgili (IISPV), 43002 Reus, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Miriam Martínez-Huélamo
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Correspondence: ; Tel.: +34-934-024-510
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| |
Collapse
|
57
|
Márquez Campos E, Stehle P, Simon MC. Microbial Metabolites of Flavan-3-Ols and Their Biological Activity. Nutrients 2019; 11:nu11102260. [PMID: 31546992 PMCID: PMC6836129 DOI: 10.3390/nu11102260] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Flavan-3-ols are the main contributors to polyphenol intake. Many varying beneficial health effects in humans have been attributed to them, including the prevention of cardiovascular disease and cancer. Nevertheless, the mechanisms by which these flavonoids could exert beneficial functions are not entirely known. Several in vitro studies and in vivo animal models have tried to elucidate the role of the specific colonic metabolites on the health properties that are attributed to the parent compounds since a larger number of ingested flavan-3-ols reach the colon and undergo there microbial metabolism. Many new studies about this topic have been performed over the last few years and, to the best of our knowledge, no scientific literature review regarding the bioactivity of all identified microbial metabolites of flavan-3-ols has been recently published. Therefore, the aim of this review is to present the current status of knowledge on the potential health benefits of flavan-3-ol microbial metabolites in humans while using the latest evidence on their biological activity.
Collapse
Affiliation(s)
- Estefanía Márquez Campos
- Department of Nutrition and Food Sciences, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany.
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany.
| | - Peter Stehle
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany.
| | - Marie-Christine Simon
- Department of Nutrition and Food Sciences, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
58
|
Kumar Singh A, Cabral C, Kumar R, Ganguly R, Kumar Rana H, Gupta A, Rosaria Lauro M, Carbone C, Reis F, Pandey AK. Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients 2019; 11:E2216. [PMID: 31540270 PMCID: PMC6770155 DOI: 10.3390/nu11092216] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains an intricate ecological community of dwelling bacteria, referred as gut microbiota (GM), which plays a pivotal role in host homeostasis. Multiple factors could interfere with this delicate balance, including genetics, age, antibiotics, as well as environmental factors, particularly diet, thus causing a disruption of microbiota equilibrium (dysbiosis). Growing evidences support the involvement of GM dysbiosis in gastrointestinal (GI) and extra-intestinal cardiometabolic diseases, namely obesity and diabetes. This review firstly overviews the role of GM in health and disease, then critically reviews the evidences regarding the influence of dietary polyphenols in GM based on preclinical and clinical data, ending with strategies under development to improve efficiency of delivery. Although the precise mechanisms deserve further clarification, preclinical and clinical data suggest that dietary polyphenols present prebiotic properties and exert antimicrobial activities against pathogenic GM, having benefits in distinct disorders. Specifically, dietary polyphenols have been shown ability to modulate GM composition and function, interfering with bacterial quorum sensing, membrane permeability, as well as sensitizing bacteria to xenobiotics. In addition, can impact on gut metabolism and immunity and exert anti-inflammatory properties. In order to overcome the low bioavailability, several different approaches have been developed, aiming to improve solubility and transport of dietary polyphenols throughout the GI tract and deliver in the targeted intestinal regions. Although more research is still needed, particularly translational and clinical studies, the biotechnological progresses achieved during the last years open up good perspectives to, in a near future, be able to improve the use of dietary polyphenols modulating GM in a broad range of disorders characterized by a dysbiotic phenotype.
Collapse
Grants
- UID/NEU/04539/2013 Fundação para a Ciência e a Tecnologia
- UID/NEU/04539/2019 Fundação para a Ciência e a Tecnologia
- PTDC/SAU-NUT/31712/2017 Fundação para a Ciência e a Tecnologia
- POCI-01-0145-FEDER-007440 Programa Operacional Temático Factores de Competitividade
- POCI-01-0145-FEDER-031712 Programa Operacional Temático Factores de Competitividade
- CENTRO-01-0145-FEDER-000012-HealthyAging2020 Programa Operacional Temático Factores de Competitividade
- AKS, RK and RG Senior/Junior research fellowship Council of Scientific & Industrial Research, India
- AKS, RK, RG, HKR, AG and AKP acknowledgment Fund for Improvement of S&T Infrastructure (FIST) of the Department of Science & Technology (DST), India
- AKS, RK, RG, HKR, AG and AKP acknowledgment UGC-SAP, India
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine; & CIBB Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| | - Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| | - Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| | - Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| | - Maria Rosaria Lauro
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy.
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine; & CIBB Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
- Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine; University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
59
|
Piwowar A, Rorbach-Dolata A, Fecka I. The Antiglycoxidative Ability of Selected Phenolic Compounds-An In Vitro Study. Molecules 2019; 24:molecules24152689. [PMID: 31344905 PMCID: PMC6696369 DOI: 10.3390/molecules24152689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 01/09/2023] Open
Abstract
Hyperglycemia and oxidative stress may be observed in different diseases as important factors connected with their development. They often occur simultaneously and are considered together as one process: Glycoxidation. This can influence the function or structure of many macromolecules, for example albumin, by changing their physiological properties. This disturbs the homeostasis of the organism, so the search for natural compounds able to inhibit the glycoxidation process is a current and important issue. The aim of this study was the examination of the antiglycoxidative capacity of 16 selected phenolic compounds, belonging to three phenolic groups, as potential therapeutic agents. Their antiglycoxidative ability, in two concentrations (2 and 20 µM), were examined by in vitro study. The inhibition of the formation of both glycoxidative products (advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs)) were assayed. Stronger antiglycoxidative action toward the formation of both AOPPs and AGEs was observed for homoprotocatechuic and ferulic acids in lower concentrations, as well as catechin, quercetin, and 8-O-methylurolithin A in higher concentrations. Homoprotocatechuic acid demonstrated the highest antiglycoxidative capacity in both examined concentrations and amongst all of them. A strong, significant correlation between the percentage of AOPPs and AGEs inhibition by compounds from all phenolic groups, in both examined concentrations, was observed. The obtained results give an insight into the antiglycoxidative potential of phenolic compounds and indicate homoprotocatechuic acid to be the most promising antiglycoxidative agent, but further biological and pharmacological studies are needed.
Collapse
Affiliation(s)
- Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Str. 211, 50-556 Wrocław, Poland.
| | - Anna Rorbach-Dolata
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Str. 211, 50-556 Wrocław, Poland
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska Str. 211A, 50-556 Wrocław, Poland
| |
Collapse
|
60
|
Tagliazucchi D, Martini S, Conte A. Protocatechuic and 3,4-Dihydroxyphenylacetic Acids Inhibit Protein Glycation by Binding Lysine through a Metal-Catalyzed Oxidative Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7821-7831. [PMID: 31260293 DOI: 10.1021/acs.jafc.9b02357] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanism of inhibition of advanced glycation end product (AGE) formation by protocatechuic acid and 3,4-dihydroxyphenylacetic acid (DHPA) has been studied using a widespread applied in vitro model system composed of bovine serum albumin (BSA) and supraphysiological glucose concentrations. Protocatechuic acid and DHPA inhibited the formation of Amadori compounds, fluorescent AGEs (IC50 = 62.1 ± 1.4 and 155.4 ± 1.1 μmol/L, respectively), and Nε-(carboxymethyl)lysine (IC50 = 535.3 ± 1.1 and 751.2 ± 1.0 μmol/L, respectively). BSA was pretreated with the two phenolic acids, and the formation of BSA-phenolic acid adducts was estimated by nanoflow liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry. Results showed that the tested phenolic acids bound key sites of glycation in BSA through a metal-catalyzed oxidative mechanism. The antiglycative activity mechanism involved the formation of BSA-phenolic acid adducts, and it is unlikely that this occurs in vivo. These results raise the problem to design in vitro models closer to physiological conditions to reach biologically sound conclusions.
Collapse
Affiliation(s)
- Davide Tagliazucchi
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Amendola 2 , 42100 Reggio Emilia , Italy
| | - Serena Martini
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Amendola 2 , 42100 Reggio Emilia , Italy
| | - Angela Conte
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Amendola 2 , 42100 Reggio Emilia , Italy
| |
Collapse
|
61
|
In Vitro Gastrointestinal Digestion and Colonic Fermentation of High Dietary Fiber and Antioxidant-Rich Mango ( Mangifera indica L.) "Ataulfo"-Based Fruit Bars. Nutrients 2019; 11:nu11071564. [PMID: 31336740 PMCID: PMC6682962 DOI: 10.3390/nu11071564] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
Mango (Mangifera indica L.) is a tropical fruit which is considered to be a source of dietary fiber (DF) and phenolic compounds (PCs). In this study, high DF mango-based fruit bars were developed from whole mango (peel and pulp). The bars were evaluated for their nutritional composition, the bioaccesibility of PCs during gastrointestinal digestion, and the PCs metabolites profile after in vitro colonic fermentation. The amount of DF in a 30 g portion of mango bars was 9.5 g, i.e., 35% of the recommended daily intake. Phenolic acids such as gallic acid; cinnamic acids, such as ferulic, coumaric, and caffeic acids; flavonoids such as quercertin; and xanthones such as mangiferin and mangiferin gallate, were identified as the main PCs in the bars. The antioxidant capacity associated with the PCs profile, together with the high DF content are indicative of the potential functional features of these natural fruit bars. The bioaccesibility of PCs in the mango bar was 53.78%. During fermentation, the PCs were bioconverted mainly to hydroxyphenolic acids and the main short-chain fatty acid produced was acetic acid. The xanthone norathyriol was identified after 12 h of fermentation. This study on the digestion and colonic fermentation of mango-based bars using in vitro models provides hints of the potential physiological behavior of PCs associated with DF, which constitutes relevant information for further development of natural and health-promoting fruit-based bars.
Collapse
|
62
|
3-(4-Hydroxy-3-methoxyphenyl)propionic Acid Produced from 4-Hydroxy-3-methoxycinnamic Acid by Gut Microbiota Improves Host Metabolic Condition in Diet-Induced Obese Mice. Nutrients 2019; 11:nu11051036. [PMID: 31075850 PMCID: PMC6566268 DOI: 10.3390/nu11051036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
4-Hydroxy-3-methoxycinnamic acid (HMCA), a hydroxycinnamic acid derivative, is abundant in fruits and vegetables, including oranges, carrots, rice bran, and coffee beans. Several beneficial effects of HMCA have been reported, including improvement of metabolic abnormalities in animal models and human studies. However, its mitigating effects on high-fat diet (HFD)-induced obesity, and the mechanism underlying these effects, remain to be elucidated. In this study, we demonstrated that dietary HMCA was efficacious against HFD-induced weight gain and hepatic steatosis, and that it improved insulin sensitivity. These metabolic benefits of HMCA were ascribable to 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HMPA) produced by gut microbiota. Moreover, conversion of HMCA into HMPA was attributable to a wide variety of microbes belonging to the phylum Bacteroidetes. We further showed that HMPA modulated gut microbes associated with host metabolic homeostasis by increasing the abundance of organisms belonging to the phylum Bacteroidetes and reducing the abundance of the phylum Firmicutes. Collectively, these results suggest that HMPA derived from HMCA is metabolically beneficial, and regulates hepatic lipid metabolism, insulin sensitivity, and the gut microbial community. Our results provide insights for the development of functional foods and preventive medicines, based on the microbiota of the intestinal environment, for the prevention of metabolic disorders.
Collapse
|
63
|
Kłeczek N, Michalak B, Malarz J, Kiss AK, Stojakowska A. Carpesium divaricatum Sieb. & Zucc. Revisited: Newly Identified Constituents from Aerial Parts of the Plant and Their Possible Contribution to the Biological Activity of the Plant. Molecules 2019; 24:molecules24081614. [PMID: 31022860 PMCID: PMC6514683 DOI: 10.3390/molecules24081614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/30/2022] Open
Abstract
Carpesium divaricatum Sieb. & Zucc. has a long history of use as both a medicinal and a food plant. However, except for terpenoids, its chemical constituents have remained poorly investigated. The composition of hydroalcoholic extract from aerial parts of C. divaricatum was analyzed by HPLC-DAD-MSn, revealing the presence of numerous caffeic acid derivatives that were formerly unknown constituents of the plant. In all, 17 compounds, including commonly found chlorogenic acids and rarely occurring butyryl and methylbutyryl tricaffeoylhexaric acids, were tentatively identified. Fractionation of lipophilic extract from cultivated shoots led to the isolation of 12-oxo-phytodienoic acid (12-OPDA), which is a newly identified constituent of the plant. The compound, at concentrations of 0.5, 1.0, and 2.5 μM, significantly reduced IL-8, IL-1β, TNFα, and CCL2 excretion by lipopolysaccharide (LPS)-stimulated human neutrophils. Reactive oxygen species (ROS) production induced by f-MLP was also significantly diminished in the neutrophils pretreated by 12-OPDA. The newly identified constituents of the plant seem to be partly responsible for its pharmacological activity and elevate the value of C. divaricatum as a potential functional food.
Collapse
Affiliation(s)
- Natalia Kłeczek
- Institute of Pharmacology, Polish Academy of Sciences, Department of Phytochemistry, 31-343 Kraków, Smętna Street 12, Poland.
| | - Barbara Michalak
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland.
| | - Janusz Malarz
- Institute of Pharmacology, Polish Academy of Sciences, Department of Phytochemistry, 31-343 Kraków, Smętna Street 12, Poland.
| | - Anna Karolina Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland.
| | - Anna Stojakowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Phytochemistry, 31-343 Kraków, Smętna Street 12, Poland.
| |
Collapse
|
64
|
Chen L, Gnanaraj C, Arulselvan P, El-Seedi H, Teng H. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of Type 2 Diabetes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
65
|
Lorenzo JM, Munekata PE, Putnik P, Kovačević DB, Muchenje V, Barba FJ. Sources, Chemistry, and Biological Potential of Ellagitannins and Ellagic Acid Derivatives. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64181-6.00006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
66
|
Identification and inhibitory activities of ellagic acid- and kaempferol-derivatives from Mongolian oak cups against α-glucosidase, α-amylase and protein glycation linked to type II diabetes and its complications and their influence on HepG2 cells’ viability. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2017.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
67
|
Banerjee A, Dhar P. Amalgamation of polyphenols and probiotics induce health promotion. Crit Rev Food Sci Nutr 2018; 59:2903-2926. [PMID: 29787290 DOI: 10.1080/10408398.2018.1478795] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The residing microbiome with its vast repertoire of genes provide distinctive properties to the host by which they can degrade and utilise nutrients that otherwise pass the gastro-intestinal tract unchanged. The polyphenols in our diet have selective growth promoting effects which is of utmost importance as the state of good health has been linked to dominance of particular microbial genera. The polyphenols in native form might more skilfully exert anti-oxidative and anti-inflammatory properties but in a living system it is the microbial derivatives of polyphenol that play a key role in determining health outcome. This two way interaction has invoked great interest among researchers who have commenced several clinical surveys and numerous studies in in-vitro, simulated environment and living systems to find out in detail about the biomolecules involved in such interaction along with their subsequent physiological benefits. In this review, we have thoroughly discussed these studies to develop a fair idea on how the amalgamation of probiotics and polyphenol has an immense potential as an adjuvant therapeutic for disease prevention as well as treatment.
Collapse
Affiliation(s)
- Arpita Banerjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| |
Collapse
|
68
|
Kujawska M, Jodynis-Liebert J. Polyphenols in Parkinson's Disease: A Systematic Review of In Vivo Studies. Nutrients 2018; 10:nu10050642. [PMID: 29783725 PMCID: PMC5986521 DOI: 10.3390/nu10050642] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson’s disease.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland.
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland.
| |
Collapse
|
69
|
Amić A, Marković Z, Klein E, Dimitrić Marković JM, Milenković D. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives. Food Chem 2018; 246:481-489. [DOI: 10.1016/j.foodchem.2017.11.100] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
|
70
|
Esteban-Fernández A, Ibañez C, Simó C, Bartolomé B, Moreno-Arribas MV. An Ultrahigh-Performance Liquid Chromatography–Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome. J Proteome Res 2018; 17:1624-1635. [DOI: 10.1021/acs.jproteome.7b00904] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adelaida Esteban-Fernández
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Clara Ibañez
- IMDEA Alimentación, Carretera de Canto Blanco no. 8, 28049 Madrid, Spain
| | - Carolina Simó
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - M. Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| |
Collapse
|
71
|
Zhang YY, Li XL, Li TY, Li MY, Huang RM, Li W, Yang RL. 3-(4-Hydroxyphenyl)propionic acid, a major microbial metabolite of procyanidin A2, shows similar suppression of macrophage foam cell formation as its parent molecule. RSC Adv 2018; 8:6242-6250. [PMID: 35540422 PMCID: PMC9078275 DOI: 10.1039/c7ra13729j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/01/2018] [Indexed: 12/29/2022] Open
Abstract
The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL-1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yu-Ying Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86-20-85280270 +86-20-85283448
| | - Xiao-Le Li
- College of Food Science and Technology, Hainan University Haikou 570228 China +86-898-66193581 +86-898-66198861
| | - Tong-Yun Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86-20-85280270 +86-20-85283448
| | - Mei-Ying Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86-20-85280270 +86-20-85283448
| | - Ri-Ming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86-20-85280270 +86-20-85283448
| | - Wu Li
- College of Food Science and Technology, Hainan University Haikou 570228 China +86-898-66193581 +86-898-66198861
| | - Rui-Li Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86-20-85280270 +86-20-85283448
| |
Collapse
|
72
|
Xu J, Yuan C, Wang G, Luo J, Ma H, Xu L, Mu Y, Li Y, Seeram NP, Huang X, Li L. Urolithins Attenuate LPS-Induced Neuroinflammation in BV2Microglia via MAPK, Akt, and NF-κB Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:571-580. [PMID: 29336147 DOI: 10.1021/acs.jafc.7b03285] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Emerging data suggest that urolithins, gut microbiota metabolites of ellagitannins, contribute toward multiple health benefits attributed to ellagitannin-rich foods, including walnuts, red raspberry, strawberry, and pomegranate. However, there is limited data on whether the potential neuroprotective effects of these ellagitannin-rich foods are mediated by urolithins. Herein, we evaluated the potential mechanisms of antineuroinflammatory effects of urolithins (urolithins A, B, and C; 8-methyl-O-urolithin A; and 8,9-dimethyl-O-urolithin C) in BV2 murine microglia in vitro. Nitrite analysis and qRT-PCR suggested that urolithins A and B reduced NO levels and suppressed mRNA levels of pro-inflammatory genes of TNF-α, IL-6, IL-1β, iNOS, and COX-2 in LPS-treated microglia. Western blot revealed that urolithins A and B decreased phosphorylation levels of Erk1/2, p38 MAPK, and Akt, prevented IκB-α phosphorylation and degradation, and inhibited NF-κB p65 subunit phosphorylation and nuclear translocation in LPS-stimulated microglia. Our results indicated that urolithins A and B attenuated LPS-induced inflammation in BV2 microglia, which may be mediated by inhibiting NF-κB, MAPKs (p38 and Erk1/2), and Akt signaling pathway activation. The antineuroinflammatory activities of urolithins support their role in the potential neuroprotective effects reported for ellagitannin-rich foods warranting further in vivo studies on these ellagitannin gut microbial derived metabolites.
Collapse
Affiliation(s)
- Jialin Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Chunhui Yuan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Guihua Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Jiaming Luo
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy & George and Anne Ryan Institute for Neuroscience, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Li Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Yuanyuan Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy & George and Anne Ryan Institute for Neuroscience, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| |
Collapse
|
73
|
Álvarez-Cilleros D, Martín MÁ, Ramos S. (-)-Epicatechin and the Colonic 2,3-Dihydroxybenzoic Acid Metabolite Regulate Glucose Uptake, Glucose Production, and Improve Insulin Signaling in Renal NRK-52E Cells. Mol Nutr Food Res 2018; 62. [PMID: 29205863 DOI: 10.1002/mnfr.201700470] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/03/2017] [Indexed: 12/16/2022]
Abstract
SCOPE (-)-Epicatechin (EC) and main colonic phenolic acids derived from flavonoid intake, such as 2,3-dihydroxybenzoic acid (DHBA), 3,4-dihydroxyphenylacetic acid (DHPAA), 3-hydroxyphenylpropionic acid (HPPA), and vanillic acid (VA), have been suggested to exert beneficial effects in diabetes, although the mechanism for their actions remains unknown. In this study, the modulation of glucose homeostasis and insulin signaling by the mentioned compounds on renal proximal tubular NRK-52E cells is investigated. METHODS AND RESULTS Levels of the glucose transporters SGLT-2 and GLUT-2, as well as glucose uptake, glucose production, and key proteins of the insulin pathways, namely insulin receptor (IR), insulin receptor substrate-1 (IRS-1), and PI3K/AKT pathway are analyzed. EC (5-20 μm) and DHBA (20 μm) reduced both renal glucose uptake and production. Interestingly, EC and DHBA did not modify the levels of SGLT-2 and GLUT-2, and modulated the expression of phosphoenolpyruvate carboxykinase via AKT leading to a diminished glucose production. EC and DHBA also enhanced the tyrosine phosphorylation and total IR and IRS-1 levels, and activated the PI3K/AKT pathway in NRK-52E cells. CONCLUSION EC and DHBA regulate the renal glucose homeostasis by modulating both glucose uptake and production, and strengthen the insulin signaling by activating key proteins of that pathway in NRK-52E cells.
Collapse
Affiliation(s)
- David Álvarez-Cilleros
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, Madrid, Spain
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
74
|
Pereira-Caro G, Polyviou T, Ludwig IA, Nastase AM, Moreno-Rojas JM, Garcia AL, Malkova D, Crozier A. Bioavailability of orange juice (poly)phenols: the impact of short-term cessation of training by male endurance athletes. Am J Clin Nutr 2017; 106:791-800. [PMID: 28747329 DOI: 10.3945/ajcn.116.149898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/21/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Physical exercise has been reported to increase the bioavailability of citrus flavanones.Objective: We investigated the bioavailability of orange juice (OJ) (poly)phenols in endurance-trained males before and after cessation of training for 7 d.Design: Ten fit, endurance-trained males, with a mean ± SD maximal oxygen consumption of 58.2 ± 5.3 mL · kg-1 · min-1, followed a low (poly)phenol diet for 2 d before drinking 500 mL of OJ containing 398 μmol of (poly)phenols, of which 330 μmol was flavanones. After the volunteers stopped training for 7 d the feeding study was repeated. Urine samples were collected 12 h pre- and 24 h post-OJ consumption. Bioavailability was assessed by the quantitative analysis of urinary flavanone metabolites and (poly)phenol catabolites with the use of high-pressure liquid chromatography-high resolution mass spectrometry.Results: During training, 0-24-h urinary excretion of flavanone metabolites, mainly hesperetin-3'-O-glucuronide, hesperetin-3'-sulfate, naringenin-4'-O-glucuronide, naringenin-7-O-glucuronide, was equivalent to 4.2% of OJ flavanone intake. This increased significantly to 5.2% when OJ was consumed after the volunteers stopped training for 7 d. Overall, this trend, although not significant, was also observed with OJ-derived colonic catabolites, which, after supplementation in the trained state, were excreted in amounts equivalent to 51% of intake compared with 59% after cessation of training. However, urinary excretion of 3 colonic catabolites of bacterial origin, most notably, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, did increase significantly when OJ was consumed postcessation compared with precessation of training. Data were also obtained on interindividual variations in flavanone bioavailability.Conclusions: A 7-d cessation of endurance training enhanced, rather than reduced, the bioavailability of OJ flavanones. The biological significance of these differences and whether they extend to the bioavailability of other dietary (poly)phenols remain to be determined. Hesperetin-3'-O-glucuronide and the colonic microbiota-derived catabolite 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid are key biomarkers of the consumption of hesperetin-O-glycoside-containing OJ and other citrus products. This trial was registered at clinicaltrials.gov as NCT02627547.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Food and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)-Alameda del Obispo, Cordoba, Spain
| | - Thelma Polyviou
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Iziar A Ludwig
- Department of Food Technology, University of Lleida, Lleida, Spain; and
| | - Ana-Maria Nastase
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - José Manuel Moreno-Rojas
- Department of Food and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)-Alameda del Obispo, Cordoba, Spain
| | - Ada L Garcia
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Dalia Malkova
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, Davis, CA
| |
Collapse
|
75
|
Muronetz VI, Melnikova AK, Seferbekova ZN, Barinova KV, Schmalhausen EV. Glycation, glycolysis, and neurodegenerative diseases: Is there any connection? BIOCHEMISTRY (MOSCOW) 2017; 82:874-886. [DOI: 10.1134/s0006297917080028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
76
|
DaSilva NA, Nahar PP, Ma H, Eid A, Wei Z, Meschwitz S, Zawia NH, Slitt AL, Seeram NP. Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr Neurosci 2017; 22:185-195. [PMID: 28784051 DOI: 10.1080/1028415x.2017.1360558] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Urolithins, ellagitannin-gut microbial-derived metabolites, have been reported to mediate pomegranate's neuroprotective effects against Alzheimer's disease (AD), but there are limited data on their effects against neuroinflammation. Herein, we: (1) evaluated whether urolithins (urolithins A and B and their methylated derivatives) attenuate neuroinflammation in murine BV-2 microglia and human SH-SY5Y neurons, and (2) evaluated hippocampus of transgenic AD (R1.40) mice administered a pomegranate extract (PE; 100 or 200 mg/kg/day for 3 weeks) for inflammatory biomarkers. METHODS Effects of urolithins (10 μM) on inflammatory biomarkers were evaluated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. In a non-contact co-culture cell model, SH-SY5Y cell viability was assessed after exposure to media collected from LPS-BV-2 cells treated with or without urolithins. Effects of urolithins on apoptosis and caspase 3/7 and 9 release from H2O2-induced oxidative stress of BV-2 and SH-SY5Y cells were assessed. Hippocampal tissues of vehicle and PE-treated transgenic R1.40 mice were evaluated for gene expression of inflammatory biomarkers by qRT-PCR. RESULTS Urolithins decreased media levels of nitric oxide, interleukin 6 (IL-6), prostaglandin E2, and tumor necrosis factor alpha from LPS-BV-2 microglia. In the co-culture cell model, media from LPS-BV-2 cells treated with urolithins preserved SH-SY5Y cell viability greater than media from cells treated without urolithins. Urolithins mitigated apoptosis and caspase 3/7 and 9 release from H2O2-induced oxidative stress of BV-2 and SH-SY5Y cells. While not statistically significant, inflammatory biomarkers (TNF-α, COX-2, IL-1, and IL-6) appeared to follow a decreasing trend in the hippocampus of high-dose PE-treated animals compared to controls. DISCUSSION The attenuation of neuroinflammation by urolithins may contribute, in part, toward pomegranate's neuroprotective effects against AD.
Collapse
Affiliation(s)
- Nicholas A DaSilva
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Pragati P Nahar
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Hang Ma
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Aseel Eid
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Zhengxi Wei
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Susan Meschwitz
- b Department of Chemistry , Salve Regina University , Newport , RI 02840 , USA
| | - Nasser H Zawia
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA.,c George and Anne Ryan Institute for Neuroscience, University of Rhode Island , Kingston , RI 02881 , USA
| | - Angela L Slitt
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Navindra P Seeram
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA.,c George and Anne Ryan Institute for Neuroscience, University of Rhode Island , Kingston , RI 02881 , USA
| |
Collapse
|
77
|
Pereira-Caro G, Moreno-Rojas JM, Brindani N, Del Rio D, Lean MEJ, Hara Y, Crozier A. Bioavailability of Black Tea Theaflavins: Absorption, Metabolism, and Colonic Catabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5365-5374. [PMID: 28595385 DOI: 10.1021/acs.jafc.7b01707] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Data obtained with in vitro fecal incubations and a feeding study indicate black tea theaflavin and its galloyl derivatives are not absorbed in detectable amounts in either the upper or lower gastrointestinal tract. The theaflavin skeleton is comparatively resistant to degradation by colonic bacteria with a 67% recovery being obtained after a 24 h incubation, which yielded 21 phenolic and aromatic catabolites. The theaflavin galloyl moiety was removed by the microbiota, and the released gallic acid further transformed to 3-O- and 4-O-methyl gallic acids, pyrogallol-1-sulfate and pyrogallol-2-sulfate, which were excreted in urine in amounts equivalent to 94% of intake. The main urinary product potentially derived from breakdown of the theaflavin skeleton was 3-(4'-hydroxyphenyl)propionic acid. A number of the colonic catabolites originating from gallic acid and theaflavins has been reported to be bioactive in ex vivo and in vitro models with a variety of potential modes of action.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Food and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA) , Avenida Menendez-Pidal, SN 14004, Córdoba, Spain
| | - José Manuel Moreno-Rojas
- Department of Food and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA) , Avenida Menendez-Pidal, SN 14004, Córdoba, Spain
| | | | - Daniele Del Rio
- Department of Food and Drug, University of Parma , 43124 Parma, Italy
| | - Michael E J Lean
- College of Medical, Veterinary and Life Sciences, University of Glasgow , New Lister Building, Glasgow G31 2ER, U.K
| | | | - Alan Crozier
- Department of Nutrition, University of California , Davis, California 95616-5270, United States
| |
Collapse
|
78
|
Bioaccessibility of (poly)phenolic compounds of raw and cooked cardoon (Cynara cardunculus L.) after simulated gastrointestinal digestion and fermentation by human colonic microbiota. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
79
|
González-Sarrías A, Núñez-Sánchez MÁ, Tomás-Barberán FA, Espín JC. Neuroprotective Effects of Bioavailable Polyphenol-Derived Metabolites against Oxidative Stress-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:752-758. [PMID: 28142243 DOI: 10.1021/acs.jafc.6b04538] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oxidative stress is involved in cell death in neurodegenerative diseases. Dietary polyphenols can exert health benefits, but their direct effects on neuronal cells are debatable because most phenolics are metabolized and do not reach the brain as they occur in the dietary sources. Herein, we evaluate the effects of a panel of bioavailable polyphenols and derived metabolites at physiologically relevant conditions against H2O2-induced apoptosis in human neuroblastoma SH-SY5Y cells. Among the 19 metabolites tested, 3,4-dihydroxyphenylpropionic acid, 3,4-dihydroxyphenylacetic acid, gallic acid, ellagic acid, and urolithins prevented neuronal apoptosis via attenuation of ROS levels, increased REDOX activity, and decreased oxidative stress-induced apoptosis by preventing the caspase-3 activation via the mitochondrial apoptotic pathway in SH-SY5Y cells. This suggests that dietary sources containing the polyphenol precursors of these molecules such as cocoa, berries, walnuts, and tea could be potential functional foods to reduce oxidative stress associated with the onset and progress of neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonio González-Sarrías
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - María Ángeles Núñez-Sánchez
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Juan Carlos Espín
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| |
Collapse
|
80
|
|
81
|
Kay CD, Pereira-Caro G, Ludwig IA, Clifford MN, Crozier A. Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. Annu Rev Food Sci Technol 2017; 8:155-180. [PMID: 28125348 DOI: 10.1146/annurev-food-030216-025636] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review considers recent investigations on the bioavailability of anthocyanins and flavanones. Both flavonoids are significant dietary components and are considered to be poorly bioavailable, as only low levels of phase II metabolites appear in the circulatory system and are excreted in urine. However, when lower molecular weight phenolic and aromatic ring-fission catabolites, produced primarily by the action of the colonic microbiota, are taken into account, it is evident that anthocyanins and flavanones are much more bioavailable than previously envisaged. The metabolic events to which these flavonoids are subjected as they pass along the gastrointestinal tract and are absorbed into the circulatory system prior to their rapid elimination by renal excretion are highlighted. Studies on the impact of other food components and the probiotic intake on flavonoid bioavailability are summarized, as is the bioactivity of metabolites and catabolites assayed using a variety of in vitro model systems.
Collapse
Affiliation(s)
- Colin D Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081
| | - Gema Pereira-Caro
- Andalusian Institute of Agricultural and Fishery Research and Training, IFAPA, Alameda del Obispo, 14004 Córdoba, Spain
| | - Iziar A Ludwig
- Department of Food Technology, Universitat de Lleida, 25198 Lleida, Spain
| | - Michael N Clifford
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 5XH, Surrey, United Kingdom
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, California 95616-5270;
| |
Collapse
|
82
|
Yin P, Zhang J, Yan L, Yang L, Sun L, Shi L, Ma C, Liu Y. Urolithin C, a gut metabolite of ellagic acid, induces apoptosis in PC12 cells through a mitochondria-mediated pathway. RSC Adv 2017. [DOI: 10.1039/c7ra01548h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Urolithin C includes apoptosis in PC12 cells through a mitochondria-mediated pathway.
Collapse
Affiliation(s)
- Peipei Yin
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Jianwei Zhang
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Linlin Yan
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Lingguang Yang
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Liwei Sun
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Lingling Shi
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Chao Ma
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| |
Collapse
|
83
|
Clifford M, Jaganath IB, Ludwig IA, Crozier A. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 2017; 34:1391-1421. [DOI: 10.1039/c7np00030h] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review is focussed upon the acyl-quinic acids, the most studied group within theca.400 chlorogenic acids so far reported.
Collapse
Affiliation(s)
- Michael N. Clifford
- School of Biosciences and Medicine
- Faculty of Health and Medical Sciences
- University of Surrey
- Guildford
- UK
| | - Indu B. Jaganath
- Malaysian Agricultural Research and Development Institute
- Kuala Lumpur
- Malaysia
| | - Iziar A. Ludwig
- Department of Food Technology
- University of Lleida
- Lleida
- Spain
| | - Alan Crozier
- Department of Nutrition
- University of California
- Davis
- USA
| |
Collapse
|
84
|
Liu QS, Li SR, Li K, Li X, Yin X, Pang Z. Ellagic acid improves endogenous neural stem cells proliferation and neurorestoration through Wnt/β-catenin signaling in vivo and in vitro. Mol Nutr Food Res 2016; 61. [PMID: 27794200 DOI: 10.1002/mnfr.201600587] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 01/09/2023]
Abstract
SCOPE The aim of this study is to research the effects of the polyphenol ellagic acid (EA) on brain cells and to explore its mechanism of action, and to evaluate whether EA can be safely utilized by humans as a functional food or therapeutic agent. METHODS AND RESULTS A photothrombosis-induced model of brain injury in rats was created, and EA was administered intragastrically to rats on 7 consecutive days post-venous ischemia. An oxygen-glucose deprivation and re-perfusion model was established in neural stem cells in order to research the effects on proliferation after 2 days of EA treatment in vitro. The administration of EA improved the rats' nerve-related abilities, remedied infarct volumes and morphological changes in the brain, and enhanced the content of nestin protein in the brain semidarkness zone. The proliferation of NSCs and the expression of β-catenin and Cyclin D1 genes were also increased in primary cultured NSCs. CONCLUSIONS EA administration can improve brain injury outcomes and increase the proliferation of NSCs through the Wnt/β-catenin signaling pathway. The presented results represent new insights on the mechanisms of the brain cell protective activity of EA. Thus, EA may be used in functional foods or medicines to help treat nerve dysfunction, neurodegenerative disease and aging.
Collapse
Affiliation(s)
- Qing-Shan Liu
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Shu-Ran Li
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Keqin Li
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Xu Li
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Xiaoying Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Zongran Pang
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| |
Collapse
|
85
|
Juániz I, Ludwig IA, Bresciani L, Dall'Asta M, Mena P, Del Rio D, Cid C, de Peña MP. Catabolism of raw and cooked green pepper ( Capsicum annuum ) (poly)phenolic compounds after simulated gastrointestinal digestion and faecal fermentation. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
86
|
Bayle M, Roques C, Marion B, Audran M, Oiry C, Bressolle-Gomeni FM, Cros G. Development and validation of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the determination of urolithin C in rat plasma and its application to a pharmacokinetic study. J Pharm Biomed Anal 2016; 131:33-39. [DOI: 10.1016/j.jpba.2016.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 01/15/2023]
|
87
|
Tomás-Barberán FA, González-Sarrías A, García-Villalba R, Núñez-Sánchez MA, Selma MV, García-Conesa MT, Espín JC. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201500901] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rocío García-Villalba
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María A. Núñez-Sánchez
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María V. Selma
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María T. García-Conesa
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - Juan Carlos Espín
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| |
Collapse
|
88
|
Kang I, Kim Y, Tomás-Barberán FA, Espín JC, Chung S. Urolithin A, C, and D, but not iso-urolithin A and urolithin B, attenuate triglyceride accumulation in human cultures of adipocytes and hepatocytes. Mol Nutr Food Res 2016; 60:1129-38. [DOI: 10.1002/mnfr.201500796] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Inhae Kang
- Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE, USA
| | - YongEun Kim
- Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE, USA
| | | | | | - Soonkyu Chung
- Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE, USA
| |
Collapse
|
89
|
Yuan T, Ma H, Liu W, Niesen DB, Shah N, Crews R, Rose KN, Vattem DA, Seeram NP. Pomegranate's Neuroprotective Effects against Alzheimer's Disease Are Mediated by Urolithins, Its Ellagitannin-Gut Microbial Derived Metabolites. ACS Chem Neurosci 2016; 7:26-33. [PMID: 26559394 DOI: 10.1021/acschemneuro.5b00260] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pomegranate shows neuroprotective effects against Alzheimer's disease (AD) in several reported animal studies. However, whether its constituent ellagitannins and/or their physiologically relevant gut microbiota-derived metabolites, namely, urolithins (6H-dibenzo[b,d]pyran-6-one derivatives), are the responsible bioactive constituents is unknown. Therefore, from a pomegranate extract (PE), previously reported by our group to have anti-AD effects in vivo, 21 constituents, which were primarily ellagitannins, were isolated and identified (by HPLC, NMR, and HRESIMS). In silico computational studies, used to predict blood-brain barrier permeability, revealed that none of the PE constituents, but the urolithins, fulfilled criteria required for penetration. Urolithins prevented β-amyloid fibrillation in vitro and methyl-urolithin B (3-methoxy-6H-dibenzo[b,d]pyran-6-one), but not PE or its predominant ellagitannins, had a protective effect in Caenorhabditis elegans post induction of amyloid β(1-42) induced neurotoxicity and paralysis. Therefore, urolithins are the possible brain absorbable compounds which contribute to pomegranate's anti-AD effects warranting further in vivo studies on these compounds.
Collapse
Affiliation(s)
- Tao Yuan
- Bioactive
Botanical Research Laboratory, Department of Biomedical and Pharmaceutical
Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Hang Ma
- Bioactive
Botanical Research Laboratory, Department of Biomedical and Pharmaceutical
Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Weixi Liu
- Bioactive
Botanical Research Laboratory, Department of Biomedical and Pharmaceutical
Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Daniel B. Niesen
- Bioactive
Botanical Research Laboratory, Department of Biomedical and Pharmaceutical
Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Nishan Shah
- Bioactive
Botanical Research Laboratory, Department of Biomedical and Pharmaceutical
Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Rebecca Crews
- Nutrition
Biomedicine and Biotechnology, Texas State University, San Marcos, Texas 78666, United States
| | - Kenneth N. Rose
- Bioactive
Botanical Research Laboratory, Department of Biomedical and Pharmaceutical
Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Dhiraj A. Vattem
- Nutrition
Biomedicine and Biotechnology, Texas State University, San Marcos, Texas 78666, United States
| | - Navindra P. Seeram
- Bioactive
Botanical Research Laboratory, Department of Biomedical and Pharmaceutical
Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
90
|
Garazd YL, Garazd MM. Natural Dibenzo[b,d]Pyran-6-Ones: Structural Diversity and Biological Activity. Chem Nat Compd 2016. [DOI: 10.1007/s10600-016-1536-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
91
|
Raghu G, Jakhotia S, Yadagiri Reddy P, Anil Kumar P, Bhanuprakash Reddy G. Ellagic acid inhibits non-enzymatic glycation and prevents proteinuria in diabetic rats. Food Funct 2016; 7:1574-83. [DOI: 10.1039/c5fo01372k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of advanced glycation end products (AGEs) is a characteristic feature of diabetic tissues and accumulation of AGEs been implicated in the pathogenesis of diabetic nephropathy (DN). Ellagic acid prevented the accumulation of AGEs and in turn ameliorated proteinurea in diabetic rats.
Collapse
Affiliation(s)
- G. Raghu
- National Institute of Nutrition
- Hyderabad
- India
| | | | | | - P. Anil Kumar
- Department of Biochemistry
- University of Hyderabad
- Hyderabad
- India
| | | |
Collapse
|
92
|
Olennikov DN, Kashchenko NI, Chirikova NK. In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: A Case of Padma Hepaten® Formulation. Nutrients 2015; 7:8456-77. [PMID: 26473917 PMCID: PMC4632426 DOI: 10.3390/nu7105406] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Chebulic ellagitannins (ChET) are plant-derived polyphenols containing chebulic acid subunits, possessing a wide spectrum of biological activities that might contribute to health benefits in humans. The herbal formulation Padma Hepaten containing ChETs as the main phenolics, is used as a hepatoprotective remedy. In the present study, an in vitro dynamic model simulating gastrointestinal digestion, including dialysability, was applied to estimate the bioaccessibility of the main phenolics of Padma Hepaten. Results indicated that phenolic release was mainly achieved during the gastric phase (recovery 59.38%-97.04%), with a slight further release during intestinal digestion. Dialysis experiments showed that dialysable phenolics were 64.11% and 22.93%-26.05% of their native concentrations, respectively, for gallic acid/simple gallate esters and ellagitanins/ellagic acid, in contrast to 20.67% and 28.37%-55.35% for the same groups in the non-dialyzed part of the intestinal media. Investigation of human gut microbiota metabolites of Padma Hepaten and pure ChETs (chebulinic, chebulagic acids) established the formation of bioactive urolithins (A, B, C, D, M5). The fact of urolithin formation during microbial transformation from ChETs and ChET-containing plant material was revealed for the first time. Evaluation of the protective effect of ChETs colonic metabolites and urolithins on tert-butyl hydroperoxide (t-BHP)-induced oxidative injury in cultured rat primary hepatocytes demonstrated their significant reversion of the t-BHP-induced cell cytotoxicity, malonic dialdehyde production and lactate dehydrogenase leakage. The most potent compound was urolithin C with close values of hepatoprotection to gallic acid. The data obtained indicate that in the case of Padma Hepaten, we speculate that urolithins have the potential to play a role in the hepatic prevention against oxidative damage.
Collapse
Affiliation(s)
- Daniil N Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh'yanovoy Street 6, Ulan-Ude 670-047, Russia.
| | - Nina I Kashchenko
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh'yanovoy Street 6, Ulan-Ude 670-047, Russia.
| | - Nadezhda K Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677-027, Russian.
| |
Collapse
|
93
|
Mena P, Dall’Asta M, Calani L, Brighenti F, Del Rio D. Gastrointestinal stability of urolithins: an in vitro approach. Eur J Nutr 2015; 56:99-106. [DOI: 10.1007/s00394-015-1061-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
|
94
|
Gasperotti M, Passamonti S, Tramer F, Masuero D, Guella G, Mattivi F, Vrhovsek U. Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS Chem Neurosci 2015; 6:1341-52. [PMID: 25891864 DOI: 10.1021/acschemneuro.5b00051] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Different polyphenol compounds are ingested when consuming a serving of fruits rich in polyphenols, spanning from one-phenol hydroxybenzoic acid to more complex polymeric compounds. Only a minor quantity of the polyphenols (5-10%) is absorbed. The remainder reaches the colon and is extensively metabolized by gut microbiota to low-molecular weight metabolites. Their subsequent tissue distribution is still undefined, although these microbial metabolites are currently believed to play a role in human health and disease states. To fill this knowledge gap, we performed a pharmacokinetics experiment in which a single bolus of 23 polyphenol microbial metabolites (total 2.7 μmol) was administered intravenously to rats to reliably reproduce a physiological postabsorption situation. Tissues and urine were collected shortly thereafter (15 s to 15 min) and were analyzed by UHPLC-MS/MS to quantitatively track these compounds. Remarkably, the brain was found to be a specific target organ for 10 of the 23 polyphenol metabolites injected, which significantly increased in the treated animals. In most cases, their appearance in the brain was biphasic, with an early wave at 2 min (4 compounds) and a second wave starting at 5 min; at 15 min, 9 compounds were still detectable. Most compounds were excreted into the urine. The concentrations in the brain of the treated animals were compared against those of the control group by Student's t test, with p-values < 0.1 considered to be statistically significant. These findings provide new perspectives for understanding the role of diet on brain chemistry. Our experimental approach has enabled us to obtain rich metabolomics information from a single experiment involving a limited number of animals.
Collapse
Affiliation(s)
- Mattia Gasperotti
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Domenico Masuero
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Graziano Guella
- Department of Physics, University of Trento, via Sommarive 14, 38123 Trento, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| |
Collapse
|
95
|
Zhou X, Zhou M, Liu Y, Ye Q, Gu J, Luo G. Isolation and Identification of Antioxidant Compounds fromGynura BicolorStems and Leaves. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2014.983607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
96
|
Liu W, Ma H, Frost L, Yuan T, Dain JA, Seeram NP. Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species. Food Funct 2015; 5:2996-3004. [PMID: 25233108 DOI: 10.1039/c4fo00538d] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advanced Glycation Endproducts (AGEs) are a heterogeneous group of molecules produced from non-enzymatic glycation. Accumulation of AGEs in vivo plays an important role in the pathology of chronic human diseases including type-2 diabetes and Alzheimer's disease. Natural AGEs inhibitors such as the pomegranate (Punica granatum) fruit show great potential for the management of these diseases. Herein, we investigated the in vitro anti-glycation effects of a pomegranate fruit extract (PE), its phenolic constituents [punicalagin (PA), ellagic acid (EA) and gallic acid (GA)], and their in vivo derived colonic metabolites [urolithin A (UA) and urolithin B (UB)]. All of the samples showed anti-glycation activities and PE, PA, and EA were more potent inhibitors than the positive control, aminoguanidine. PE and the purified phenolics also exhibited carbonyl scavenger reactivity. Our study suggests that pomegranate may offer an attractive dietary strategy for the prevention and treatment of AGE-related diseases such as type-2 diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Weixi Liu
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Pereira-Caro G, Oliver CM, Weerakkody R, Singh T, Conlon M, Borges G, Sanguansri L, Lockett T, Roberts SA, Crozier A, Augustin MA. Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Radic Biol Med 2015; 84:206-214. [PMID: 25801290 DOI: 10.1016/j.freeradbiomed.2015.03.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 11/18/2022]
Abstract
Orange juice (OJ) flavanones are bioactive polyphenols that are absorbed principally in the large intestine. Ingestion of probiotics has been associated with favorable changes in the colonic microflora. The present study examined the acute and chronic effects of orally administered Bifidobacterium longum R0175 on the colonic microflora and bioavailability of OJ flavanones in healthy volunteers. In an acute study volunteers drank OJ with and without the microencapsulated probiotic, whereas the chronic effects were examined when OJ was consumed after daily supplementation with the probiotic over 4 weeks. Bioavailability, assessed by 0-24h urinary excretion, was similar when OJ was consumed with and without acute probiotic intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main urinary flavanone metabolites. The overall urinary excretion of these metabolites after OJ ingestion and acute probiotic intake corresponded to 22% of intake, whereas excretion of key colon-derived phenolic and aromatic acids was equivalent to 21% of the ingested OJ (poly)phenols. Acute OJ consumption after chronic probiotic intake over 4 weeks resulted in the excretion of 27% of flavanone intake, and excretion of selected phenolic acids also increased significantly to 43% of (poly)phenol intake, corresponding to an overall bioavailability of 70%. Neither the probiotic bacterial profiles of stools nor the stool moisture, weight, pH, or levels of short-chain fatty acids and phenols differed significantly between treatments. These findings highlight the positive effect of chronic, but not acute, intake of microencapsulated B. longum R0175 on the bioavailability of OJ flavanones.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Technology, Postharvest and Food Industry, IFAPA-Alameda del Obispo, Córdoba, Spain
| | | | | | - Tanoj Singh
- CSIRO Food & Nutrition Flagship, Werribee, VIC, Australia
| | - Michael Conlon
- CSIRO Food & Nutrition Flagship, Adelaide, SA, Australia
| | - Gina Borges
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
| | - Luz Sanguansri
- CSIRO Food & Nutrition Flagship, Werribee, VIC, Australia
| | - Trevor Lockett
- CSIRO Food & Nutrition Flagship, North Ryde, NSW, Australia
| | - Susan A Roberts
- Global Scientific and Regulatory Affairs, The Coca-Cola Company, Atlanta, GA 30313, USA
| | - Alan Crozier
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|
98
|
García-Niño WR, Zazueta C. Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res 2015; 97:84-103. [DOI: 10.1016/j.phrs.2015.04.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/23/2022]
|
99
|
Protective Effects of Dihydrocaffeic Acid, a Coffee Component Metabolite, on a Focal Cerebral Ischemia Rat Model. Molecules 2015; 20:11930-40. [PMID: 26133759 PMCID: PMC6331881 DOI: 10.3390/molecules200711930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 02/07/2023] Open
Abstract
We recently reported the protective effects of chlorogenic acid (CGA) in a transient middle cerebral artery occlusion (tMCAo) rat model. The current study further investigated the protective effects of the metabolites of CGA and dihydrocaffeic acid (DHCA) was selected for further study after screening using the same tMCAo rat model. In the current study, tMCAo rats (2 h of MCAo followed by 22 h of reperfusion) were injected with various doses of DHCA at 0 and 2 h after onset of ischemia. We assessed brain damage, functional deficits, brain edema, and blood-brain barrier damage at 24 h after ischemia. For investigating the mechanism, in vitro zymography and western blotting analysis were performed to determine the expression and activation of matrix metalloproteinase (MMP)-2 and -9. DHCA (3, 10, and 30 mg/kg, i.p.) dose-dependently reduced brain infarct volume, behavioral deficits, brain water content, and Evans Blue (EB) leakage. DHCA inhibited expression and activation of MMP-2 and MMP-9. Therefore, DHCA might be one of the important metabolites of CGA and of natural products, including coffee, with protective effects on ischemia-induced neuronal damage and brain edema.
Collapse
|
100
|
Urpi-Sarda M, Boto-Ordóñez M, Queipo-Ortuño MI, Tulipani S, Corella D, Estruch R, Tinahones FJ, Andres-Lacueva C. Phenolic and microbial-targeted metabolomics to discovering and evaluating wine intake biomarkers in human urine and plasma. Electrophoresis 2015; 36:2259-2268. [DOI: 10.1002/elps.201400506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/01/2015] [Accepted: 04/04/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Mireia Urpi-Sarda
- Biomarkers and Nutritional & Food Metabolomics Research Group, Nutrition and Food Science Department, XaRTA, INSA, Pharmacy Faculty; University of Barcelona; Barcelona Spain
- Ingenio-CONSOLIDER programme; FUN-C-FOOD; Barcelona Spain
| | - María Boto-Ordóñez
- Biomarkers and Nutritional & Food Metabolomics Research Group, Nutrition and Food Science Department, XaRTA, INSA, Pharmacy Faculty; University of Barcelona; Barcelona Spain
| | - María Isabel Queipo-Ortuño
- Research Laboratory, IMABIS Foundation; Virgen de la Victoria Clinical Hospital; Málaga Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición; Instituto de Salud Carlos III; Madrid Spain
| | - Sara Tulipani
- Biomarkers and Nutritional & Food Metabolomics Research Group, Nutrition and Food Science Department, XaRTA, INSA, Pharmacy Faculty; University of Barcelona; Barcelona Spain
- Ingenio-CONSOLIDER programme; FUN-C-FOOD; Barcelona Spain
- Research Laboratory, IMABIS Foundation; Virgen de la Victoria Clinical Hospital; Málaga Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y la Nutrición; Instituto de Salud Carlos III; Madrid Spain
- Department of Preventive Medicine; University of Valencia; Valencia Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y la Nutrición; Instituto de Salud Carlos III; Madrid Spain
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Francisco J. Tinahones
- CIBER Fisiopatología de la Obesidad y la Nutrición; Instituto de Salud Carlos III; Madrid Spain
- Servicio Endocrinología y Nutrición del Hospital Universitario Virgen de la Victoria; Málaga Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutritional & Food Metabolomics Research Group, Nutrition and Food Science Department, XaRTA, INSA, Pharmacy Faculty; University of Barcelona; Barcelona Spain
- Ingenio-CONSOLIDER programme; FUN-C-FOOD; Barcelona Spain
| |
Collapse
|