51
|
Fuhri Snethlage CM, Nieuwdorp M, van Raalte DH, Rampanelli E, Verchere BC, Hanssen NMJ. Auto-immunity and the gut microbiome in type 1 diabetes: Lessons from rodent and human studies. Best Pract Res Clin Endocrinol Metab 2021; 35:101544. [PMID: 33985913 DOI: 10.1016/j.beem.2021.101544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an auto-immune disease that destructs insulin-producing pancreatic beta-cells within the islets of Langerhans. The incidence of T1D has tripled over the last decades, while the pathophysiology of the disease is still largely unknown. Currently, there is no cure for T1D. The only treatment option consists of blood-glucose regulation with insulin injections and intensive monitoring of blood glucose levels. In recent years, perturbations in the ecosystem of the gut microbiome also referred to as dysbiosis, have gained interest as a possible contributing factor in the development of T1D. Changes in the microbiome seem to occur before the onset of T1D associated auto-antibodies. Furthermore, rodent studies demonstrate that administering antibiotics at a young age may accelerate the onset of T1D. This review provides an overview of the research performed on the epidemiology, pathophysiology, interventions, and possible treatment options in the field of the gut microbiome and T1D.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Max Nieuwdorp
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Daniël H van Raalte
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands; Amsterdam Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, the Netherlands
| | - Elena Rampanelli
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Bruce C Verchere
- BC Children's Hospital Research Institute, Pathology & Laboratory Medicine and Surgery, Vancouver, Canada
| | - Nordin M J Hanssen
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands.
| |
Collapse
|
52
|
Zou J, Reddivari L, Shi Z, Li S, Wang Y, Bretin A, Ngo VL, Flythe M, Pellizzon M, Chassaing B, Gewirtz AT. Inulin Fermentable Fiber Ameliorates Type I Diabetes via IL22 and Short-Chain Fatty Acids in Experimental Models. Cell Mol Gastroenterol Hepatol 2021; 12:983-1000. [PMID: 33940221 PMCID: PMC8346662 DOI: 10.1016/j.jcmgh.2021.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Nourishment of gut microbiota via consumption of fermentable fiber promotes gut health and guards against metabolic syndrome. In contrast, how dietary fiber impacts type 1 diabetes is less clear. METHODS To examine impact of dietary fibers on development of type 1 diabetes in the streptozotocin (STZ)-induced and spontaneous non-obese diabetes (NOD) models, mice were fed grain-based chow (GBC) or compositionally defined diets enriched with a fermentable fiber (inulin) or an insoluble fiber (cellulose). Spontaneous (NOD mice) or STZ-induced (wild-type mice) diabetes was monitored. RESULTS Relative to GBC, low-fiber diets exacerbated STZ-induced diabetes, whereas diets enriched with inulin, but not cellulose, strongly protected against or treated it. Inulin's restoration of glycemic control prevented loss of adipose depots, while reducing food and water consumption. Inulin normalized pancreatic function and markedly enhanced insulin sensitivity. Such amelioration of diabetes was associated with alterations in gut microbiota composition and was eliminated by antibiotic administration. Pharmacologic blockade of fermentation reduced inulin's beneficial impact on glycemic control, indicating a role for short-chain fatty acids (SCFA). Furthermore, inulin's microbiota-dependent anti-diabetic effect associated with SCFA-independent restoration of interleukin 22, which was necessary and sufficient to ameliorate STZ-induced diabetes. Inulin-enriched diets significantly delayed diabetes in NOD mice. CONCLUSIONS Fermentable fiber confers microbiota-dependent increases in SCFA and interleukin 22 that, together, may have potential to prevent and/or treat type 1 diabetes.
Collapse
Affiliation(s)
- Jun Zou
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Zhenda Shi
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Shiyu Li
- Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Yanling Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Alexis Bretin
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Vu L Ngo
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | | | | | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia; Neuroscience Institute, Georgia State University, Atlanta, Georgia; INSERM, U1016, Team "Mucosal microbiota in chronic inflammatory diseases", Paris, France; Université de Paris, Paris, France
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
53
|
Kaczmarczyk M, Löber U, Adamek K, Węgrzyn D, Skonieczna-Żydecka K, Malinowski D, Łoniewski I, Markó L, Ulas T, Forslund SK, Łoniewska B. The gut microbiota is associated with the small intestinal paracellular permeability and the development of the immune system in healthy children during the first two years of life. J Transl Med 2021; 19:177. [PMID: 33910577 PMCID: PMC8082808 DOI: 10.1186/s12967-021-02839-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The intestinal barrier plays an important role in the defense against infections, and nutritional, endocrine, and immune functions. The gut microbiota playing an important role in development of the gastrointestinal tract can impact intestinal permeability and immunity during early life, but data concerning this problem are scarce. METHODS We analyzed the microbiota in fecal samples (101 samples in total) collected longitudinally over 24 months from 21 newborns to investigate whether the markers of small intestinal paracellular permeability (zonulin) and immune system development (calprotectin) are linked to the gut microbiota. The results were validated using data from an independent cohort that included the calprotectin and gut microbiota in children during the first year of life. RESULTS Zonulin levels tended to increase for up to 6 months after childbirth and stabilize thereafter remaining at a high level while calprotectin concentration was high after childbirth and began to decline from 6 months of life. The gut microbiota composition and the related metabolic potentials changed during the first 2 years of life and were correlated with zonulin and calprotectin levels. Faecal calprotectin correlated inversely with alpha diversity (Shannon index, r = - 0.30, FDR P (Q) = 0.039). It also correlated with seven taxa; i.a. negatively with Ruminococcaceae (r = - 0.34, Q = 0.046), and Clostridiales (r = - 0.34, Q = 0.048) and positively with Staphylococcus (r = 0.38, Q = 0.023) and Staphylococcaceae (r = 0.35, Q = 0.04), whereas zonulin correlated with 19 taxa; i.a. with Bacillales (r = - 0.52, Q = 0.0004), Clostridiales (r = 0.48, Q = 0.001) and the Ruminococcus (torques group) (r = 0.40, Q = 0.026). When time intervals were considered only changes in abundance of the Ruminococcus (torques group) were associated with changes in calprotectin (β = 2.94, SE = 0.8, Q = 0.015). The dynamics of stool calprotectin was negatively associated with changes in two MetaCyc pathways: pyruvate fermentation to butanoate (β = - 4.54, SE = 1.08, Q = 0.028) and Clostridium acetobutylicum fermentation (β = - 4.48, SE = 1.16, Q = 0.026). CONCLUSIONS The small intestinal paracellular permeability, immune system-related markers and gut microbiota change dynamically during the first 2 years of life. The Ruminococcus (torques group) seems to be especially involved in controlling paracellular permeability. Staphylococcus, Staphylococcaceae, Ruminococcaceae, and Clostridiales, may be potential biomarkers of the immune system. Despite observed correlations their clear causation and health consequences were not proven. Mechanistic studies are required.
Collapse
Affiliation(s)
- Mariusz Kaczmarczyk
- Department of Clinical Biochemistry, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Ulrike Löber
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 14195, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Karolina Adamek
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Dagmara Węgrzyn
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | | | - Damian Malinowski
- Department of Pharmacology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460, Szczecin, Poland.
- Department of Human Nutrition and Metabolomics, Broniewskiego 24, 71-460, Szczecin, Poland.
| | - Lajos Markó
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 14195, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53127, Bonn, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 14195, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
| | - Beata Łoniewska
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| |
Collapse
|
54
|
The Immunomodulatory Properties of β-2,6 Fructans: A Comprehensive Review. Nutrients 2021; 13:nu13041309. [PMID: 33921025 PMCID: PMC8071392 DOI: 10.3390/nu13041309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides such as β-2,1-linked fructans including inulin or fructose oligosaccharides are well-known prebiotics with recognised immunomodulatory properties. In recent years, other fructan types covering β-2,6-linked fructans, particularly microbial levans, have gained increasing interest in the field. β-2,6-linked fructans of different degrees of polymerisation can be synthesised by plants or microbes including those that reside in the gastrointestinal tract. Accumulating evidence suggests a role for these β-2,6 fructans in modulating immune function. Here, we provide an overview of the sources and structures of β-2,6 fructans from plants and microbes and describe their ability to modulate immune function in vitro and in vivo along with the suggested mechanisms underpinning their immunomodulatory properties. Further, we discuss the limitations and perspectives pertinent to current studies and the potential applications of β-2,6 fructans including in gut health.
Collapse
|
55
|
Pan L, Zhou Z, Han Y. Exopolysaccharide from Leuconostoc pseudomesenteroides XG5 delay the onset of autoimmune diabetes by modulating gut microbiota and its metabolites SCFAs in NOD mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
56
|
Bischoff SC, Kaden-Volynets V, Filipe Rosa L, Guseva D, Seethaler B. Regulation of the gut barrier by carbohydrates from diet - Underlying mechanisms and possible clinical implications. Int J Med Microbiol 2021; 311:151499. [PMID: 33864957 DOI: 10.1016/j.ijmm.2021.151499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 02/09/2023] Open
Abstract
The gut barrier has been recognized as being of relevance in the pathogenesis of multiple different diseases ranging from inflammatory bowel disease, irritable bowel syndrome, inflammatory joint disease, fatty liver disease, and cardiometabolic disorders. The regulation of the gut barrier is, however, poorly understood. Especially, the role of food components such as sugars and complex carbohydrates has been discussed controversially in this respect. More recently, the intestinal microbiota has been proposed as an important regulator of the gut barrier. Whether the microbiota affects the barrier by its own, or whether food components such as carbohydrates mediate their effects through alterations of the microbiota composition or its metabolites, is still not clear. In this review, we will summarize the current knowledge on this topic derived from both animal and human studies and discuss data for possible clinical impact.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Valentina Kaden-Volynets
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany; Acousia Therapeutics GmbH & Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany.
| | - Louisa Filipe Rosa
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Daria Guseva
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Benjamin Seethaler
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
57
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. The crucial role of early-life gut microbiota in the development of type 1 diabetes. Acta Diabetol 2021; 58:249-265. [PMID: 32712802 DOI: 10.1007/s00592-020-01563-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Early-life healthy gut microbiota has a profound implication on shaping the mucosal immune system as well as maintaining healthy status later in life, especially at the prenatal or neonatal stages, while intestinal dysbiosis in early life is associated with several autoimmune diseases, including type 1 diabetes (T1D). Since the gut microbiome is potentially modifiable, optimizing the intestinal bacterial composition in early life may be a novel option for T1D prevention. In this review, we will review current data depicting the crucial role of early-life intestinal microbiome in the development of T1D and discuss the possible mechanisms whereby early-life intestinal microbiome influences the T1D progression. We also summarize recent findings on environmental factors affecting gut microbiota colonization and interventions that may successfully alter microbial composition to discuss potential means of preventing T1D progression in at-risk children.
Collapse
Affiliation(s)
- He Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Siwen Zhang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
58
|
Wu S, Cui Z, Chen X, Zheng L, Ren H, Wang D, Yao J. Diet-ruminal microbiome-host crosstalk contributes to differential effects of calf starter and alfalfa hay on rumen epithelial development and pancreatic α-amylase activity in yak calves. J Dairy Sci 2021; 104:4326-4340. [PMID: 33589262 DOI: 10.3168/jds.2020-18736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Dietary supplementation of alfalfa hay or calf starter during the preweaning period was beneficial to the gastrointestinal development in dairy calves and lambs. In the present study, we designed 2 experiments using weaning with calf starter and alfalfa hay to investigate the diet-ruminal microbiome-host crosstalk in yak calves by analyzing the ruminal microbiota and rumen epithelial transcriptome. During the preweaning period, supplementation with either alfalfa hay or the starter significantly promoted animal growth and organ development in yak calves, including increases in body weight, body height, body length, chest girth, and development of liver, spleen, and thymus. These improvements could be attributed to increased dry matter intake, rumen fermentation, and development. Butyrate concentration increased in yak calves fed alfalfa hay or the starter, which could further promote ruminal epithelium development. Using 16S rRNA gene amplicon sequencing, we determined that butyrate-producing genera were increased by the supplementation with alfalfa hay or the starter. Transcriptomic analysis of the rumen epithelia revealed that the PI3K-Akt signaling pathway, which is critical in mediating many aspects of cellular function such as cell growth, was upregulated in response to alfalfa hay or the starter supplementation. The starter supplementation also increased the jejunal α-amylase activity, whereas alfalfa hay supplementation reduced the ileal α-amylase activity. Furthermore, the co-supplementation of both the starter and alfalfa hay reduced intestinal α-amylase activity. The starter increased ruminal propionate concentration, whereas alfalfa hay exhibited the opposite trend. The observed opposite effects of the starter and alfalfa hay on rumen propionate concentration corresponded with up- and downregulation, respectively, of the ruminal cholecystokinin involved in pancreatic secretion pathway, and thereby increased and decreased pancreatic α-amylase activity. In conclusion, both alfalfa hay and the starter could promote the growth and ruminal epithelial development of yak calves. The starter and alfalfa hay also differentially affected the intestinal α-amylase activities due to their different chemical components and different effects on ruminal fermentation, especially the ruminal propionate production.
Collapse
Affiliation(s)
- Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Center for Translational Microbiome Research, Department of Molecular, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden 17165.
| | - Zhanhong Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai 810016, China
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixin Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
59
|
Kiewiet MBG, Elderman ME, El Aidy S, Burgerhof JGM, Visser H, Vaughan EE, Faas MM, de Vos P. Flexibility of Gut Microbiota in Ageing Individuals during Dietary Fiber Long-Chain Inulin Intake. Mol Nutr Food Res 2021; 65:e2000390. [PMID: 33369019 PMCID: PMC8138623 DOI: 10.1002/mnfr.202000390] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/06/2020] [Indexed: 12/13/2022]
Abstract
SCOPE During ageing, dysbiosis in the intestinal microbiota may occur and impact health. There is a paucity of studies on the effect of fiber on the elderly microbiota and the flexibility of the aged microbiota upon prebiotic intake. It is hypothesized that chicory long-chain inulin consumption can change microbiota composition, microbial fermentation products, and immunity in the elderly. METHODS AND RESULTS A double-blind, placebo-controlled trial is performed in healthy individuals (55-80 years), in which microbiota composition is studied before, during, and after two months of chicory long-chain inulin consumption. Fecal short chain fatty acid concentrations, T cell subsets, and antibody responses against a Hepatitis B (HB) vaccine are measured as well. Inulin consumption modified the microbiota composition, as measured by 16S rRNA sequencing. Participants consuming inulin have higher microbial diversity and a relatively higher abundance of the Bifidobacterium genus, as well as Alistipes shahii, Anaerostipes hadrus, and Parabacteroides distasonis. While the immune responses remain unchanged, the isobutyric acid levels, an undesired fermentation product, tend to be lower in the inulin group. CONCLUSIONS Overall, it is shown that the gut microbiota composition is still sensitive to chicory long-chain inulin induced changes in an ageing population, although this did not translate into an improved immune response to an HB vaccine.
Collapse
Affiliation(s)
- Mensiena B. G. Kiewiet
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9700 RBThe Netherlands
| | - Marlies E. Elderman
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9700 RBThe Netherlands
| | - Sahar El Aidy
- Host‐microbe metabolic interactionsGroningen Biomolecular and Biotechnology Institute (GBB)University of GroningenNijenborgh 7Groningen9747 AGThe Netherlands
| | - Johannes G. M. Burgerhof
- Department of EpidemiologyUniversity Medical Center GroningenUniversity of GroningenGroningen9713 GZThe Netherlands
| | - Hester Visser
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9700 RBThe Netherlands
| | - Elaine E. Vaughan
- Sensus (Royal Cosun)Oosterlijke Havendijk 15Roosendaal4704 RAThe Netherlands
| | - Marijke M. Faas
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9700 RBThe Netherlands
| | - Paul de Vos
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9700 RBThe Netherlands
| |
Collapse
|
60
|
Losso JN. Food Processing, Dysbiosis, Gastrointestinal Inflammatory Diseases, and Antiangiogenic Functional Foods or Beverages. Annu Rev Food Sci Technol 2021; 12:235-258. [PMID: 33467906 DOI: 10.1146/annurev-food-062520-090235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Foods and beverages provide nutrients and alter the gut microbiota, resulting in eubiosis or dysbiosis. Chronic consumption of a diet that is high in saturated or trans fats, meat proteins, reducing sugars, and salt and low in fiber induces dysbiosis. Dysbiosis, loss of redox homeostasis, mast cells, hypoxia, angiogenesis, the kynurenine pathway, transglutaminase 2, and/or the Janus kinase pathway are implicated in the pathogenesis and development of inflammatory bowel disease, celiac disease, and gastrointestinal malignancy. This review discusses the effects of oxidative, carbonyl, or glycative stress-inducing dietary ingredients or food processing-derived compounds on gut microbiota and gastrointestinal epithelial and mast cells as well as on the development of associated angiogenic diseases, including key signaling pathways. The preventive or therapeutic potential and the biochemical pathways of antiangiogenic or proangiogenic foods or beverages are also described. The outcomes of the interactions between disease pathways and components of food are critical for the design of foods and beverages for healthy lives.
Collapse
Affiliation(s)
- Jack N Losso
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA;
| |
Collapse
|
61
|
Abela AG, Fava S. Why is the Incidence of Type 1 Diabetes Increasing? Curr Diabetes Rev 2021; 17:e030521193110. [PMID: 33949935 DOI: 10.2174/1573399817666210503133747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/14/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes is a condition that can lead to serious long-term complications and can have significant psychological and quality of life implications. Its incidence is increasing in all parts of the world, but the reasons for this are incompletely understood. Genetic factors alone cannot explain such a rapid increase in incidence; therefore, environmental factors must be implicated. Lifestyle factors have been classically associated with type 2 diabetes. However, there are data implicating obesity and insulin resistance to type 1 diabetes as well (accelerator hypothesis). Cholesterol has also been shown to be correlated with the incidence of type 1 diabetes; this may be mediated by immunomodulatory effects of cholesterol. There is considerable interest in early life factors, including maternal diet, mode of delivery, infant feeding, childhood diet, microbial exposure (hygiene hypothesis), and use of anti-microbials in early childhood. Distance from the sea has recently been shown to be negatively correlated with the incidence of type 1 diabetes. This may contribute to the increasing incidence of type 1 diabetes since people are increasingly living closer to the sea. Postulated mediating mechanisms include hours of sunshine (and possibly vitamin D levels), mean temperature, dietary habits, and pollution. Ozone, polychlorinated biphenyls, phthalates, trichloroethylene, dioxin, heavy metals, bisphenol, nitrates/nitrites, and mercury are amongst the chemicals which may increase the risk of type 1 diabetes. Another area of research concerns the role of the skin and gut microbiome. The microbiome is affected by many of the factors mentioned above, including the mode of delivery, infant feeding, exposure to microbes, antibiotic use, and dietary habits. Research on the reasons why the incidence of type 1 diabetes is increasing not only sheds light on its pathogenesis but also offers insights into ways we can prevent type 1 diabetes.
Collapse
Affiliation(s)
- Alexia G Abela
- Department of Medicine, University of Malta & Mater Dei Hospital, Tal-Qroqq, Msida, Malta
| | - Stephen Fava
- Department of Medicine, University of Malta & Mater Dei Hospital, Tal-Qroqq, Msida, Malta
| |
Collapse
|
62
|
The antidiabetic effect and potential mechanisms of natural polysaccharides based on the regulation of gut microbiota. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
63
|
Pujari R, Banerjee G. Impact of prebiotics on immune response: from the bench to the clinic. Immunol Cell Biol 2020; 99:255-273. [PMID: 32996638 DOI: 10.1111/imcb.12409] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Several preclinical and clinical studies have shown the immunomodulatory role exerted by prebiotics in regulating the immune response. In this review, we describe the mechanistic and clinical studies that decipher the cell signaling pathways implicated in the process. Prebiotic fibers are conventionally known to serve as substrate for probiotic commensal bacteria that release of short-chain fatty acids in the intestinal tract along with several other metabolites. Subsequently, they then act on the local as well as the systemic immune cells and the gut-associated epithelial cells, primarily through G-protein-coupled receptor-mediated pathways. However, other pathways including histone deacetylase inhibition and inflammasome pathway have also been implicated in regulating the immunomodulatory effect. The prebiotics can also induce a microbiota-independent effect by directly acting on the gut-associated epithelial and innate immune cells through the Toll-like receptors. The cumulative effect results in the maintenance of the epithelial barrier integrity and modulation of innate immunity through secretion of pro- and anti-inflammatory cytokines, switches in macrophage polarization and function, neutrophil recruitment and migration, dendritic cell and regulatory T-cell differentiation. Extending these in vitro and ex vivo observations, some prebiotics have been well investigated, with successful human and animal trials demonstrating the association between gut microbes and immunity biomarkers leading to improvement in health endpoints across populations. This review discusses scientific insights into the association between prebiotics, innate immunity and gut microbiome from in vitro to human oral intervention.
Collapse
Affiliation(s)
- Radha Pujari
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| | - Gautam Banerjee
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| |
Collapse
|
64
|
Bian M, Wang J, Wang Y, Nie A, Zhu C, Sun Z, Zhou Z, Zhang B. Chicory ameliorates hyperuricemia via modulating gut microbiota and alleviating LPS/TLR4 axis in quail. Biomed Pharmacother 2020; 131:110719. [PMID: 33152909 DOI: 10.1016/j.biopha.2020.110719] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-purine diet can cause gut microbiota disorder, which is closely related to the occurrence of hyperuricemia (HUA). At the same time, the development of HUA is often accompanied by renal impairment. Chicory, a natural medicine, has a significant effect on lowering uric acid. However, whether its concrete mechanism is associated with the regulation of gut microbiota and renal damage is still unclear. METHODS Hyperuricemic quails induced by high-purine diet were used, and quails were divided into control (CON), model (MOD), and model plus high, middle, low doses of chicory. The uricosuric effect was evaluated by detecting the uric acid levels in serum and feces. Meanwhile, the morphology of intestine and kidney were observed by hematoxylin and eosin (HE) staining, and the expression of intestinal barrier junction proteins Occludin, Claudin-1 were detected by quantitative real-time polymerase chain reaction (qPCR) and western blotting. Furthermore, the latent mechanism was clarified by analyzing 16S rRNA amplicon of gut microbiota and measuring the changes of LPS/TLR4 axis inflammatory response of the kidney by western blotting and enzyme-linked immunosorbent assay (ELISA). RESULTS The results showed that serum uric acid levels were significantly decreased, and the feces uric acid levels were noticeably increased after the intervention of chicory. In addition, chicory could repair the damage of intestinal mucosa and improve the permeability of intestinal barrier. Moreover, the 16S rRNA sequencing analysis uncovered that chicory restored gut microbiota by increasing the probiotics flora (Bifidobacterium, Erysipelotrichaceae) and reducing the pathogenic bacteria group (Helicobacteraceae). Furthermore, it was found that chicory reduced the LPS/TLR4 axis inflammatory response by down regulating the serum LPS and TLR4/NF-κB inflammatory pathway in kidney, thus promoting the excretion of uric acid in kidney. CONCLUSION Chicory intervention ameliorated HUA via modulating the imbalance of gut microbiota and suppressing LPS/TLR4 axis inflammatory reaction in quail model, which may be a promising candidate for hyperuricemia-relieving properties.
Collapse
Affiliation(s)
- Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Juan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zongxi Sun
- Guangxi International Zhuang Medicine Hospital, Nanning, 530201, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
65
|
Al Theyab A, Almutairi T, Al-Suwaidi AM, Bendriss G, McVeigh C, Chaari A. Epigenetic Effects of Gut Metabolites: Exploring the Path of Dietary Prevention of Type 1 Diabetes. Front Nutr 2020; 7:563605. [PMID: 33072796 PMCID: PMC7541812 DOI: 10.3389/fnut.2020.563605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) has increased over the past half century and has now become the second most frequent autoimmune disease in childhood and one of major public health concern worldwide. Evidence suggests that modern lifestyles and rapid environmental changes are driving factors that underlie this increase. The integration of these two factors brings about changes in food intake. This, in turn, alters epigenetic regulations of the genome and intestinal microbiota composition, which may ultimately play a role in pathogenesis of T1D. Recent evidence shows that dysbiosis of the gut microbiota is closely associated with T1D and that a dietary intervention can influence epigenetic changes associated with this disease and may modify gene expression patterns through epigenetic mechanisms. In this review focus on how a diet can shape the gut microbiome, its effect on the epigenome in T1D, and the future of T1D management by microbiome therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Doha, Qatar
| |
Collapse
|
66
|
Tao C, Zeng W, Zhang Q, Liu G, Wu F, Shen H, Zhang W, Bo H, Shao H. Effects of the prebiotic inulin-type fructans on post-antibiotic reconstitution of the gut microbiome. J Appl Microbiol 2020; 130:634-649. [PMID: 32813896 DOI: 10.1111/jam.14827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
AIMS Interventions using prebiotic inulin-type fructans (ITFs) are widely prescribed to modulate the gut microbiota composition and activity to promote health. However, the impacts of ITFs on post-antibiotic reconstitution of the gut microbiome remain incompletely understood. The aim of the present study was to investigate the effects of ITFs supplementation on intestinal inflammation, the composition of the intestinal microbiota and the colonic transcriptome after antibiotic treatment. METHODS AND RESULTS Male BALB/c mice were subjected to an antibiotic cocktail (ABx) treatment for 7 days, and their microbiomes were then reconstituted either spontaneously or with ITFs supplementation (5%) for 14 days. Our data showed that ITFs supplementation delayed the recovery of antibiotic-induced colitis compared with the spontaneous recovery. Neither ITFs supplementation nor spontaneous recovery could restore the microbial community composition at the genus level back to its initial composition. ITFs supplementation increased the relative abundance of some beneficial bacteria and butyrate levels, but resulted in selective blooms of some opportunistic pathogens and elevated the pathways associated with diseases linked to gut microbiota function. Both ITFs supplementation and spontaneous recovery could restore the colonic transcriptome nearly to the initial profile to a certain extent; however, ITFs supplementation delayed the restoration of the immunoglobulin genes compared to spontaneous recovery. CONCLUSION These data showed that post-antibiotic ITFs consumption did not always lead to beneficial effects but might lead to potential adverse effects in the context of dysbiosis. SIGNIFICANCE AND IMPACT OF THE STUDY These findings highlighted that caution is required when supplementing ITFs to restore intestinal homeostasis in the context of dysbiosis resulting from broad-spectrum antibiotics.
Collapse
Affiliation(s)
- C Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - W Zeng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Q Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - G Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - F Wu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - H Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - W Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - H Bo
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - H Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
67
|
Yanni AE, Mitropoulou G, Prapa I, Agrogiannis G, Kostomitsopoulos N, Bezirtzoglou E, Kourkoutas Y, Karathanos VT. Functional modulation of gut microbiota in diabetic rats following dietary intervention with pistachio nuts ( Pistacia vera L.). Metabol Open 2020; 7:100040. [PMID: 32812934 PMCID: PMC7424811 DOI: 10.1016/j.metop.2020.100040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gut microbiota holds a key-role in numerous biological functions and has emerged as a driving force for the development of diabetes. Diet contributes to gut microbiota diversity and functionality providing a tool for the prevention and management of the disease. The study aimed to investigate the effect of a dietary intervention with pistachio nuts, a rich source of monounsaturated fatty acids, dietary fibers and phytochemicals on gut microbiota composition in the rat model of Type 1 Diabetes. METHODS Male Wistar rats were randomly assigned into four groups: healthy animals which received control diet (CD) or pistachio diet (PD), and diabetic animals which received control diet (DCD) or pistachio diet (DPD) for 4 weeks. Plasma biochemical parameters were determined and histological examination of liver and pancreas was performed at the end of the dietary intervention. Adherent intestinal microbiota populations in jejunum, ileum, caecum and colon were analyzed. Fecal microbiota populations at the beginning and the end of the study were determined by microbiological analysis and 16S rRNA sequencing. RESULTS Diabetic animals of both groups exhibited high plasma glucose and low insulin concentrations, as well as characteristic pancreatic lesions. Pistachio supplementation significantly increased lactobacilli and bifidobacteria populations in jejunum, ileum and caecum (p < 0.05) and normalized microbial flora in all examined intestinal regions of diabetic animals. After 4 weeks of supplementation, populations of bifidobacteria and lactobacilli were increased in feces of both healthy and diabetic animals, while enterococci levels were decreased (p < 0.05). Next Generation Sequencing of fecal samples revealed increased and decreased counts of Firmicutes and Bacteroidetes, respectively, in healthy animals that received the pistachio diet. Actinobacteria OTUs were higher in diabetic animals and increased over time in the pistachio treated groups, along with increased abundance of Bifidobacterium. Lactobacillus, Turicibacter and Romboutsia populations were elevated in healthy animals administered the pistachio nuts. Of note, relative abundance of Bacteroides was higher in healthy than in diabetic rats (p < 0.05). CONCLUSION Dietary pistachio restored normal flora and enhanced the presence of beneficial microbes in the rat model of streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Amalia E. Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Georgios Agrogiannis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Vaios T. Karathanos
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
68
|
Keirns BH, Lucas EA, Smith BJ. Phytochemicals affect T helper 17 and T regulatory cells and gut integrity: implications on the gut-bone axis. Nutr Res 2020; 83:30-48. [PMID: 33010588 DOI: 10.1016/j.nutres.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The pathology of osteoporosis is multifactorial, but a growing body of evidence supports an important role of the gut-bone axis, especially in bone loss associated with menopause, rheumatoid arthritis, and periodontal disease. Aberrant T cell responses favoring an increase in the ratio of T helper 17 cells to T regulatory cells play a critical role in the underlying etiology of this bone loss. Many of the dietary phytochemicals known to have osteoprotective activity such as flavonoids, organosulfur compounds, phenolic acids, as well as the oligosaccharides also improve gut barrier function and affect T cell differentiation and activation within gut-associated lymphoid tissues and at distal sites. Here, we examine the potential of these phytochemicals to act as prebiotics and immunomodulating agents, in part targeting the gut to mediate their effects on bone.
Collapse
Affiliation(s)
- Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| |
Collapse
|
69
|
Hu Y, Chen D, Yu B, Yan H, Zheng P, Mao X, Yu J, He J, Huang Z, Luo Y, Luo J, Zhang X, Luo L. Effects of dietary fibres on gut microbial metabolites and liver lipid metabolism in growing pigs. J Anim Physiol Anim Nutr (Berl) 2020; 104:1484-1493. [DOI: 10.1111/jpn.13429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yaolian Hu
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Daiwen Chen
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Bing Yu
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Hui Yan
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Ping Zheng
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Jie Yu
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Jun He
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Yuheng Luo
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Junqiu Luo
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Xianghui Zhang
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Luhong Luo
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| |
Collapse
|
70
|
Abdellatif B, McVeigh C, Bendriss G, Chaari A. The Promising Role of Probiotics in Managing the Altered Gut in Autism Spectrum Disorders. Int J Mol Sci 2020; 21:E4159. [PMID: 32532137 PMCID: PMC7312735 DOI: 10.3390/ijms21114159] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal symptoms (GIS) have been reported repeatedly in people with autism spectrum disorder (ASD) and studies have reported interesting correlations between severity of behavioral and gastrointestinal symptoms. Growing evidence indicates that the gut microbiota in ASD is altered with various shifts described at different taxonomic levels, pointing to the importance of considering the gut-brain axis in treatment of these disorders. Probiotics are live beneficial bacteria that are ingested as food or customized pills. These beneficial bacteria, when added in sufficient amounts, can correct the dysbiosis. Because probiotics have shown success in treating irritable bowel syndrome (IBS), it is plausible to investigate whether they can induce alleviation of behavioral symptoms as well. Probiotics show, in some clinical studies, their potential benefits (1) in improving gastrointestinal dysfunction, (2) in correcting dysbiosis, (3) in consequently reducing the severity of ASD symptoms. This review compiles data from selected studies that investigate these benefits and the mechanisms that mediate these effects, which include the production of metabolites, hormones, and neurotransmitters and the regulation of pro-inflammatory and regulatory cytokines. Future research based on more randomized, controlled studies with a larger population size and standardized use of strains, concentration of probiotics, duration of treatments, and methods of DNA extraction is still needed in this area, which may lead to more robust results.
Collapse
Affiliation(s)
| | | | | | - Ali Chaari
- Premedical Department, Weill Cornell Medicine, Qatar Foundation, Education City, Doha, P.O. Box 24144, Qatar; (B.A.); (C.M.); (G.B.)
| |
Collapse
|
71
|
Wei Y, Yang H, Zhu C, Deng J, Fan D. Hypoglycemic Effect of Ginsenoside Rg5 Mediated Partly by Modulating Gut Microbiota Dysbiosis in Diabetic db/db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5107-5117. [PMID: 32307991 DOI: 10.1021/acs.jafc.0c00605] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we aimed to investigate the influence of ginsenoside Rg5 (Rg5) on gut microbiota in diabetic db/db mice. Our data indicated that Rg5 not only improved the symptoms of hyperglycemia, repaired intestinal barrier function, and relieved metabolic endotoxemia-related inflammation but also reversed gut microbiota dysbiosis in the colon with significantly decreased Firmicutes/Bacteroidetes ratios. More importantly, the effects of Rg5 were further confirmed by partial changes in the gut microbiota induced by broad-spectrum antibiotics. These findings indicated that Rg5 dramatically decreased the abundance of Firmicutes and Verrucomicrobia at the phylum level and increased the abundance of Bacteroidetes and Proteobacteria in diabetic db/db mice. Altogether, our findings, for the first time, demonstrate that Rg5 may be used as a beneficial probiotic agent that reverses gut microbiota dysbiosis and diabetes-associated metabolic disorders in the context of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yange Wei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Haixia Yang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| |
Collapse
|
72
|
Microbiota derived factors as drivers of type 1 diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:215-235. [PMID: 32475523 DOI: 10.1016/bs.pmbts.2020.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by complex interactions between host genetics and environmental factors, culminating in the T-cell mediated destruction of the insulin producing cells in the pancreas. The rapid increase in disease frequency over the past 50 years or more has been too rapid to attribute to genetics. Dysbiosis of the gut microbiota is currently being widely investigated as a major contributor to environmental change driving increased T1D onset. In this chapter, we discuss the major changes in gut microbiota composition and function linked to T1D risk as well as the potential origin of these changes including infant diet, antibiotic use and host genetics. We examine the interaction between inflammation and gut barrier function and the dysbiotic gut microbiota that have been linked to T1D.
Collapse
|
73
|
Myhill LJ, Stolzenbach S, Mejer H, Jakobsen SR, Hansen TVA, Andersen D, Brix S, Hansen LH, Krych L, Nielsen DS, Nejsum P, Thamsborg SM, Williams AR. Fermentable Dietary Fiber Promotes Helminth Infection and Exacerbates Host Inflammatory Responses. THE JOURNAL OF IMMUNOLOGY 2020; 204:3042-3055. [PMID: 32284331 DOI: 10.4049/jimmunol.1901149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
Fermentable dietary fibers promote the growth of beneficial bacteria, can enhance mucosal barrier integrity, and reduce chronic inflammation. However, effects on intestinal type 2 immune function remain unclear. In this study, we used the murine whipworm Trichuris muris to investigate the effect of the fermentable fiber inulin on host responses to infection regimes that promote distinct Th1 and Th2 responses in C57BL/6 mice. In uninfected mice, dietary inulin stimulated the growth of beneficial bacteria, such as Bifidobacterium (Actinobacteria) and Akkermansia (Verrucomicrobia). Despite this, inulin prevented worm expulsion in normally resistant mice, instead resulting in chronic infection, whereas mice fed an equivalent amount of nonfermentable fiber (cellulose) expelled worms normally. Lack of expulsion in the mice fed inulin was accompanied by a significantly Th1-skewed immune profile characterized by increased T-bet+ T cells and IFN-γ production in mesenteric lymph nodes, increased expression of Ido1 in the cecum, and a complete absence of mast cell and IgE production. Furthermore, the combination of dietary inulin and high-dose T. muris infection caused marked dysbiosis, with expansion of the Firmicutes and Proteobacteria phyla, near elimination of Bacteroidetes, and marked reductions in cecal short-chain fatty acids. Neutralization of IFN-γ during infection abrogated Ido1 expression and was sufficient to restore IgE production and worm expulsion in inulin-fed mice. Our results indicate that, whereas inulin promoted gut health in otherwise healthy mice, during T. muris infection, it exacerbated inflammatory responses and dysbiosis. Thus, the positive effects of fermentable fiber on gut inflammation appear to be context dependent, revealing a novel interaction between diet and infection.
Collapse
Affiliation(s)
- Laura J Myhill
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark;
| | - Sophie Stolzenbach
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Simon R Jakobsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Tina V A Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Daniel Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Lars H Hansen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1871, Denmark
| | - Lukasz Krych
- Department of Food Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1958, Denmark; and
| | - Dennis S Nielsen
- Department of Food Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1958, Denmark; and
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus DK-8200, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark;
| |
Collapse
|
74
|
In vitro prebiotic activities of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 and its effect on the gut microbiota of mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103853] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
75
|
Chen J, Zhai Z, Long H, Yang G, Deng B, Deng J. Inducible expression of defensins and cathelicidins by nutrients and associated regulatory mechanisms. Peptides 2020; 123:170177. [PMID: 31704211 DOI: 10.1016/j.peptides.2019.170177] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Host defense peptides (HDPs) are crucial components of the body's first line of defense that protect organisms from infections and mediate immune responses. Defensins and cathelicidins are the two most important families of HDPs in mammals. In this review, we summarize the nutrients that are involved in inducible expression of endogenous defensins and cathelicidins. In addition, the mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NF-κB) and histone deacetylase (HDAC) signaling pathways that play vital roles in the induction of defensin and cathelicidin expression are highlighted. Endogenous defensins and cathelicidins induced by nutrients may be potential alternatives to antibiotic treatments against infection and diseases. This review mainly focuses on the inducible expression and regulatory mechanisms of defensins and cathelicidins in multiple species by different nutrients and the potential applications of defensin- and cathelicidin-inducing nutrients.
Collapse
Affiliation(s)
- Jialuo Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenya Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongrong Long
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangming Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
76
|
Song J, Li Q, Everaert N, Liu R, Zheng M, Zhao G, Wen J. Effects of inulin supplementation on intestinal barrier function and immunity in specific pathogen-free chickens with Salmonella infection. J Anim Sci 2020; 98:skz396. [PMID: 31894241 PMCID: PMC6986778 DOI: 10.1093/jas/skz396] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
We investigated the effects of inulin on intestinal barrier function and mucosal immunity in Salmonella enterica serovar Enteritidis (SE)-infected specific pathogen-free (SPF) chickens. SPF chickens (n = 240, 1-d-old) were divided into 4 groups (6 replicates per group, 10 chickens per replicate): a control group (CON) fed a basal diet without inulin supplementation and 3 SE-infected groups fed a basal diet supplemented with inulin 0% (SE group), 0.5% (0.5% InSE group), and 1% (1% InSE group), respectively. At 28 d of age, the chickens in SE-infected groups were orally infected with SE and in CON group were administrated with phosphated-buffered saline (PBS). Intestinal morphology, mucosal immunity, and intestinal barrier function-related gene expression were analyzed at 1- and 3-d post-infection (dpi). SE challenge significantly increased the mucosal gene expression, such as interleukin-1β (IL-1β), lipopolysaccharide-induced tumor necrosis factor factor (LITAF), interferon-γ (IFN-γ), and interleukin-6 (IL-6), and increased serum IFN-γ, secretory IgA (sIgA), and IgG concentration, and significantly decreased the gene expression levels of mucin 2 (MUC2) and claudin-1 at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation improved the expression levels of these immunity- and intestinal barrier function-related genes, increased villus height (VH), and decreased crypt depth (CD) in the duodenum, jejunum, and ileum at 1 and 3 dpi within the SE-challenged groups (P < 0.05). SE challenge significantly increased ileal Toll-like receptor 4 (TLR4) mRNA at 1 and 3 dpi, suppressor of cytokine signaling 3 (SOCS3) mRNA at 1 dpi, and phospho-signal transducer and activator of transcription 3 (p-STAT3) and Janus kinase1 (JAK1) protein expression at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation suppressed p-STAT3 and JAK1 protein expression and promoted ileal TLR4 and SOCS3 mRNA expression at 3 dpi compared with SE group (P < 0.05). In conclusion, inulin alleviated SE-induced gut injury by decreasing the proinflammatory response and enhancing mucosal immunity in chickens.
Collapse
Affiliation(s)
- Jiao Song
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
77
|
Inulin-type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE-assessed systematic review and dose-response meta-analysis of 33 randomized controlled trials. J Transl Med 2019; 17:410. [PMID: 31805963 PMCID: PMC6896694 DOI: 10.1186/s12967-019-02159-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Currently, many clinical trials have shown that inulin-type fructans (ITF) supplementation is associated with glycemic control; nevertheless, the results are inconclusive. The aim of this meta-analysis of randomized controlled trials was to assess the effects of ITF supplementation on glycemic control. Methods PubMed, EMBASE and the Cochrane Library were searched for eligible articles up to March 6, 2019. A random-effects model was used to analyze the pooled results, and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system was applied to assess the quality of evidence. The dose–response model was used to recommend the daily dose and duration for ITF supplementation. Results Thirty-three trials involving 1346 participants were included. Overall, ITF supplementation could significantly reduce concentrations of fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), fasting insulin (FINS) and homeostasis model assessment-insulin resistance (HOMA-IR). In the prediabetes and type 2 diabetes (T2DM) population, a more significant reduction in FBG [weighted mean difference (WMD): − 0.60 mmol/l; 95% CI − 0.71, − 0.48 mmol/l; high rate], HbA1c (WMD: − 0.58%; 95% CI − 0.83, − 0.32%; high rate), FINS (WMD: − 1.75 µU/ml; 95% CI − 2.87, − 0.63 µU/ml; low rate), and HOMA-IR (WMD: − 0.69; 95% CI − 1.10, − 0.28; low rate) were observed, and ITF supplementation with a daily dose of 10 g for a duration of 6 weeks and longer was recommended. Moreover, subgroup analyses suggested that the effects of glycemic control were significantly influenced by the sex of the subjects and the type and the method of intake of ITF. Conclusions Our analyses confirmed that these four main glycemic indicators were significantly reduced by ITF supplementation, particularly in the prediabetes and T2DM population. Evidence supports that reasonable administration of ITF supplementation may have potential clinical value as an adjuvant therapy for prediabetes and T2DM management. Trial registration The trial was registered at PROSPERO as CRD42018115875 on November 23, 2018.
Collapse
|
78
|
Li B, Schroyen M, Leblois J, Beckers Y, Bindelle J, Everaert N. The use of inulin and wheat bran only during the starter period or during the entire rearing life of broilers: effects on growth performance, small intestinal maturation, and cecal microbial colonization until slaughter age. Poult Sci 2019; 98:4058-4065. [PMID: 30868160 DOI: 10.3382/ps/pez088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Inulin and wheat bran were added to broiler diets during the starter period or during the entire rearing period to investigate whether the effects of using these ingredients remained until slaughter age. Diets containing no inulin and no wheat bran (CON), 2% inulin (IN), 10% wheat bran (WB), or 2% inulin + 10% wheat bran (IN+WB) were provided until day 11. Thereafter, each dietary treatment was further divided into a continued diet with supplementation or a control diet, resulting in 7 groups (CON, IN/IN, IN/CON, WB/WB, WB/CON, IN+WB/IN+WB, or IN+WB/CON). On day 40, 12 chickens per group were euthanized. The IN/IN group increased the cecal molar ratio of butyrate but had a lower relative abundance of Lactobacillus (P < 0.05). Additionally, the cecal molar ratio of propionate was higher in the IN/CON group compared to the IN/IN group (P = 0.034). The WB/CON group had the best results on BW and feed conversion ratio (FCR) (P < 0.05). Only the cecal molar ratio of iso-butyrate was higher in the WB/WB group (P = 0.013). Moreover, compared to the CON group, both WB/WB and WB/CON groups reduced the relative abundances of Bifidobacterium and Escherichia coli, and only the WB/WB group reduced the relative abundance of Enterobacteriaceae (P < 0.05). Both IN+WB/IN+WB and IN+WB/CON groups increased BW until day 21 and lowered the relative abundance of Bifidobacterium (P < 0.05). The IN+WB/IN+WB group increased the cecal molar ratio of butyrate but reduced the molar ratio of propionate with a higher relative abundance of Enterobacteriaceae (P < 0.05). In conclusion, the lack of positive effects induced by inulin might be explained by the dose being too high. The beneficial effects on BW, FCR, and microbiota induced by wheat bran during the starter period were lasting when supplementation was stopped, suggesting that wheat bran could be a favorable ingredient during the starter period.
Collapse
Affiliation(s)
- Bing Li
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - Martine Schroyen
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - Julie Leblois
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium.,Research Foundation for Industry and Agriculture, National Scientific Research Foundation (FRIA-FNRS), 1000 Brussels, Belgium
| | - Yves Beckers
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - Jérôme Bindelle
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - Nadia Everaert
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
79
|
Gastrointestinal Microbiota and Type 1 Diabetes Mellitus: The State of Art. J Clin Med 2019; 8:jcm8111843. [PMID: 31684011 PMCID: PMC6912450 DOI: 10.3390/jcm8111843] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence of autoimmune type 1 diabetes (T1DM) is increasing worldwide and disease onset tends to occur at a younger age. Unfortunately, clinical trials aiming to detect predictive factors of disease, in individuals with a high risk of T1DM, reported negative results. Hence, actually there are no tools or strategies to prevent T1DM onset. The importance of the gut microbiome in autoimmune diseases is increasingly recognized and recent data suggest that intestinal dysbiosis has a pathogenic role in T1DM by affecting both intestinal immunostasis and the permeability of the gut barrier. An improved understanding of the mechanisms whereby dysbiosis in the gut favors T1DM development may help develop new intervention strategies to reduce both the incidence and burden of T1DM. This review summarizes available data on the associations between gut microbiota and T1DM in both experimental animals and humans and discusses future perspectives in this novel and exciting area of research.
Collapse
|
80
|
Hu TG, Wen P, Liu J, Long XS, Liao ST, Wu H, Zou YX. Combination of mulberry leaf and oat bran possessed greater hypoglycemic effect on diabetic mice than mulberry leaf or oat bran alone. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
81
|
Li BY, Xu XY, Gan RY, Sun QC, Meng JM, Shang A, Mao QQ, Li HB. Targeting Gut Microbiota for the Prevention and Management of Diabetes Mellitus by Dietary Natural Products. Foods 2019; 8:E440. [PMID: 31557941 PMCID: PMC6835620 DOI: 10.3390/foods8100440] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is one of the biggest public health concerns worldwide, which includes type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and other rare forms of diabetes mellitus. Accumulating evidence has revealed that intestinal microbiota is closely associated with the initiation and progression of diabetes mellitus. In addition, various dietary natural products and their bioactive components have exhibited anti-diabetic activity by modulating intestinal microbiota. This review addresses the relationship between gut microbiota and diabetes mellitus, and discusses the effects of natural products on diabetes mellitus and its complications by modulating gut microbiota, with special attention paid to the mechanisms of action. It is hoped that this review paper can be helpful for better understanding of the relationships among natural products, gut microbiota, and diabetes mellitus.
Collapse
Affiliation(s)
- Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Quan-Cai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
82
|
Wu C, Pan L, Luo Y, Niu W, Fang X, Liang W, Li J, Li H, Pan X, Yang G, Chen W, Zhang H, Lakey JRT, Agerberth B, Vos P, Sun J. Low Methoxyl Pectin Protects against Autoimmune Diabetes and Associated Caecal Dysfunction. Mol Nutr Food Res 2019; 63:e1900307. [DOI: 10.1002/mnfr.201900307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Chengfei Wu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Li‐Long Pan
- School of MedicineJiangnan University Wuxi 214122 P. R. China
| | - Yang Luo
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Wenying Niu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Xin Fang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Wenjie Liang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Jiahong Li
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Hongli Li
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Guilian Yang
- College of Animal Science and TechnologyJilin Agricultural University Changchun 130118 P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | | | - Birgitta Agerberth
- Division of Clinical MicrobiologyDepartment of Laboratory MedicineKarolinska InstituteKarolinska University Hospital 17177 Stockholm Sweden
| | - Paul Vos
- Division of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center Groningen 9713 GZ Groningen The Netherlands
| | - Jia Sun
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| |
Collapse
|
83
|
Cui J, Lian Y, Zhao C, Du H, Han Y, Gao W, Xiao H, Zheng J. Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Compr Rev Food Sci Food Saf 2019; 18:1514-1532. [DOI: 10.1111/1541-4337.12489] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jiefen Cui
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| | - Yunhe Lian
- Research and Development Dept.Chenguang Biotech Group Co., Ltd. Hebei 057250 China
| | - Chengying Zhao
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| | - Hengjun Du
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Yanhui Han
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Wei Gao
- Research and Development Dept.Chenguang Biotech Group Co., Ltd. Hebei 057250 China
| | - Hang Xiao
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Jinkai Zheng
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| |
Collapse
|
84
|
Li K, Zhang L, Xue J, Yang X, Dong X, Sha L, Lei H, Zhang X, Zhu L, Wang Z, Li X, Wang H, Liu P, Dong Y, He L. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice. Food Funct 2019; 10:1915-1927. [PMID: 30869673 DOI: 10.1039/c8fo02265h] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is closely correlated with chronic low-grade inflammation and gut dysbiosis. Prebiotic inulin (INU) is conducive to modulate gut dysbiosis. However, the impact of dietary inulin on the diverse stages of T2DM remains largely unknown. In the present study, according to the fasting blood glucose (FBG) and oral glucose tolerance tests (OGTT), mice were randomly divided into six groups (15 mice per group): pre-diabetic group (PDM group); inulin-treated pre-diabetic group (INU/PDM group); early diabetic group (EDM group); inulin-treated early diabetic group (INU/EDM group); diabetic group (DM group); inulin-treated diabetic group (INU/DM group). All animal experiments were approved by the Ethics Committee of the General Hospital of Ningxia Medical University (No. 2016-232). After 6 weeks of inulin intervention, the mice were euthanized and the associated indicators were investigated. Dietary inulin significantly reduced FBG, body weights (BWs), glycated hemoglobin (GHb), blood lipid, plasma lipopolysaccharide (LPS), interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-17A in the three inulin-treated groups compared to the untreated groups. But for IL-17A, there remained no significant difference between the PDM group and the INU/PDM group. Moreover, the anti-inflammatory IL-10 showed significant alteration in the INU/PDM and INU/EDM groups, but no significant alteration in the INU/DM group. Sequencing analysis of the gut microbiota showed an elevation in the relative abundance of Cyanobacteria and Bacteroides and a reduction in the relative abundance of Ruminiclostridium_6 in three inulin-treated different stages of T2DM groups, as well as a reduction in the relative abundance of Deferribacteres and Tenericutes in the INU/DM group. A reduction in the relative abundance of Mucispirillum was detected in the INU/PDM and INU/EDM groups. Correlation analysis revealed that Cyanobacteria and Bacteroides abundance were positively correlated with IL-10; Deferribacteres, Tenericutes, Mucispirillum and Ruminiclostridium_6 abundance were closely related to IL-6, TNF-α or IL-17A respectively. Additionally, Mucispirillum and Ruminiclostridium_6 abundance were positively correlated with LPS. Taken together, dietary inulin alleviated the diverse stages of T2DM via suppressing inflammation and modulating gut microbiota.
Collapse
Affiliation(s)
- Ke Li
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abdellatif AM, Sarvetnick NE. Current understanding of the role of gut dysbiosis in type 1 diabetes. J Diabetes 2019; 11:632-644. [PMID: 30864231 DOI: 10.1111/1753-0407.12915] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/13/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that results from destruction of the insulin-producing pancreatic β-cells. The disease mainly affects juveniles. Changes in the composition of the gut microbiota (dysbiosis) and changes in the properties of the gut barrier have been documented in T1D subjects. Because these factors affect immune system functions, they are likely to play a role in disease pathogenesis. However, their exact role is currently not fully understood and is under intensive investigation. In this article we discuss recent advancements depicting the role of intestinal dysbiosis on immunity and autoimmunity in T1D. We also discuss therapies aimed at maintaining a healthy gut barrier as prevention strategies for T1D.
Collapse
Affiliation(s)
- Ahmed M Abdellatif
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Nora E Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
86
|
Wu C, Pan LL, Niu W, Fang X, Liang W, Li J, Li H, Pan X, Chen W, Zhang H, Lakey JRT, Agerberth B, de Vos P, Sun J. Modulation of Gut Microbiota by Low Methoxyl Pectin Attenuates Type 1 Diabetes in Non-obese Diabetic Mice. Front Immunol 2019; 10:1733. [PMID: 31417546 PMCID: PMC6682655 DOI: 10.3389/fimmu.2019.01733] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023] Open
Abstract
Intestinal homeostasis underpins the development of type 1 diabetes (T1D), and dietary manipulations to enhance intestinal homeostasis have been proposed to prevent T1D. The current study aimed to investigate the efficacy of supplementing a novel specific low-methoxyl pectin (LMP) dietary fiber in preventing T1D development. Female NOD mice were weaned onto control or 5% (wt/wt) LMP supplemented diets for up to 40 weeks of age, overt diabetes incidence and blood glucose were monitored. Then broad-spectrum antibiotics (ABX) treatment per os for 7 days followed by gut microbiota transfer was performed to demonstrate gut microbiota-dependent effects. Next-generation sequencing was used for analyzing the composition of microbiota in caecum. Concentration of short chain fatty acids were determined by GC-MS. The barrier reinforcing tight junction proteins zonula occludens-2 (ZO-2), claudin-1 and NOD like receptor protein 3 (NLRP3) inflammasome activation were determined by Western blot. The proportion of CD25+Foxp3+CD4+ regulatory T cell (Foxp3+ Treg) in the pancreas, pancreatic and mesenteric lymph nodes was analyzed by flow cytometry. We found that LMP supplementation ameliorated T1D development in non-obese diabetic (NOD) mice, as evidenced by decreasing diabetes incidence and fasting glucose levels in LMP fed NOD mice. Further microbiota analysis revealed that LMP supplementation prevented T1D-associated caecal dysbiosis and selectively enriched caecal bacterial species to produce more SCFAs. The LMP-mediated microbial balance further enhanced caecal barrier function and shaped gut-pancreatic immune environment, as characterized by higher expression of tight junction proteins claudin-1, ZO-2 in caecum, increased Foxp3+ Treg population and decreased NLRP3 inflammasome activation in both caecum and pancreas. The microbiota-dependent beneficial effect of LMP on T1D was further proven by the fact that aberration of caecal microbiota by ABX treatment worsened T1D autoimmunity and could be restored with transfer of feces of LMP-fed NOD mice. These data demonstrate that this novel LMP limits T1D development by inducing caecal homeostasis to shape pancreatic immune environment. This finding opens a realistic option for gut microbiota manipulation and prevention of T1D in humans.
Collapse
Affiliation(s)
- Chengfei Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, China
| | - Wenying Niu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenjie Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jonathan R T Lakey
- Department of Surgery, University of California, Irvine, Orange, CA, United States
| | - Birgitta Agerberth
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
| | - Paul de Vos
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
87
|
Fassatoui M, Lopez-Siles M, Díaz-Rizzolo DA, Jmel H, Naouali C, Abdessalem G, Chikhaoui A, Nadal B, Jamoussi H, Abid A, Gomis R, Abdelhak S, Martinez-Medina M, Kefi R. Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus. Biosci Rep 2019; 39:BSR20182348. [PMID: 31147456 PMCID: PMC6579978 DOI: 10.1042/bsr20182348] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota plays an important role in the regulation of the immune system and host's metabolism. We aimed to characterize the gut microbiota of Tunisian participants with and without diabetes.We enrolled ten participants with type 1 diabetes mellitus (T1DM), ten patients with type 2 diabetes mellitus (T2DM), and 11 subjects without diabetes. Bacteria was quantified in fecal samples by quantitative PCR (qPCR). Statistical tests and multivariate analysis were performed using RStudio program.Results showed that the proportions of Firmicutes, Akkermansia muciniphila, and Faecalibacterium prausnitzii (P≤0.041), as well as, the ratio Firmicutes/Bacteroidetes decreased in participants with T1DM compared with those without diabetes (p = 0.036). Participants with T2DM presented a reduction in the amounts of A. muciniphila and F. prausnitzii compared with those without diabetes (P≤0.036). Furthermore, A. muciniphila is negatively correlated with glucose level (P=0.022) and glycated hemoglobin (HbA1c) (P=0.035). Multivariate analysis revealed that participants with diabetes formed a cluster apart compared with those without diabetes.In conclusion the gut bacteria of Tunisian participants with diabetes was altered. The gut bacterial profile, especially the distribution of A muciniphila in participants with diabetes was affected by glycemic dysregulation. The investigation of the gut microbiota may help clinicians to improve diagnosis and treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Meriem Fassatoui
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 13, Place Pasteur, B.P.74, 1002, Belvédère, Tunis, Tunisia
- University of Tunis El Manar, Campus Universitaire Farhat Hached, BP n° 94, Rommana, 1068, Tunis, Tunisia
| | - Mireia Lopez-Siles
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Maria Aurèlia Capmany, 40, 17003, Girona, Spain
| | - Diana A Díaz-Rizzolo
- Diabetes and Obesity Research Laboratory, Institut d'Investigations Biomèdiques, August Pi I Sunyer (IDIBAPS), Hospital Clinic, Rosselló 149-153, 08036, Barcelona Spain
| | - Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 13, Place Pasteur, B.P.74, 1002, Belvédère, Tunis, Tunisia
| | - Chokri Naouali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 13, Place Pasteur, B.P.74, 1002, Belvédère, Tunis, Tunisia
- University of Tunis El Manar, Campus Universitaire Farhat Hached, BP n° 94, Rommana, 1068, Tunis, Tunisia
| | - Ghaith Abdessalem
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 13, Place Pasteur, B.P.74, 1002, Belvédère, Tunis, Tunisia
- University of Tunis El Manar, Campus Universitaire Farhat Hached, BP n° 94, Rommana, 1068, Tunis, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 13, Place Pasteur, B.P.74, 1002, Belvédère, Tunis, Tunisia
- University of Tunis El Manar, Campus Universitaire Farhat Hached, BP n° 94, Rommana, 1068, Tunis, Tunisia
| | - Belén Nadal
- Diabetes and Obesity Research Laboratory, Institut d'Investigations Biomèdiques, August Pi I Sunyer (IDIBAPS), Hospital Clinic, Rosselló 149-153, 08036, Barcelona Spain
| | - Henda Jamoussi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 13, Place Pasteur, B.P.74, 1002, Belvédère, Tunis, Tunisia
- Department of Nutritional Diseases A, National Institute of Nutrition and Food Technology, 11, Rue Djebel Lakhdar, Bab Saâdoun, 1007, Tunis, Tunisia
| | - Abdelmajid Abid
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 13, Place Pasteur, B.P.74, 1002, Belvédère, Tunis, Tunisia
- Department of External Consultation, National Institute of Nutrition and Food Technology, 11, Rue Djebel Lakhdar, Bab Saâdoun, 1007, Tunis, Tunisia
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, Institut d'Investigations Biomèdiques, August Pi I Sunyer (IDIBAPS), Hospital Clinic, Rosselló 149-153, 08036, Barcelona Spain
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 13, Place Pasteur, B.P.74, 1002, Belvédère, Tunis, Tunisia
- University of Tunis El Manar, Campus Universitaire Farhat Hached, BP n° 94, Rommana, 1068, Tunis, Tunisia
| | - Margarita Martinez-Medina
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Maria Aurèlia Capmany, 40, 17003, Girona, Spain
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, 13, Place Pasteur, B.P.74, 1002, Belvédère, Tunis, Tunisia
- University of Tunis El Manar, Campus Universitaire Farhat Hached, BP n° 94, Rommana, 1068, Tunis, Tunisia
| |
Collapse
|
88
|
Cheng Y, Sibusiso L, Hou L, Jiang H, Chen P, Zhang X, Wu M, Tong H. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice. Int J Biol Macromol 2019; 131:1162-1170. [PMID: 30974142 DOI: 10.1016/j.ijbiomac.2019.04.040] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/27/2019] [Accepted: 04/07/2019] [Indexed: 12/31/2022]
Abstract
Diabetes is a complicated endocrine and metabolic disorder, which has become an epidemic health issue worldwide. Fucoidan is extensively distributed in the brown algae and several marine invertebrates exhibiting diverse biological activities. In the present study, the physicochemical property of Sargassum fusiforme fucoidan (SFF) and its effects on streptozotocin (STZ)-induced diabetic mice and gut microbiota were investigated. Diabetes mice not only showed abnormal blood glucose, but also accompanied by multiple symptoms, such as gradual emaciation, decreased body weight, increased food and water intake. Compared with diabetic mice after 6-week treatment, administration of SFF significantly decreased the fasting blood glucose, diet and water intake. Furthermore, SFF attenuated the pathological change in the heart and liver, improved the liver function, and suppressed oxidative stress in STZ-induced diabetic mice. Simultaneously, SFF significantly altered the gut microbiota in the faeces of diabetic mice, decreased the relative abundances of the diabetes-related intestinal bacteria, which is a potential mechanism for relieving the symptoms of diabetes. Therefore, SFF might be considered as one of the promising complementary and alternative medicines for the management of diabetes mellitus in future.
Collapse
Affiliation(s)
- Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Luthuli Sibusiso
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Lingfeng Hou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huijing Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
89
|
Ahmadi S, Nagpal R, Wang S, Gagliano J, Kitzman DW, Soleimanian-Zad S, Sheikh-Zeinoddin M, Read R, Yadav H. Prebiotics from acorn and sago prevent high-fat-diet-induced insulin resistance via microbiome-gut-brain axis modulation. J Nutr Biochem 2019; 67:1-13. [PMID: 30831458 PMCID: PMC6520164 DOI: 10.1016/j.jnutbio.2019.01.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/30/2018] [Accepted: 01/18/2019] [Indexed: 01/06/2023]
Abstract
Role of gut microbiome in obesity and type 2 diabetes (T2D) became apparent from several independent studies indicating that gut microbiome modulators like prebiotics may improve microbiome perturbations (dysbiosis) to ameliorate metabolic derangements. We herein isolate water soluble, nondigestible polysaccharides from five plant-based foods (acorn, quinoa, sunflower, pumpkin seeds and sago) and assess their impact on human fecal microbiome and amelioration of high-fat-diet (HFD)-induced obesity/T2D in mice. During polysaccharide isolation, purification, biochemical and digestion resistance characterization, and fermentation pattern by human fecal microbiome, we select acorn- and sago-derived prebiotics (on the basis of relatively higher purity and yield and lower protein contamination) and examine their effects in comparison to inulin. Prebiotics treatments in human fecal microbiome culture system not only preserve microbial diversity but also appear to foster beneficial bacteria and short-chain fatty acids (SCFAs). Feeding of acorn- and sago-derived prebiotics ameliorates HFD-induced glucose intolerance and insulin resistance in mice, with effects comparatively superior to those seen in inulin-fed mice. Feeding of both of novel prebiotics as well as inulin increases SCFAs levels in the mouse gut. Interestingly, gut hyperpermeability and mucosal inflammatory markers were significantly reduced upon prebiotics feeding in HFD-fed mice. Hypothalamic energy signaling in terms of increased expression of pro-opiomelanocortin was also modulated by prebiotics administration. Results demonstrate that these (and/or such) novel prebiotics can ameliorate HFD-induced defects in glucose metabolism via positive modulation of gut-microbiome-brain axis and hence could be useful in preventing/treating diet-induced obesity/T2D.
Collapse
Affiliation(s)
- Shokouh Ahmadi
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jason Gagliano
- National Center for the Biotechnology Workforce, Forsyth Technical Community College, Winston-Salem, NC, USA
| | - Dalane W Kitzman
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mahmoud Sheikh-Zeinoddin
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Russel Read
- National Center for the Biotechnology Workforce, Forsyth Technical Community College, Winston-Salem, NC, USA
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
90
|
Guo K, Ren J, Gu G, Wang G, Gong W, Wu X, Ren H, Hong Z, Li J. Hesperidin Protects Against Intestinal Inflammation by Restoring Intestinal Barrier Function and Up-Regulating Treg Cells. Mol Nutr Food Res 2019; 63:e1800975. [PMID: 30817082 DOI: 10.1002/mnfr.201800975] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/20/2019] [Indexed: 12/19/2022]
Abstract
SCOPE Hesperidin is an important natural phenolic compound and is considered beneficial to health. The purpose of this study is to investigate the protective effects of hesperidin on DSS-induced colitis in mice and Caco-2 cells. METHODS The DSS-induced colitis mice are assigned to 10, 20, and 40 mg kg-g hesperidin diets after DSS treatment. For in vitro experiments, Caco-2 cells are treated with TNF-α/ IFN-γ for 48 h without or with hesperidin. RESULTS Hesperidin supplementation ameliorates DSS-induced colitis. Specifically, hesperidin ameliorates intestinal inflammation through decreasing MDA activity and enhancing SOD and GSH activities. Hesperidin also obviously upregulates Nrf2 antioxidant pathway and increases the protein expression of HO-1 and NQO1. Additionally, hesperidin significantly reduces the levels of inflammatory factors and increases the levels of anti-inflammatory factors in the colon tissues. Further analysis shows that hesperidin can improve the expression of tight junction proteins and intestinal permeability, as well as increases the Treg population. In Caco-2 cells, it is shown that hesperidin prevents TNF-α/IFN-γ-induced reduction in TEER and morphological disruption. Moreover, hesperidin also decreases the epithelial permeability and suppresses proinflammatory responses. CONCLUSION Hesperidin can protect against intestinal inflammation via enhanced Nrf2 antioxidant pathway, increases the Treg population, and restores intestinal barrier function.
Collapse
Affiliation(s)
- Kun Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jianan Ren
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Guosheng Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Gefei Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Wenbin Gong
- Department of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210002, China
| | - Xiuwen Wu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Huajian Ren
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Zhiwu Hong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| |
Collapse
|
91
|
Probiotics and Prebiotics for the Amelioration of Type 1 Diabetes: Present and Future Perspectives. Microorganisms 2019; 7:microorganisms7030067. [PMID: 30832381 PMCID: PMC6463158 DOI: 10.3390/microorganisms7030067] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Type 1-diabetes (T1D) is an autoimmune disease characterized by immune-mediated destruction of pancreatic beta (β)-cells. Genetic and environmental interactions play an important role in immune system malfunction by priming an aggressive adaptive immune response against β-cells. The microbes inhabiting the human intestine closely interact with the enteric mucosal immune system. Gut microbiota colonization and immune system maturation occur in parallel during early years of life; hence, perturbations in the gut microbiota can impair the functions of immune cells and vice-versa. Abnormal gut microbiota perturbations (dysbiosis) are often detected in T1D subjects, particularly those diagnosed as multiple-autoantibody-positive as a result of an aggressive and adverse immunoresponse. The pathogenesis of T1D involves activation of self-reactive T-cells, resulting in the destruction of β-cells by CD8⁺ T-lymphocytes. It is also becoming clear that gut microbes interact closely with T-cells. The amelioration of gut dysbiosis using specific probiotics and prebiotics has been found to be associated with decline in the autoimmune response (with diminished inflammation) and gut integrity (through increased expression of tight-junction proteins in the intestinal epithelium). This review discusses the potential interactions between gut microbiota and immune mechanisms that are involved in the progression of T1D and contemplates the potential effects and prospects of gut microbiota modulators, including probiotic and prebiotic interventions, in the amelioration of T1D pathology, in both human and animal models.
Collapse
|
92
|
Su J, Zhu Q, Zhao Y, Han L, Yin Y, Blachier F, Wang Z, Kong X. Dietary Supplementation With Chinese Herbal Residues or Their Fermented Products Modifies the Colonic Microbiota, Bacterial Metabolites, and Expression of Genes Related to Colon Barrier Function in Weaned Piglets. Front Microbiol 2018; 9:3181. [PMID: 30627122 PMCID: PMC6309725 DOI: 10.3389/fmicb.2018.03181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023] Open
Abstract
To explore the feasibility of dietary Chinese herbal residue (CHR) supplementation in swine production with the objective of valorization, we examined the effects of dietary supplementation with CHR or fermented CHR products on the colonic ecosystem (i.e., microbiota composition, luminal bacterial metabolites, and expression of genes related to the intestinal barrier function in weaned piglets). We randomly assigned 120 piglets to one of four dietary treatment groups: a blank control group, CHR group (dose of supplement 4 kg/t), fermented CHR group (dose of supplement 4 kg/t), and a positive control group (supplemented with 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3000 mg/kg zinc 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3000 mg/kg zinc oxide). Our results indicate that dietary supplementation with CHR increased (P < 0.05) the mRNA level corresponding to E-cadherin compared with that observed in the other three groups, increased (P < 0.05) the mRNA level corresponding to zonula occludens-1, and decreased (P < 0.05) the quantity of Bifidobacterium spp. When compared with the blank control group. Dietary supplementation with fermented CHR decreased (P < 0.05) the concentration of indole when compared to the positive control group; increased (P < 0.05) the concentrations of short-chain fatty acids compared with the values measured in the CHR group, as well as the mRNA levels corresponding to interleukin 1 alpha, interleukin 2, and tumor necrosis factor alpha. However, supplementation with fermented CHR decreased (P < 0.05) interleukin 12 levels when compared with the blank control group. Collectively, these findings suggest that dietary supplementation with CHR or fermented CHR modifies the gut environment of weaned piglets.
Collapse
Affiliation(s)
- Jiayi Su
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yue Zhao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Li Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Francois Blachier
- Nutrition Physiology and Ingestive Behavior, UMR 914 INRA/AgroParisTech/Universite Paris-Saclay, Paris, France
| | - Zhanbin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
93
|
Song J, Li Q, Li P, Liu R, Cui H, Zheng M, Everaert N, Zhao G, Wen J. The effects of inulin on the mucosal morphology and immune status of specific pathogen-free chickens. Poult Sci 2018; 97:3938-3946. [PMID: 29992311 DOI: 10.3382/ps/pey260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/27/2018] [Indexed: 12/18/2022] Open
Abstract
This study investigated the effects of inulin on mucosal morphology and immune function of specific pathogen-free (SPF) chickens. A total of 200 one-day-old White Leghorns SPF chickens were divided into 5 groups of 4 replicates of 10 chickens each. All SPF chickens were fed a basal diet supplemented with 0, 0.25, 0.5, 1.0, or 2.0% inulin. The mucosal morphology and immune indexes were analyzed on days 7, 14, and 21, respectively. Our results showed that the concentrations of acetate and propionate in the cecum and serum had increased with dietary inulin supplementation on day 21 (P < 0.05). Butyrate could not be detected in the cecal digesta, but was increased in the serum of 1 and 2% groups, as compared with the control group (P < 0.05). The villi height was increased (P < 0.05) and the crypt depth was decreased (P < 0.05) in the duodenum and ileum of SPF chickens fed inulin, as compared with the control group. Also, inulin at a low concentration (0.25 or 0.5%) significantly decreased (P < 0.05) the gene expression of nuclear factor-κB (NF-κB), lipopolysaccharide-induced tumor necrosis factor (LITAF) at 7, 14, and 21 d, and of interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) at 7 and 14 d, and increased that of mucin 2 (MUC2) and claudin-1 in the ileum of SPF chickens at 7, 14, and 21 d. High inulin supplementation (2%) significantly increased the gene expression of NF-κB, LITAF, IL-6, iNOS, and Claudin-1 at 14 and 21 d compared to low inulin concentration (0.25 or 0.5%). The results indicated that the effects of inulin on mucosal immune function occurred in a dose-dependent manner. A low concentration (0.25 or 0.5%) of inulin may be beneficial in promoting intestinal immune function.
Collapse
Affiliation(s)
- Jiao Song
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Peng Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - RanRan Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, People's Republic of China
| |
Collapse
|
94
|
Li B, Leblois J, Taminiau B, Schroyen M, Beckers Y, Bindelle J, Everaert N. The effect of inulin and wheat bran on intestinal health and microbiota in the early life of broiler chickens. Poult Sci 2018; 97:3156-3165. [PMID: 29846691 DOI: 10.3382/ps/pey195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inulin and wheat bran were added to the starter diets of broiler chickens to investigate the potential of these ingredients to improve the host's health and growth performance, as well as the underlying mechanisms of their effects. A total of 960 1-day-old chicks were assigned to 4 treatments: control (CON), 2% inulin (IN), 10% wheat bran (WB), and 10% wheat bran +2% inulin (WB+IN). On day 11, 6 chicks per treatment were euthanized. A general linear model procedure with Tukey's multiple range test was performed to compare a series of parameters between treatments. The WB-containing treatments improved BW on day 7, day 11, day 35, and BW gain until day 11 (P < 0.05), but only the WB+IN treatment showed a lower feed conversion ratio than the CON treatment (P = 0.011). Furthermore, the WB+IN treatment showed the highest villus height in the jejunum and ileum (P < 0.05), and the highest jejunal ratio villus height/crypt depth (P = 0.035). The concentration of acetate in the ceca was higher in the CON treatment compared to the IN treatment (P = 0.040). The IN treatment increased the concentration (P = 0.003) and ratio (P = 0.004) of iso-butyrate compared to the WB+IN and the CON treatments (P < 0.05). A clustering result exhibited similar intestinal microbiota profiles in the chicks receiving the IN and the WB+IN diets (P > 0.05), but these profiles were different from those found in chicks receiving the WB and the CON diets (P < 0.05). In conclusion, wheat bran and the combination of wheat bran and inulin ameliorated the growth performance and gut morphology of the starter chicks, which resulted in a higher BW until day 35. Inulin, on the other hand, had a greater ability to influence the microbiota profile. The beneficial results found in relation to BW and gut morphology during the starter period suggested a synergistic effect of inulin and wheat bran.
Collapse
Affiliation(s)
- Bing Li
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, Passage des Déportés, 2. 5030 Gembloux, Belgium
| | - Julie Leblois
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, Passage des Déportés, 2. 5030 Gembloux, Belgium.,Research Foundation for Industry and Agriculture, National Scientific Research Foundation (FRIA-FNRS), 1000 Brussels, Belgium
| | - Bernard Taminiau
- FARAH - Department of Food Sciences - Microbiology, University of Liège, Avenue de Cureghem 180, 4000 Liege, Belgium
| | - Martine Schroyen
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, Passage des Déportés, 2. 5030 Gembloux, Belgium
| | - Yves Beckers
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, Passage des Déportés, 2. 5030 Gembloux, Belgium
| | - Jérôme Bindelle
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, Passage des Déportés, 2. 5030 Gembloux, Belgium
| | - Nadia Everaert
- Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, TERRA, Teaching and Research Centre, University of Liège, Passage des Déportés, 2. 5030 Gembloux, Belgium
| |
Collapse
|
95
|
Abdelhamid L, Luo XM. Retinoic Acid, Leaky Gut, and Autoimmune Diseases. Nutrients 2018; 10:E1016. [PMID: 30081517 PMCID: PMC6115935 DOI: 10.3390/nu10081016] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
A leaky gut has been observed in a number of autoimmune diseases including type 1 diabetes, multiple sclerosis, inflammatory bowel disease, and systemic lupus erythematosus. Previous studies from our laboratory have shown that lupus mice also bear a leaky gut and that the intestinal barrier function can be enhanced by gut colonization of probiotics such as Lactobacillus spp. Retinoic acid (RA) can increase the relative abundance of Lactobacillus spp. in the gut. Interestingly, RA has also been shown to strengthen the barrier function of epithelial cells in vitro and in the absence of probiotic bacteria. These reports bring up an interesting question of whether RA exerts protective effects on the intestinal barrier directly or through regulating the microbiota colonization. In this review, we will discuss the roles of RA in immunomodulation, recent literature on the involvement of a leaky gut in different autoimmune diseases, and how RA shapes the outcomes of these diseases.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
96
|
Lépine A, de Vos P. Synbiotic Effects of the Dietary Fiber Long-Chain Inulin and Probiotic Lactobacillus acidophilus W37 Can be Caused by Direct, Synergistic Stimulation of Immune Toll-Like Receptors and Dendritic Cells. Mol Nutr Food Res 2018; 62:e1800251. [PMID: 29902355 PMCID: PMC6099370 DOI: 10.1002/mnfr.201800251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Indexed: 01/24/2023]
Abstract
SCOPE Synbiotic effects of dietary fibers and lactobacilli are usually explained by synergistic modulation of gut microbiota. New insight, however, has demonstrated that both dietary fibers and lactobacilli can directly stimulate immune cells and benefit consumer immunity. Here, the synergistic effects of immune active long-chain inulin (lcITF) and Lactobacillus acidophilus W37 (LaW37) on dendritic cells (DCs) are investigated. METHODS AND RESULTS Effects of lcITF and LaW37 alone or combined were studied on Toll-like receptor (TLRs) signaling and cytokine secretion by DCs in the presence and absence of media of intestinal epithelial cell (IEC) exposed to the ingredients. Also, the effects of DC responses against Salmonella Typhimurium (STM) were investigated. Synergistic effects were observed on TLR2 and 3. Synergistic effects were not always pro-inflammatory. LaW37 was strongly pro-inflammatory, while cytokine responses were regulatory when combined with lcITF. Exposure of DCs to IECs medium changed the DCs' response, which revealed synergistic enhancing effects of lcITF/LaW37 on production of IL-6 and IL-8. DCs' response in the presence of STM and LaW37 were so strong that lcITF had no additional effect. CONCLUSION It is demonstrated that synbiotic effects of dietary fibers and bacteria are not limited to the effects on gut microbiota but can also occur by synergistically directly stimulating IECs and/or immune cells.
Collapse
Affiliation(s)
- Alexia Lépine
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700RBGroningenThe Netherlands,Food and Biobased ResearchWageningen University and ResearchBornse Weilanden 96708WGWageningenThe Netherlands
| | - Paul de Vos
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700RBGroningenThe Netherlands
| |
Collapse
|
97
|
Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. Eur J Nutr 2018; 57:2985-2997. [PMID: 30043185 PMCID: PMC6267414 DOI: 10.1007/s00394-018-1784-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Increased gut permeability causes the trespass of antigens into the blood stream which leads to inflammation. Gut permeability reflected by serum zonulin and diversity of the gut microbiome were investigated in this cross-sectional study involving female study participants with different activity and BMI levels. METHODS 102 women were included (BMI range 13.24-46.89 kg m-2): Anorexia nervosa patients (n = 17), athletes (n = 20), normal weight (n = 25), overweight (n = 21) and obese women (n = 19). DNA was extracted from stool samples and subjected to 16S rRNA gene analysis (V1-V2). Quantitative Insights Into Microbial Ecology (QIIME) was used to analyze data. Zonulin was measured with ELISA. Nutrient intake was assessed by repeated 24-h dietary recalls. We used the median of serum zonulin concentration to divide our participants into a "high-zonulin" (> 53.64 ng/ml) and "low-zonulin" (< 53.64 ng/ml) group. RESULTS The alpha-diversity (Shannon Index, Simpson Index, equitability) and beta-diversity (unweighted and weighted UniFrac distances) of the gut microbiome were not significantly different between the groups. Zonulin concentrations correlated significantly with total calorie-, protein-, carbohydrate-, sodium- and vitamin B12 intake. Linear discriminant analysis effect size (LEfSe) identified Ruminococcaceae (LDA = 4.163, p = 0.003) and Faecalibacterium (LDA = 4.151, p = 0.0002) as significantly more abundant in the low zonulin group. CONCLUSION Butyrate-producing gut bacteria such as Faecalibacteria could decrease gut permeability and lower inflammation. The diversity of the gut microbiota in women does not seem to be correlated with the serum zonulin concentration. Further interventional studies are needed to investigate gut mucosal permeability and the gut microbiome in the context of dietary factors.
Collapse
|
98
|
Lépine AFP, de Wit N, Oosterink E, Wichers H, Mes J, de Vos P. Lactobacillus acidophilus Attenuates Salmonella-Induced Stress of Epithelial Cells by Modulating Tight-Junction Genes and Cytokine Responses. Front Microbiol 2018; 9:1439. [PMID: 30013538 PMCID: PMC6036613 DOI: 10.3389/fmicb.2018.01439] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/24/2022] Open
Abstract
Scope: Salmonellosis is a prevalent food-borne illness that causes diarrhea in over 130 million humans yearly and can lead to death. There is an urgent need to find alternatives to antibiotics as many salmonellae are now multidrug resistant. As such, specific beneficial bacteria and dietary fibers can be an alternative as they may prevent Salmonella Typhimurium (STM) infection and spreading by strengthening intestinal barrier function. Methods and Results: We tested whether immune active long-chain inulin-type fructans and/or L. acidophilus W37, L. brevis W63, and L. casei W56 can strengthen barrier integrity of intestinal Caco-2 cells in the presence and absence of a STM. Effects of the ingredients on intestinal barrier function were first evaluated by quantifying trans-epithelial electric resistance (TEER) and regulation of gene expression by microarray. Only L. acidophilus had effects on TEER and modulated a group of 26 genes related to tight-junctions. Inulin-type fructans, L. brevis W63 and L. casei W56 regulated other genes, unrelated to tight-junctions. L. acidophilus also had unique effects on a group of six genes regulating epithelial phenotype toward follicle-associated epithelium. L. acidophilus W37 was therefore selected for a challenge with STM and prevented STM-induced barrier disruption and decreased secretion of IL-8. Conclusion:L. acidophilus W37 increases TEER and can protect against STM induced disruption of gut epithelial cells integrity in vitro. Our results suggest that selection of specific bacterial strains for enforcing barrier function may be a promising strategy to reduce or prevent STM infections.
Collapse
Affiliation(s)
- Alexia F. P. Lépine
- Section Immuno-endocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Food Quality and Health Effects, Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Nicole de Wit
- Food Quality and Health Effects, Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Els Oosterink
- Food Quality and Health Effects, Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Harry Wichers
- Food Quality and Health Effects, Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Jurriaan Mes
- Food Quality and Health Effects, Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Paul de Vos
- Section Immuno-endocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
99
|
Zeng H, Chen P, Chen C, Huang C, Lin S, Zheng B, Zhang Y. Structural properties and prebiotic activities of fractionated lotus seed resistant starches. Food Chem 2018; 251:33-40. [DOI: 10.1016/j.foodchem.2018.01.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
|
100
|
Zheng J, Yuan X, Cheng G, Jiao S, Feng C, Zhao X, Yin H, Du Y, Liu H. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice. Carbohydr Polym 2018; 190:77-86. [PMID: 29628262 DOI: 10.1016/j.carbpol.2018.02.058] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/20/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
The aim of this study is to investigate the effect of chitosan oligosaccharides (COS) on type 2 diabetes mellitus. Wild type C57BL/6J mice or diabetic db/db mice were treated with vehicle or COS for three months. COS treatment significantly decreased the blood glucose (P < 0.01) and reversed the insulin resistance (P < 0.05) in db/db mice, which was accompanied by suppressing the inflammation mediators (P < 0.05), down-regulating the lipogenesis (P < 0.01) and inhibiting the adipocyte differentiation (P < 0.05) in white adipose tissue. Additionally, COS treatment inhibited the reduction of occludin (P < 0.01) and relieved the gut dysbiosis in diabetic mice by promoting Akkermansia (P < 0.01) and suppressing Helicobacter (P < 0.05). Spearman's correlation analysis indicates that the COS-modulated bacteria are positively correlated with inflammation, hyperglycemia and dyslipidemia. The functional profiling based on the microbiota composition implicated that COS treatment may regulate the metabolic pathways of gut microbiota. In summary, COS treatment remarkably improved the glucose metabolism and reshaped the unbalanced gut microbiota of diabetic mice. Our study provided the evidence for application of COS to the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Junping Zheng
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xubing Yuan
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Cui Feng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaoming Zhao
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, PR China.
| |
Collapse
|