51
|
Huang F, Dai Q, Zheng K, Ma Q, Liu Y, Jiang S, Jiang W, Yan X. Exploring the inhibitory potential of KPHs-AL-derived GLLF peptide on pancreatic lipase and cholesterol esterase activities. Food Chem 2024; 439:138108. [PMID: 38061297 DOI: 10.1016/j.foodchem.2023.138108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024]
Abstract
The effective modulation of pancreatic lipase and cholesterol esterase activities proves critical in maintaining circulatory triglycerides and cholesterol levels within physiological boundaries. In this study, peptides derived from KPHs-AL, produced through the enzymatic hydrolysis of skipjack tuna dark muscle using alkaline protease, have a specific inhibitory effect on pancreatic lipase and cholesterol esterase. It is hypothesized that these peptides target and modulate the activities of enzymes by inducing conformational changes within their binding pockets, potentially impacting the catalytic functions of both pancreatic lipase and cholesterol esterase. Results revealed these peptides including AINDPFIDL, FLGM, GLLF and WGPL, were found to nestle into the binding site groove of pancreatic lipase and cholesterol esterase. Among these, GLLF stood out, demonstrating potent inhibition with IC50 values of 0.1891 mg/mL and 0.2534 mg/mL for pancreatic lipase and cholesterol esterase, respectively. The kinetics studies suggested that GLLF competed effectively with substrates for the enzyme active sites. Spectroscopic analyses, including ultraviolet-visible, fluorescence quenching, and circular dichroism, indicated that GLLF binding induced conformational changes within the enzymes, likely through hydrogen bond formation and hydrophobic interactions, thereby increasing structural flexibility. Molecular docking and molecular dynamics simulations supported these findings, showing GLLF's stable interaction with vital active site residues. These findings position GLLF as a potent inhibitor of key digestive enzymes, offering insights into its role in regulating lipid metabolism and highlighting its potential as functional ingredient.
Collapse
Affiliation(s)
- Fangfang Huang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China; Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qingfei Dai
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Kewei Zheng
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Qingbao Ma
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Yu Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China
| | - Wei Jiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China; Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China.
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China; Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
52
|
Kuang X, Deng Z, Feng B, He R, Chen L, Liang G. The mechanism of epigallocatechin-3-gallate inhibiting the antigenicity of β-lactoglobulin under pH 6.2, 7.4 and 8.2: Multi-spectroscopy and molecular simulation methods. Int J Biol Macromol 2024; 268:131773. [PMID: 38657930 DOI: 10.1016/j.ijbiomac.2024.131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The antigenicity of β-lactoglobulin (β-LG) can be influenced by pH values and reduced by epigallocatechin-3-gallate (EGCG). However, a detailed mechanism concerning EGCG decreasing the antigenicity of β-LG at different pH levels lacks clarity. Here, we explore the inhibition mechanism of EGCG on the antigenicity of β-LG at pH 6.2, 7.4 and 8.2 using enzyme-linked immunosorbent assay, multi-spectroscopy, mass spectrometry and molecular simulations. The results of Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) elucidate that the noncovalent binding of EGCG with β-LG induces variations in the secondary structure and conformations of β-LG. Moreover, EGCG inhibits the antigenicity of β-LG the most at pH 7.4 (98.30 %), followed by pH 6.2 (73.18 %) and pH 8.2 (36.24 %). The inhibitory difference is attributed to the disparity in the number of epitopes involved in the interacting regions of EGCG and β-LG. Our findings suggest that manipulating pH conditions may enhance the effectiveness of antigenic inhibitors, with the potential for further application in the food industry.
Collapse
Affiliation(s)
- Xiaoyu Kuang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Zhifen Deng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Bowen Feng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Ran He
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Lang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
53
|
Armanious GP, Lemieux MJ, Espinoza-Fonseca LM, Young HS. Missense variants in phospholamban and cardiac myosin binding protein identified in patients with a family history and clinical diagnosis of dilated cardiomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119699. [PMID: 38387507 DOI: 10.1016/j.bbamcr.2024.119699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/07/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
As the genetic landscape of cardiomyopathies continues to expand, the identification of missense variants in disease-associated genes frequently leads to a classification of variant of uncertain significance (VUS). For the proper reclassification of such variants, functional characterization is an important contributor to the proper assessment of pathogenic potential. Several missense variants in the calcium transport regulatory protein phospholamban have been associated with dilated cardiomyopathy. However, >40 missense variants in this transmembrane peptide are currently known and most remain classified as VUS with little clinical information. Similarly, missense variants in cardiac myosin binding protein have been associated with hypertrophic cardiomyopathy. However, hundreds of variants are known and many have low penetrance and are often found in control populations. Herein, we focused on novel missense variants in phospholamban, an Ala15-Thr variant found in a 4-year-old female and a Pro21-Thr variant found in a 60-year-old female, both with a family history and clinical diagnosis of dilated cardiomyopathy. The patients also harbored a Val896-Met variant in cardiac myosin binding protein. The phospholamban variants caused defects in the function, phosphorylation, and dephosphorylation of this calcium transport regulatory peptide, and we classified these variants as potentially pathogenic. The variant in cardiac myosin binding protein alters the structure of the protein. While this variant has been classified as benign, it has the potential to be a low-risk susceptibility variant because of the structural change in cardiac myosin binding protein. Our studies provide new biochemical evidence for missense variants previously classified as benign or VUS.
Collapse
Affiliation(s)
- Gareth P Armanious
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
54
|
Sania A, Muhammad MA, Sajed M, Azim N, Ahmad N, Aslam M, Tang XF, Rashid N. Structural and functional analyses of an L-asparaginase from Geobacillus thermopakistaniensis. Int J Biol Macromol 2024; 263:130438. [PMID: 38408579 DOI: 10.1016/j.ijbiomac.2024.130438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Genome sequence of Geobacillus thermopakistaniensis contains an open reading frame annotated as a type II L-asparaginase (ASNaseGt). Critical structural analysis disclosed that ASNaseGt might be a type I L-asparaginase. In order to determine whether it is a type I or type II L-asparaginase, we have performed the structural-functional characterization of the recombinant protein as well as analyzed the localization of ASNaseGt in G. thermopakistaniensis. ASNaseGt exhibited optimal activity at 52 °C and pH 9.5. There was a > 3-fold increase in activity in the presence of β-mercaptoethanol. Apparent Vmax and Km values were 2735 U/mg and 0.35 mM, respectively. ASNaseGt displayed high thermostability with >80 % residual activity even after 6 h of incubation at 55 °C. Recombinant ASNaseGt existed in oligomeric form. Addition of β-mercaptoethanol lowered the degree of oligomerization and displayed that tetrameric form was the most active, with a specific activity of 4300 U/mg. Under physiological conditions, ASNaseGt displayed >50 % of the optimal activity. Localization studies in G. thermopakistaniensis revealed that ASNaseGt is a cytosolic protein. Structural and functional characterization, and localization in G. thermopakistaniensis displayed that ASNaseGt is not a type II but a type I L-asparaginase.
Collapse
Affiliation(s)
- Ayesha Sania
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naseema Azim
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Xiao-Feng Tang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
55
|
Stefan A, Mucchi A, Hochkoeppler A. The catalytic action of human d-lactate dehydrogenase is severely inhibited by oxalate and is impaired by mutations triggering d-lactate acidosis. Arch Biochem Biophys 2024; 754:109932. [PMID: 38373542 DOI: 10.1016/j.abb.2024.109932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
d-lactate dehydrogenases are known to be expressed by prokaryotes and by eukaryotic invertebrates, and over the years the functional and structural features of some bacterial representatives of this enzyme ensemble have been investigated quite in detail. Remarkably, a human gene coding for a putative d-lactate dehydrogenase (DLDH) was identified and characterized, disclosing the occurrence of alternative splicing of its primary transcript. This translates into the expression of two human DLDH (hDLDH) isoforms, the molecular mass of which is expected to differ by 2.7 kDa. However, no information on these two hDLDH isoforms is available at the protein level. Here we report on the catalytic action of these enzymes, along with a first analysis of their structural features. In particular, we show that hDLDH is strictly stereospecific, with the larger isoform (hDLDH-1) featuring higher activity at the expense of d-lactate when compared to its smaller counterpart (hDLDH-2). Furthermore, we found that hDLDH is strongly inhibited by oxalate, as indicated by a Ki equal to 1.2 μM for this dicarboxylic acid. Structurally speaking, hDLDH-1 and hDLDH-2 were determined, by means of gel filtration and dynamic light scattering experiments, to be a hexamer and a tetramer, respectively. Moreover, in agreement with previous studies performed with human mitochondria, we identified FAD as the cofactor of hDLDH, and we report here a model of FAD binding by the human d-lactate dehydrogenase. Interestingly, the mutations W323C and T412 M negatively affect the activity of hDLDH, most likely by impairing the enzyme electron-acceptor site.
Collapse
Affiliation(s)
- Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy; CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Alberto Mucchi
- Department of Industrial Chemistry "Toso Montanari", Viale Risorgimento 4, 40136, Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy; CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
56
|
Dávalos AL, Rivera Echeverri JD, Favaro DC, Junio de Oliveira R, Penteado Battesini Carretero G, Lacerda C, Midea Cuccovia I, Cangussu Cardoso MV, Farah CS, Kopke Salinas R. Uncovering the Association Mechanism between Two Intrinsically Flexible Proteins. ACS Chem Biol 2024; 19:669-686. [PMID: 38486495 DOI: 10.1021/acschembio.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The understanding of protein-protein interaction mechanisms is key to the atomistic description of cell signaling pathways and for the development of new drugs. In this context, the mechanism of intrinsically disordered proteins folding upon binding has attracted attention. The VirB9 C-terminal domain (VirB9Ct) and the VirB7 N-terminal motif (VirB7Nt) associate with VirB10 to form the outer membrane core complex of the Type IV Secretion System injectisome. Despite forming a stable and rigid complex, VirB7Nt behaves as a random coil, while VirB9Ct is intrinsically dynamic in the free state. Here we combined NMR, stopped-flow fluorescence, and computer simulations using structure-based models to characterize the VirB9Ct-VirB7Nt coupled folding and binding mechanism. Qualitative data analysis suggested that VirB9Ct preferentially binds to VirB7Nt by way of a conformational selection mechanism at lower temperatures. However, at higher temperatures, energy barriers between different VirB9Ct conformations are more easily surpassed. Under these conditions the formation of non-native initial encounter complexes may provide alternative pathways toward the native complex conformation. These observations highlight the intimate relationship between folding and binding, calling attention to the fact that the two molecular partners must search for the most favored intramolecular and intermolecular interactions on a rugged and funnelled conformational energy landscape, along which multiple intermediates may lead to the final native state.
Collapse
Affiliation(s)
- Angy Liseth Dávalos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Denize C Favaro
- Department of Organic Chemistry, State University of Campinas, Campinas, 13083-862, Brazil
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York 10031, United States
| | - Ronaldo Junio de Oliveira
- Department of Physics, Institute of Exact, Natural and Educational Sciences, Federal University of Triângulo Mineiro, Uberaba, 38064-200, Brazil
| | | | - Caroline Lacerda
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Iolanda Midea Cuccovia
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Chuck S Farah
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Roberto Kopke Salinas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
57
|
Heber S, McClintock MA, Simon B, Mehtab E, Lapouge K, Hennig J, Bullock SL, Ephrussi A. Tropomyosin 1-I/C coordinates kinesin-1 and dynein motors during oskar mRNA transport. Nat Struct Mol Biol 2024; 31:476-488. [PMID: 38297086 PMCID: PMC10948360 DOI: 10.1038/s41594-024-01212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. We show through in vitro reconstitution that Tm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Our work reveals a new strategy for ensuring sequential activity of microtubule motors.
Collapse
Affiliation(s)
- Simone Heber
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mark A McClintock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Eve Mehtab
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
58
|
Vásquez-Suárez A, Muñoz-Flores C, Ortega L, Roa F, Castillo C, Romero A, Parra N, Sandoval F, Macaya L, González-Chavarría I, Astuya A, Starck MF, Villegas MF, Agurto N, Montesino R, Sánchez O, Valenzuela A, Toledo JR, Acosta J. Design and functional characterization of Salmo salar TLR5 agonist peptides derived from high mobility group B1 acidic tail. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109373. [PMID: 38272332 DOI: 10.1016/j.fsi.2024.109373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Toll-like receptor 5 (TLR5) responds to the monomeric form of flagellin and induces the MyD88-depending signaling pathway, activating proinflammatory transcription factors such as NF-κB and the consequent induction of cytokines. On the other hand, HMGB1 is a highly conserved non-histone chromosomal protein shown to interact with and activate TLR5. The present work aimed to design and characterize TLR5 agonist peptides derived from the acidic tail of Salmo salar HMGB1 based on the structural knowledge of the TLR5 surface using global molecular docking platforms. Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. Circular dichroism spectra were recorded for each peptide selected for synthesis. Only intrinsically disordered peptides (6W, 11W, and SsOri) were selected for experimental functional assay. The functional characterization of the peptides was performed by NF-κB activation assays, RT-qPCR gene expression assays, and Piscirickettsia salmonis challenge in SHK-1 cells. The 6W and 11W peptides increased the nuclear translation of p65 and phosphorylation. In addition, the peptides induced the expression of genes related to the TLR5 pathway activation, pro- and anti-inflammatory response, and differentiation and activation of T lymphocytes towards phenotypes such as TH1, TH17, and TH2. Finally, it was shown that the 11W peptide protects immune cells against infection with P. salmonis bacteria. Overall, the results indicate the usefulness of novel peptides as potential immunostimulants in salmonids.
Collapse
Affiliation(s)
- Aleikar Vásquez-Suárez
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carolina Muñoz-Flores
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leonardo Ortega
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Roa
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carolina Castillo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Natalie Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Sandoval
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Luis Macaya
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Allisson Astuya
- Laboratorio de Genómica Marina y Cultivo Celular, Departamento de Oceanografía y COPAS Sur-Austral, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - María Francisca Starck
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Milton F Villegas
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Niza Agurto
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Raquel Montesino
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Oliberto Sánchez
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Jorge R Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Jannel Acosta
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
59
|
Zhang J, Li Y, Gao H, Zhang H, Zhang X, Rao Z, Xu M. N-terminal truncation (N-) and directional proton transfer in an old yellow enzyme enables tunable efficient producing (R)- or (S)-citronellal. Int J Biol Macromol 2024; 262:130129. [PMID: 38354939 DOI: 10.1016/j.ijbiomac.2024.130129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
(R)-Citronellal is a valuable molecule as the precursor for the industrial synthesis of (-)-menthol, one of the worldwide best-selling compounds in the flavors and fragrances field. However, its biocatalytic production, even from the optically pure substrate (E)-citral, is inherently limited by the activity of Old Yellow Enzyme (OYE). Herein, we rationally designed a different approach to increase the activity of OYE in biocatalytic production. The activity of OYE from Corynebacterium glutamicum (CgOYE) is increased, as well as superior thermal stability and pH tolerance via truncating the different lengths of regions at N-terminal of CgOYE. Next, we converted the truncation mutant N31-CgOYE, a protein involved in proton transfer for the asymmetric hydrogenation of CC bonds, into highly (R)- and (S)-stereoselective enzymes using only three mutations. The mixture of racemic (E/Z)-citral is reduced into the (R)-citronellal with ee and conversion up to 99 % by the mutant of CgOYE, overcoming the problem of the reduction for the mixtures of (E/Z)-citral in biocatalytic reaction. The present work provides a general and effective strategy for improving the activity of OYE, in which the partially conserved histidine residues provide "tunable gating" for the enantioselectivity for both the (R)- and (S)-isomerases.
Collapse
Affiliation(s)
- Jie Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yueshu Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hui Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hengwei Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China..
| |
Collapse
|
60
|
Shu E, Wang S, Kong X, Sun X, Yang Q, Chen Q, Niu B. Effects of Flavourzyme and Alkaline Protease Treatment on Structure and Allergenicity of Peanut Allergen Ara h 1. Food Technol Biotechnol 2024; 62:4-14. [PMID: 38601963 PMCID: PMC11002447 DOI: 10.17113/ftb.62.01.24.8064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 12/18/2023] [Indexed: 04/12/2024] Open
Abstract
Research background Peanut allergy poses a significant threat to human health due to the increased risk of long-term morbidity at low doses. Modifying protein structure to affect sensitization is a popular topic. Experimental approach In this study, the purified peanut allergen Ara h 1 was enzymatically hydrolysed using Flavourzyme, alkaline protease or a combination of both. The binding ability of Ara h 1 to antibodies, gene expression and secretion levels of the proinflammatory factors interleukin-5 and interleukin-6 in Caco-2 cells was measured. Changes in the secondary and tertiary structures before and after treatment with Ara h 1 were analysed by circular dichroism and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Results and conclusions The results indicated a decrease of the allergenicity and proinflammatory ability of Ara h 1. The evaluation showed that the Flavourzyme and alkaline protease treatments caused particle shortening and aggregation. The fluorescence emission peak increased by 3.4-fold after the combined treatment with both proteases. Additionally, the secondary structure underwent changes and the hydrophobicity also increased 8.95-fold after the combined treatment. Novelty and scientific contribution These findings partially uncover the mechanism of peanut sensitization and provide an effective theoretical basis for the development of a new method of peanut desensitization.
Collapse
Affiliation(s)
- Erlian Shu
- School of Life Sciences, Shanghai University, No. 99, Shangda Road, Baoshan District, 200444 Shanghai, PRChina
| | - Shuo Wang
- School of Life Sciences, Shanghai University, No. 99, Shangda Road, Baoshan District, 200444 Shanghai, PRChina
| | - Xiangxiang Kong
- School of Life Sciences, Shanghai University, No. 99, Shangda Road, Baoshan District, 200444 Shanghai, PRChina
| | - Xiaodong Sun
- School of Medicine, Shanghai University, No. 99, Shangda Road, Baoshan District, 200444 Shanghai, PRChina
| | - Qiaoling Yang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, 200444 Shanghai, PRChina
| | - Qin Chen
- School of Life Sciences, Shanghai University, No. 99, Shangda Road, Baoshan District, 200444 Shanghai, PRChina
| | - Bing Niu
- School of Life Sciences, Shanghai University, No. 99, Shangda Road, Baoshan District, 200444 Shanghai, PRChina
| |
Collapse
|
61
|
Tsukada K, Jones SE, Bannister J, Durin MA, Vendrell I, Fawkes M, Fischer R, Kessler BM, Chapman JR, Blackford AN. BLM and BRCA1-BARD1 coordinate complementary mechanisms of joint DNA molecule resolution. Mol Cell 2024; 84:640-658.e10. [PMID: 38266639 DOI: 10.1016/j.molcel.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex. We show that this is due to a previously overlooked role for BARD1 in recruiting SLX4 to resolve DNA intermediates left unprocessed by BLM in the preceding interphase. Consequently, cells with defective BLM and BRCA1-BARD1 accumulate catastrophic levels of chromosome breakage and micronucleation, leading to cell death. Thus, we reveal mechanistic insights into SLX4 recruitment to DNA lesions, with potential clinical implications for treating BRCA1-deficient tumors.
Collapse
Affiliation(s)
- Kaima Tsukada
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Julius Bannister
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Mary-Anne Durin
- MRC Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - J Ross Chapman
- MRC Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
62
|
Kava E, Garbelotti CV, Lopes JLS, Costa-Filho AJ. Myristoylated GRASP55 dimerizes in the presence of model membranes. J Biomol Struct Dyn 2024:1-12. [PMID: 38361284 DOI: 10.1080/07391102.2024.2317973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The Golgi Reassembly and Stacking Proteins (GRASPs) are engaged in various functions within the cell, both in unconventional secretion mechanisms and structuring and organizing the Golgi apparatus. Understanding their specific role in each situation still requires more structural and functional data at the molecular level. GRASP55 is one of the GRASP members in mammals, anchored to the membrane via the myristoylation of a Gly residue at its N-terminus. Therefore, co-translational modifications, such as myristoylation, are fundamental when considering a strategy to obtain detailed information on the interactions between GRASP55 and membranes. Despite its functional relevance, the N-terminal myristoylation has been underappreciated in the studies reported to date, compromising the previously proposed models for GRASP-membrane interactions. Here, we investigated the synergy between the presence of the membrane and the formation of oligomeric structures of myristoylated GRASP55, using a series of biophysical techniques to perform the structural characterization of the lipidated GRASP55 and its interaction with biological lipid model membranes. Our data fulfill an unexplored gap: the adequate evaluation of the presence of lipidations and lipid membranes on the structure-function dyad of GRASPs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emanuel Kava
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina V Garbelotti
- Laboratório de Fisiologia Ecológica de Plantas, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Luiz S Lopes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
63
|
Váradi G, Bende G, Borics A, Dán K, Rákhely G, Tóth GK, Galgóczy L. Rational Design of Antifungal Peptides Based on the γ-Core Motif of a Neosartorya ( Aspergillus) fischeri Antifungal Protein to Improve Structural Integrity, Efficacy, and Spectrum. ACS OMEGA 2024; 9:7206-7214. [PMID: 38371770 PMCID: PMC10870298 DOI: 10.1021/acsomega.3c09377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Antifungal peptides offer promising alternative compounds for the treatment of fungal infections, for which new antifungal compounds are urgently needed. Constant and broad antifungal spectra of these peptides play essential roles in their reliable therapeutic application. It has been observed that rationally designed peptides using the evolutionarily conserved γ-core region (GXC-X3-9-C) of an antifungal protein from Neosartorya (Aspergillus) fischeri highly inhibit the growth of fungi. The cysteines in these peptides have free sulfhydryl groups, which allow cyclization and dimerization under oxidative conditions, thereby impairing antifungal efficacy. To overcome this problem, one or two cysteine residues were substituted by serines or S-tert-butyl was applied as a cysteine-protecting group. Furthermore, structural integrity and antifungal efficacy investigations before and after oxidative exposure revealed that substituting both cysteines with serines and S-tert-butylation helped maintain the structural integrity. However, it slightly decreased the antifungal efficacy against a yeast, Candida albicans. Interestingly, S-tert-butylation maintained the efficacy and could extend the antifungal activity to a mold, Aspergillus fumigatus. Usually, cyclization and dimerization did not influence the antifungal efficacy of most peptides. Additionally, hemolysis tests and Galleria mellonella toxicity model experiments indicated that none of the applied modifications made the peptides harmful to animals.
Collapse
Affiliation(s)
- Györgyi Váradi
- Department
of Medical Chemistry, University of Szeged, Szeged 6720, Hungary
| | - Gábor Bende
- Department
of Biotechnology, University of Szeged, Szeged 6726, Hungary
- Doctoral
School of Biology, University of Szeged, Szeged 6720, Hungary
| | - Attila Borics
- Institute
of Biochemistry, HUN-REN Biological Research
Centre, Szeged 6726, Hungary
| | - Kinga Dán
- Department
of Biotechnology, University of Szeged, Szeged 6726, Hungary
- Doctoral
School of Biology, University of Szeged, Szeged 6720, Hungary
| | - Gábor Rákhely
- Department
of Biotechnology, University of Szeged, Szeged 6726, Hungary
- Institute
of Biophysics, HUN-REN Biological Research
Centre, Szeged 6726, Hungary
| | - Gábor K. Tóth
- Department
of Medical Chemistry, University of Szeged, Szeged 6720, Hungary
- MTA-SZTE
Biomimetic Systems Research Group, University
of Szeged, Szeged 6720, Hungary
| | - László Galgóczy
- Department
of Biotechnology, University of Szeged, Szeged 6726, Hungary
- Institute
of Biochemistry, HUN-REN Biological Research
Centre, Szeged 6726, Hungary
| |
Collapse
|
64
|
Michaelis C, Berger TMI, Kuhlmann K, Ghulam R, Petrowitsch L, Besora Vecino M, Gesslbauer B, Pavkov-Keller T, Keller W, Grohmann E. Effect of TraN key residues involved in DNA binding on pIP501 transfer rates in Enterococcus faecalis. Front Mol Biosci 2024; 11:1268647. [PMID: 38380428 PMCID: PMC10877727 DOI: 10.3389/fmolb.2024.1268647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
Conjugation is a major mechanism that facilitates the exchange of antibiotic resistance genes among bacteria. The broad-host-range Inc18 plasmid pIP501 harbors 15 genes that encode for a type IV secretion system (T4SS). It is a membrane-spanning multiprotein complex formed between conjugating donor and recipient cells. The penultimate gene of the pIP501 operon encodes for the cytosolic monomeric protein TraN. This acts as a transcriptional regulator by binding upstream of the operon promotor, partially overlapping with the origin of transfer. Additionally, TraN regulates traN and traO expression by binding upstream of the PtraNO promoter. This study investigates the impact of nine TraN amino acids involved in binding to pIP501 DNA through site-directed mutagenesis by exchanging one to three residues by alanine. For three traN variants, complementation of the pIP501∆traN knockout resulted in an increase of the transfer rate by more than 1.5 orders of magnitude compared to complementation of the mutant with native traN. Microscale thermophoresis (MST) was used to assess the binding affinities of three TraN double-substituted variants and one triple-substituted variant to its cognate pIP501 double-stranded DNA. The MST data strongly correlated with the transfer rates obtained by biparental mating assays in Enterococcus faecalis. The TraN variants TraN_R23A-N24A-Q28A, TraN_H82A-R86A, and TraN_G100A-K101A not only exhibited significantly lower DNA binding affinities but also, upon complementation of the pIP501∆traN knockout, resulted in the highest pIP501 transfer rates. This confirms the important role of the TraN residues R23, N24, Q28, H82, R86, G100, and K101 in downregulating pIP501 transfer. Although TraN is not part of the mating pair formation complex, TraE, TraF, TraH, TraJ, TraK, and TraM were coeluted with TraN in a pull-down. Moreover, TraN homologs are present not only in Inc18 plasmids but also in RepA_N and Rep_3 family plasmids, which are frequently found in enterococci, streptococci, and staphylococci. This points to a widespread role of this repressor in conjugative plasmid transfer among Firmicutes.
Collapse
Affiliation(s)
- Claudia Michaelis
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | | | - Kirill Kuhlmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rangina Ghulam
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Lukas Petrowitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Elisabeth Grohmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| |
Collapse
|
65
|
Cardoso FF, Salvador GHM, Cavalcante WLG, Dal-Pai M, Fontes MRDM. BthTX-I, a phospholipase A 2-like toxin, is inhibited by the plant cinnamic acid derivative: chlorogenic acid. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140988. [PMID: 38142025 DOI: 10.1016/j.bbapap.2023.140988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Snakebite is a significant health concern in tropical and subtropical regions, particularly in Africa, Asia, and Latin America, resulting in more than 2.7 million envenomations and an estimated one hundred thousand fatalities annually. The Bothrops genus is responsible for the majority of snakebite envenomings in Latin America and Caribbean countries. Accidents involving snakes from this genus are characterized by local symptoms that often lead to permanent sequelae and death. However, specific antivenoms exhibit limited effectiveness in inhibiting local tissue damage. Phospholipase A2-like (PLA2-like) toxins emerge as significant contributors to local myotoxicity in accidents involving Bothrops species. As a result, they represent a crucial target for prospective treatments. Some natural and synthetic compounds have shown the ability to reduce or abolish the myotoxic effects of PLA2-like proteins. In this study, we employed a combination approach involving myographic, morphological, biophysical and bioinformatic techniques to investigate the interaction between chlorogenic acid (CGA) and BthTX-I, a PLA2-like toxin. CGA provided a protection of 71.8% on muscle damage in a pre-incubation treatment. Microscale thermophoresis and circular dichroism experiments revealed that CGA interacted with the BthTX-I while preserving its secondary structure. CGA exhibited an affinity to the toxin that ranks among the highest observed for a natural compound. Bioinformatics simulations indicated that CGA inhibitor binds to the toxin's hydrophobic channel in a manner similar to other phenolic compounds previously investigated. These findings suggest that CGA interferes with the allosteric transition of the non-activated toxin, and the stability of the dimeric assembly of its activated state.
Collapse
Affiliation(s)
- Fábio Florença Cardoso
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | | | - Walter Luís Garrido Cavalcante
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Maeli Dal-Pai
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Marcos Roberto de Mattos Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil.
| |
Collapse
|
66
|
Gaetani ML, Pinto IC, Li M, O'Connor P, Giorgi-Coll S, Tyreman M, Rumary KL, Schouten JA, Davis P, Dixon AM. Towards detection of structurally-diverse glycated epitopes in native proteins: Single-chain antibody directed to non-A1c epitope in human haemoglobin. Mol Immunol 2024; 166:16-28. [PMID: 38181455 DOI: 10.1016/j.molimm.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Over 500 million people worldwide are affected by diabetes mellitus, a chronic disease that leads to high blood glucose levels and causes severe side effects. The predominant biological marker for diagnosis of diabetes is glycated haemoglobin (GHb). In human blood the predominant reducing sugar, glucose, irreversibly conjugates onto accessible amine groups within Hb. Most methods for diagnosis and monitoring of diabetes selectively detect N-terminal glycation at Val-1 on the β-globin chain, but not glycation at other sites. Detection of other glycated epitopes of GHb has the potential to provide new information on the extent, duration and timing of elevated glucose, facilitating personalised diagnosis and intelligent diabetic control. In this work, a new anti-GHb Fab antibody (Fab-1) specific for haemoglobin A1c (HbA1c) with nanomolar affinity was discovered via epitope-directed immunisation and phage display. A single chain variable fragment (scFv) antibody derived from Fab-1 retained affinity and specificity for HbA1c, and affinity was enhanced tenfold upon addition of an enhanced green fluorescent protein tag. Both the scFv and Fab-1 recognised an epitope within HbA1c that was distinct from β-Val-1, and our data suggest that this epitope may include glycation at Lys-66 in the β-globin chain. To our knowledge, this is the first report of an scFv/Fab anti-glycated epitope antibody that recognises a non-A1c epitope in GHb, and confirms that fructosamine attached to different, discrete glycation sites within the same protein can be resolved from one another by immunoassay.
Collapse
Affiliation(s)
- Miss Lucia Gaetani
- Medical Research Council Doctoral Training Programme, Warwick Medical School, UK
| | - Isabel Campos Pinto
- iBET, Bayer Satellite Lab, Av. República, Quinta do Marquês, Edifício iBET/ITQB, Oeiras 2780-157, Portugal
| | - Meng Li
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter O'Connor
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Matthew Tyreman
- Global Access Diagnostics, Thurleigh, Bedfordshire MK44 2YA, UK
| | | | | | - Paul Davis
- Global Access Diagnostics, Thurleigh, Bedfordshire MK44 2YA, UK
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
67
|
Zhu C, Wei F, Jiang H, Lin Z, Zhong L, Wu Y, Sun X, Song L. Exploration of the structural mechanism of hydrogen (H 2)-promoted horseradish peroxidase (HRP) activity via multiple spectroscopic and molecular dynamics simulation techniques. Int J Biol Macromol 2024; 258:128901. [PMID: 38128803 DOI: 10.1016/j.ijbiomac.2023.128901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Horseradish peroxidase (HRP) is an enzyme that is widely used in various fields. In this study, the effects of molecular hydrogen (H2) on the activity and structural characteristics of HRP were investigated by employing multiple spectroscopic techniques, atomic force microscopy (AFM) and molecular dynamics (MD) simulations. The results demonstrated that H2 could enhance HRP activity, especially in 1.5 mg/L hydrogen-rich water (HRW). The structural analysis results showed that H2 might alter HRP activity by affecting the active sites, secondary structure, hydrogen bonding network, CS groups, and morphological characteristics. The MD results also confirmed that H2 could increase the FeN bond distance in the active site, affect the secondary structure, and increase the number of hydrogen bonds. The MD results further suggested that H2 could increase the number of salt bridges, and lengthen the SS bonds in HRP. This study primarily revealed the mechanism by which H2 enhances the HRP activity, providing insight into the interactions between gas and macromolecular proteins. However, some of the results obtained via MD simulations still need to be verified experimentally. In addition, our study also provided a new convenient strategy to enhance enzyme activity.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fenfen Wei
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyue Zhong
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangjun Sun
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
68
|
Dong X, Woo MW, Quek SY. The physicochemical properties, functionality, and digestibility of hempseed protein isolate as impacted by spray drying and freeze drying. Food Chem 2024; 433:137310. [PMID: 37683487 DOI: 10.1016/j.foodchem.2023.137310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Hempseed protein has gained increasing attention for its sustainability and nourishment. This study aimed to investigate the effects of spray drying and freeze drying on the physicochemical properties, functionality, and digestibility of hempseed protein isolate (HPI). Compared to undried-HPI, both drying techniques altered physicochemical and structural properties. Particularly, protein denaturation temperature increased in freeze-dried HPI (FD-HPI) and spray-dried HPI (SD-HPI) samples (∼90 °C) than in undried-HPI (82.5 °C). Lysine content decreased from 38.26 mg/g in undried-HPI to 35.03 and 33.18 mg/g in FD-HPI and SD-HPI, respectively. Results revealed the loss of 26 and 17 kDa bands after drying. Notably, FD-HPI exhibited higher emulsifying stability and oil-holding capacity than SD-HPI. While both FD-HPI and SD-HPI had higher digestibility than undried-HPI, a 50% reduction in the liberation of free α-amino groups after digestion was found. This study provided information regarding changes in HPI after drying, offering insights for HPI production and application in the food industry.
Collapse
Affiliation(s)
- Xuan Dong
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1142, New Zealand.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
69
|
van Zyl EM, Coburn JM. Functionalization of Bacterial Cellulose with the Antimicrobial Peptide KR-12 via Chimerical Cellulose-Binding Peptides. Int J Mol Sci 2024; 25:1462. [PMID: 38338739 PMCID: PMC10855235 DOI: 10.3390/ijms25031462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Bacterial-derived cellulose (BC) has been studied as a promising material for biomedical applications, including wound care, due to its biocompatibility, water-holding capacity, liquid/gas permeability, and handleability properties. Although BC has been studied as a dressing material for cutaneous wounds, to date, BC inherently lacks antibacterial properties. The current research utilizes bifunctional chimeric peptides containing carbohydrate binding peptides (CBP; either a short version or a long version) and an antimicrobial peptide (AMP), KR-12. The secondary structure of the chimeric peptides was evaluated and confirmed that the α-helix structure of KR-12 was retained for both chimeric peptides evaluated (Long-CBP-KR12 and Short-CBP-KR12). Chimeric peptides and their individual components were assessed for cytotoxicity, where only higher concentrations of Short-CBP and longer timepoints of Short-CBP-KR12 exposure exhibited negative effects on metabolic activity, which was attributed to solubility issues. All KR-12-containing peptides exhibited antibacterial activity in solution against Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). The lipopolysaccharide (LPS) binding capability of the peptides was evaluated and the Short-CBP-KR12 peptide exhibited enhanced LPS-binding capabilities compared to KR-12 alone. Both chimeric peptides were able to bind to BC and were observed to be retained on the surface over a 7-day period. All functionalized materials exhibited no adverse effects on the metabolic activity of both normal human dermal fibroblasts (NHDFs) and human epidermal keratinocyte (HaCaT) epithelial cells. Additionally, the BC tethered chimeric peptides exhibited antibacterial activity against E. coli. Overall, this research outlines the design and evaluation of chimeric CBP-KR12 peptides for developing antimicrobial BC membranes with potential applications in wound care.
Collapse
Affiliation(s)
| | - Jeannine M. Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
70
|
Dandurand J, Monné M, Samouillan V, Rosa M, Laurita A, Pistone A, Bisaccia D, Matera I, Bisaccia F, Ostuni A. The 75-99 C-Terminal Peptide of URG7 Protein Promotes α-Synuclein Disaggregation. Int J Mol Sci 2024; 25:1135. [PMID: 38256207 PMCID: PMC10816444 DOI: 10.3390/ijms25021135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Up Regulation Gene seven (URG7) is the pseudogene 2 of the transporter ABCC6. The translated URG7 protein is localized with its single transmembrane α-helix in the endoplasmic reticulum (ER) membrane, orienting the N- and C-terminal regions in the lumen and cytoplasm, respectively, and it plays a crucial role in the folding of ER proteins. Previously, the C-terminal region of URG7 (PU, residues 75-99) has been shown to modify the aggregation state of α-synuclein in the lysate of HepG2 cells. PU analogs were synthesized, and their anti-aggregation potential was tested in vitro on α-synuclein obtained using recombinant DNA technology. Circular dichroism (CD), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and microscopic techniques were used to assess the sample's behavior. The results show that the peptides studied by themselves are prone to clathrate-like structure formation of variable stability. Aggregation of α-synuclein is accompanied by desolvation of its peptide chain and an increase in intermolecular β-sheets. The PU analogs all interact with α-synuclein aggregates and those possessing the most stable clathrate-like structures have the highest disaggregating effect. These findings suggest that the C-terminal region of URG7 may have a role in interacting and modulating α-synuclein structures and could be used to generate interesting therapeutic candidates as disaggregators of α-synuclein.
Collapse
Affiliation(s)
- Jany Dandurand
- CIRIMAT Physique des Polymères, Université Toulouse 3, Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France; (J.D.); (V.S.)
| | - Magnus Monné
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | - Valérie Samouillan
- CIRIMAT Physique des Polymères, Université Toulouse 3, Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France; (J.D.); (V.S.)
| | - Martina Rosa
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | - Alessandro Laurita
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | - Alessandro Pistone
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | | | - Ilenia Matera
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| |
Collapse
|
71
|
Tarabarova A, Lopukhov A, Fedorov AN, Yurkova MS. Novel His-tag Variants for Insertion Inside Polypeptide Chain. ACS OMEGA 2024; 9:858-865. [PMID: 38222536 PMCID: PMC10785306 DOI: 10.1021/acsomega.3c06682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
His-tags are protein affinity tags ubiquitously used due to their convenience and effectiveness. However, in some individual cases, the attachment of His-tags to a protein's N- or C-termini resulted in impairment of the protein's structure or function, which led to attempts to include His-tags inside of polypeptide chains. In this work, we describe newly designed internal His-tags, where two triplets of histidine residues are separated by glycine residues to avoid steric hindrances and consequently minimize their impact on the protein structure. The applicability of these His-tags was tested with eGFP, a multifaceted reference protein, and GrAD207, a modified apical domain of GroEL chaperone, designed to stabilize in soluble form initially insoluble proteins. Both proteins are used as fusion partners for different purposes, and providing them with His-tags introduced into their polypeptide chains should conveniently broaden their functionality without involving the termini. We conclude that the insertable tags may be adjusted for the purification of proteins belonging to different structural classes.
Collapse
Affiliation(s)
- Anastasiia
G. Tarabarova
- A
N Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninskii prosp 33/2, Moscow 119071, Russian Federation
| | - Anton Lopukhov
- Chemistry
Department, Lomonosov Moscow State University, GSP-1, Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | - Alexey N. Fedorov
- FSI
Federal Research Centre Fundamentals of Biotechnology of the Russian
Academy of Sciences, Leninskii prosp 33/2, Moscow 119071, Russian Federation
| | - Maria S. Yurkova
- A
N Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninskii prosp 33/2, Moscow 119071, Russian Federation
| |
Collapse
|
72
|
Nefedova VV, Kleymenov SY, Safenkova IV, Levitsky DI, Matyushenko AM. Neurofilament Light Protein Rod Domain Exhibits Structural Heterogeneity. Biomolecules 2024; 14:85. [PMID: 38254685 PMCID: PMC10813002 DOI: 10.3390/biom14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Neurofilaments are neuron-specific proteins that belong to the intermediate filament (IFs) protein family, with the neurofilament light chain protein (NFL) being the most abundant. The IFs structure typically includes a central coiled-coil rod domain comprised of coils 1A, 1B, and 2, separated by linker regions. The thermal stability of the IF molecule plays a crucial role in its ability for self-association. In the current study, we investigated the thermal stability of NFL coiled-coil domains by analyzing a set of recombinant domains and their fusions (NFL1B, NFL1A+1B, NFL2, NFL1B+2, and NFLROD) via circular dichroism spectroscopy and differential scanning calorimetry. The thermal stability of coiled-coil domains is evident in a wide range of temperatures, and thermal transition values (Tm) correspond well between isolated coiled-coil domains and full-length NFL. NFL1B has a Tm of 39.4 °C, and its' fusions, NFL1A+1B and NFL1B+2, have a Tm of 41.9 °C and 41.5 °C, respectively. However, in the case of NFL2, thermal denaturation includes at least two thermal transitions at 37.2 °C and 62.7 °C. These data indicate that the continuous α-helical structure of the coil 2 domain has parts with varied thermal stability. Among all the NFL fragments, only NFL2 underwent irreversible heat-induced denaturation. Together, these results unveil the origin of full-length NFL's thermal transitions, and reveal its domains structure and properties.
Collapse
Affiliation(s)
- Victoria V. Nefedova
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.Y.K.); (I.V.S.); (D.I.L.); (A.M.M.)
| | - Sergey Y. Kleymenov
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.Y.K.); (I.V.S.); (D.I.L.); (A.M.M.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Irina V. Safenkova
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.Y.K.); (I.V.S.); (D.I.L.); (A.M.M.)
| | - Dmitrii I. Levitsky
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.Y.K.); (I.V.S.); (D.I.L.); (A.M.M.)
| | - Alexander M. Matyushenko
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.Y.K.); (I.V.S.); (D.I.L.); (A.M.M.)
| |
Collapse
|
73
|
Paul B, Furst EM, Lenhoff AM, Wagner NJ, Teixeira SCM. Combined Effects of Pressure and Ionic Strength on Protein-Protein Interactions: An Empirical Approach. Biomacromolecules 2024; 25:338-348. [PMID: 38117685 DOI: 10.1021/acs.biomac.3c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Proteins are exposed to hydrostatic pressure (HP) in a variety of ecosystems as well as in processing steps such as freeze-thaw, cell disruption, sterilization, and homogenization, yet pressure effects on protein-protein interactions (PPIs) remain underexplored. With the goal of contributing toward the expanded use of HP as a fundamental control parameter in protein research, processing, and engineering, small-angle X-ray scattering was used to examine the effects of HP and ionic strength on ovalbumin, a model protein. Based on an extensive data set, we develop an empirical method for scaling PPIs to a master curve by combining HP and osmotic effects. We define an effective pressure parameter that has been shown to successfully apply to other model protein data available in the literature, with deviations evident for proteins that do not follow the apparent Hofmeister series. The limitations of the empirical scaling are discussed in the context of the hypothesized underlying mechanisms.
Collapse
Affiliation(s)
- Brian Paul
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Eric M Furst
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Abraham M Lenhoff
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Norman J Wagner
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Susana C M Teixeira
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
74
|
Peng M, Xu Y, Wu Y, Cai X, Zhang W, Zheng L, Du E, Fu J. Binding Affinity and Mechanism of Six PFAS with Human Serum Albumin: Insights from Multi-Spectroscopy, DFT and Molecular Dynamics Approaches. TOXICS 2024; 12:43. [PMID: 38250999 PMCID: PMC10819430 DOI: 10.3390/toxics12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) bioaccumulate in the human body, presenting potential health risks and cellular toxicity. Their transport mechanisms and interactions with tissues and the circulatory system require further investigation. This study investigates the interaction mechanisms of six PFAS with Human Serum Albumin (HSA) using multi-spectroscopy, DFT and a molecular dynamics approach. Multi-spectral analysis shows that perfluorononanoic acid (PFNA) has the best binding capabilities with HSA. The order of binding constants (298 K) is as follows: "Perfluorononanoic Acid (PFNA, 7.81 × 106 L·mol-1) > Perfluoro-2,5-dimethyl-3,6-dioxanonanoic Acid (HFPO-TA, 3.70 × 106 L·mol-1) > Perfluorooctanoic Acid (PFOA, 2.27 × 105 L·mol-1) > Perfluoro-3,6,9-trioxadecanoic Acid (PFO3DA, 1.59 × 105 L·mol-1) > Perfluoroheptanoic Acid (PFHpA, 4.53 × 103 L·mol-1) > Dodecafluorosuberic Acid (DFSA, 1.52 × 103 L·mol-1)". Thermodynamic analysis suggests that PFNA and PFO3DA's interactions with HSA are exothermic, driven primarily by hydrogen bonds or van der Waals interactions. PFHpA, DFSA, PFOA, and HFPO-TA's interactions with HSA, on the other hand, are endothermic processes primarily driven by hydrophobic interactions. Competitive probe results show that the main HSA-PFAS binding site is in the HSA structure's subdomain IIA. These findings are also consistent with the findings of molecular docking. Molecular dynamics simulation (MD) analysis further shows that the lowest binding energy (-38.83 kcal/mol) is fund in the HSA-PFNA complex, indicating that PFNA binds more readily with HSA. Energy decomposition analysis also indicates that van der Waals and electrostatic interactions are the main forces for the HSA-PFAS complexes. Correlation analysis reveals that DFT quantum chemical descriptors related to electrostatic distribution and characteristics like ESP and ALIE are more representative in characterizing HSA-PFAS binding. This study sheds light on the interactions between HSA and PFAS. It guides health risk assessments and control strategies against PFAS, serving as a critical starting point for further public health research.
Collapse
Affiliation(s)
- Mingguo Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Yang Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Yao Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Xuewen Cai
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Weihua Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Lu Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Erdeng Du
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
| |
Collapse
|
75
|
Fatehi Y, Sahraei A, Mohammadi F. Myricetin and morin hydrate inhibit amyloid fibril formation of bovine α-lactalbumin (BLA). Int J Biol Macromol 2024; 254:127908. [PMID: 37939780 DOI: 10.1016/j.ijbiomac.2023.127908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Amyloid fibrils are self-assembled aggregates of proteins and peptides that can lead to a broad range of diseases called amyloidosis. So far, no definitive and approved treatment to target directly amyloid fibrils has been introduced. Nevertheless, the search for small molecules with ability to inhibit and suppress fibril formation is an active and promising area of the research. Herein, the binding interactions and inhibitory effects of myricetin and morin hydrate on the in vitro fibrillation of bovine α-lactalbumin (BLA) have been investigated. The intrinsic fluorescence of BLA was quenched by myricetin and morin hydrate through combination of the static and dynamic quenching along with non-radiative Förster energy transfer mechanisms. The binding of these two flavonoids to BLA were not accompanied by major alteration in the conformation of BLA as evidenced by CD studies. The results of the fluorescence quenching analyses indicated almost the same binding affinities of myricetin and morin hydrate toward BLA (Kb ~ 106 M-1). However, the results of thioflavin T (ThT) assays showed that myricetin is a stronger inhibitor against BLA fibrillation compared to morin hydrate.
Collapse
Affiliation(s)
- Yaser Fatehi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Amin Sahraei
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran.
| | - Fakhrossadat Mohammadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran.
| |
Collapse
|
76
|
Keating PM, Schifano NP, Wei X, Kong MY, Lee J. pH-dependent conformational change within the Lassa virus transmembrane domain elicits efficient membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184233. [PMID: 37734457 DOI: 10.1016/j.bbamem.2023.184233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Lassa virus (LASV) is the most prevalent member of the arenavirus family and the causative agent of Lassa fever, a viral hemorrhagic fever. Although there are annual outbreaks in West Africa, and recently isolated cases worldwide, there are no current therapeutics or vaccines, which poses LASV as a significant global public health threat. One of the key steps in LASV infection is the delivery of its genetic material by fusing its viral membrane with the host cell membrane. This process is facilitated by significant conformational changes within glycoprotein 2 (GP2), yielding distinct prefusion and postfusion structural states. However, structural information is missing to understand the changes that occur in the transmembrane domain during the fusion process. Here, we used CD and NMR spectroscopy to show that the transmembrane domain has pH-dependent conformational changes that result in an extension of the alpha helix at the N-terminal end. Proline mutants of key residues in that region prevent the helical extension, as seen in CD and NMR. We developed a modified lipid mixing assay to study the importance of this extension on the function of GP2. Our assay shows that membrane fusion efficiency is optimal at low pH values but introducing the proline mutants results in lower fusion efficiency. These results indicate that these pH-dependent conformational changes are important to the fusion mechanism. This information can be used to design therapeutics to combat Lassa virus infections and prevent its potential spread.
Collapse
Affiliation(s)
- Patrick M Keating
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Nicholas P Schifano
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Xinrui Wei
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Matthew Y Kong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
77
|
Torrente-López A, Hermosilla J, Salmerón-García A, Cabeza J, Ruiz-Martínez A, Navas N. Comprehensive physicochemical and functional analysis of pembrolizumab based on controlled degradation studies: Impact on antigen-antibody binding. Eur J Pharm Biopharm 2024; 194:131-147. [PMID: 38101489 DOI: 10.1016/j.ejpb.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Monoclonal antibodies-based medicines are widely used in the treatment of different diseases. These medicines are very sensitive to exposure to different environmental conditions and their handling in hospitals may affect their safety and efficacy. This is the case for pembrolizumab (Keytruda®, 25 mg/mL), for which there is not yet much information on its risk behaviour associated with routine handling or unintentional mishandling. Here we performed a wider physicochemical and functional analysis of pembrolizumab medicine including controlled degradation studies: heat, freeze/thaw, agitation, accelerated light exposure and high hypertonic solution. After that, the samples were analysed by a set of analytical techniques to evaluated critical quality attributes: Far-UV CD, IT-FS, DLS, RP/UHPLC(UV)-MS, SE/UHPLC(UV), RP/UHPLC(UV)-MS/MS and ELISA. The results provide an in-depth understanding of the biochemical and biophysical properties of pembrolizumab, showing that the medicine is affected by accelerated light exposure and temperature of 60 °C, demonstrated by the detection of non-natural dimers and HMWS. Light exposure also revealed different isoform profile and increase in oxidations. Regarding functionality by means of the interaction antigen-antibody binding, all the stressors promoted a decrease in pembrolizumab capacity to bind to PD-1 receptor, although the biological activity remained still high for all of them, being 60 °C and accelerated light exposure the most affected.
Collapse
Affiliation(s)
- Anabel Torrente-López
- Department of Analytical Chemistry, Science Faculty, Biohealth Research Institute (ibs.GRANADA), University of Granada, E-18071 Granada, Spain
| | - Jesús Hermosilla
- Department of Analytical Chemistry, Science Faculty, Biohealth Research Institute (ibs.GRANADA), University of Granada, E-18071 Granada, Spain
| | - Antonio Salmerón-García
- Department of Clinical Pharmacy, Biohealth Research Institute (ibs.GRANADA), San Cecilio University Hospital, E-18012 Granada, Spain
| | - José Cabeza
- Department of Clinical Pharmacy, Biohealth Research Institute (ibs.GRANADA), San Cecilio University Hospital, E-18012 Granada, Spain
| | - Adolfina Ruiz-Martínez
- Department of Pharmacy and Pharmaceutical Technology, Pharmacy Faculty, University of Granada, E-18011 Granada, Spain
| | - Natalia Navas
- Department of Analytical Chemistry, Science Faculty, Biohealth Research Institute (ibs.GRANADA), University of Granada, E-18071 Granada, Spain.
| |
Collapse
|
78
|
Kumar M, Haque MA, Kaur P. Computational and Biophysical Approaches to Identify Cell Wall-Associated Modulators in Salmonella enterica serovar Typhi. Methods Mol Biol 2024; 2727:35-55. [PMID: 37815707 DOI: 10.1007/978-1-0716-3491-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
An increase in the number of antibiotic-resistant bacterial pathogens, in recent times, has posed a great challenge for treating the affected patients. This has paved the way for the development and design of antibiotics against the previously less explored newer targets. Among these, peptidoglycan (PG) biosynthesis serves as a promising target for the design and development of novel drugs. The peptidoglycan cell wall synthesis in bacteria is essential for its viability. The enzyme class, Mur ligases, plays a key role in PG biosynthesis. Therefore, compounds with the ability to inhibit these enzymes (Mur ligase) can serve as potential candidates for developing small modulators. The enzyme, UDP-N-acetyl pyruvyl-glucosamine reductase (MurB), is essential for PG biosynthesis, a crucial part of the bacterial cell wall. The development of novel drugs to treat infections may thus focus on inhibiting MurB function. Understanding the mechanism of action of Mur B is central to developing efficient inhibitors. For the treatment of S. typhi infections, it is also critical to find therapeutic drugs that specifically target MurB. The enzyme Mur B from Salmonella enterica serovar Typhi (stMurB) was expressed and purified for biophysical characterization to gauge the molecular interactions and estimate thermodynamic stability, for determining attributes for possible therapeutic intervention. The thermal melting profile of MurB was monitored by circular dichroism (CD) and validated by performing differential scanning calorimetry (DSC). An in silico virtual screening of various natural inhibitors was conducted with modelled stMurB structure. The three top hits (quercetin, berberine, and scopoletin) obtained from in silico screening were validated for complex stability through molecular dynamics (MD) simulation. Further, fluorescence binding studies were undertaken for the selected natural inhibitors with stMurB alone and with its NADPH-bound form. The natural inhibitors, scopoletin and berberine, displayed lesser binding to stMurB compared to quercetin. Also, a stronger binding affinity was exhibited between quercetin and stMurB compared to NADPH and stMurB. Based on the above two findings, quercetin can be developed as an inhibitor of stMurB enzyme.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Md Anzarul Haque
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
79
|
Kurakin S, Badreeva D, Dushanov E, Shutikov A, Efimov S, Timerova A, Mukhametzyanov T, Murugova T, Ivankov O, Mamatkulov K, Arzumanyan G, Klochkov V, Kučerka N. Arrangement of lipid vesicles and bicelle-like structures formed in the presence of Aβ(25-35) peptide. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184237. [PMID: 37820938 DOI: 10.1016/j.bbamem.2023.184237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Our complementary experimental data and molecular dynamics (MD) simulations results reveal the structure of previously observed lipid bicelle-like structures (BLSs) formed in the presence of amyloid-beta peptide Aβ(25-35) below the main phase transition temperature (Tm) of saturated phosphatidylcholine lipids and small unilamellar vesicles (SUVs) above this temperature. First, we show by using solid-state 31P nuclear magnetic resonance (NMR) spectroscopy that our BLSs being in the lipid gel phase demonstrate magnetic alignment along the magnetic field of NMR spectrometer and undergo a transition to SUVs in the lipid fluid phase when heated through the Tm. Secondly, thanks to the BLS alignment we present their lipid structure. Lipids are found located not only in the flat bilayered part but also around its perimeter, which is corroborated by the results of coarse-grained (CG) MD simulations. Finally, peptides appear to mix randomly with lipids in SUVs while assuming predominantly unordered secondary structures revealed by circular dichroism (CD), Raman spectroscopy, and all-atom MD simulations. Importantly, the former is changing little when the system undergoes morphological transitions between BLSs and SUVs. Our structural results then offer a platform for studying and understanding mechanisms of morphological transformations caused by the disruptive effect of amyloid-beta peptides on the lipid bilayer.
Collapse
Affiliation(s)
- Sergei Kurakin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia.
| | - Dina Badreeva
- Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Ermuhammad Dushanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Artyom Shutikov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Sergey Efimov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Ayzira Timerova
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Timur Mukhametzyanov
- Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Tatiana Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Kahramon Mamatkulov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Grigory Arzumanyan
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Vladimir Klochkov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, Bratislava 832 32, Slovakia.
| |
Collapse
|
80
|
Wang F, Wang H, Kang K, Zhang X, Fraser K, Zhang F, Linhardt RJ. β-Glucosidase on clay minerals: Structure and function in the synthesis of octyl glucoside. Int J Biol Macromol 2024; 256:128386. [PMID: 38008140 DOI: 10.1016/j.ijbiomac.2023.128386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
β-Glucosidase is a biological macromolecule that catalyzes the hydrolysis of various glycosides and oligosaccharides. It may also be used to catalyze the synthesis of glycosides under suitable conditions. Carrier-bound β-glucosidase can enhance the enzymatic activity in the synthesis of glycosides in organic solvent solutions, although the molecular mechanism regulating activity is yet unknown. This study investigated the impact of utilizing montmorillonite (Mmt), attapulgite (Attp), and kaolinite (Kao) as carriers on the activity of β-glucosidase from Prunus dulcis (PdBg). When Attp was used as carriers, the molecular dynamic (MD) simulations found the distance between pNPG and the active site residues E183 and E387 was minimally impacted by the adsorptions, hence PdBg maintained about 81.3 ± 0.89 % of its native activity. Out of the three clay minerals, the relative activity of PdBg loaded on Mmt was the lowest because of the highest electrostatic energy. The substrate channel of PdBg on Kao is directed towards the surface, limiting the accessibility of substrates. Secondary structure and conformation studies revealed that the conformational stability of PdBg in solvent solutions was enhanced by coupling to Attp. Unlike dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF) and 1,2-dimethoxyethane (DME), tert-butanol (t-BA) did not penetrate into the active site of PdBg interfering with its binding to the substrate. The maximum yield of n-octyl-β-glucoside (OGP) synthesis catalyzed by Attp-immobilized PdBg reached 48.3 %.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Haohao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Kang Kang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xuan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Keith Fraser
- Department of Chemistry and Chemical Biology, Departments of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Departments of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Departments of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
81
|
Blanco FG, Machatschek R, Keller M, Hernández-Arriaga AM, Godoy MS, Tarazona NA, Prieto MA. Nature-inspired material binding peptides with versatile polyester affinities and binding strengths. Int J Biol Macromol 2023; 253:126760. [PMID: 37683751 DOI: 10.1016/j.ijbiomac.2023.126760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Biodegradable polyesters, such as polyhydroxyalkanoates (PHAs), are having a tremendous impact on biomedicine. However, these polymers lack functional moieties to impart functions like targeted delivery of molecules. Inspired by native GAPs, such as phasins and their polymer-binding and surfactant properties, we generated small material binding peptides (MBPs) for polyester surface functionalization using a rational approach based on amphiphilicity. Here, two peptides of 48 amino acids derived from phasins PhaF and PhaI from Pseudomonas putida, MinP and the novel-designed MinI, were assessed for their binding towards two types of PHAs, PHB and PHOH. In vivo, fluorescence studies revealed selective binding towards PHOH, whilst in vitro binding experiments using the Langmuir-Blodgett technique coupled to ellipsometry showed KD in the range of nM for all polymers and MBPs. Marked morphological changes of the polymer surface upon peptide adsorption were shown by BAM and AFM for PHOH. Moreover, both MBPs were successfully used to immobilize cargo proteins on the polymer surfaces. Altogether, this work shows that by redesigning the amphiphilicity of phasins, a high affinity but lower specificity to polyesters can be achieved in vitro. Furthermore, the MBPs demonstrated binding to PET, showing potential to bind cargo molecules also to synthetic polyesters.
Collapse
Affiliation(s)
- Francisco G Blanco
- Polymer Biotechnology Group, Plant and Microbial Biotechnology Department, Margarita Salas Centre for Biological Research (CIB - CSIC), Madrid, Spain; Interdisciplinary Platform of Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Rainhard Machatschek
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Manuela Keller
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Ana M Hernández-Arriaga
- Polymer Biotechnology Group, Plant and Microbial Biotechnology Department, Margarita Salas Centre for Biological Research (CIB - CSIC), Madrid, Spain; Interdisciplinary Platform of Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Manuel S Godoy
- Polymer Biotechnology Group, Plant and Microbial Biotechnology Department, Margarita Salas Centre for Biological Research (CIB - CSIC), Madrid, Spain; Interdisciplinary Platform of Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Natalia A Tarazona
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany.
| | - M Auxiliadora Prieto
- Polymer Biotechnology Group, Plant and Microbial Biotechnology Department, Margarita Salas Centre for Biological Research (CIB - CSIC), Madrid, Spain; Interdisciplinary Platform of Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
82
|
Ashraf A, Ahmad M, Mariadasse R, Khan MA, Noor S, Islam A, Hassan MI. Integrated spectroscopic and MD simulation approach to decipher the effect of pH on the structure function of Staphylococcus aureus thymidine kinase. J Biomol Struct Dyn 2023:1-12. [PMID: 38100604 DOI: 10.1080/07391102.2023.2293270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Staphylococcus aureus is a major human pathogen responsible for a variety of clinical infections, becoming increasingly resistant to antibiotics. To address this challenge, there is a need to identify new cellular targets and innovative approaches to expand treatment options. One such target is thymidine kinase (TK), a crucial enzyme in the pyrimidine salvage pathway, which plays a key role in the phosphorylation of thymidine, an essential component in DNA synthesis and repair. In this study, we have successfully cloned, expressed, and purified the TK protein. A comprehensive investigation into how different pH levels affect the structure and functional activity of TK, using a combination of spectroscopy, classical molecular dynamics simulations, and enzyme activity assays was conducted. Our study revealed that variation in pH disrupts secondary and tertiary structures of TK with noticeable aggregate formation at pH 5.0. Enzyme activity studies demonstrated that TK exhibited its maximum kinase activity within the physiological pH range. These findings strongly suggest a connection between structural changes and enzymatic activity, which was further supported by the agreement between the spectroscopic features we measured and the results of our MD simulations. Our study provides a deeper insight into the structural features of TK, which could potentially be harnessed for the development of therapeutic strategies aimed at combatting infectious diseases. Conformational dynamics plays an essential role in the design and development of effective inhibitors. Considering the effects of pH on the conformational dynamics of TK, our findings may be implicated in the development of potent and selective inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | | - Richard Mariadasse
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Monis Ali Khan
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
83
|
Ham D, Ahn D, Chung C, Chung KY. Isolation and conformational analysis of the Gα α-helical domain. Biochem Biophys Res Commun 2023; 685:149153. [PMID: 37913692 DOI: 10.1016/j.bbrc.2023.149153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Heterotrimeric G proteins (G proteins), composed of Gα, Gβ, and Gγ subunits, are the major downstream signaling molecules of the G protein-coupled receptors. Upon activation, Gα undergoes conformational changes both in the Ras-like domain (RD) and the α-helical domain (AHD), leading to the dissociation of Gα from Gβγ and subsequent regulation of downstream effector proteins. Gα RD mediate the most of classical functions of Gα. However, the role of Gα AHD is relatively not well elucidated despite its much higher sequence differences between Gα subtypes than those between Gα RD. Here, we isolated AHD from Gαs, Gαi1, and Gαq to provide tools for examining Gα AHD. We investigated the conformational dynamics of the isolated Gα AHD compared to those of the GDP-bound Gα. The results showed higher local conformational dynamics of Gα AHD not only at the domain interfaces but also in regions further away from the domain interfaces. This finding is consistent with the conformation of Gα AHD in the receptor-bound nucleotide-free state. Therefore, the isolated Gα AHD could provide a platform for studying the functions of Gα AHD, such as identification of the Gα AHD-binding proteins.
Collapse
Affiliation(s)
- Donghee Ham
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghoon Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chiwoon Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
84
|
Wang Y, Zhou J, Tian X, Bai L, Ma C, Chen Y, Li Y, Wang W. Effects of Covalent or Noncovalent Binding of Different Polyphenols to Acid-Soluble Collagen on Protein Structure, Functionality, and Digestibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19020-19032. [PMID: 37991476 DOI: 10.1021/acs.jafc.3c06510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In this study, the structure, function, and digestibility of noncovalent complexes and covalent conjugates formed by acid-soluble collagen with polyphenols of different structures (quercetin, epicatechin, gallic acid, chlorogenic acid, procyanidin, and tannic acid) were investigated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that polyphenols were covalently bound to collagen by laccase catalytic oxidation. Biolayer interferometry revealed that the noncovalent binding strength of polyphenols to collagen from high to low was quercetin > gallic acid > chlorogenic acid > epicatechin, which was consistent with the trend of covalent polyphenol binding. Procyanidin and tannic acid had strong noncovalent binding, but their covalent binding ability was weak. Compared with the pure collagen, the complexes improved emulsification and antioxidant properties (more than 2.5 times), and the conjugates exhibited better thermal stability (99.4-106.8 °C) and antidigestion ability (reduced by more than 37%). The finding sheds new light on the use of collagen as a functional food ingredient in the food industry.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiaping Zhou
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lei Bai
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenwei Ma
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- R&D Centre of Collagen Products, Xingjia Biotechnology Co. Ltd., Tianjin 300457, China
| |
Collapse
|
85
|
Rodríguez-Alonso G, Toledo-Marcos J, Serrano-Aguirre L, Rumayor C, Pasero B, Flores A, Saborido A, Hoyos P, Hernáiz MJ, de la Mata I, Arroyo M. A Novel Lipase from Streptomyces exfoliatus DSMZ 41693 for Biotechnological Applications. Int J Mol Sci 2023; 24:17071. [PMID: 38069394 PMCID: PMC10707221 DOI: 10.3390/ijms242317071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Genome mining of Streptomyces exfoliatus DSMZ 41693 has allowed us to identify four different lipase-encoding sequences, and one of them (SeLipC) has been successfully cloned and extracellularly expressed using Rhodococcus sp. T104 as a host. SeLipC was purified by one-step hydrophobic interaction chromatography. The enzyme is a monomeric protein of 27.6 kDa, which belongs to subfamily I.7 of lipolytic enzymes according to its phylogenetic analysis and biochemical characterization. The purified enzyme shows the highest activity at 60 °C and an optimum pH of 8.5, whereas thermal stability is significantly improved when protein concentration is increased, as confirmed by thermal deactivation kinetics, circular dichroism, and differential scanning calorimetry. Enzyme hydrolytic activity using p-nitrophenyl palmitate (pNPP) as substrate can be modulated by different water-miscible organic cosolvents, detergents, and metal ions. Likewise, kinetic parameters for pNPP are: KM = 49.6 µM, kcat = 57 s-1, and kcat/KM = 1.15 × 106 s-1·M-1. SeLipC is also able to hydrolyze olive oil and degrade several polyester-type polymers such as poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), and poly(ε-caprolactone) (PCL). Moreover, SeLipC can catalyze the synthesis of different sugar fatty acid esters by transesterification using vinyl laurate as an acyl donor, demonstrating its interest in different biotechnological applications.
Collapse
Affiliation(s)
- Guillermo Rodríguez-Alonso
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Juan Toledo-Marcos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Lara Serrano-Aguirre
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Carlos Rumayor
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Beatriz Pasero
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Aida Flores
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (A.F.); (P.H.); (M.J.H.)
| | - Ana Saborido
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Pilar Hoyos
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (A.F.); (P.H.); (M.J.H.)
| | - María J. Hernáiz
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (A.F.); (P.H.); (M.J.H.)
| | - Isabel de la Mata
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Miguel Arroyo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| |
Collapse
|
86
|
Panda C, Sharma LG, Pandey LM. Experimental procedures to investigate fibrillation of proteins. MethodsX 2023; 11:102445. [PMID: 37928109 PMCID: PMC10622682 DOI: 10.1016/j.mex.2023.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
The unwanted phenomenon of protein fibrillation is observed in vivo and during therapeutic protein development in the industry. Protein aggregation is associated with various degenerative disorders and might induce immune-related challenges post-administration of biopharmaceutics. A pipeline for early detection, identification, and removal of pre-formed fibrils is needed to improve the quality, efficacy, and effectiveness of the formulation. Protein fibril formation is accompanied by unfolding, secondary structural changes and the formation of larger aggregates. However, most detection processes come with extensive sample preparation steps and inefficient repeatability, incurring a financial burden on research. The current article summarizes and critically discusses six simple yet powerful methods to detect aggregation phenomena in the line of detecting fibrillar aggregates in heat-induced bovine serum albumin protein. Comparing the native and heat-induced protein samples would provide insights about aggregates. Easy, inexpensive and optimized protocols for detecting the fibrillation of proteins are explained. The procedures mentioned here detected the appearance of β-sheet-rich fibrils in the heat-induced protein sample. The aggregation is characterized by enhanced thioflavin-T fluorescence, alteration in the intrinsic fluorescence, decrease in helicity and subsequent increase in β-sheet and appearance of particles with larger hydrodynamic diameters. •This article summarizes various analytical techniques to easily characterize the fibrillation of proteins.•Various techniques to detect the formation of β-sheet rich structures, changes in the secondary structures and size of aggregates have been discussed.•The stated methodologies are validated on a model protein, albumin.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Laipubam Gayatri Sharma
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
87
|
Carter R, Alanazi F, Sharp A, Roman J, Luchini A, Liotta L, Paige M, Brown AM, Haymond A. Identification of the functional PD-L1 interface region responsible for PD-1 binding and initiation of PD-1 signaling. J Biol Chem 2023; 299:105353. [PMID: 37858677 PMCID: PMC10663846 DOI: 10.1016/j.jbc.2023.105353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The PD-1/PD-L1 checkpoint pathway is important for regulating immune responses and can be targeted by immunomodulatory drugs to treat a variety of immune disorders. However, the precise protein-protein interactions required for the initiation of PD-1/PD-L1 signaling are currently unknown. Previously, we designed a series of first-generation PD-1 targeting peptides based on the native interface region of programmed death ligand 1 (PD-L1) that effectively reduced PD-1/PD-L1 binding. In this work, we further characterized the previously identified lead peptide, MN1.1, to identify key PD-1 binding residues and design an optimized peptide, MN1.4. We show MN1.4 is significantly more stable than MN1.1 in serum and retains the ability to block PD-1/PD-L1 complex formation. We further characterized the immunomodulatory effects of MN1.4 treatment by measuring markers of T cell activation in a co-culture model with ovarian cancer cells and peripheral blood mononuclear cells. We found MN1.4 treatment reduced cytokine secretion and suppressed T cell responses in a similar manner as recombinant PD-L1. Therefore, the PD-L1 interface region used to design MN1.4 appeared sufficient to initiate PD-1 signaling and likely represents the minimum necessary region of PD-L1 required for PD-1 recognition. We propose a peptide agonist for PD-1, such as MN1.4, could have several applications for treating autoimmune disorders caused by PD-1 deficiencies such as type 1 diabetes, inflammatory arthritis, or autoimmune side effects arising from monoclonal antibody-based cancer immunotherapies.
Collapse
Affiliation(s)
- Rachel Carter
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA.
| | - Fatimah Alanazi
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Amanda Sharp
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| | - Jessica Roman
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Mikell Paige
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia, USA
| | - Anne M Brown
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA; Data Services, University Libraries, Virginia Tech, Blacksburg, Virginia, USA
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
88
|
Voß Y, Klaus S, Lichti NP, Ganter M, Guizetti J. Malaria parasite centrins can assemble by Ca2+-inducible condensation. PLoS Pathog 2023; 19:e1011899. [PMID: 38150475 PMCID: PMC10775985 DOI: 10.1371/journal.ppat.1011899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/09/2024] [Accepted: 12/13/2023] [Indexed: 12/29/2023] Open
Abstract
Centrins are small calcium-binding proteins that have a variety of roles and are universally associated with eukaryotic centrosomes. Rapid proliferation of the malaria-causing parasite Plasmodium falciparum in the human blood depends on a particularly divergent and acentriolar centrosome, which incorporates several essential centrins. Their precise mode of action, however, remains unclear. In this study calcium-inducible liquid-liquid phase separation is revealed as an evolutionarily conserved principle of assembly for multiple centrins from P. falciparum and other species. Furthermore, the disordered N-terminus and calcium-binding motifs are defined as essential features for reversible biomolecular condensation, and we demonstrate that certain centrins can form co-condensates. In vivo analysis using live cell STED microscopy shows liquid-like dynamics of centrosomal centrin. Additionally, implementation of an inducible protein overexpression system reveals concentration-dependent formation of extra-centrosomal centrin assemblies with condensate-like properties. The timing of foci formation and dissolution suggests that centrin assembly is regulated. This study thereby provides a new model for centrin accumulation at eukaryotic centrosomes.
Collapse
Affiliation(s)
- Yannik Voß
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Severina Klaus
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicolas P. Lichti
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ganter
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Julien Guizetti
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
89
|
Ricotti S, Garay AS, Etcheverrigaray M, Amadeo GI, De Groot AS, Martin W, Mufarrege EF. Development of IFNβ-1a versions with reduced immunogenicity and full in vitro biological activity for the treatment of multiple sclerosis. Clin Immunol 2023; 257:109831. [PMID: 37931868 DOI: 10.1016/j.clim.2023.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
IFNβ (recombinant interferon Beta) has been widely used for the treatment of Multiple sclerosis for the last four decades. Despite the human origin of the IFNβ sequence, IFNβ is immunogenic, and unwanted immune responses in IFNβ-treated patients may compromise its efficacy and safety in the clinic. In this study, we applied the DeFT (De-immunization of Functional Therapeutics) approach to producing functional, de-immunized versions of IFNβ-1a. Two de-immunized versions of IFNβ-1a were produced in CHO cells and designated as IFNβ-1a(VAR1) and IFNβ-1a(VAR2). First, the secondary and tertiary protein structures were analyzed by circular dichroism spectroscopy. Then, the variants were also tested for functionality. While IFNβ-1a(VAR2) showed similar in vitro antiviral activity to the original protein, IFNβ-1a(VAR1) exhibited 40% more biological potency. Finally, in vivo assays using HLA-DR transgenic mice revealed that the de-immunized variants showed a markedly reduced immunogenicity when compared to the originator.
Collapse
Affiliation(s)
- Sonia Ricotti
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, Santa Fe S3000ZAA, Argentina
| | - Alberto Sergio Garay
- Laboratory of Molecular Modeling, FBCB (School of Biochemistry and Biological Sciences), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, Santa Fe S3000ZAA, Argentina
| | - Marina Etcheverrigaray
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, Santa Fe S3000ZAA, Argentina
| | - Gabriel Ignacio Amadeo
- Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, Santa Fe S3000ZAA, Argentina
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI 02903, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | | | - Eduardo Federico Mufarrege
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, Santa Fe S3000ZAA, Argentina.
| |
Collapse
|
90
|
Janes RW, Wallace BA. DichroPipeline: A suite of online and downloadable tools and resources for protein circular dichroism spectroscopic data analyses, interpretations, and their interoperability with other bioinformatics tools and resources. Protein Sci 2023; 32:e4817. [PMID: 37881887 PMCID: PMC10680340 DOI: 10.1002/pro.4817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
Circular Dichroism (CD) spectroscopy is a widely-used method for characterizing individual protein structures in solutions, membranes, films and macromolecular complexes, as well as for probing macromolecular interactions, conformational changes associated with binding substrates, and in different functionally-related environments. This paper describes a series of related computational and display tools that have been developed over many years to aid in those characterizations and functional interpretations. The new DichroPipeline described herein links a series of format-compatible data processing, analysis, and display tools to enable users to facilely produce the spectra, which can then be made available in the Protein Circular Dichroism Data Bank (https://pcddb.cryst.bbk.ac.uk/) resource, in which the CD spectral and associated metadata for each entry are linked to other structural and functional data bases including the Protein Data Bank (PDB), and the UniProt sequence data base, amongst others. These tools and resources thus provide the basis for a wide range of traceable structural characterizations of soluble, membrane and intrinsically-disordered proteins.
Collapse
Affiliation(s)
- Robert W. Janes
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - B. A. Wallace
- School of Biological SciencesBirkbeck University of LondonLondonUK
| |
Collapse
|
91
|
Peng M, Wang Y, Wu C, Cai X, Wu Y, Du E, Zheng L, Fu J. Investigating sulfonamides - Human serum albumin interactions: A comprehensive approach using multi-spectroscopy, DFT calculations, and molecular docking. Biochem Biophys Res Commun 2023; 683:149108. [PMID: 37862782 DOI: 10.1016/j.bbrc.2023.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
The environmental and health risks associated with sulfonamide antibiotics (SAs) are receiving increasing attention. Through multi-spectroscopy, density functional theory (DFT), and molecular docking, this study investigated the interaction features and mechanisms between six representative SAs and human serum albumin (HSA). Multi-spectroscopy analysis showed that the six SAs had significant binding capabilities with HSA. The order of binding constants at 298 K was as follows: sulfadoxine (SDX): 7.18 × 105 L mol-1 > sulfamethizole (SMT): 6.28 × 105 L mol-1 > sulfamerazine (SMR): 2.70 × 104 L mol-1 > sulfamonomethoxine (SMM): 2.54 × 104 L mol-1 > sulfamethazine (SMZ): 3.06 × 104 L mol-1 > sulfadimethoxine (SDM): 2.50 × 104 L mol-1. During the molecular docking process of the six SAs with HSA, the binding affinity range is from -7.4 kcal mol-1 to -8.6 kcal mol-1. Notably, the docking result of HSA-SDX reached the maximum of -8.6 kcal mol-1, indicating that SDX may possess the highest binding capacity to HSA. HSA-SDX binding, identified as a static quenching and exothermic process, is primarily driven by hydrogen bonds (H bonds) or van der Waals (vdW) interactions. The quenching processes of SMR/SMZ/SMM/SDX/SMT to HSA are a combination of dynamic and static quenching, indicating an endothermic reaction. Hydrophobic interactions are primarily accountable for SMR/SMZ/SMM/SDX/SMT and HSA binding. Competition binding results revealed that the primary HSA-SAs binding sites are in the subdomain IB of the HAS structure, consistent with the results of molecule docking. The correlation analysis based on DFT calculations revealed an inherent relationship between the structural chemical features of SAs and the binding performance of HSA-SAs. The dual descriptor (DD) and the electrophilic Fukui function were found to have a significant relationship (0.71 and -0.71, respectively) with the binding constants of HSA-SAs, predicting the binding performance of SAs and HSA. These insights have substantial scientific value for evaluating the environmental risks of SAs as well as understanding their impact on biological life activities.
Collapse
Affiliation(s)
- Mingguo Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Yicui Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Chunge Wu
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Xuewen Cai
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yao Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou, 213164, China.
| | - Lu Zheng
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
92
|
Ferrario E, Kallio JP, Strømland Ø, Ziegler M. Novel Calcium-Binding Motif Stabilizes and Increases the Activity of Aspergillus fumigatus Ecto-NADase. Biochemistry 2023; 62:3293-3302. [PMID: 37934975 PMCID: PMC10666276 DOI: 10.1021/acs.biochem.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential molecule in all kingdoms of life, mediating energy metabolism and cellular signaling. Recently, a new class of highly active fungal surface NADases was discovered. The enzyme from the opportunistic human pathogen Aspergillus fumigatus was thoroughly characterized. It harbors a catalytic domain that resembles that of the tuberculosis necrotizing toxin from Mycobacterium tuberculosis, which efficiently cleaves NAD+ to nicotinamide and ADP-ribose, thereby depleting the dinucleotide pool. Of note, the A. fumigatus NADase has an additional Ca2+-binding motif at the C-terminus of the protein. Despite the presence of NADases in several fungal divisions, the Ca2+-binding motif is uniquely found in the Eurotiales order, which contains species that have immense health and economic impacts on humans. To identify the potential roles of the metal ion-binding site in catalysis or protein stability, we generated and characterized A. fumigatus NADase variants lacking the ability to bind calcium. X-ray crystallographic analyses revealed that the mutation causes a drastic and dynamic structural rearrangement of the homodimer, resulting in decreased thermal stability. Even though the calcium-binding site is at a long distance from the catalytic center, the structural reorganization upon the loss of calcium binding allosterically alters the active site, thereby negatively affecting NAD-glycohydrolase activity. Together, these findings reveal that this unique calcium-binding site affects the protein fold, stabilizing the dimeric structure, but also mediates long-range effects resulting in an increased catalytic rate.
Collapse
Affiliation(s)
- Eugenio Ferrario
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
| | - Juha P. Kallio
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
| | - Øyvind Strømland
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
| | - Mathias Ziegler
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
- Leibniz
Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbargstraße 11A, Jena 07745, Germany
| |
Collapse
|
93
|
Bandiera A, Colomina - Alfaro L, Sist P, Gomez d’Ayala G, Zuppardi F, Cerruti P, Catanzano O, Passamonti S, Urbani R. Physicochemical Characterization of a Biomimetic, Elastin-Inspired Polypeptide with Enhanced Thermoresponsive Properties and Improved Cell Adhesion. Biomacromolecules 2023; 24:5277-5289. [PMID: 37890135 PMCID: PMC10647011 DOI: 10.1021/acs.biomac.3c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Genetic engineering allows fine-tuning and controlling protein properties, thus exploiting the new derivatives to obtain novel materials and systems with improved capacity to actively interact with biological systems. The elastin-like polypeptides are tunable recombinant biopolymers that have proven to be ideal candidates for realizing bioactive interfaces that can interact with biological systems. They are characterized by a thermoresponsive behavior that is strictly related to their peculiar amino acid sequence. We describe here the rational design of a new biopolymer inspired by elastin and the comparison of its physicochemical properties with those of another already characterized member of the same protein class. To assess the cytocompatibility, the behavior of cells of different origins toward these components was evaluated. Our study shows that the biomimetic strategy adopted to design new elastin-based recombinant polypeptides represents a versatile and valuable tool for the development of protein-based materials with improved properties and advanced functionality.
Collapse
Affiliation(s)
- Antonella Bandiera
- Department
of Life Sciences, University of Trieste, via L. Giorgieri, 1, 34127 Trieste, Italy
| | - Laura Colomina - Alfaro
- Department
of Life Sciences, University of Trieste, via L. Giorgieri, 1, 34127 Trieste, Italy
| | - Paola Sist
- Department
of Life Sciences, University of Trieste, via L. Giorgieri, 1, 34127 Trieste, Italy
| | - Giovanna Gomez d’Ayala
- Institute
for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Federica Zuppardi
- Institute
for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Pierfrancesco Cerruti
- Institute
for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Ovidio Catanzano
- Institute
for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Sabina Passamonti
- Department
of Life Sciences, University of Trieste, via L. Giorgieri, 1, 34127 Trieste, Italy
| | - Ranieri Urbani
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri, 1, 34127 Trieste, Italy
| |
Collapse
|
94
|
Ou Y, Xu L, Chen M, Lu X, Guo Z, Zheng B. Structure and Antidiabetic Activity of a Glycoprotein from Porphyra haitanensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16763-16776. [PMID: 37877414 DOI: 10.1021/acs.jafc.3c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A novel antidiabetic glycoprotein (PG) was isolated and purified from Porphyra haitanensis, and its structure and inhibiting activity on α-amylase and α-glucosidase were analyzed. The purity of the PG was 95.29 ± 0.21%, and its molecular weight was 163.024 ± 5.55 kDa. The PG had a tetramer structure with α- and β-subunits, and it contained 54.12 ± 0.86% protein (with highly hydrophobic amino acids) and 41.19% ± 0.64% carbohydrate (composed of galactose). The PG was linked via an O-glycosidic bond, exhibiting an α-helical structure and high stability. In addition, the PG inhibited the activities of α-amylase and α-glucosidase, by changing the enzyme's structure toward the PG's structure in a noncompetitive inhibition mode. Molecular docking results showed that the PG inhibited α-amylase activity by hydrophobic interaction, whereas it inhibited α-glucosidase activity by hydrogen bonds and hydrophobic interaction. Overall, the PG was linked to polysaccharides via O-glycosidic bonds, showing an α-helical configuration and a hydrophobic effect, which altered the configuration of α-amylase and α-glucosidase and exerted hypoglycemic activity. This study provides insights into analyzing the structure and antidiabetic activity of glycoproteins.
Collapse
Affiliation(s)
- Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Lijingting Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingrong Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaodan Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
95
|
Rabattoni V, Motta Z, Miceli M, Molla G, Fissore A, Adinolfi S, Pollegioni L, Sacchi S. On the regulation of human D-aspartate oxidase. Protein Sci 2023; 32:e4802. [PMID: 37805834 PMCID: PMC10588558 DOI: 10.1002/pro.4802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
The human flavoenzyme D-aspartate oxidase (hDASPO) controls the level of D-aspartate in the brain, a molecule acting as an agonist of NMDA receptors and modulator of AMPA and mGlu5 receptors. hDASPO-induced D-aspartate degradation prevents age-dependent deterioration of brain functions and is related to psychiatric disorders such as schizophrenia and autism. Notwithstanding this crucial role, less is known about hDASPO regulation. Here, we report that hDASPO is nitrosylated in vitro, while no evidence of sulfhydration and phosphorylation is apparent: nitrosylation affects the activity of the human flavoenzyme to a limited extent. Furthermore, hDASPO interacts with the primate-specific protein pLG72 (a well-known negative chaperone of D-amino acid oxidase, the enzyme deputed to D-serine degradation in the human brain), yielding a ~114 kDa complex, with a micromolar dissociation constant, promoting the flavoenzyme inactivation. At the cellular level, pLG72 and hDASPO generate a cytosolic complex: the expression of pLG72 negatively affects the hDASPO level by reducing its half-life. We propose that pLG72 binding may represent a protective mechanism aimed at avoiding cytotoxicity due to H2 O2 produced by the hDASPO enzymatic degradation of D-aspartate, especially before the final targeting to peroxisomes.
Collapse
Affiliation(s)
- Valentina Rabattoni
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| | - Zoraide Motta
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| | - Matteo Miceli
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| | - Gianluca Molla
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| | - Alex Fissore
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di TorinoTorinoItaly
| | - Salvatore Adinolfi
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di TorinoTorinoItaly
| | - Loredano Pollegioni
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| | - Silvia Sacchi
- “The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| |
Collapse
|
96
|
Dennison SR, Morton LH, Badiani K, Harris F, Phoenix DA. Bacterial susceptibility and resistance to modelin-5. SOFT MATTER 2023; 19:8247-8263. [PMID: 37869970 DOI: 10.1039/d3sm01007d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Modelin-5 (M5-NH2) killed Pseudomonas aeruginosa with a minimum lethal concentration (MLC) of 5.86 μM and strongly bound its cytoplasmic membrane (CM) with a Kd of 23.5 μM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m-1). This insertion destabilised CM structure via increased lipid packing and decreased fluidity (ΔGmix < 0), which promoted high levels of lysis (84.1%) and P. aeruginosa cell death. M5-NH2 showed a very strong affinity (Kd = 3.5 μM) and very high levels of amphiphilic α-helical structure with cardiolipin membranes (96.0%,) which primarily drove the peptide's membranolytic action against P. aeruginosa. In contrast, M5-NH2 killed Staphylococcus aureus with an MLC of 147.6 μM and weakly bound its CM with a Kd of 117.6 μM, The peptide adopted low levels of amphiphilic α-helical structure (35.0%) and only penetrated the upper regions of the CM (3.3 mN m-1). This insertion stabilised CM structure via decreased lipid packing and increased fluidity (ΔGmix > 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the S. aureus CM by M5-NH2 showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content (R2 > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH2 against S. aureus, thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH2 and CM lipids that underpin bacterial susceptibility and resistance to the peptide.
Collapse
Affiliation(s)
- Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Leslie Hg Morton
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Kamal Badiani
- Pepceuticals Limited, 4 Feldspar Close, Warrens Park, Enderby, Leicestershire, LE19 4JS, UK
| | - Frederick Harris
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| |
Collapse
|
97
|
Julien JA, Rousseau A, Perone TV, LaGatta DM, Hong C, Root KT, Park S, Fuanta R, Im W, Glover KJ. One-step site-specific S-alkylation of full-length caveolin-1: Lipidation modulates the topology of its C-terminal domain. Protein Sci 2023; 32:e4791. [PMID: 37801623 PMCID: PMC10599104 DOI: 10.1002/pro.4791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Caveolin-1 is an integral membrane protein that is known to acquire a number of posttranslational modifications upon trafficking to the plasma membrane. In particular, caveolin-1 is palmitoylated at three cysteine residues (C133, C143, and C156) located within the C-terminal domain of the protein which could have structural and topological implications. Herein, a reliable preparation of full-length S-alkylated caveolin-1, which closely mimics the palmitoylation observed in vivo, is described. HPLC and ESI-LC-MS analyses verified the addition of the C16 alkyl groups to caveolin-1 constructs containing one (C133), two (C133 and C143), and three (C133, C143, and C156) cysteine residues. Circular dichroism spectroscopy analysis of the constructs revealed that S-alkylation does not significantly affect the global helicity of the protein; however, molecular dynamics simulations revealed that there were local regions where the helicity was altered positively or negatively by S-alkylation. In addition, the simulations showed that lipidation tames the topological promiscuity of the C-terminal domain, resulting in a disposition within the bilayer characterized by increased depth.
Collapse
Affiliation(s)
| | - Alain Rousseau
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Thomas V. Perone
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - David M. LaGatta
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Chan Hong
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Kyle T. Root
- Department of Chemistry, Biochemistry, Engineering & PhysicsCommonwealth University of PennsylvaniaLock HavenPennsylvaniaUSA
| | - Soohyung Park
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - René Fuanta
- Department of Chemistry & BiochemistryEast Stroudsburg UniversityEast StroudsburgPennsylvaniaUSA
| | - Wonpil Im
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | | |
Collapse
|
98
|
Charoenwongpaiboon T, Wangpaiboon K, Puangpathanachai M, Pongsawasdi P, Pichyangkura R. Energy- and evolution-based design of inulosucrase for enhanced thermostability and inulin production. Appl Microbiol Biotechnol 2023; 107:6831-6843. [PMID: 37688600 DOI: 10.1007/s00253-023-12759-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Inulosucrase from Lactobacillus reuteri 121 (LrInu) exhibits promise in the synthesis of prebiotic inulin and fructooligosaccharides. However, for its use in industry, LrInu's thermostability is a crucial consideration. In this study, the computational program FireProt was used to predict the thermostable variants of LrInu. Using rational criteria, nine variants were selected for protein expression and characterization. The G237P variant was determined to be the greatest designed candidate due to its greatly enhanced stability and activity in comparison to the wild-type enzyme. The optimum temperature of G237P increased from 50 to 60°C, with an over 5-fold increase in the half-life. Spectroscopy studies revealed that the G237P mutation could prevent the structural change in LrInu caused by heat or urea treatment. Molecular dynamics (MD) simulations showed that the enhanced thermostability of the G237P variant resulted from an increase in structural rigidity and the number of native contacts within the protein molecule. In addition, G237P variant synthesizes inulin with greater efficiency than WT. KEY POINTS: • Thermostable inulosucrase variant(s) were designed by Fireprot server. • G237P variant showed significantly improved thermostability compared to the wild type. • Inulin is synthesized more efficiently by G237P variant.
Collapse
Affiliation(s)
| | - Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
99
|
Wu Y, Hu J, Du Y, Lu G, Li Y, Feng Y, Chen L, Tu Y, Xiang M, Gui Y, Shu T, Yu L. Mechanistic Insights into the Halophilic Xylosidase Xylo-1 and Its Role in Xylose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15375-15387. [PMID: 37773011 DOI: 10.1021/acs.jafc.3c05045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The Xylo-1 xylosidase, which belongs to the GH43 family, exhibits a high salt tolerance. The present study demonstrated that the catalytic activity of Xylo-1 increased by 195% in the presence of 5 M NaCl. Additionally, the half-life of Xylo-1 increased 25.9-fold in the presence of 1 M NaCl. Through comprehensive analysis including circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations, we elucidated that the presence of Na+ ions increased the contact frequency between the surface acidic amino acids and the surrounding water molecules. This resulted in the stabilization of the surrounding hydration layer of Xylo-1. Additionally, Na+ ions also stabilized the substrate-binding conformation and the fluctuation of water molecules within the active site, which enhanced the catalytic activity of Xylo-1 by increasing the nucleophilic attack by the water molecules. Ultimately, the optimal reaction conditions for the production of xylose by synergistic catalysis with Xylo-1 and xylanase were determined. The results demonstrated that the conversion yield of the method was high for various sources of xylan, indicating the method could have potential industrial applications. This study explored the structure-activity relationship of catalysis in Xylo-1 under high-salt conditions, provides novel insights into the mechanism of halophilic enzymes, and serves as a reference for the industrial application of Xylo-1.
Collapse
Affiliation(s)
- Ya Wu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Jiayue Hu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yikai Du
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Gen Lu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Yingnan Li
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yujia Feng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Liting Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yuhao Tu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Mengxiong Xiang
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Yifan Gui
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Tong Shu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
100
|
Shaheen A, Tariq A, Ismat F, Naveed H, De Zorzi R, Iqbal M, Storici P, Mirza O, Walz T, Rahman M. Identification of additional mechanistically important residues in the multidrug transporter styMdtM of Salmonella Typhi. J Biomol Struct Dyn 2023:1-10. [PMID: 37787617 DOI: 10.1080/07391102.2023.2263882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Multidrug efflux is a well-established mechanism of drug resistance in bacterial pathogens like Salmonella Typhi. styMdtM (locus name; STY4874) is a multidrug efflux transporter of the major facilitator superfamily expressed in S. Typhi. Functional assays identified several residues important for its transport activity. Here, we used an AlphaFold model to identify additional residues for analysis by mutagenesis. Mutation of peripheral residue Cys185 had no effect on the structure or function of the transporter. However, substitution of channel-lining residues Tyr29 and Tyr231 completely abolished transport function. Finally, mutation of Gln294, which faces peripheral helices of the transporter, resulted in the loss of transport of some substrates. Crystallization studies yielded diffraction data for the wild-type protein at 4.5 Å resolution and allowed the unit cell parameters to be established as a = b = 64.3 Å, c = 245.4 Å, α = β = γ = 90°, in space group P4. Our studies represent a further stepping stone towards a mechanistic understanding of the clinically important multidrug transporter styMdtM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aqsa Shaheen
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Anam Tariq
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Protein Facility, Elettra Sincrotrone Trieste S.C.p.A, Trieste, Italy
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MA, USA
| | - Fouzia Ismat
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Hammad Naveed
- Department of Computer Science, National University of Computer & Emerging Sciences - FAST, Lahore, Pakistan
| | - Rita De Zorzi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Paola Storici
- Protein Facility, Elettra Sincrotrone Trieste S.C.p.A, Trieste, Italy
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY, USA
| | - Moazur Rahman
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|