51
|
Collagen fibers provide guidance cues for capillary regrowth during regenerative angiogenesis in zebrafish. Sci Rep 2021; 11:19520. [PMID: 34593884 PMCID: PMC8484481 DOI: 10.1038/s41598-021-98852-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Although well investigated, the importance of collagen fibers in supporting angiogenesis is not well understood. In this study, we demonstrate that extracellular collagen fibers provide guidance cues for endothelial cell migration during regenerative angiogenesis in the caudal zebrafish fin. Inhibition of collagen cross-linking by β-Aminopropionitrile results in a 70% shorter regeneration area with 50% reduced vessel growth and disintegrated collagen fibers. The disrupted collagen scaffold impedes endothelial cell migration and induces formation of abnormal angioma-like blood vessels. Treatment of the Fli//colRN zebrafish line with the prodrug Nifurpirinol, which selectively damages the active collagen-producing 1α2 cells, reduced the regeneration area and vascular growth by 50% with wider, but less inter-connected, capillary segments. The regenerated area contained larger vessels partially covered by endothelial cells embedded in atypical extracellular matrix containing cell debris and apoptotic bodies, macrophages and granulocytes. Similar experiments performed in early embryonic zebrafish suggested that collagens are important also during embryonic angiogenesis. In vitro assays revealed that collagen I allows for the most efficient endothelial cell migration, followed by collagen IV relative to the complete absence of exogenous matrix support. Our data demonstrates severe vascular defects and restricted fin regeneration when collagens are impaired. Collagen I therefore, provides support and guidance for endothelial cell migration while collagen IV is responsible for proper lumen formation and vascular integrity.
Collapse
|
52
|
Nakagawa H, Kuroda J, Aramaki T, Kondo S. Mechanical role of actinotrichia in shaping the caudal fin of zebrafish. Dev Biol 2021; 481:52-63. [PMID: 34537221 DOI: 10.1016/j.ydbio.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/18/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022]
Abstract
Spear-like collagen complexes, known as actinotrichia, underlie the epidermal cell layer in the tip of teleost fins and are known to contribute toward fin formation; however, their specific role remains largely unclear. In this study, we investigated of actinotrichia in the role of caudal fin formation by generating collagen9a1c (col9a1c)-knockout zebrafish. Although actinotrichia were initially produced normally and aligned correctly in the knockout fish, the number of actinotrichia decreased as the fish grew and their alignment became disordered. Simultaneously, the fin tip gradually shortened in the dorsal-ventral direction and the entire fin became oval-shaped, while the fin-rays rarely bifurcated and instead underwent fusion, suggesting that actinotrichia are essential for spreading fins dorsoventrally. Furthermore, the epithelial cells that are usually thinly spread in normal fish became spherical in the knockout fish, reducing the area covered by each cell and thus the area of the fin tip. Together, these findings suggest that the tight alignment of actinotrichia provides physical support in the dorsal-ventral direction that allows caudal fins to expand in a triangular-shape.
Collapse
Affiliation(s)
- Hibiki Nakagawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Junpei Kuroda
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Aramaki
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
53
|
Allanki S, Strilic B, Scheinberger L, Onderwater YL, Marks A, Günther S, Preussner J, Kikhi K, Looso M, Stainier DYR, Reischauer S. Interleukin-11 signaling promotes cellular reprogramming and limits fibrotic scarring during tissue regeneration. SCIENCE ADVANCES 2021; 7:eabg6497. [PMID: 34516874 PMCID: PMC8442930 DOI: 10.1126/sciadv.abg6497] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/16/2021] [Indexed: 05/02/2023]
Abstract
Damage-induced fibrotic scarring limits tissue regeneration in mammals and is a leading cause of morbidity. In contrast, species like zebrafish can regenerate damaged tissues without excessive fibrosis. However, whether specific signaling pathways can both limit fibrosis and promote regeneration is unclear. Here, we show that interleukin-11 (Il-11)/Stat3 signaling has such a dual function. Zebrafish lacking Il-11 receptor function display severely compromised heart, fin, and scale regeneration. Deep phenotyping and transcriptional analysis of adult hearts and fins show that Il-11 signaling drives cellular reprogramming to orchestrate global and tissue-specific regenerative programs and broadly antagonizes hallmarks of adult mammalian scarring. Mechanistically, our data indicate that IL-11 signaling in endothelial cells antagonizes profibrotic transforming growth factor–β signaling and endothelial-to-mesenchymal transition, limiting scarring and promoting cardiomyocyte repopulation, after injury. Overall, our findings position damage-induced Il-11/Stat3 signaling in a key role limiting fibrosis and promoting regeneration, revealing novel targets for regenerative therapies.
Collapse
Affiliation(s)
- Srinivas Allanki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Lilly Scheinberger
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Yeszamin L. Onderwater
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Alora Marks
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jens Preussner
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| |
Collapse
|
54
|
Bek JW, Shochat C, De Clercq A, De Saffel H, Boel A, Metz J, Rodenburg F, Karasik D, Willaert A, Coucke PJ. Lrp5 Mutant and Crispant Zebrafish Faithfully Model Human Osteoporosis, Establishing the Zebrafish as a Platform for CRISPR-Based Functional Screening of Osteoporosis Candidate Genes. J Bone Miner Res 2021; 36:1749-1764. [PMID: 33957005 DOI: 10.1002/jbmr.4327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Genomewide association studies (GWAS) have improved our understanding of the genetic architecture of common complex diseases such as osteoporosis. Nevertheless, to attribute functional skeletal contributions of candidate genes to osteoporosis-related traits, there is a need for efficient and cost-effective in vivo functional testing. This can be achieved through CRISPR-based reverse genetic screens, where phenotyping is traditionally performed in stable germline knockout (KO) mutants. Recently it was shown that first-generation (F0) mosaic mutant zebrafish (so-called crispants) recapitulate the phenotype of germline KOs. To demonstrate feasibility of functional validation of osteoporosis candidate genes through crispant screening, we compared a crispant to a stable KO zebrafish model for the lrp5 gene. In humans, recessive loss-of-function mutations in LRP5, a co-receptor in the Wnt signaling pathway, cause osteoporosis-pseudoglioma syndrome. In addition, several GWAS studies identified LRP5 as a major risk locus for osteoporosis-related phenotypes. In this study, we showed that early stage lrp5 KO larvae display decreased notochord mineralization and malformations of the head cartilage. Quantitative micro-computed tomography (micro-CT) scanning and mass-spectrometry element analysis of the adult skeleton revealed decreased vertebral bone volume and bone mineralization, hallmark features of osteoporosis. Furthermore, regenerating fin tissue displayed reduced Wnt signaling activity in lrp5 KO adults. We next compared lrp5 mutants with crispants. Next-generation sequencing analysis of adult crispant tissue revealed a mean out-of-frame mutation rate of 76%, resulting in strongly reduced levels of Lrp5 protein. These crispants generally showed a milder but nonetheless highly comparable skeletal phenotype and a similarly reduced Wnt pathway response compared with lrp5 KO mutants. In conclusion, we show through faithful modeling of LRP5-related primary osteoporosis that crispant screening in zebrafish is a promising approach for rapid functional screening of osteoporosis candidate genes. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jan Willem Bek
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chen Shochat
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Adelbert De Clercq
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hanna De Saffel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annekatrien Boel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department for Reproductive Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Juriaan Metz
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - Frans Rodenburg
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Biology, Leiden University, Leiden, The Netherlands.,Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Andy Willaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
55
|
Hannard F, Mirkhalaf M, Ameri A, Barthelat F. Segmentations in fins enable large morphing amplitudes combined with high flexural stiffness for fish-inspired robotic materials. Sci Robot 2021; 6:6/57/eabf9710. [PMID: 34380757 DOI: 10.1126/scirobotics.abf9710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/19/2021] [Indexed: 02/02/2023]
Abstract
Fish fins do not contain muscles, yet fish can change their shape with high precision and speed to produce large and complex hydrodynamic forces-a combination of high morphing efficiency and high flexural stiffness that is rare in modern morphing and robotic materials. These "flexo-morphing" capabilities are rare in modern morphing and robotic materials. The thin rays that stiffen the fins and transmit actuation include mineral segments, a prominent feature whose mechanics and function are not fully understood. Here, we use mechanical modeling and mechanical testing on 3D-printed ray models to show that the function of the segmentation is to provide combinations of high flexural stiffness and high morphing amplitude that are critical to the performance of the fins and would not be possible with rays made of a continuous material. Fish fin-inspired designs that combine very soft materials and very stiff segments can provide robotic materials with large morphing amplitudes and strong grasping forces.
Collapse
Affiliation(s)
- Florent Hannard
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada.,Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Mohammad Mirkhalaf
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada.,School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006, Australia
| | - Abtin Ameri
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada
| | - Francois Barthelat
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada. .,Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, USA
| |
Collapse
|
56
|
Dagenais P, Blanchoud S, Pury D, Pfefferli C, Aegerter-Wilmsen T, Aegerter CM, Jaźwińska A. Hydrodynamic stress and phenotypic plasticity of the zebrafish regenerating fin. J Exp Biol 2021; 224:271142. [PMID: 34338301 DOI: 10.1242/jeb.242309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 01/23/2023]
Abstract
Understanding how extrinsic factors modulate genetically encoded information to produce a specific phenotype is of prime scientific interest. In particular, the feedback mechanism between abiotic forces and locomotory organs during morphogenesis to achieve efficient movement is a highly relevant example of such modulation. The study of this developmental process can provide unique insights on the transduction of cues at the interface between physics and biology. Here, we take advantage of the natural ability of adult zebrafish to regenerate their amputated fins to assess its morphogenic plasticity upon external modulations. Using a variety of surgical and chemical treatments, we could induce phenotypic responses to the structure of the fin. Through the ablation of specific rays in regenerating caudal fins, we generated artificially narrowed appendages in which the fin cleft depth and the positioning of rays bifurcations were perturbed compared with normal regenerates. To dissect the role of mechanotransduction in this process, we investigated the patterns of hydrodynamic forces acting on the surface of a zebrafish fin during regeneration by using particle tracking velocimetry on a range of biomimetic hydrofoils. This experimental approach enabled us to quantitatively compare hydrodynamic stress distributions over flapping fins of varying sizes and shapes. As a result, viscous shear stress acting on the distal margin of regenerating fins and the resulting internal tension are proposed as suitable signals for guiding the regulation of ray growth dynamics and branching pattern. Our findings suggest that mechanical forces are involved in the fine-tuning of the locomotory organ during fin morphogenesis.
Collapse
Affiliation(s)
- Paule Dagenais
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simon Blanchoud
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - David Pury
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Catherine Pfefferli
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Tinri Aegerter-Wilmsen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christof M Aegerter
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
57
|
Abstract
Species that can regrow their lost appendages have been studied with the ultimate aim of developing methods to enable human limb regeneration. These examinations highlight that appendage regeneration progresses through shared tissue stages and gene activities, leading to the assumption that appendage regeneration paradigms (e.g. tails and limbs) are the same or similar. However, recent research suggests these paradigms operate differently at the cellular level, despite sharing tissue descriptions and gene expressions. Here, collecting the findings from disparate studies, I argue appendage regeneration is context dependent at the cellular level; nonetheless, it requires (i) signalling centres, (ii) stem/progenitor cell types and (iii) a regeneration-permissive environment, and these three common cellular principles could be more suitable for cross-species/paradigm/age comparisons.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
58
|
Khyeam S, Lee S, Huang GN. Genetic, Epigenetic, and Post-Transcriptional Basis of Divergent Tissue Regenerative Capacities Among Vertebrates. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10042. [PMID: 34423307 PMCID: PMC8372189 DOI: 10.1002/ggn2.10042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022]
Abstract
Regeneration is widespread across the animal kingdom but varies vastly across phylogeny and even ontogeny. Adult mammalian regeneration in most organs and appendages is limited, while vertebrates such as zebrafish and salamanders are able to regenerate various organs and body parts. Here, we focus on the regeneration of appendages, spinal cord, and heart - organs and body parts that are highly regenerative among fish and amphibian species but limited in adult mammals. We then describe potential genetic, epigenetic, and post-transcriptional similarities among these different forms of regeneration across vertebrates and discuss several theories for diminished regenerative capacity throughout evolution.
Collapse
Affiliation(s)
- Sheamin Khyeam
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Sukjun Lee
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Guo N. Huang
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
59
|
Bek JW, De Clercq A, De Saffel H, Soenens M, Huysseune A, Witten PE, Coucke PJ, Willaert A. Photoconvertible fluorescent proteins: a versatile tool in zebrafish skeletal imaging. JOURNAL OF FISH BIOLOGY 2021; 98:1007-1017. [PMID: 32242924 DOI: 10.1111/jfb.14335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
One of the most frequently applied techniques in zebrafish (Danio rerio) research is the visualisation or manipulation of specific cell populations using transgenic reporter lines. The generation of these transgenic zebrafish, displaying cell- or tissue-specific expression of frequently used fluorophores such as Green Fluorescent Protein (GFP) or mCherry, is relatively easy using modern techniques. Fluorophores with different emission wavelengths and driven by different promoters can be monitored simultaneously in the same animal. Photoconvertible fluorescent proteins (pcFPs) are different from these standard fluorophores because their emission spectrum is changed when exposed to UV light, a process called photoconversion. Here, the benefits and versatility of using pcFPs for both single and dual fluorochrome imaging in zebrafish skeletal research in a previously generated osx:Kaede transgenic line are illustrated. In this line, Kaede, which is expressed under control of the osterix, otherwise known as sp7, promoter thereby labelling immature osteoblasts, can switch from green to red fluorescence upon irradiation with UV light. First, this study demonstrates that osx:Kaede exhibits an expression pattern similar to a previously described osx:nuGFP transgenic line in both larval and adult stages, hereby validating the use of this line for the imaging of immature osteoblasts. More in-depth experiments highlight different applications for osx:Kaede, such as lineage tracing and its combined use with in vivo skeletal staining and other transgenic backgrounds. Mineral staining in combination with osx:Kaede confirms osteoblast-independent mineralisation of the notochord. Osteoblast lineage tracing reveals migration and dedifferentiation of scleroblasts during fin regeneration. Finally, this study shows that combining two transgenics, osx:Kaede and osc:GFP, with similar emission wavelengths is possible when using a pcFP such as Kaede.
Collapse
Affiliation(s)
- Jan Willem Bek
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Adelbert De Clercq
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Hanna De Saffel
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Mieke Soenens
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Ann Huysseune
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - P Eckhard Witten
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| |
Collapse
|
60
|
Safian D, Wiegertjes GF, Pollux BJA. The Fish Family Poeciliidae as a Model to Study the Evolution and Diversification of Regenerative Capacity in Vertebrates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.613157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The capacity of regenerating a new structure after losing an old one is a major challenge in the animal kingdom. Fish have emerged as an interesting model to study regeneration due to their high and diverse regenerative capacity. To date, most efforts have focused on revealing the mechanisms underlying fin regeneration, but information on why and how this capacity evolves remains incomplete. Here, we propose the livebearing fish family Poeciliidae as a promising new model system to study the evolution of fin regeneration. First, we review the current state of knowledge on the evolution of regeneration in the animal kingdom, with a special emphasis on fish fins. Second, we summarize recent advances in our understanding of the mechanisms behind fin regeneration in fish. Third, we discuss potential evolutionary pressures that may modulate the regenerative capacity of fish fins and propose three new theories for how natural and sexual selection can lead to the evolution of fin regeneration: (1) signaling-driven fin regeneration, (2) predation-driven fin regeneration, and (3) matrotrophy-suppressed fin regeneration. Finally, we argue that fish from the family Poeciliidae are an excellent model system to test these theories, because they comprise of a large variety of species in a well-defined phylogenetic framework that inhabit very different environments and display remarkable variation in reproductive traits, allowing for comparative studies of fin regeneration among closely related species, among populations within species or among individuals within populations. This new model system has the potential to shed new light on the underlying genetic and molecular mechanisms driving the evolution and diversification of regeneration in vertebrates.
Collapse
|
61
|
Guerin DJ, Kha CX, Tseng KAS. From Cell Death to Regeneration: Rebuilding After Injury. Front Cell Dev Biol 2021; 9:655048. [PMID: 33816506 PMCID: PMC8012889 DOI: 10.3389/fcell.2021.655048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
The ability to regrow lost or damaged tissues is widespread, but highly variable among animals. Understanding this variation remains a challenge in regeneration biology. Numerous studies from Hydra to mouse have shown that apoptosis acts as a potent and necessary mechanism in regeneration. Much is known about the involvement of apoptosis during normal development in regulating the number and type of cells in the body. In the context of regeneration, apoptosis also regulates cell number and proliferation in tissue remodeling. Apoptosis acts both early in the process to stimulate regeneration and later to regulate regenerative patterning. Multiple studies indicate that apoptosis acts as a signal to stimulate proliferation within the regenerative tissues, producing the cells needed for full regeneration. The conservation of apoptosis as a regenerative mechanism demonstrated across species highlights its importance and motivates the continued investigation of this important facet of programmed cell death. This review summarizes what is known about the roles of apoptosis during regeneration, and compares regenerative apoptosis with the mechanisms and function of apoptosis in development. Defining the complexity of regenerative apoptosis will contribute to new knowledge and perspectives for understanding mechanisms of apoptosis induction and regulation.
Collapse
Affiliation(s)
- Dylan J Guerin
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Cindy X Kha
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
62
|
Keil S, Gupta M, Brand M, Knopf F. Heparan sulfate proteoglycan expression in the regenerating zebrafish fin. Dev Dyn 2021; 250:1368-1380. [PMID: 33638212 DOI: 10.1002/dvdy.321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Heparan sulfate proteoglycan (HSPG) expression is found in many animal tissues and regulates growth factor signaling such as of Fibroblast growth factors (Fgf), Wingless/Int (Wnt) and Hedgehog (HH). Glypicans, which are GPI (glycosylphosphatidylinositol)-anchored proteins, and transmembrane-anchored syndecans represent two major HSPG protein families whose involvement in development and disease has been demonstrated. Their participation in regenerative processes both of the central nervous system and of regenerating limbs is well documented. However, whether HSPG are expressed in regenerating zebrafish fins, is currently unknown. RESULTS Here, we carried out a systematic screen of glypican and syndecan mRNA expression in regenerating zebrafish fins during the outgrowth phase. We find that 8 of the 10 zebrafish glypicans and the three known zebrafish syndecans show specific expression at 3 days post amputation. Expression is found in different domains of the regenerate, including the distal and lateral basal layers of the wound epidermis, the distal most blastema and more proximal blastema regions. CONCLUSIONS HSPG expression is prevalent in regenerating zebrafish fins. Further research is needed to delineate the function of glypican and syndecan action during zebrafish fin regeneration.
Collapse
Affiliation(s)
- Sebastian Keil
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Technische Universität Dresden, Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Mansi Gupta
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Merus N.V, Utrecht, Netherlands
| | - Michael Brand
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Franziska Knopf
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Technische Universität Dresden, Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
63
|
Corradetti B, Dogra P, Pisano S, Wang Z, Ferrari M, Chen SH, Sidman RL, Pasqualini R, Arap W, Cristini V. Amphibian regeneration and mammalian cancer: Similarities and contrasts from an evolutionary biology perspective: Comparing the regenerative potential of mammalian embryos and urodeles to develop effective strategies against human cancer. Bioessays 2021; 43:e2000339. [PMID: 33751590 DOI: 10.1002/bies.202000339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Here we review and discuss the link between regeneration capacity and tumor suppression comparing mammals (embryos versus adults) with highly regenerative vertebrates. Similar to mammal embryo morphogenesis, in amphibians (essentially newts and salamanders) the reparative process relies on a precise molecular and cellular machinery capable of sensing abnormal signals and actively reprograming or eliminating them. As the embryo's evil twin, tumor also retains common functional attributes. The immune system plays a pivotal role in maintaining a physiological balance to provide surveillance against tumor initiation or to support its initiation and progression. We speculate that susceptibility to cancer development in adult mammals may be determined by the loss of an advanced regenerative capability during evolution and believe that gaining mechanistic insights into how regenerative capacity linked to tumor suppression is postnatally lost in mammals might illuminate an as yet unrecognized route to cancer treatment.
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA.,Texas A&M Health Science Center, College of Medicine, 8446 Riverside Pkwy, Bryan, TX, 77807, USA.,Swansea University Medical School, Swansea, Wales, UK
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Simone Pisano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA.,Swansea University Medical School, Swansea, Wales, UK
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Mauro Ferrari
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Shu-Hsia Chen
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, Texas, USA.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA.,Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
64
|
Li J, Sultan Y, Sun Y, Zhang S, Liu Y, Li X. Expression analysis of Hsp90α and cytokines in zebrafish caudal fin regeneration. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103922. [PMID: 33186559 DOI: 10.1016/j.dci.2020.103922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Zebrafish (Danio rerio) is an ideal model organism for exploring the ability and mechanism of tissue regeneration in the vertebrate. However, the specific cellular and molecular mechanism of caudal fin regeneration in zebrafish remains largely unclear. Therefore, we first confirmed the crucial period of fin regeneration in adult zebrafish by morphological and histological analysis. Then we performed RNA-Seq analysis of the caudal fin regeneration at three key stages, which provided some clues for exploring the mechanism of caudal fin regeneration. Moreover, we also determined the expressions of inflammatory cytokines IL-1β, IL-6, IL-8, IL-10, TGF-β, and the immune-related pathway JAK2α and STAT1b in the caudal fin of zebrafish following fin amputation by quantitative real time PCR (qPCR). Particularly, Hsp90α expression at mRNA and protein level determined by qPCR and Western blotting, respectively, and whole-mount in situ hybridization of Hsp90α were also performed in this study. The results showed that inflammatory cytokines were mainly expressed in the early period of caudal fin regeneration (1-3 days post amputation, dpa), indicating that fish immune system was involved in the fin regeneration. Furthermore, the high expression of Hsp90α in the vicinity of blastema and blood vessels of the regenerating fin suggests that Hsp90α may play a role in the initiation and promotion of caudal fin regeneration. Overall, our results provide a framework for further understanding the cellular and molecular mechanism in caudal fin regeneration.
Collapse
Affiliation(s)
- Jing Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yousef Sultan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China; Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Yaoyi Sun
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Shuqiang Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
65
|
Paredes LC, Luz RBDS, Tozzi ON, de Carvalho LÂSJ, Calado SLDM, Padovani BN, Fénero CIM, do Amaral MA, de Assis HCDS, Câmara NOS, Braga TT. Distinct macrophage phenotypes and redox environment during the fin fold regenerative process in zebrafish. Scand J Immunol 2021; 94:e13026. [PMID: 33565093 DOI: 10.1111/sji.13026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
In contrast to mammals, zebrafish (Danio rerio) has the ability to regenerate injured sites such as different tissues present in the fin. It is known that cells of the innate immune system play essential roles in regeneration; however, some aspects of the molecular mechanisms by which these cells orchestrate regeneration remain unknown. This study aimed to evaluate the infiltration dynamics of neutrophils and macrophages in the regenerative process of fin fold in regard to the influence of the redox environment and oxidative pathways. Fin fold amputation was performed on transgenic larvae for macrophage-expressed gene 1 (mpeg1), lysozyme (lyz), myeloperoxidase (mpo) and tumour necrosis factor alpha (TNFα) at 3 days post-fertilization, followed by confocal microscopy imaging and measurement of the activities of oxidant and antioxidant enzymes. We observed initially an increase in the number of neutrophils (lyz:DsRed+/mpx:GFP+) and then macrophages (mpeg1+) in the injury site followed by a decrease in neutrophils at 7 days post-amputation (dpa). Moreover, macrophages switch from a pro-inflammatory to an anti-inflammatory profile throughout the process, while the activity of superoxide dismutase (SOD) increased at 1 dpa and catalase (CAT) at 5 dpa. Higher levels of lipid peroxidation were also detected during regeneration. Despite oxidative stress, there is, therefore, an antioxidant response throughout the regeneration of the caudal fin. The present work can contribute to future studies on the development of cell therapies, achieving greater effectiveness in the treatment of diseases related to the formation of fibrotic tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Bárbara Nunes Padovani
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | | | - Mariana Abrantes do Amaral
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| | - Tarcio Teodoro Braga
- Department of Pathology, Federal University of Parana, Curitiba, Brazil.,Graduate Program in Biosciences and Biotechnology, Instituto Carlos Chagas, Fiocruz-Parana, Curitiba, Brazil
| |
Collapse
|
66
|
Transcriptomic and proteomic analysis of Hemidactylus frenatus during initial stages of tail regeneration. Sci Rep 2021; 11:3675. [PMID: 33574494 PMCID: PMC7878758 DOI: 10.1038/s41598-021-83283-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Epimorphic regeneration of appendages is a complex and complete phenomenon found in selected animals. Hemidactylus frenatus, house gecko has the remarkable ability to regenerate the tail tissue upon autotomy involving epimorphic regeneration mechanism. This study has identified and evaluated the molecular changes at gene and protein level during the initial stages, i.e., during the wound healing and repair mechanism initiation stage of tail regeneration. Based on next generation transcriptomics and De novo analysis the transcriptome library of the gecko tail tissue was generated. A total of 254 genes and 128 proteins were found to be associated with the regeneration of gecko tail tissue upon amputation at 1, 2 and 5-day post amputation (dpa) against control, 0-dpa through differential transcriptomic and proteomic analysis. To authenticate the expression analysis, 50 genes were further validated involving RTPCR. 327 genes/proteins identified and mapped from the study showed association for Protein kinase A signaling, Telomerase BAG2 signaling, paxillin signaling, VEGF signaling network pathways based on network pathway analysis. This study empanelled list of transcriptome, proteome and the list of genes/proteins associated with the tail regeneration.
Collapse
|
67
|
Bohns FR, Shih Y, Chuang Y, Akhtar R, Chen P. Influence of Prednisolone and Alendronate on the de novo Mineralization of Zebrafish Caudal Fin. JBMR Plus 2021; 5:e10435. [PMID: 33615104 PMCID: PMC7872341 DOI: 10.1002/jbm4.10435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulated balance between bone resorption and formation mediates the onset and progression of osteoporosis. The administration of prednisolone is known to induce osteoporosis, whereas alendronate is commonly used to reverse the process. However, the assessment of the effects of such medicines on the nanostructure of bone remodeling and mechanical properties remains a major technical challenge. The aim of this study was to apply various analytical approaches to evaluate the compositional, morphological, and mechanical properties of regenerative zebrafish caudal fin bony rays affected by prednisolone and alendronate. Adult wild-type AB strain zebrafish were first exposed to 125μM of prednisolone for 14 days to develop glucocorticoid-induced osteoporosis. Fish fins were then amputated and let to regenerate for 21 days in tank water containing 30μM of alendronate or no alendronate. The lepidotrichia in the proximal and distal regions were evaluated separately using confocal microscope, scanning electron microscope, electron-dispersive spectroscopy, Raman spectroscopy, atomic force microscopy, and a triboindenter. As expected, prednisolone led to significant osteoporotic phenotypes. A decrease of Ca/P ratio was observed in the osteoporotic subjects (1.46 ± 0.04) as compared to the controls (1.74 ± 0.10). Subsequent treatment of alendronate overmineralized the bony rays during regeneration. Enhanced phosphate deposition was detected in the proximal part with alendronate treatment. Moreover, prednisolone attenuated the reduced elastic modulus and hardness levels (5.60 ± 5.04 GPa and 0.12 ± 0.17 GPa, respectively), whereas alendronate recovered them to the pre-amputation condition (8.68 ± 8.74 GPa and 0.34 ± 0.47 GPa, respectively). As an emerging model of osteoporosis, regrowth of zebrafish caudal fin was shown to be a reliable assay system to investigate the various effects of medicines in the de novo mineralization process. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Fabio Rocha Bohns
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
- Department of Mechanical, Materials and Aerospace EngineeringUniversity of LiverpoolLiverpoolUK
- International Intercollegiate Ph.D. ProgramNational Tsing Hua University 101HsinchuTaiwan
| | - Yann‐Rong Shih
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Yung‐Jen Chuang
- Department of Medical Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace EngineeringUniversity of LiverpoolLiverpoolUK
| | - Po‐Yu Chen
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
68
|
Daponte V, Tylzanowski P, Forlino A. Appendage Regeneration in Vertebrates: What Makes This Possible? Cells 2021; 10:cells10020242. [PMID: 33513779 PMCID: PMC7911911 DOI: 10.3390/cells10020242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
The ability to regenerate amputated or injured tissues and organs is a fascinating property shared by several invertebrates and, interestingly, some vertebrates. The mechanism of evolutionary loss of regeneration in mammals is not understood, yet from the biomedical and clinical point of view, it would be very beneficial to be able, at least partially, to restore that capability. The current availability of new experimental tools, facilitating the comparative study of models with high regenerative ability, provides a powerful instrument to unveil what is needed for a successful regeneration. The present review provides an updated overview of multiple aspects of appendage regeneration in three vertebrates: lizard, salamander, and zebrafish. The deep investigation of this process points to common mechanisms, including the relevance of Wnt/β-catenin and FGF signaling for the restoration of a functional appendage. We discuss the formation and cellular origin of the blastema and the identification of epigenetic and cellular changes and molecular pathways shared by vertebrates capable of regeneration. Understanding the similarities, being aware of the differences of the processes, during lizard, salamander, and zebrafish regeneration can provide a useful guide for supporting effective regenerative strategies in mammals.
Collapse
Affiliation(s)
- Valentina Daponte
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, via Taramelli 3/B, 27100 Pavia, Italy;
| | - Przemko Tylzanowski
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium;
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, via Taramelli 3/B, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-987235
| |
Collapse
|
69
|
Lee Y, Kim D, Lee CJ. Suppressive effects of valproic acid on caudal fin regeneration in adult zebrafish. Anim Cells Syst (Seoul) 2020; 24:349-358. [PMID: 33456719 PMCID: PMC7782361 DOI: 10.1080/19768354.2020.1860126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Zebrafish can regenerate fins following injury through an epimorphic process that includes the formation of new tissues and reconstruction of the original morphology. In this study, the effects of valproic acid (VPA), a widely used anti-epileptic drug, on fin regeneration were studied after the caudal fin amputation of adult zebrafish. In the control group, zebrafish formed new tissues and reconstructed the original rays 14 days after amputation (dpa). Meanwhile, VPA treatments between 20 and 200 µM following amputation suppressed fin regeneration in a dose-dependent manner and altered morphological characteristics, such as bifurcation and segmentation, in the rays. Compared to the control, VPA also delayed blastema formation and decreased cell proliferation in the mesenchymal area of the regenerated fin. The mRNA expression of lef1, a downstream signaling gene in the Wnt pathway, was transiently increased in the regenerated fin of the control at 2 dpa; the same increase was not observed in the VPA-treated zebrafish. Sodium butyrate (SB), an histone deacetylase activity (HDAC) inhibitor, suppressed the fin regeneration without affecting the morphological characteristics of the regenerated ray. Furthermore, the transient increase of lef1 mRNA was not suppressed in the SB-treated zebrafish. These results suggested that VPA's suppressive effects on fin regeneration are partly mediated through decreased cell proliferation and lef1 mRNA expression.
Collapse
Affiliation(s)
- Yunkyoung Lee
- Department of Biological Sciences, Inha University, Incheon, Korea
| | - Dohee Kim
- Department of Biological Sciences, Inha University, Incheon, Korea
| | - Chang-Joong Lee
- Department of Biological Sciences, Inha University, Incheon, Korea
| |
Collapse
|
70
|
Lebedeva L, Zhumabayeva B, Gebauer T, Kisselev I, Aitasheva Z. Zebrafish ( Danio rerio) as a Model for Understanding the Process of Caudal Fin Regeneration. Zebrafish 2020; 17:359-372. [PMID: 33259770 DOI: 10.1089/zeb.2020.1926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
After its introduction for scientific investigation in the 1950s, the cypriniform zebrafish, Danio rerio, has become a valuable model for the study of regenerative processes and mechanisms. Zebrafish exhibit epimorphic regeneration, in which a nondifferentiated cell mass formed after amputation is able to fully regenerate lost tissue such as limbs, heart muscle, brain, retina, and spinal cord. The process of limb regeneration in zebrafish comprises several stages characterized by the activation of specific signaling pathways and gene expression. We review current research on key factors in limb regeneration using zebrafish as a model.
Collapse
Affiliation(s)
- Lina Lebedeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - Beibitgul Zhumabayeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - Tatyana Gebauer
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Ilya Kisselev
- Institute of General Genetics and Cytology, Almaty, The Republic of Kazakhstan
| | - Zaure Aitasheva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| |
Collapse
|
71
|
Zhang B, Gladyshev VN. How can aging be reversed? Exploring rejuvenation from a damage-based perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10025. [PMID: 36619246 PMCID: PMC9744548 DOI: 10.1002/ggn2.10025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/11/2023]
Abstract
Advanced age is associated with accumulation of damage and other deleterious changes and a consequential systemic decline of function. This decline affects all organs and systems in an organism, leading to their inadaptability to the environment, and therefore is thought to be inevitable for humans and most animal species. However, in vitro and in vivo application of reprogramming strategies, which convert somatic cells to induced pluripotent stem cells, has demonstrated that the aged cells can be rejuvenated. Moreover, the data and theoretical considerations suggest that reversing the biological age of somatic cells (from old to young) and de-differentiating somatic cells into stem cells represent two distinct processes that take place during rejuvenation, and thus they may be differently targeted. We advance a stemness-function model to explain these data and discuss a possibility of rejuvenation from the perspective of damage accumulation. In turn, this suggests approaches to achieve rejuvenation of cells in vitro and in vivo.
Collapse
Affiliation(s)
- Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
72
|
Zhang X, Yang Y, Bu X, Wei Y, Lou X. The major vault protein is dispensable for zebrafish organ regeneration. Heliyon 2020; 6:e05422. [PMID: 33195847 PMCID: PMC7644919 DOI: 10.1016/j.heliyon.2020.e05422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/08/2020] [Accepted: 10/29/2020] [Indexed: 01/11/2023] Open
Abstract
As the main constituent of the largest cellular ribonucleoprotein complex, the evolutionary highly conserved major vault protein (MVP) has been proposed play vital roles in the regeneration of multiple organs. In current study, we use a mvp knockout zebrafish line recently generated to characterize the function of MVP during organ regeneration. We found the regenerative capacity of heart, spinal cord and fin is preserved in mvp knockout zebrafish. Further experiments demonstrated in injured mvp knockout zebrafish, the cell death is enhanced while the transcriptome landscape is largely unchanged. These data showed MVP acts as an anti-apoptotic factor at early phase of injury response while plays a dispensable role in the regenerative programs in zebrafish.
Collapse
Affiliation(s)
- Xue Zhang
- Medical School, Nanjing University, China
| | - Yuxi Yang
- Medical School, Nanjing University, China
| | - Xiaoxue Bu
- Medical School, Nanjing University, China
| | | | - Xin Lou
- Medical School, Nanjing University, China
| |
Collapse
|
73
|
Ferrario C, Sugni M, Somorjai IML, Ballarin L. Beyond Adult Stem Cells: Dedifferentiation as a Unifying Mechanism Underlying Regeneration in Invertebrate Deuterostomes. Front Cell Dev Biol 2020; 8:587320. [PMID: 33195242 PMCID: PMC7606891 DOI: 10.3389/fcell.2020.587320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
The diversity of regenerative phenomena seen in adult metazoans, as well as their underlying mechanistic bases, are still far from being comprehensively understood. Reviewing both ultrastructural and molecular data, the present work aims to showcase the increasing relevance of invertebrate deuterostomes, i.e., echinoderms, hemichordates, cephalochordates and tunicates, as invaluable models to study cellular aspects of adult regeneration. Our comparative approach suggests a fundamental contribution of local dedifferentiation -rather than mobilization of resident undifferentiated stem cells- as an important cellular mechanism contributing to regeneration in these groups. Thus, elucidating the cellular origins, recruitment and fate of cells, as well as the molecular signals underpinning tissue regrowth in regeneration-competent deuterostomes, will provide the foundation for future research in tackling the relatively limited regenerative abilities of vertebrates, with clear applications in regenerative medicine.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ildiko M. L. Somorjai
- The Willie Russel Laboratories, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, United Kingdom
| | | |
Collapse
|
74
|
Ohgo S, Sakamoto T, Nakajima W, Matsunaga S, Wada N. Visualization of extracellular vesicles in the regenerating caudal fin blastema of zebrafish using in vivo electroporation. Biochem Biophys Res Commun 2020; 533:1371-1377. [PMID: 33077180 DOI: 10.1016/j.bbrc.2020.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 01/03/2023]
Abstract
Zebrafish have high regenerative ability in several organs including the fin. Although various mechanisms underlying fin regeneration have been revealed, some mechanisms remain to be elucidated. Recently, extracellular vesicles (EVs) have been the focus of research with regard to their role in cell-to-cell communication. It has been suggested that cells in regenerating tissues communicate using EVs. In this study, we examined the involvement of EVs in the caudal fin regeneration of zebrafish using an in vivo electroporation method. The process of regeneration appeared normal after in vivo electroporation, and the transferred plasmid showed mosaic expression in the blastema. We took advantage of this mosaic expression to observe the distribution of exosomal markers in the blastema. We transferred exosomal markers by in vivo electroporation and identified EVs in the regenerating caudal fin. The results suggest that blastemal cells communicate with other cells via EVs during caudal fin regeneration.
Collapse
Affiliation(s)
- Shiro Ohgo
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
| | - Takuya Sakamoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Wataru Nakajima
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| |
Collapse
|
75
|
Kuroda J, Itabashi T, Iwane AH, Aramaki T, Kondo S. The Physical Role of Mesenchymal Cells Driven by the Actin Cytoskeleton Is Essential for the Orientation of Collagen Fibrils in Zebrafish Fins. Front Cell Dev Biol 2020; 8:580520. [PMID: 33154970 PMCID: PMC7591588 DOI: 10.3389/fcell.2020.580520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Fibrous collagen imparts physical strength and flexibility to tissues by forming huge complexes. The density and orientation of collagen fibers must be correctly specified for the optimal physical property of the collagen complex. However, little is known about its underlying cellular mechanisms. Actinotrichia are collagen fibers aligned at the fin-tip of bony fish and are easily visible under the microscope due to their thick, linear structure. We used the actinotrichia as a model system to investigate how cells manipulate collagen fibers. The 3D image obtained by focused ion beam scanning electron microscopy (FIB-SEM) showed that the pseudopodia of mesenchymal cells encircle the multiple actinotrichia. We then co-incubated the mesenchymal cells and actinotrichia in vitro, and time-lapse analysis revealed how cells use pseudopods to align collagen fiber orientation. This in vitro behavior is dependent on actin polymerization in mesenchymal cells. Inhibition of actin polymerization in mesenchymal cells results in mis-orientation of actinotrichia in the fin. These results reveal how mesenchymal cells are involved in fin formation and have important implications for the physical interaction between cells and collagen fibers.
Collapse
Affiliation(s)
- Junpei Kuroda
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
- RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Takeshi Itabashi
- RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Atsuko H. Iwane
- RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Toshihiro Aramaki
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| |
Collapse
|
76
|
Cadiz L, Jonz MG. A comparative perspective on lung and gill regeneration. ACTA ACUST UNITED AC 2020; 223:223/19/jeb226076. [PMID: 33037099 DOI: 10.1242/jeb.226076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to continuously grow and regenerate the gills throughout life is a remarkable property of fish and amphibians. Considering that gill regeneration was first described over one century ago, it is surprising that the underlying mechanisms of cell and tissue replacement in the gills remain poorly understood. By contrast, the mammalian lung is a largely quiescent organ in adults but is capable of facultative regeneration following injury. In the course of the past decade, it has been recognized that lungs contain a population of stem or progenitor cells with an extensive ability to restore tissue; however, despite recent advances in regenerative biology of the lung, the signaling pathways that underlie regeneration are poorly understood. In this Review, we discuss the common evolutionary and embryological origins shared by gills and mammalian lungs. These are evident in homologies in tissue structure, cell populations, cellular function and genetic pathways. An integration of the literature on gill and lung regeneration in vertebrates is presented using a comparative approach in order to outline the challenges that remain in these areas, and to highlight the importance of using aquatic vertebrates as model organisms. The study of gill regeneration in fish and amphibians, which have a high regenerative potential and for which genetic tools are widely available, represents a unique opportunity to uncover common signaling mechanisms that may be important for regeneration of respiratory organs in all vertebrates. This may lead to new advances in tissue repair following lung disease.
Collapse
Affiliation(s)
- Laura Cadiz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| | - Michael G Jonz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
77
|
de Gonzalo-Calvo D, Bär C. Going the Long Noncoding RNA Way Toward Cardiac Regeneration: Mapping Candidate Long Noncoding RNA Controllers of Regeneration. Can J Cardiol 2020; 37:374-376. [PMID: 32949689 DOI: 10.1016/j.cjca.2020.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa María, Institute de Recerca Biomèdica de Lleida, Lleida, Spain; CIBER of Respiratory Diseases, Institute of Health Carlos III, Madrid, Spain.
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
78
|
Niu X, Subramanian A, Hwang TH, Schilling TF, Galloway JL. Tendon Cell Regeneration Is Mediated by Attachment Site-Resident Progenitors and BMP Signaling. Curr Biol 2020; 30:3277-3292.e5. [PMID: 32649909 PMCID: PMC7484193 DOI: 10.1016/j.cub.2020.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
The musculoskeletal system is a striking example of how cell identity and position is coordinated across multiple tissues to ensure function. However, it is unclear upon tissue loss, such as complete loss of cells of a central musculoskeletal connecting tendon, whether neighboring tissues harbor progenitors capable of mediating regeneration. Here, using a zebrafish model, we genetically ablate all embryonic tendon cells and find complete regeneration of tendon structure and pattern. We identify two regenerative progenitor populations, sox10+ perichondrial cells surrounding cartilage and nkx2.5+ cells surrounding muscle. Surprisingly, laser ablation of sox10+ cells, but not nkx2.5+ cells, increases tendon progenitor number in the perichondrium, suggesting a mechanism to regulate attachment location. We find BMP signaling is active in regenerating progenitor cells and is necessary and sufficient for generating new scxa+ cells. Our work shows that muscle and cartilage connective tissues harbor progenitor cells capable of fully regenerating tendons, and this process is regulated by BMP signaling.
Collapse
Affiliation(s)
- Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Tyler H Hwang
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
79
|
Cavanah P, Itou J, Rusman Y, Tahara N, Williams JM, Salomon CE, Kawakami Y. A nontoxic fungal natural product modulates fin regeneration in zebrafish larvae upstream of FGF-WNT developmental signaling. Dev Dyn 2020; 250:160-174. [PMID: 32857425 DOI: 10.1002/dvdy.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The regeneration of larvae zebrafish fin emerged as a new model of regeneration in the last decade. In contrast to genetic tools to study fin regeneration, chemical probes to modulate and interrogate regeneration processes are not well developed. RESULTS We set up a zebrafish larvae fin regeneration assay system and tested activities of natural product compounds and extracts, prepared from various microbes. Colomitide C, a recently isolated product from a fungus obtained from Antarctica, inhibited larvae fin regeneration. Using fluorescent reporter transgenic lines, we show that colomitide C inhibited fibroblast growth factor (FGF) signaling and WNT/β-catenin signaling, which were activated after larvae fin amputation. By using the endothelial cell reporter line and immunofluorescence, we showed that colomitide C did not affect migration of the blood vessel and nerve into the injured larvae fin. Colomitide C did not show any cytotoxic activities when tested against FGF receptor-amplified human cancer cell lines. CONCLUSION Colomitide C, a natural product, modulated larvae fin regeneration likely acting upstream of FGF and WNT signaling. Colomitide C may serve as a template for developing new chemical probes to study regeneration and other biological processes.
Collapse
Affiliation(s)
- Paul Cavanah
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Junji Itou
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yudi Rusman
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Naoyuki Tahara
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jessica M Williams
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christine E Salomon
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
80
|
Midkine-a functions as a universal regulator of proliferation during epimorphic regeneration in adult zebrafish. PLoS One 2020; 15:e0232308. [PMID: 32530962 PMCID: PMC7292404 DOI: 10.1371/journal.pone.0232308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Zebrafish have the ability to regenerate damaged cells and tissues by activating quiescent stem and progenitor cells or reprogramming differentiated cells into regeneration-competent precursors. Proliferation among the cells that will functionally restore injured tissues is a fundamental biological process underlying regeneration. Midkine-a is a cytokine growth factor, whose expression is strongly induced by injury in a variety of tissues across a range of vertebrate classes. Using a zebrafish Midkine-a loss of function mutant, we evaluated regeneration of caudal fin, extraocular muscle and retinal neurons to investigate the function of Midkine-a during epimorphic regeneration. In wildtype zebrafish, injury among these tissues induces robust proliferation and rapid regeneration. In Midkine-a mutants, the initial proliferation in each of these tissues is significantly diminished or absent. Regeneration of the caudal fin and extraocular muscle is delayed; regeneration of the retina is nearly completely absent. These data demonstrate that Midkine-a is universally required in the signaling pathways that convert tissue injury into the initial burst of cell proliferation. Further, these data highlight differences in the molecular mechanisms that regulate epimorphic regeneration in zebrafish.
Collapse
|
81
|
Wang X, Yang XL, Liu KC, Sheng WL, Xia Q, Wang RC, Chen XQ, Zhang Y. Effects of streptozotocin on pancreatic islet β-cell apoptosis and glucose metabolism in zebrafish larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1025-1038. [PMID: 31993854 DOI: 10.1007/s10695-020-00769-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Type 1 diabetes is characterized by an increase in blood glucose levels resulting from damage to β cells in pancreatic islets and the consequent absolute insufficiency of insulin. Animal models of type 1 diabetes were usually established using drugs toxic to β cells, such as streptozotocin (STZ). To assess the application of zebrafish larvae in diabetes research, we explore the effects of STZ on pancreatic islets and glucose metabolism in zebrafish larvae. STZ was microinjected into the pericardial cavity of zebrafish larvae on alternate days for three times. At 2 days after the whole series of STZ injection (12 dpf), free-glucose level in larvae tissue shows a significant increase, and the fluorescence signal in immunohistochemistry, which indicates the insulin expression, was significantly weaker compared with the solution-injected control. Obvious apoptosis signals were also observed in the location of pancreatic islet, and insulin content decreased to be undetectable in STZ-injected larvae. Gene expression level of ins decreased to half of the solution injection control and that of casp3a was upregulated by 2.20-fold. Expression level of glut2 and gck decreased to 0.312-fold and 0.093-fold, respectively. pck1 was upregulated by 2.533-fold in STZ-injected larvae. By tracking detection, we found the free-glucose level in STZ-injected larvae gradually approached the level of the solution injection control and the insulin content recovered at 6 days post-STZ injection (16 dpf). Consistent with the change of the glucose level, the regeneration rate of the caudal fin in the STZ-injected group decreased initially, but recovered and accelerated gradually finally at 8 days post-amputation (20 dpf). These results indicate the generation of a transient hyperglycemia model due to β-cell apoptosis caused by STZ, which is abated by the vigorous regeneration ability of β cells in zebrafish larvae.
Collapse
Affiliation(s)
- Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Xue-Liang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Wen-Long Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Rong-Chun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Xi-Qiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China.
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China.
| |
Collapse
|
82
|
Vijayakumar P, Cardeira J, Laizé V, Gavaia PJ, Cancela ML. Cells Isolated from Regenerating Caudal Fin of Sparus aurata Can Differentiate into Distinct Bone Cell Lineages. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:333-347. [PMID: 32080776 DOI: 10.1007/s10126-019-09937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Teleosts have the ability to regenerate their caudal fin upon amputation. A highly proliferative mass of undifferentiated cells called blastema forms beneath wound epidermis and differentiates to regenerate all missing parts of the fin. To date, the origin and fate of the blastema is not completely understood. However, current hypotheses suggest that the blastema is comprised of lineage-restricted dedifferentiated cells. To investigate the differentiation capacity of regenerating fin-derived cells, primary cultures were initiated from the explants of 2-days post-amputation (dpa) regenerates of juvenile gilthead seabream (Sparus aurata). These cells were subcultured for over 30 passages and were named as BSa2. After 10 passages they were characterized for their ability to differentiate towards different bone cell lineages and mineralize their extracellular matrix, through immunocytochemistry, histology, and RT-PCR. Exogenous DNA was efficiently delivered into these cells by nucleofection. Assessment of lineage-specific markers revealed that BSa2 cells were capable of osteo/chondroblastic differentiation. BSa2 cells were also found to be capable of osteoclastic differentiation, as demonstrated through TRAP-specific staining and pit resorption assay. Here, we describe the development of the first successful cell line viz., BSa2, from S. aurata 2-dpa regenerating caudal fins, which has the ability of multilineage differentiation and is capable of in vitro mineralization. The availability of such in vitro cell systems has the potential to stimulate research on the mechanisms of cell differentiation during fin regeneration and provide new insights into the mechanisms of bone formation.
Collapse
Affiliation(s)
- Parameswaran Vijayakumar
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600 119, India.
| | - João Cardeira
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Department of Biomedical Sciences and Medicine (DCBM) and Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
83
|
Volkening A, Abbott MR, Chandra N, Dubois B, Lim F, Sexton D, Sandstede B. Modeling Stripe Formation on Growing Zebrafish Tailfins. Bull Math Biol 2020; 82:56. [PMID: 32356149 DOI: 10.1007/s11538-020-00731-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 12/26/2022]
Abstract
As zebrafish develop, black and gold stripes form across their skin due to the interactions of brightly colored pigment cells. These characteristic patterns emerge on the growing fish body, as well as on the anal and caudal fins. While wild-type stripes form parallel to a horizontal marker on the body, patterns on the tailfin gradually extend distally outward. Interestingly, several mutations lead to altered body patterns without affecting fin stripes. Through an exploratory modeling approach, our goal is to help better understand these differences between body and fin patterns. By adapting a prior agent-based model of cell interactions on the fish body, we present an in silico study of stripe development on tailfins. Our main result is a demonstration that two cell types can produce stripes on the caudal fin. We highlight several ways that bone rays, growth, and the body-fin interface may be involved in patterning, and we raise questions for future work related to pattern robustness.
Collapse
Affiliation(s)
- A Volkening
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA.
| | - M R Abbott
- Mathematics, Statistics, and Computer Science, Macalester College, St. Paul, MN, USA
| | - N Chandra
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - B Dubois
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - F Lim
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - D Sexton
- Department of Mathematics, University of Idaho, Moscow, ID, USA
| | - B Sandstede
- Division of Applied Mathematics, Brown University, Providence, RI, USA
- Data Science Initiative, Brown University, Providence, RI, USA
| |
Collapse
|
84
|
Allen EA, Baehrecke EH. Autophagy in animal development. Cell Death Differ 2020; 27:903-918. [PMID: 31988494 PMCID: PMC7206001 DOI: 10.1038/s41418-020-0497-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 01/13/2023] Open
Abstract
Macroautophagy (autophagy) delivers intracellular constituents to the lysosome to promote catabolism. During development in multiple organisms, autophagy mediates various cellular processes, including survival during starvation, programmed cell death, phagocytosis, organelle elimination, and miRNA regulation. Our current understanding of autophagy has been enhanced by developmental biology research during the last quarter of a century. Through experiments that focus on animal development, fundamental mechanisms that control autophagy and that contribute to disease were elucidated. Studies in embryos revealed specific autophagy molecules that mediate the removal of paternally derived mitochondria, and identified autophagy components that clear protein aggregates during development. Importantly, defects in mtDNA inheritance, or removal of paternal mtDNA via mitochondrial autophagy, can contribute to mitochondrial-associated disease. In addition, impairment of the clearance of protein aggregates by autophagy underlies neurodegenerative diseases. Experiments in multiple organisms also reveal conserved mechanisms of tissue remodeling that rely on the cooperation between autophagy and apoptosis to clear cell corpses, and defects in autophagy and apoptotic cell clearance can contribute to inflammation and autoimmunity. Here we provide an overview of key developmental processes that are mediated by autophagy in multiple animals.
Collapse
Affiliation(s)
- Elizabeth A Allen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 423 Lazare Research Building, 364 Plantation St., Worcester, MA, 01655, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 423 Lazare Research Building, 364 Plantation St., Worcester, MA, 01655, USA.
| |
Collapse
|
85
|
Pronobis MI, Poss KD. Signals for cardiomyocyte proliferation during zebrafish heart regeneration. CURRENT OPINION IN PHYSIOLOGY 2020; 14:78-85. [PMID: 32368708 DOI: 10.1016/j.cophys.2020.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The common laboratory zebrafish can regenerate functional cardiac muscle after cataclysmic damage or loss, by activating programs that direct the division of spared cardiomyocytes. Heart regeneration is not a linear series of molecular steps and synchronized cellular progressions, but rather an imperfect, relentless process that proceeds in an advantaged competition with scarring until recovery of the lost heart function. In this review, we summarize recent advances in our understanding of signaling events that have formative roles in injury-induced cardiomyocyte proliferation in zebrafish, and we forecast advances in the field that are needed to decipher heart regeneration.
Collapse
Affiliation(s)
- Mira I Pronobis
- Regeneration Next, Duke University, Durham NC 27710 USA.,Department of Cell Biology, Duke University Medical Center, Durham NC 27710 USA
| | - Kenneth D Poss
- Regeneration Next, Duke University, Durham NC 27710 USA.,Department of Cell Biology, Duke University Medical Center, Durham NC 27710 USA
| |
Collapse
|
86
|
Generation and Characterization of a CRISPR/Cas9 -Induced 3-mst Deficient Zebrafish. Biomolecules 2020; 10:biom10020317. [PMID: 32079278 PMCID: PMC7072312 DOI: 10.3390/biom10020317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
3-mercaptopyruvate sulfurtransferase (3-MST) is an enzyme capable of synthesizing hydrogen sulfide (H2S) and polysulfides. In spite of its ubiquitous presence in mammalian cells, very few studies have investigated its contribution to homeostasis and disease development, thus the role of 3-MST remains largely unexplored. Here, we present a clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) induced 3-mst mutant zebrafish line, which will allow the study of 3-MST's role in several biological processes. The 3-mst zebrafish orthologue was identified using a bioinformatic approach and verified by its ability to produce H2S in the presence of 3-mercaptopyruvate (3-MP). Its expression pattern was analyzed during zebrafish early development, indicating predominantly an expression in the heart and central nervous system. As expected, no detectable levels of 3-Mst protein were observed in homozygous mutant larvae. In line with this, H2S levels were reduced in 3-mst-/- zebrafish. Although the mutants showed no obvious morphological deficiencies, they exhibited increased lethality under oxidative stress conditions. The elevated levels of reactive oxygen species, detected following 3-mst deletion, are likely to drive this phenotype. In line with the increased ROS, we observed accelerated fin regenerative capacity in 3-mst deficient zebrafish. Overall, we provide evidence for the expression of 3-mst in zebrafish, confirm its important role in redox homeostasis and indicate the enzyme's possible involvement in the regeneration processes.
Collapse
|
87
|
Alibardi L. Immunogold labelling reveals intense distribution of hyaluronate in the regenerating fin blastema of the goldfish. ACTA ZOOL-STOCKHOLM 2020. [DOI: 10.1111/azo.12321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology University of Bologna Bologna Italy
| |
Collapse
|
88
|
Regrowth of zebrafish caudal fin regeneration is determined by the amputated length. Sci Rep 2020; 10:649. [PMID: 31959817 PMCID: PMC6971026 DOI: 10.1038/s41598-020-57533-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 01/03/2020] [Indexed: 11/08/2022] Open
Abstract
Fish have a high ability to regenerate fins, including the caudal fin. After caudal fin amputation, original bi-lobed morphology is reconstructed during its rapid regrowth. It is still controversial whether positional memory in the blastema cells regulates reconstruction of fin morphology as in amphibian limb regeneration, in which limb blastema cells located at the same proximal-distal level have the same positional identity. We investigated growth period and growth rate in zebrafish caudal fin regeneration. We found that both the growth period and growth rate differed for fin rays that were amputated at the same proximal-distal level, indicating that it takes different periods of time for fin rays to restore their original lengths after straight amputation. We also show that more proximal amputation takes longer period to reconstruct the original morphology/size than more distal amputation. Statistical analysis suggested that both the growth period/rate are determined by amputated length (depth) regardless of the fin ray identity along dorsal-ventral axis. In addition, we suggest the possibility that the structural/physical condition such as width of the fin ray at the amputation site (niche at the stump) may determine the growth period/rate.
Collapse
|
89
|
Draut H, Liebenstein T, Begemann G. New Insights into the Control of Cell Fate Choices and Differentiation by Retinoic Acid in Cranial, Axial and Caudal Structures. Biomolecules 2019; 9:E860. [PMID: 31835881 PMCID: PMC6995509 DOI: 10.3390/biom9120860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) signaling is an important regulator of chordate development. RA binds to nuclear RA receptors that control the transcriptional activity of target genes. Controlled local degradation of RA by enzymes of the Cyp26a gene family contributes to the establishment of transient RA signaling gradients that control patterning, cell fate decisions and differentiation. Several steps in the lineage leading to the induction and differentiation of neuromesodermal progenitors and bone-producing osteogenic cells are controlled by RA. Changes to RA signaling activity have effects on the formation of the bones of the skull, the vertebrae and the development of teeth and regeneration of fin rays in fish. This review focuses on recent advances in these areas, with predominant emphasis on zebrafish, and highlights previously unknown roles for RA signaling in developmental processes.
Collapse
|
90
|
Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration. Semin Cell Dev Biol 2019; 100:109-121. [PMID: 31831357 DOI: 10.1016/j.semcdb.2019.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Skin wounds are among the most common injuries in animals and humans. Vertebrate skin is composed of an epidermis and dermis. After a deep skin injury in mammals, the wound heals, but the dermis cannot regenerate. Instead, collagenous scar tissue forms to fill the gap in the dermis, but the scar does not function like the dermis and often causes disfiguration. In contrast, in non-amniote vertebrates, including fish and amphibians, the dermis and skin derivatives are regenerated after a deep skin injury, without a recognizable scar remaining. Furthermore, skin regeneration can be compared with a higher level of organ regeneration represented by limb regeneration in these non-amniotes, as fish, anuran amphibians (frogs and toads), and urodele amphibians (newts and salamanders) have a high capacity for organ regeneration. Comparative studies of skin regeneration together with limb or other organ regeneration could reveal how skin regeneration is stepped up to a higher level of regeneration. The long history of regenerative biology research has revealed that fish, anurans, and urodeles have their own strengths as models for regeneration studies, and excellent model organisms of these non-amniote vertebrates that are suitable for molecular genetic studies are now available. Here, we summarize the advantages of fish, anurans, and urodeles for skin regeneration studies with special reference to three model organisms: zebrafish (Danio rerio), African clawed frog (Xenopus laevis), and Iberian ribbed newt (Pleurodele waltl). All three of these animals quickly cover skin wounds with the epidermis (wound epidermis formation) and regenerate the dermis and skin derivatives as adults. The availability of whole genome sequences, transgenesis, and genome editing with these models enables cell lineage tracing and the use of human disease models in skin regeneration phenomena, for example. Zebrafish present particular advantages in genetics research (e.g., human disease model and Cre-loxP system). Amphibians (X. laevis and P. waltl) have a skin structure (keratinized epidermis) common with humans, and skin regeneration in these animals can be stepped up to limb regeneration, a higher level of regeneration.
Collapse
|
91
|
Cigliola V, Ghila L, Chera S, Herrera PL. Tissue repair brakes: A common paradigm in the biology of regeneration. Stem Cells 2019; 38:330-339. [PMID: 31722129 DOI: 10.1002/stem.3118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
Abstract
To date, most attention on tissue regeneration has focused on the exploration of positive cues promoting or allowing the engagement of natural cellular restoration upon injury. In contrast, the signals fostering cell identity maintenance in the vertebrate body have been poorly investigated; yet they are crucial, for their counteraction could become a powerful method to induce and modulate regeneration. Here we review the mechanisms inhibiting pro-regenerative spontaneous adaptive cell responses in different model organisms and organs. The pharmacological or genetic/epigenetic modulation of such regenerative brakes could release a dormant but innate adaptive competence of certain cell types and therefore boost tissue regeneration in different situations.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, North Carolina
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine & Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
92
|
Recent advancements in understanding fin regeneration in zebrafish. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e367. [DOI: 10.1002/wdev.367] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 11/07/2022]
|
93
|
Brandão AS, Bensimon-Brito A, Lourenço R, Borbinha J, Soares AR, Mateus R, Jacinto A. Yap induces osteoblast differentiation by modulating Bmp signalling during zebrafish caudal fin regeneration. J Cell Sci 2019; 132:jcs.231993. [PMID: 31636113 DOI: 10.1242/jcs.231993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoblast differentiation is a key process for bone homeostasis and repair. Multiple signalling pathways have been associated with osteoblast differentiation, yet much remains unknown on how this process is regulated in vivo Previous studies have proposed that the Hippo pathway transcriptional co-activators YAP and TAZ (also known as YAP1 and WWTR1, respectively) maintain progenitor stemness and inhibit terminal differentiation of osteoblasts, whereas others suggest they potentiate osteoblast differentiation and bone formation. Here, we use zebrafish caudal fin regeneration as a model to clarify how the Hippo pathway regulates de novo bone formation and osteoblast differentiation. We demonstrate that Yap inhibition leads to accumulation of osteoprogenitors and prevents osteoblast differentiation in a cell non-autonomous manner. This effect correlates with a severe impairment of Bmp signalling in osteoblasts, likely by suppressing the expression of the ligand bmp2a in the surrounding mesenchymal cells. Overall, our findings provide a new mechanism of bone formation through the Hippo-Yap pathway, integrating Yap in the signalling cascade that governs osteoprogenitor maintenance and subsequent differentiation during zebrafish caudal fin regeneration.
Collapse
Affiliation(s)
- Ana S Brandão
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Jorge Borbinha
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Ana Rosa Soares
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Rita Mateus
- Department of Biochemistry, Sciences II, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - António Jacinto
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| |
Collapse
|
94
|
Fermented Oyster Extract Promotes Osteoblast Differentiation by Activating the Wnt/β-Catenin Signaling Pathway, Leading to Bone Formation. Biomolecules 2019; 9:biom9110711. [PMID: 31698882 PMCID: PMC6920898 DOI: 10.3390/biom9110711] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, is well-known as a nutritious food. Recently, we revealed that fermented extract of C. gigas (FO) inhibited ovariectomy-induced osteoporosis, resulting from suppression of osteoclastogenesis. However, since the beneficial effect of FO on osteogenesis is poorly understood, it was examined in mouse preosteoblast MC3T3-E1 cells, human osteosarcoma MG-63 osteoblast-like cells, and zebrafish larvae in this study. We found that FO increased mitochondrial activity from days 1 to 7; however, total cell number of MC3T3-E1 cells gradually decreased without any change in cell viability, which suggests that FO stimulates the differentiation of MC3T3-E1 cells. FO also promoted the expression of osteoblast marker genes, including runt-related transcription factor 2 (mRUNX2), alkaline phosphatase (mALP), collagen type I α1 (mCol1α1), osteocalcin (mOCN), osterix (mOSX), bone morphogenetic protein 2 (mBMP2), and mBMP4 in MC3T3-E1 cells accompanied by a significant increase in ALP activity. FO also increased nuclear translocation of RUNX2 and OSX transcription factors, ALP activity, and calcification in vitro along with the upregulated expression of osteoblast-specific marker proteins such as RUNX2, ALP, Col1α1, OCN, OSX, and BMP4. Additionally, FO enhanced bone mineralization (calcein intensity) in zebrafish larvae at 9 days post-fertilization comparable to that in the β-glycerophosphate (GP)-treated group. All the tested osteoblast marker genes, including zRUNX2a, zRUNX2b, zALP, zCol1a1, zOCN, zBMP2, and zBMP4, were also remarkably upregulated in the zebrafish larvae in response to FO. It also promoted tail fin regeneration in adult zebrafish as same as the GP-treated groups. Furthermore, not only FO positively regulate β-catenin expression and Wnt/β-catenin luciferase activity, but pretreatment with a Wnt/β-catenin inhibitor (FH535) also significantly decreased FO-mediated bone mineralization in zebrafish larvae, which indicates that FO-induced osteogenesis depends on the Wnt/β-catenin pathway. Altogether, the current study suggests that the supplemental intake of FO has a beneficial effect on osteogenesis.
Collapse
|
95
|
Kefalos P, Agalou A, Kawakami K, Beis D. Reactivation of Notch signaling is required for cardiac valve regeneration. Sci Rep 2019; 9:16059. [PMID: 31690782 PMCID: PMC6831700 DOI: 10.1038/s41598-019-52558-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac Valve Disease is one of the most common heart disorders with an emerging epidemic of cardiac valve degeneration due to aging. Zebrafish can regenerate most of their organs, including their heart. We aimed to explore the regenerative potential of cardiac valves and the underlying molecular mechanisms involved. We used an inducible, tissue-specific system of chemogenetic ablation and showed that zebrafish can also regenerate their cardiac valves. Upon valvular damage at larval stages, the intracardiac flow pattern becomes reminiscent of the early embryonic stages, exhibiting an increase in the retrograde flow fraction through the atrioventricular canal. As a result of the altered hemodynamics, notch1b and klf2a expression are ectopically upregulated, adopting the expression pattern of earlier developmental stages. We find that Notch signaling is re-activated upon valvular damage both at larval and adult stages and that it is required during the initial regeneration phase of cardiac valves. Our results introduce an animal model of cardiac valve specific ablation and regeneration.
Collapse
Affiliation(s)
- Panagiotis Kefalos
- Zebrafish Disease Model lab, Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, GR11527, Greece.,Department of Biology, University of Patras, Patras, GR26504, Greece
| | - Adamantia Agalou
- Zebrafish Disease Model lab, Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, GR11527, Greece
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Dimitris Beis
- Zebrafish Disease Model lab, Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, GR11527, Greece.
| |
Collapse
|
96
|
Abstract
Heart failure is a major cause of death worldwide owing to the inability of the adult human heart to regenerate after a heart attack. However, many vertebrate species are capable of complete cardiac regeneration following injury. In this Review, we discuss the various model organisms of cardiac regeneration, and outline what they have taught us thus far about the cellular and molecular responses essential for optimal cardiac repair. We compare across different species, highlighting evolutionarily conserved mechanisms of regeneration and demonstrating the importance of developmental gene expression programmes, plasticity of the heart and the pathophysiological environment for the regenerative response. Additionally, we discuss how the findings from these studies have led to improvements in cardiac repair in preclinical models such as adult mice and pigs, and discuss the potential to translate these findings into therapeutic approaches for human patients following myocardial infarction.
Collapse
Affiliation(s)
- Eleanor L Price
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
97
|
Xu M, Wang T, Li W, Wang Y, Xu Y, Mao Z, Wu R, Liu M, Liu Y. PGE2 facilitates tail regeneration via activation of Wnt signaling in Gekko japonicus. J Mol Histol 2019; 50:551-562. [PMID: 31535259 DOI: 10.1007/s10735-019-09847-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022]
Abstract
Tail regeneration is a distinguishing feature of lizards; however, the mechanisms underlying tail regeneration remain elusive. Prostaglandin E2 (PGE2) is an arachidonic acid metabolite that has been extensively investigated in the inflammatory response under both physiological and pathological conditions. PGE2 also act as a regulator of hematopoietic stem cell homeostasis by interacting with Wnt signaling molecules. The present study aims to identify the effects of PGE2 on tail regeneration and the molecular mechanisms behind it. We initially found that PGE2 levels increased during the early stages of tail regeneration, accompanied by the up-regulated expression of cyclooxygenase 1 and cyclooxygenase 2. Next, we demonstrated that reduced PGE2 production leads to the retardation of tail regeneration. Subsequent experiments demonstrated that this effect is likely mediated by Wnt signaling, which proposing that the activation of the Wnt pathway is essential for the initiation of regeneration. The results showed that inhibition of PGE2 production could suppress Wnt activation and inhibit the proliferation of both epithelial and blastema cells. Furthermore, our findings indicated that forced activation of Wnt signaling could rescue the inhibitory effect of Cox antagonist on regeneration, suggesting a positive role of PGE2 on tail regeneration via a non-inflammatory mechanism.
Collapse
Affiliation(s)
- Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Tiantian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Wenjuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yanran Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Zuming Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
98
|
Marques IJ, Lupi E, Mercader N. Model systems for regeneration: zebrafish. Development 2019; 146:146/18/dev167692. [DOI: 10.1242/dev.167692] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field.
Collapse
Affiliation(s)
- Ines J. Marques
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Eleonora Lupi
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Acquifer, Ditabis, Digital Biomedical Imaging Systems, Pforzheim, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 2029, Spain
| |
Collapse
|
99
|
König D, Dagenais P, Senk A, Djonov V, Aegerter CM, Jaźwińska A. Distribution and Restoration of Serotonin-Immunoreactive Paraneuronal Cells During Caudal Fin Regeneration in Zebrafish. Front Mol Neurosci 2019; 12:227. [PMID: 31616250 PMCID: PMC6763699 DOI: 10.3389/fnmol.2019.00227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
Aquatic vertebrates possess diverse types of sensory cells in their skin to detect stimuli in the water. In the adult zebrafish, a common model organism, the presence of such cells in fins has only rarely been studied. Here, we identified scattered serotonin (5-HT)-positive cells in the epidermis of the caudal fin. These cells were distinct from keratinocytes as revealed by their low immunoreactivity for cytokeratin and desmosome markers. Instead, they were detected by Calretinin (Calbindin-2) and Synaptic vesicle glycoprotein 2 (SV2) antibodies, indicating a calcium-regulated neurosecretory activity. Consistently, electron microscopy revealed abundant secretory organelles in desmosome-negative cells in the fin epidermis. Based on the markers, 5-HT, Calretinin and SV2, we referred to these cells as HCS-cells. We found that HCS-cells were spread throughout the entire caudal fin at an average density of 140 cells per mm2 on each fin surface. These cells were strongly enriched at ray bifurcations in wild type fins, as well as in elongated fins of another longfin mutant fish. To determine whether hydrodynamics play a role in the distribution of HCS-cells, we used an interdisciplinary approach and performed kinematic analysis. Measurements of particle velocity with a fin model revealed differences in fluid velocities between bifurcated rods and adjacent non-bifurcated regions. Therefore the accumulation of HCS-cells near bone bifurcations may be a biological adaptation for sensing of water parameters. The significance of this HCS-cell pattern is reinforced by the fact, that it is reestablished in the regenerated fin after amputation. Regeneration of HCS-cells was not impaired by the chemical inhibition of serotonin synthesis, suggesting that this neurotransmitter is not essential for the restorative process. In conclusion, our study identified a specific population of solitary paraneurons in the zebrafish fin, whose distribution correlates with fluid dynamics.
Collapse
Affiliation(s)
- Désirée König
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paule Dagenais
- Physik-Institut, University of Zurich, Zurich, Switzerland
| | - Anita Senk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
100
|
ECM alterations in Fndc3a (Fibronectin Domain Containing Protein 3A) deficient zebrafish cause temporal fin development and regeneration defects. Sci Rep 2019; 9:13383. [PMID: 31527654 PMCID: PMC6746793 DOI: 10.1038/s41598-019-50055-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/05/2019] [Indexed: 11/08/2022] Open
Abstract
Fin development and regeneration are complex biological processes that are highly relevant in teleost fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fndc3a (fibronectin domain containing protein 3a) in both developing and regenerating caudal fins of zebrafish (Danio rerio). We established a hypomorphic fndc3a mutant line (fndc3awue1/wue1) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults with permanent tail fin deformations. In addition, caudal fin regeneration in adult fndc3awue1/wue1 mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the ECM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development and regeneration in zebrafish.
Collapse
|