51
|
Vitkina TI, Yankova VI, Gvozdenko TA, Kuznetsov VL, Krasnikov DV, Nazarenko AV, Chaika VV, Smagin SV, Tsatsakis AΜ, Engin AB, Karakitsios SP, Sarigiannis DA, Golokhvast KS. The impact of multi-walled carbon nanotubes with different amount of metallic impurities on immunometabolic parameters in healthy volunteers. Food Chem Toxicol 2015; 87:138-47. [PMID: 26683310 DOI: 10.1016/j.fct.2015.11.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 11/15/2022]
Abstract
The impact of two types of multi-walled carbon nanotubes (MWCNTs) (12-14 nm) with different content of metallic impurities (purified and unpurified nanotubes) on peroxidation processes, the status of immune cells in healthy volunteers and gene expression combined to pathway analysis was studied in vitro. From the study it was shown that the main mechanism of action for both types of MWCNTs is induction of oxidative stress, the intensity of which is directly related to the amount of metallic impurities. Unpurified MWCNTs produced twice as high levels of oxidation than the purified CNTs inducing thus more intense mitochondrial dysfunction. All the above were also verified by gene expression analysis of 2 different human cellular cultures (lung epithelium and keratinoma cells) and the respective pathway analysis; modulation of genes activating the NFkB pathway is associated to inflammatory responses. This may cause a perturbation in the IL-6 signaling pathway in order to regulate inflammatory processes and compensate for apoptotic changes. A plausible hypothesis for the immunological effects observed in vivo, are considered as the result of the synergistic effect of systemic (mediated by cells of the routes of exposure) and local inflammation (blood cells).
Collapse
Affiliation(s)
- T I Vitkina
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia
| | - V I Yankova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia
| | - T A Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia
| | - V L Kuznetsov
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia
| | - D V Krasnikov
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia
| | - A V Nazarenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia
| | - V V Chaika
- Far Eastern Federal University, Vladivostok, Russia
| | - S V Smagin
- Far Eastern Federal University, Vladivostok, Russia
| | - A Μ Tsatsakis
- Far Eastern Federal University, Vladivostok, Russia; University of Crete, Heraklion, Greece
| | - A B Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, 06330, Hipodrom, Ankara, Turkey
| | - S P Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Thessaloniki, Greece
| | - D A Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Thessaloniki, Greece; Chair of Environmental Health Engineering, Institute for Advanced Study, Pavia, Italy.
| | - K S Golokhvast
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia; Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
52
|
Association of early inflammatory parameters after subarachnoid hemorrhage with functional outcome: A prospective cohort study. Clin Neurol Neurosurg 2015; 138:177-83. [PMID: 26355810 DOI: 10.1016/j.clineuro.2015.08.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Early brain injury after aneurysmal subarachnoid hemorrhage (aSAH) comprises a pronounced neuroinflammatory reaction. Nevertheless, its relevance for functional outcome and its role as outcome predictor remains uncertain. We evaluated the relationship of various early inflammatory parameters regarding functional outcome according to the modified Rankin Scale score (mRS) at discharge (primary objective) and six months after aSAH. PATIENTS A total of 81 patients (63% female) with a mean age of 53.8 ± 13.2 years were included. METHODS At admission clinical data and various inflammatory parameters in serum and - wherever applicable - cerebrospinal fluid (CSF) of patients after aSAH were assessed. Outcome was evaluated according to dichotomized mRS at discharge and six months after aSAH (unfavorable outcome: mRS 3-6). Univariate and thereafter multivariate logistic regression analyses were performed using SAS 9.2. RESULTS Elevated levels of interleukin 6 (IL-6) and leukemia inhibitory factor (LIF) in serum and CSF were related to unfavorable outcome at discharge (p<0.05; univariate analyses). IL-6 remains the only parameter relevant for outcome applying a multivariate model including the relevant baseline characteristics. Six months after aSAH no significant correlation was found regarding the outcome, most likely due to the high drop-out rate (27%). A pronounced rise of LIF serum and CSF levels after aSAH was observed. CONCLUSION Higher early IL-6 serum levels after aSAH are associated with poor outcome at discharge. In addition, involvement of LIF in the early inflammatory reaction after aSAH has been demonstrated.
Collapse
|
53
|
Lee DH, Park MH, Hwang CJ, Hwang JY, Yoon HS, Yoon DY, Hong JT. CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury. Arch Toxicol 2015; 90:1151-62. [PMID: 26055553 DOI: 10.1007/s00204-015-1530-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/05/2015] [Indexed: 01/08/2023]
Abstract
C-C chemokine receptor 5 (CCR5) regulates leukocyte chemotaxis and activation, and its deficiency exacerbates development of nephritis. Therefore, we investigated the role of CCR5 during lipopolysaccharide (LPS)-induced acute kidney injury. CCR5-deficient (CCR5-/-) and wild-type (CCR5+/+) mice, both aged about 10 months, had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg). Compared with CCR5+/+ mice, CCR5-/- mice showed increased mortality and renal injury, including elevated creatinine and blood urea nitrogen levels, following LPS challenge. Compared to CCR5+/+ mice, CCR5-/- mice also exhibited greater increases in the serum concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β following LPS challenge. Furthermore, infiltration of macrophages and neutrophils, expression of intracellular adhesion molecule (ICAM)-1, and the number of apoptotic cells were more greatly increased by LPS treatment in CCR5-/- mice than in CCR5+/+ mice. The concentrations of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β were also significantly increased in the kidney of CCR5-/- mice after LPS challenge. Moreover, primary kidney cells from CCR5-/- mice showed greater increases in TNF-α production and p38 MAP kinase activation following treatment with LPS compared with that observed in the cells from CCR5+/+ mice. LPS-induced TNF-α production and apoptosis in the primary kidney cells from CCR5-/- mice were inhibited by treatment with p38 MAP kinase inhibitor. These results suggest that CCR5 deficiency increased the production of TNF-α following LPS treatment through increased activation of the p38 pathway in the kidney, resulting in renal apoptosis and leukocyte infiltration and led to exacerbation of LPS-induced acute kidney injury.
Collapse
Affiliation(s)
- Dong Hun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 361-951, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 361-951, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 361-951, Republic of Korea
| | - Jae Yeon Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 361-951, Republic of Korea
| | - Hae Suk Yoon
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 361-951, Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| |
Collapse
|
54
|
Cakmak B, Ozalp SS, Acikalin MF, Nacar MC. Do Leukaemia Inhibitory Factor and Vascular Endothelial Growth Factor Have Any Roles in Intrauterine Device Mechanism of Action? An Experimental Rat Study. Gynecol Obstet Invest 2015; 81:000381897. [PMID: 25966767 DOI: 10.1159/000381897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/25/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To assess leukaemia inhibitory factor (LIF) and vascular endothelial growth factor (VEGF) expression as markers of intrauterine device (IUD) efficacy in a rat model. METHODS Twenty nulliparous female Wistar rats were divided into two groups with 10 animals per group: group I (IUD) and group II (control group, no IUD). In group I, a 2-cm 3-0 silk suture was placed into one horn of the rat bicornuate uterus. On day 20 (after IUD insertion) rats were sacrificed and their uteri removed. The number of vessels and the distribution of LIF and VEGF were compared among the uterine horns. RESULTS There were no significant differences in LIF and VEGF expression in the groups and all horns (p > 0.05). The number of vessels was higher in the IUD+ horn than in the IUD- horn of group I and in the horn of group II (p < 0.05). There was no significant difference in the number of vessels between the IUD- horns of groups I and II (p > 0.05). CONCLUSION LIF and VEGF expression did not correlate with IUD efficacy in a rat model. An IUD may increase the number of vessels in the uterine horn independent of VEGF expression. © 2015 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Bulent Cakmak
- Department of Obstetrics and Gynecology, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| | | | | | | |
Collapse
|
55
|
Agca C, Boldt K, Gubler A, Meneau I, Corpet A, Samardzija M, Stucki M, Ueffing M, Grimm C. Expression of leukemia inhibitory factor in Müller glia cells is regulated by a redox-dependent mRNA stability mechanism. BMC Biol 2015; 13:30. [PMID: 25907681 PMCID: PMC4462110 DOI: 10.1186/s12915-015-0137-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
Background Photoreceptor degeneration is a main hallmark of many blinding diseases making protection of photoreceptors crucial to prevent vision loss. Thus, regulation of endogenous neuroprotective factors may be key for cell survival and attenuation of disease progression. Important neuroprotective factors in the retina include H2O2 generated by injured photoreceptors, and leukemia inhibitory factor (LIF) expressed in Müller glia cells in response to photoreceptor damage. Results We present evidence that H2O2 connects to the LIF response by inducing stabilization of Lif transcripts in Müller cells. This process was independent of active gene transcription and p38 MAPK, but relied on AU-rich elements (AREs), which we identified within the highly conserved Lif 3′UTR. Affinity purification combined with quantitative mass spectrometry identified several proteins that bound to these AREs. Among those, interleukin enhancer binding factor 3 (ILF3) was confirmed to participate in the redox-dependent Lif mRNA stabilization. Additionally we show that KH-type splicing regulatory protein (KHSRP) was crucial for maintaining basal Lif expression levels in non-stressed Müller cells. Conclusions Our results suggest that H2O2-induced redox signaling increases Lif transcript levels through ILF3 mediated mRNA stabilization. Generation of H2O2 by injured photoreceptors may thus enhance stability of Lif mRNA and therefore augment neuroprotective LIF signaling during degenerative conditions in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cavit Agca
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Present address: Department of Biomedicine, University Hospital Basel, Basel, 4031, Switzerland.
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Andrea Gubler
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Isabelle Meneau
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Armelle Corpet
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland. .,Present address: Center for Molecular and Cellular Physiology and Genetics, University Lyon I, Villeurbanne, France.
| | - Marijana Samardzija
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland.
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Christian Grimm
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, 8091, Switzerland. .,Neuroscience Center (ZNZ), University of Zurich, Zurich, 8091, Switzerland.
| |
Collapse
|
56
|
Yu H, Yue X, Zhao Y, Li X, Wu L, Zhang C, Liu Z, Lin K, Xu-Monette ZY, Young KH, Liu J, Shen Z, Feng Z, Hu W. LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat Commun 2014; 5:5218. [PMID: 25323535 PMCID: PMC4203416 DOI: 10.1038/ncomms6218] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022] Open
Abstract
Leukemia inhibitory factor (LIF) has been recently identified as a p53 target gene, which mediates the role of p53 in maternal implantation under normal physiological conditions. Here, we report that LIF is a negative regulator of p53; LIF downregulates p53 protein levels and function in human colorectal cancer (CRC) cells. The downregulation of p53 by LIF is mediated by the activation of Stat3, which transcriptionally induces ID1. ID1 upregulates MDM2, a key negative regulator of p53, and promotes p53 protein degradation. LIF is overexpressed in a large percentage of CRCs. LIF overexpression promotes cellular resistance towards chemotherapeutic agents in cultured CRC cells and colorectal xenograft tumors in a largely p53-dependent manner. Overexpression of LIF is associated with a poor prognosis in CRC patients. Taken together, LIF is a novel negative regulator of p53, overexpression of LIF is an important mechanism for the attenuation of p53, which promotes chemoresistance in CRCs.
Collapse
Affiliation(s)
- Haiyang Yu
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Xuetian Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Xiaoyan Li
- 1] Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA [2] Department of Breast Surgery, Qilu Hospital, Shandong University, Ji'nan 250012, China
| | - Lihua Wu
- 1] Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA [2] First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Cen Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Zhen Liu
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Kevin Lin
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ken H Young
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
57
|
Dimauro I, Grasso L, Fittipaldi S, Fantini C, Mercatelli N, Racca S, Geuna S, Di Gianfrancesco A, Caporossi D, Pigozzi F, Borrione P. Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. PLoS One 2014; 9:e102993. [PMID: 25054279 PMCID: PMC4108405 DOI: 10.1371/journal.pone.0102993] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/24/2014] [Indexed: 12/27/2022] Open
Abstract
Platelet-rich plasma (PRP) has received increasing interest in applied medicine, being widely used in clinical practice with the aim of stimulating tissue healing. Despite the reported clinical success, there is still a lack of knowledge when considering the biological mechanisms at the base of the activity of PRP during the process of muscle healing. The aim of the present study was to verify whether the local delivery of PRP modulates specific molecular events involved in the early stages of the muscle regeneration process. The right flexor sublimis muscle of anesthetized Wistar rats was mechanically injured and either treated with PRP or received no treatment. At day 2 and 5 after surgery, the animals were sacrificed and the muscle samples evaluated at molecular levels. PRP treatment increased significantly the mRNA level of the pro-inflammatory cytokines IL-1β, and TGF-β1. This phenomenon induced an increased expression at mRNA and/or protein levels of several myogenic regulatory factors such as MyoD1, Myf5 and Pax7, as well as the muscular isoform of insulin-like growth factor1 (IGF-1Eb). No effect was detected with respect to VEGF-A expression. In addition, PRP application modulated the expression of miR-133a together with its known target serum response factor (SRF); increased the phosphorylation of αB-cristallin, with a significant improvement in several apoptotic parameters (NF-κB-p65 and caspase 3), indexes of augmented cell survival. The results of the present study indicates that the effect of PRP in skeletal muscle injury repair is due both to the modulation of the molecular mediators of the inflammatory and myogenic pathways, and to the control of secondary pathways such as those regulated by myomiRNAs and heat shock proteins, which contribute to proper and effective tissue regeneration.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Loredana Grasso
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Simona Fittipaldi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Cristina Fantini
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Silvia Racca
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Di Gianfrancesco
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- * E-mail:
| | - Fabio Pigozzi
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Paolo Borrione
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
58
|
Liu SC, Chang YS. Role of leukemia inhibitory factor in nasopharyngeal carcinogenesis. Mol Cell Oncol 2014; 1:e29900. [PMID: 27308310 PMCID: PMC4905174 DOI: 10.4161/mco.29900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022]
Abstract
Although Epstein-Barr virus-associated nasopharyngeal carcinoma (NPC) is a highly radiosensitive cancer, approximately 20% of patients with NPC develop local recurrence after radiation therapy. Multiple proinflammatory cytokines are thought to protect NPC tumor cells from immune surveillance and therapeutic interventions. The cytokine leukemia inhibitory factor (LIF) is a critical component of the NPC microenvironment. LIF influences tumor growth and survival, and is therefore considered a potential therapeutic target and/or prognostic predictor for NPC. High LIF levels have been detected in the circulating blood of patients with recurrent NPC and NPC tumor cells. This review discusses the molecular mechanisms that link LIF to NPC tumor progression and radioresistance.
Collapse
Affiliation(s)
- Shu-Chen Liu
- Molecular Medicine Research Center; Chang Gung University; Taoyuan, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center; Chang Gung University; Taoyuan, Taiwan
| |
Collapse
|
59
|
Nguyen CT, Kim EH, Luong TT, Pyo S, Rhee DK. ATF3 Confers Resistance to Pneumococcal Infection Through Positive Regulation of Cytokine Production. J Infect Dis 2014; 210:1745-54. [DOI: 10.1093/infdis/jiu352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
60
|
Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions. FEBS Lett 2014; 588:2712-27. [PMID: 24560789 DOI: 10.1016/j.febslet.2014.02.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
Autotaxin is a secreted enzyme that produces most of the extracellular lysophosphatidate from lysophosphatidylcholine, the most abundant phospholipid in blood plasma. Lysophosphatidate mediates many physiological and pathological processes by signaling through at least six G-protein coupled receptors to promote cell survival, proliferation and migration. The autotaxin/lysophosphatidate signaling axis is involved in wound healing and tissue remodeling, and it drives many chronic inflammatory conditions from fibrosis to colitis, asthma and cancer. In cancer, lysophosphatidate signaling promotes resistance to chemotherapy and radiotherapy, and increases both angiogenesis and metastasis. Research into autotaxin inhibitors is accelerating, both as primary and adjuvant therapy. Historically, autotaxin inhibitors had poor bioavailability profiles and thus had limited efficacy in vivo. This situation is now changing, especially since the recent crystal structure of autotaxin is now enabling rational inhibitor design. In this review, we will summarize current knowledge on autotaxin-mediated disease processes including cancer, and discuss recent advancements in the development of autotaxin-targeting strategies. We will also provide new insights into autotaxin as an inflammatory mediator in the tumor microenvironment that promotes cancer progression and therapy resistance.
Collapse
|
61
|
Bindu S, Mazumder S, Dey S, Pal C, Goyal M, Alam A, Iqbal MS, Sarkar S, Azhar Siddiqui A, Banerjee C, Bandyopadhyay U. Nonsteroidal anti-inflammatory drug induces proinflammatory damage in gastric mucosa through NF-κB activation and neutrophil infiltration: anti-inflammatory role of heme oxygenase-1 against nonsteroidal anti-inflammatory drug. Free Radic Biol Med 2013; 65:456-467. [PMID: 23892052 DOI: 10.1016/j.freeradbiomed.2013.07.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 06/26/2013] [Accepted: 07/19/2013] [Indexed: 12/24/2022]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-induced mitochondrial oxidative stress (MOS) is an important prostaglandin (PG)-independent pathway of the induction of gastric mucosal injury. However, the molecular mechanism behind MOS-mediated gastric pathology is still obscure. In various pathological conditions of tissue injury oxidative stress is often linked with inflammation. Here we report that MOS induced by indomethacin (an NSAID) induces gastric mucosal inflammation leading to proinflammatory damage. Indomethacin, time dependently stimulated the expression of proinflammatory molecules such as intercellular adhesion molecule 1(ICAM-1), vascular cell adhesion molecule 1(VCAM-1), interleukin1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1) in gastric mucosa in parallel with the increase of neutrophil infiltration and injury of gastric mucosa in rat. Western immunoblotting and confocal microscopic studies revealed that indomethacin induced nuclear translocation of nuclear factor kappa-B (NF-κB) in gastric mucosal cells, which resulted in proinflammatory signaling. The prevention of MOS by antioxidant tryptamine-gallic acid hybrid (SEGA) inhibited indomethacin-induced expression of ICAM-1, VCAM-1, IL-1β, and MCP-1. SEGA also prevented indomethacin-induced NF-κB activation and neutrophil infiltration as documented by chromatin immunoprecipitation studies and neutrophil migration assay, respectively. Heme oxygenase-1 (HO-1), a cytoprotective enzyme associated with tissue repair mechanisms is stimulated in response to oxidative stress. We have investigated the role of HO-1 against MOS and MOS-mediated inflammation in recovering from gastropathy. Indomethacin stimulated the expression of HO-1 and indomethacin-stimulated HO-1 expression was reduced by SEGA, an antioxidant, which could prevent MOS. Thus, the data suggested that the induction of HO-1 was a protective response against MOS developed by indomethacin. Moreover, the induction of HO-1 by cobalt protoporphyrin inhibited inflammation and chemical silencing of HO-1 by zinc protoporphyrin aggravated the inflammation by indomethacin. Thus, NSAID by promoting MOS-induced proinflammatory response damaged gastric mucosa and HO-1 protected NSAID-induced gastric mucosal damage by preventing NF-κB activation and proinflammatory activity.
Collapse
Affiliation(s)
- Samik Bindu
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sumanta Dey
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmay Pal
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Manish Goyal
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Athar Alam
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Mohd Shameel Iqbal
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Souvik Sarkar
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Asim Azhar Siddiqui
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
62
|
Ma C, Xie D, Huang L, Sun L, Xu Q, Li G, Hao L. Protective effect of salicylic acid on Hg(0) intoxication in mice. Inhal Toxicol 2013; 25:398-404. [PMID: 23742082 DOI: 10.3109/08958378.2013.795633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Elemental mercury (Hg(0)) is a hazardous metal with significant human exposure through diverse sources. In this study, the role of salicylic acid (SA) was assessed against Hg(0)-induced injury in mice, with the aim of screening alternative clinical drugs to prevent or treat Hg(0) poisoning. An exposure to Hg(0) (1.0 mg/m(3) in a glass box) for 2 h per day for successive 15 d significantly increased Hg accumulation in mouse brain and lung, inhibited the animal growth and altered the neurobehavior such as impairing the spatial learning and memory in the Barnes maze test. However, although oral SA (5.5 mg/kg body weight) during the Hg(0) exposure did not reduce the Hg levels in these organs, it effectively counteracted the Hg(0)-induced growth inhibition, and improved the behavioral performance, accompanied by a series of ameliorations in the antioxidative defense and anti-inflammatory response. For instance, when compared with control, Hg(0)-inhaled animals had significant decreases in the activities of superoxide dismutase and peroxidase, and in the levels of reduced form of glutathione and the ratio to its oxidized form, concomitantly with a high accumulation of hydrogen peroxide and malondialdehyde in the brain and lung. However, these values in Hg(0) + SA-exposed animals were comparable with the basal levels in control. Likewise, interleukin-6 in the brain and lung of Hg(0)-exposed animals were dramatically elevated, whereas it was maintained to the basal level in Hg(0) + SA-exposed animals. These data suggested that application of SA could protect mice against Hg(0)-induced injury.
Collapse
Affiliation(s)
- Chunyan Ma
- College of Life and Chemistry Sciences, Shenyang Normal University, Shenyang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
63
|
Utsunomiya YT, Pérez O’Brien AM, Sonstegard TS, Van Tassell CP, do Carmo AS, Mészáros G, Sölkner J, Garcia JF. Detecting loci under recent positive selection in dairy and beef cattle by combining different genome-wide scan methods. PLoS One 2013; 8:e64280. [PMID: 23696874 PMCID: PMC3655949 DOI: 10.1371/journal.pone.0064280] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 04/13/2013] [Indexed: 12/21/2022] Open
Abstract
As the methodologies available for the detection of positive selection from genomic data vary in terms of assumptions and execution, weak correlations are expected among them. However, if there is any given signal that is consistently supported across different methodologies, it is strong evidence that the locus has been under past selection. In this paper, a straightforward frequentist approach based on the Stouffer Method to combine P-values across different tests for evidence of recent positive selection in common variations, as well as strategies for extracting biological information from the detected signals, were described and applied to high density single nucleotide polymorphism (SNP) data generated from dairy and beef cattle (taurine and indicine). The ancestral Bovinae allele state of over 440,000 SNP is also reported. Using this combination of methods, highly significant (P<3.17×10−7) population-specific sweeps pointing out to candidate genes and pathways that may be involved in beef and dairy production were identified. The most significant signal was found in the Cornichon homolog 3 gene (CNIH3) in Brown Swiss (P = 3.82×10−12), and may be involved in the regulation of pre-ovulatory luteinizing hormone surge. Other putative pathways under selection are the glucolysis/gluconeogenesis, transcription machinery and chemokine/cytokine activity in Angus; calpain-calpastatin system and ribosome biogenesis in Brown Swiss; and gangliosides deposition in milk fat globules in Gyr. The composite method, combined with the strategies applied to retrieve functional information, may be a useful tool for surveying genome-wide selective sweeps and providing insights in to the source of selection.
Collapse
Affiliation(s)
- Yuri Tani Utsunomiya
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Ana Maria Pérez O’Brien
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Tad Stewart Sonstegard
- Bovine Functional Genomics Laboratory, ARS-USDA - Agricultural Research Service - United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Curtis Paul Van Tassell
- Bovine Functional Genomics Laboratory, ARS-USDA - Agricultural Research Service - United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Adriana Santana do Carmo
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Gábor Mészáros
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johann Sölkner
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail: (JS); (JFG)
| | - José Fernando Garcia
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
- Departamento de Apoio, Saúde e Produção Animal, Faculdade de Medicina Veterinária de Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
- * E-mail: (JS); (JFG)
| |
Collapse
|
64
|
Yang J, Chen J, Yan J, Zhang L, Chen G, He L, Wang Y. Effect of interleukin 6 deficiency on renal interstitial fibrosis. PLoS One 2012; 7:e52415. [PMID: 23272241 PMCID: PMC3525542 DOI: 10.1371/journal.pone.0052415] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023] Open
Abstract
Our recent studies have shown that bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. However, the molecular mechanisms underlying the recruitment and activation of bone marrow-derived fibroblast precursors are incompletely understood. We found that interleukin 6 was induced in the kidney in a murine model of renal fibrosis induced by unilateral ureteral obstruction. Therefore, we investigated if interleukin 6 play a role in the recruitment and maturation of bone marrow-derived fibroblast precursors in the kidney during the development of renal fibrosis. Wild-type and interleukin 6 knockout mice were subjected to unilateral obstructive injury for up to two weeks. Interleukin 6 knockout mice accumulated similar number of bone marrow-derived fibroblast precursors and myofibroblasts in the kidney in response to obstructive injury compared to wild-type mice. Furthermore, IL-6 knockout mice expressed comparable α-SMA in the obstructed kidney compared to wild-type mice. Moreover, targeted disruption of Interleukin 6 did not affect gene expression of profibrotic chemokine and cytokines in the obstructed kidney. Finally, there were no significant differences in renal interstitial fibrosis or expression of extracellular matrix proteins between wild-type and interleukin 6 knockout mice following obstructive injury. Our results indicate that interleukin 6 does not play a significant role in the recruitment of bone marrow-derived fibroblast precursors and the development of renal fibrosis.
Collapse
Affiliation(s)
- Jun Yang
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiyuan Chen
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jingyin Yan
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Liping Zhang
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gang Chen
- Department of Nephrology, Shuguang Hospital, Shanghai, China
| | - Liqun He
- Department of Nephrology, Shuguang Hospital, Shanghai, China
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
65
|
Zhang C, Li Y, Wu Y, Wang L, Wang X, Du J. Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem 2012. [PMID: 23184935 DOI: 10.1074/jbc.m112.419788] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation and microenvironment play a crucial role in muscle regeneration. IL (interleukin)-6, as a multifunctional cytokine is involved in the processes. However, the causative effect of IL-6 in muscle regeneration remains unclear. In a mouse model of cardiotoxin-induced muscle injury/regeneration, infiltrated monocytes/macrophages produce a high level of IL-6 started on 1 day (24 h) after injury. In IL-6 knock-out (-/-) mice, the muscle regeneration procedure was impaired along with decreased myogenic determination factor (MyoD) and myogenin mRNA level and increased interstitial fibrosis. The IL-6(-/-) mice exhibited less macrophage infiltration, lower inflammatory cytokine (IL-1β, inducible NO synthase, Transforming growth factor (TGF)-β1, and IL-10) and chemokine (CCL2, CCL3, and CCL5) expression, and inhibited myoblast proliferation. In vitro, IL-6 deficiency or Signal Transducer and Activator of Transcription 3 (STAT3) knockdown in activated macrophage attenuated the expression of CCL2, CCL3, but not CCL5, which resulted in less macrophage migration. Moreover, inflammatory macrophages promoted myoblast proliferation in an IL-6-dependent manner. Finally, adoptive transfer IL-6(+/+) BM cells into IL-6(-/-) mice rescued the impaired regeneration with improved MyoD and myogenin expression. Taken together, IL-6 expression and the activated STAT3 signaling pathway in monocytes/macrophages is a critical mediator of macrophage migration and myoblast proliferation during muscle regeneration.
Collapse
Affiliation(s)
- Congcong Zhang
- Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | | | | | | | | | | |
Collapse
|
66
|
Dumas A, Lagarde S, Laflamme C, Pouliot M. Oncostatin M decreases interleukin-1 β secretion by human synovial fibroblasts and attenuates an acute inflammatory reaction in vivo. J Cell Mol Med 2012; 16:1274-85. [PMID: 21854541 PMCID: PMC3823080 DOI: 10.1111/j.1582-4934.2011.01412.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine of the IL-6 family and displays both pro-inflammatory and anti-inflammatory activities. We studied the impact of OSM on the gene activation profile of human synovial cells, which play a central role in the progression of inflammatory responses in joints. In synovial cells stimulated with lipopolysaccharide and recombinant human granulocyte-macrophage colony-stimulating factor, recombinant human OSM and native OSM secreted by human granulocytes both reduced the gene expression and secretion of IL-1β and CXCL8, but increased that of IL-6 and CCL2. This impact on synovial cell activation was not obtained using IL-6 or leukaemia inhibitory factor. Signal transducer and activator of transcription-1 appeared to mediate the effects of OSM on stimulated human synovial fibroblasts. In the murine dorsal air pouch model of inflammation, OSM reduced the expression of the pro-inflammatory cytokines IL-1β and TNF-α in lining tissues, and their presence in the cavity. These results as a whole suggest an anti-inflammatory role for OSM, guiding inflammatory processes towards resolution.
Collapse
Affiliation(s)
- Aline Dumas
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ, and Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | | | | | | |
Collapse
|
67
|
Obana M, Miyamoto K, Murasawa S, Iwakura T, Hayama A, Yamashita T, Shiragaki M, Kumagai S, Miyawaki A, Takewaki K, Matsumiya G, Maeda M, Yoshiyama M, Nakayama H, Fujio Y. Therapeutic administration of IL-11 exhibits the postconditioning effects against ischemia-reperfusion injury via STAT3 in the heart. Am J Physiol Heart Circ Physiol 2012; 303:H569-77. [DOI: 10.1152/ajpheart.00060.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activation of cardiac STAT3 by IL-6 cytokine family contributes to cardioprotection. Previously, we demonstrated that IL-11, an IL-6 cytokine family, has the therapeutic potential to prevent adverse cardiac remodeling after myocardial infarction; however, it remains to be elucidated whether IL-11 exhibits postconditioning effects. To address the possibility that IL-11 treatment improves clinical outcome of recanalization therapy against acute myocardial infarction, we examined its postconditioning effects on ischemia/reperfusion (I/R) injury. C57BL/6 mice were exposed to ischemia (30 min) and reperfusion (24 h), and IL-11 was intravenously administered at the start of reperfusion. I/R injury mediated the activation of STAT3, which was enhanced by IL-11 administration. IL-11 treatment reduced I/R injury, analyzed by triphenyl tetrazolium chloride staining [PBS, 46.7 ± 14.4%; IL-11 (20 μg/kg), 28.6 ± 7.5% in the ratio of infarct to risk area]. Moreover, echocardiographic and hemodynamic analyses clarified that IL-11 treatment preserved cardiac function after I/R. Terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining revealed that IL-11 reduced the frequency of apoptotic cardiomyocytes after I/R. Interestingly, IL-11 reduced superoxide production assessed by in situ dihydroethidium fluorescence analysis, accompanied by the increased expression of metallothionein 1 and 2, reactive oxygen species (ROS) scavengers. Importantly, with the use of cardiac-specific STAT3 conditional knockout (STAT3 CKO) mice, it was revealed that cardiac-specific ablation of STAT3 abrogated IL-11-mediated attenuation of I/R injury. Finally, IL-11 failed to suppress the ROS production after I/R in STAT3 CKO mice. IL-11 administration exhibits the postconditioning effects through cardiac STAT3 activation, suggesting that IL-11 has the clinical therapeutic potential to prevent I/R injury in heart.
Collapse
Affiliation(s)
- Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kaori Miyamoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shiho Murasawa
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tomohiko Iwakura
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akiko Hayama
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tomomi Yamashita
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Momoko Shiragaki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shohei Kumagai
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akimitsu Miyawaki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kana Takewaki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Goro Matsumiya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Makiko Maeda
- Department of Clinical Pharmacogenomics, School of Pharmacy, Hyogo University of Health Sciences
| | - Minoru Yoshiyama
- Department of Internal Medicine and Cardiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroyuki Nakayama
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
68
|
Hunt LC, Upadhyay A, Jazayeri JA, Tudor EM, White JD. An anti-inflammatory role for leukemia inhibitory factor receptor signaling in regenerating skeletal muscle. Histochem Cell Biol 2012; 139:13-34. [PMID: 22926285 DOI: 10.1007/s00418-012-1018-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2012] [Indexed: 11/30/2022]
Abstract
Skeletal muscle regeneration in pathology and following injury requires the coordinated actions of inflammatory cells and myogenic cells to remove damaged tissue and rebuild syncytial muscle cells, respectively. Following contusion injury to muscle, the cytokine leukemia inhibitor factor (LIF) is up-regulated and knockout of Lif negatively impacts on morphometric parameters of muscle regeneration. Although it was speculated that LIF regulates muscle regeneration through direct effects on myogenic cells, the inflammatory effects of LIF have not been examined in regenerating skeletal muscle. Therefore, the expression and function of LIF was examined using the antagonist MH35-BD during specific inflammatory and myogenic stages of notexin-induced muscle regeneration in mice. LIF protein and mRNA were up-regulated in two distinct phases following intramuscular injection of notexin into tibialis anterior muscles. The first phase of LIF up-regulation coincided with the increased expression of pro-inflammatory cytokines; the second phase coincided with myogenic differentiation and formation of new myotubes. Administration of the LIF receptor antagonist MH35-BD during the second phase of LIF up-regulation had no significant effects on transcript expression of genes required for myogenic differentiation or associated with inflammation; there were no significant differences in morphometric parameters of the regenerating muscle. Conversely, when MH35-BD was administered during the acute inflammatory phase, increased gene transcripts for the pro-inflammatory cytokines Tnf (Tumor necrosis factor), Il1b (Interleukin-1β) and Il6 (Interleukin-6) alongside an increase in the number of Ly6G positive neutrophils infiltrating the muscle were observed. This was followed by a reduction in Myog (Myogenin) mRNA, which is required for myogenic differentiation, and the subsequent number of myotubes formed was significantly decreased in MH35-BD-treated groups compared to sham. Thus, antagonism of the LIF receptor during the inflammatory phase of skeletal muscle regeneration appeared to induce an inflammatory response that inhibited subsequent myotube formation. We propose that the predominant role of LIF in skeletal muscle regeneration appears to be in regulating the inflammatory response rather than directly effecting myogenic cells.
Collapse
Affiliation(s)
- Liam C Hunt
- Faculty of Veterinary Science, University of Melbourne, Flemington road, Parkville, VIC 3010, Australia
| | | | | | | | | |
Collapse
|
69
|
Al Azrak M, Ismail T, Shaker O. Evaluation of the potentials of autologous blood injection for healing in diabetic foot ulcers. J Am Coll Clin Wound Spec 2012; 4:45-50. [PMID: 24527383 DOI: 10.1016/j.jccw.2013.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 01/13/2023] Open
Abstract
Healing is a complex multifactorial process, hence it is not easy to be studied accurately. In this paper we tried to demonstrate the potentials of application of autologous blood by injection into the raw areas and ulcers of three diabetic patients using their blood as an alternative to synthesized and cultured stem cells or growth factors. It was found that a natural easily obtained blood can be used to enrich the media of the wound. Also it was applicable in relation to its cost-effectiveness as well as availability. The healing process was accelerated in the injected side more than the non-injected one.
Collapse
Affiliation(s)
- Mohammed Al Azrak
- Burn & Plastic Surgery Unit, Fayoum General Hospital & PhD researcher in Plastic Surgery Division, Surgery department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Taher Ismail
- Plastic Surgery Division, Surgery Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
70
|
Quinton LJ, Mizgerd JP, Hilliard KL, Jones MR, Kwon CY, Allen E. Leukemia inhibitory factor signaling is required for lung protection during pneumonia. THE JOURNAL OF IMMUNOLOGY 2012; 188:6300-8. [PMID: 22581855 DOI: 10.4049/jimmunol.1200256] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lung infections represent a tremendous disease burden and a leading cause of acute lung injury. STAT3 signaling is essential for controlling lung injury during pneumonia. We previously identified LIF as a prominent STAT3-activating cytokine expressed in the airspaces of pneumonic lungs, but its physiological significance in this setting has never been explored. To do so, Escherichia coli was intratracheally instilled into C57BL/6 mice in the presence of neutralizing anti-LIF IgG or control IgG. Anti-LIF completely eliminated lung LIF detection and markedly exacerbated lung injury compared with control mice as evidenced by airspace albumin content, lung liquid accumulation, and histological analysis. Although lung bacteriology was equivalent between groups, bacteremia was more prevalent with anti-LIF treatment, suggestive of compromised barrier function rather than impaired antibacterial defense as the cause of dissemination. Inflammatory cytokine expression was also exaggerated in anti-LIF-treated lungs, albeit after injury had ensued. Interestingly, alveolar neutrophil recruitment was modestly but significantly reduced compared with control mice despite elevated cytokine levels, indicating that inflammatory injury was not a consequence of excessive neutrophilic alveolitis. Lastly, the lung transcriptome was dramatically remodeled during pneumonia, but far more so following LIF neutralization, with gene changes implicating cell death and epithelial homeostasis among other processes relevant to tissue injury. From these findings, we conclude that endogenous LIF facilitates tissue protection during pneumonia. The LIF-STAT3 axis is identified in this study as a critical determinant of lung injury with clinical implications for pneumonia patients.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
71
|
Zhao C, Tian F, Yu Y, Luo J, Mitra A, Zhan F, Hou Y, Liu G, Zan L, Updike MS, Song J. Functional genomic analysis of variation on beef tenderness induced by acute stress in angus cattle. Comp Funct Genomics 2012; 2012:756284. [PMID: 22566754 PMCID: PMC3332163 DOI: 10.1155/2012/756284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/19/2012] [Indexed: 11/18/2022] Open
Abstract
Beef is one of the leading sources of protein, B vitamins, iron, and zinc in human food. Beef palatability is based on three general criteria: tenderness, juiciness, and flavor, of which tenderness is thought to be the most important factor. In this study, we found that beef tenderness, measured by the Warner-Bratzler shear force (WBSF), was dramatically increased by acute stress. Microarray analysis and qPCR identified a variety of genes that were differentially expressed. Pathway analysis showed that these genes were involved in immune response and regulation of metabolism process as activators or repressors. Further analysis identified that these changes may be related with CpG methylation of several genes. Therefore, the results from this study provide an enhanced understanding of the mechanisms that genetic and epigenetic regulations control meat quality and beef tenderness.
Collapse
Affiliation(s)
- Chunping Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Fei Tian
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ying Yu
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
- Department of Animal Breeding and Genetics, College of Animal Sciences, China Agricultural University, Beijing 100193, China
| | - Juan Luo
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Apratim Mitra
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Fei Zhan
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yali Hou
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - George Liu
- Bovine Functional Genomic Laboratory, Animal and Natural Resources Institute, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - M. Scott Updike
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
- Standerds Division, USDA-Agricultural Marketing Service-National Organic Program, Washington, DC 20250, USA
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
72
|
Mook-Kanamori B, Geldhoff M, Troost D, van der Poll T, van de Beek D. Characterization of a pneumococcal meningitis mouse model. BMC Infect Dis 2012; 12:71. [PMID: 22455545 PMCID: PMC3364848 DOI: 10.1186/1471-2334-12-71] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND S. pneumoniae is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation. METHODS Adult mice (C57BL/6) were inoculated in the cisterna magna with increasing doses of S. pneumoniae serotype 3 colony forming units (CFU; n = 24, 104, 105, 106 and 107 CFU) and survival studies were performed. Cerebrospinal fluid (CSF), brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 104 CFU S. pneumoniae serotype 3 and sacrificed at 6 (n = 6) and 30 hours (n = 6). Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex®) in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies. RESULTS Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 104, 56 hrs; 105, 38 hrs, 106, 28 hrs. 107, 24 hrs). Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 104 CFU of S. pneumoniae, blood levels of KC, IL6, MIP-2 and IFN- γ were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1β and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively. CONCLUSION We have developed and validated a murine model of pneumococcal meningitis.
Collapse
Affiliation(s)
- Barry Mook-Kanamori
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
73
|
Toledo-Corral CM, Banner LR. Early changes of LIFR and gp130 in sciatic nerve and muscle of diabetic mice. Acta Histochem 2012; 114:159-65. [PMID: 21565387 DOI: 10.1016/j.acthis.2011.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 11/15/2022]
Abstract
Peripheral neuropathy is a common complication of diabetes mediated by alterations of growth factors. Members of the neuropoietic cytokine family, which include IL-6, LIF, and CNTF among others, have been shown to be important regulators of peripheral nerves and the muscles that they innervate. To investigate their potential role in diabetic nerve and muscle, we studied the expression of the shared receptor subunits, LIFR and gp130 in a mouse model of streptozotocin (STZ)-induced diabetes. The results of Western blotting and densitometric analysis showed that both LIFR and gp130 protein expression were increased in diabetic sciatic nerve compared to control mice at early time points following STZ injection. In diabetic gastrocnemius muscle, LIFR and gp130 were increased from 3 days to 24 weeks following STZ injection. In contrast, both LIFR and gp130 protein expression were decreased in diabetic soleus muscle at 3-days post-injection. Our results suggest that hyperglycemia results in changes to nerve and muscle soon after the onset of diabetes and that cytokines may play a role in this process.
Collapse
|
74
|
Demyanets S, Huber K, Wojta J. Vascular effects of glycoprotein130 ligands--part II: biomarkers and therapeutic targets. Vascul Pharmacol 2012; 57:29-40. [PMID: 22245786 DOI: 10.1016/j.vph.2011.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/15/2011] [Accepted: 12/25/2011] [Indexed: 12/13/2022]
Abstract
Glycoprotein130 (gp130) ligands are defined by the use of the common receptor subunit gp130 and comprise interleukin (IL)-6, oncostatin M (OSM), IL-11, leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC), ciliary neurotrophic factor (CNTF), IL-27 and neuropoietin (NP). In part I of this review we addressed the pathophysiological functions of gp130 ligands with respect to the vascular wall. In part II of this review on the vascular effects of gp130 ligands we will discuss data about possible use of these molecules as biomarkers to predict development or progression of cardiovascular diseases. Furthermore, the possibility to modulate circulating levels of gp130 ligands or their tissue expression by specific antibodies, soluble gp130 protein, renin-angiotensin-aldosterone system (RASS) inhibitors, statins, agonists of peroxisome proliferator-activated receptors (PPAR), hormone replacement therapy, nonsteroidal anti-inflammatory drugs (NSAID) or lifestyle modulating strategies are presented. Recent knowledge about the application of recombinant cytokines from the gp130 cytokine family as therapeutic agents in obesity or atherosclerosis is also summarized. Thus the purpose of this review is to cover a possible usefulness of gp130 ligands as biomarkers and targets for therapy in cardiovascular pathologies.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
75
|
Abstract
Pneumococcal meningitis continues to be associated with high rates of mortality and long-term neurological sequelae. The most common route of infection starts by nasopharyngeal colonization by Streptococcus pneumoniae, which must avoid mucosal entrapment and evade the host immune system after local activation. During invasive disease, pneumococcal epithelial adhesion is followed by bloodstream invasion and activation of the complement and coagulation systems. The release of inflammatory mediators facilitates pneumococcal crossing of the blood-brain barrier into the brain, where the bacteria multiply freely and trigger activation of circulating antigen-presenting cells and resident microglial cells. The resulting massive inflammation leads to further neutrophil recruitment and inflammation, resulting in the well-known features of bacterial meningitis, including cerebrospinal fluid pleocytosis, cochlear damage, cerebral edema, hydrocephalus, and cerebrovascular complications. Experimental animal models continue to further our understanding of the pathophysiology of pneumococcal meningitis and provide the platform for the development of new adjuvant treatments and antimicrobial therapy. This review discusses the most recent views on the pathophysiology of pneumococcal meningitis, as well as potential targets for (adjunctive) therapy.
Collapse
|
76
|
Spofford CM, Mohan S, Kang S, Jang JH, Brennan TJ. Evaluation of leukemia inhibitory factor (LIF) in a rat model of postoperative pain. THE JOURNAL OF PAIN 2011; 12:819-32. [PMID: 21729793 DOI: 10.1016/j.jpain.2011.02.351] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/10/2011] [Accepted: 02/17/2011] [Indexed: 01/05/2023]
Abstract
UNLABELLED Postoperative pain remains a significant problem despite optimal treatment with current pharmaceutical agents. In an effort to provide better postoperative pain control, there is a need to understand the factors that contribute to the development of pain after surgery. Leukemia inhibitory factor (LIF) is a pleiotropic cytokine released from tissues after injury. We hypothesized that LIF expression in skin, muscle, and dorsal root ganglion (DRG) would increase after plantar incision. The mRNA and protein expression of LIF and LIF receptor (LIF-R) were measured after plantar incision in the rat. Pain behaviors, immunohistochemistry, and C-fiber heat responses to LIF were also studied. LIF expression increased after incision in skin and muscle, and LIF-R was present in large and small DRG neurons. LIF administration to the hindpaw increased pain behaviors, a process that was reversed by anti-LIF. However, LIF and anti-LIF treatment at the time of incision did not augment or ameliorate pain behaviors. LIF treatment activated the second messenger system, JAK-STAT3, in cultured DRG neurons, but failed to alter spontaneous activity or heat responses in C-fiber nociceptors. In conclusion, LIF is not a target for postoperative analgesia; LIF may be important for skin and muscle repair and regeneration after incision. PERSPECTIVE This article highlights an incision pain model for the study of factors involved in nociception. The study demonstrates that LIF in is an unlikely target for novel early postoperative analgesics.
Collapse
MESH Headings
- Animals
- Antibodies/therapeutic use
- Calcitonin Gene-Related Peptide/genetics
- Calcitonin Gene-Related Peptide/metabolism
- Cells, Cultured
- Disease Models, Animal
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Humans
- Hyperalgesia/physiopathology
- Leukemia Inhibitory Factor/administration & dosage
- Leukemia Inhibitory Factor/genetics
- Leukemia Inhibitory Factor/immunology
- Leukemia Inhibitory Factor/metabolism
- Male
- Muscle, Skeletal/metabolism
- Nerve Fibers, Unmyelinated/physiology
- Neurons/metabolism
- Pain Threshold/physiology
- Pain, Postoperative/drug therapy
- Pain, Postoperative/metabolism
- Pain, Postoperative/pathology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, OSM-LIF/metabolism
- STAT3 Transcription Factor/metabolism
- Skin/innervation
- Skin/metabolism
- Time Factors
Collapse
|
77
|
Beatus P, Jhaveri DJ, Walker TL, Lucas PG, Rietze RL, Cooper HM, Morikawa Y, Bartlett PF. Oncostatin M regulates neural precursor activity in the adult brain. Dev Neurobiol 2011; 71:619-33. [PMID: 21671408 DOI: 10.1002/dneu.20871] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The regulation of neural precursor cell (NPC) activity is the major determinant of the rate of neuronal production in neurogenic regions of the adult brain. Here, we show that Oncostatin M (Osm) and its receptor, OsmRβ, are both expressed in the subventricular zone (SVZ) and that in contradistinction to leukemia inhibitory factor and ciliary neutrophic factor, Osm directly inhibits the proliferation of adult NPCs as measured by a decreased level of neurosphere formation in vitro. Similarly, intraventricular infusion of Osm dramatically decreases the pool of NPCs in both the SVZ and the hippocampus. In keeping with the inhibitory action of Osm, we reveal that mice lacking OsmRβ have substantially more NPCs in the SVZ, the hippocampus and the olfactory bulb, demonstrating that endogenous Osm signaling is important for NPC homeostasis. Finally, we show that Osm can also inhibit clonal growth of glioblastoma-derived neurospheres, further supporting the close link between NPCs and tumor stem cells.
Collapse
Affiliation(s)
- Paul Beatus
- The Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Schwerk C, Adam R, Borkowski J, Schneider H, Klenk M, Zink S, Quednau N, Schmidt N, Stump C, Sagar A, Spellerberg B, Tenenbaum T, Koczan D, Klein-Hitpass L, Schroten H. In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines. Microbes Infect 2011; 13:953-62. [DOI: 10.1016/j.micinf.2011.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 01/12/2023]
|
79
|
Weiss TW, Seljeflot I, Hjerkinn EM, Arnesen H. Adipose tissue pro-inflammatory gene expression is associated with cardiovascular disease. Int J Clin Pract 2011; 65:939-44. [PMID: 21849008 DOI: 10.1111/j.1742-1241.2011.02717.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Obese patients are at high risk of developing cardiovascular disease. Several studies suggest obesity as an independent risk factor. Adipose tissue is now accepted as an endocrine organ that produces and secretes a variety of cytokines, hormones and other metabolic players involved in the pathogenesis of atherosclerosis. Among this versatile group of mediators and effectors of inflammation and atherothrombosis, we have studied the expression of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), plasminogen activator inhibitor-1 (PAI-1), interleukin-18 (IL-18) and interleukin-6 (IL-6). All these markers, in their circulatory form, have been associated with cardiovascular disease. However, there is no much data available on their expression in adipose tissue in human subjects with and without cardiovascular disease. MATERIAL AND METHODS We successfully isolated RNA from subcutaneous fat biopsies of 61 patients with or without cardiovascular disease. We then measured the RNA expression of MMP-9, TIMP-1, PAI-1, IL-18 and IL-6 with Real-Time PCR, using relative quantification. RESULTS Albeit not statistically significant, all inflammatory mediators - except IL-18 - were highly expressed in patients with cardiovascular disease (n = 16) compared with those without (n = 45). Pooling the gene expression data, trying to capture the overall inflammatory activity in adipose tissue in a score system, we observed a highly significant association with CVD. CONCLUSIONS Trying to capture the overall inflammatory activity, in addition to the mass of adipose tissue, could provide useful hints towards a pathogenetic link between obesity and presence of cardiovascular disease.
Collapse
Affiliation(s)
- T W Weiss
- Centre for Clinical Heart Research, Oslo University Hospital Ulleval, Oslo, Norway.
| | | | | | | |
Collapse
|
80
|
Kuiper JW, Vaschetto R, Della Corte F, Plötz FB, Groeneveld ABJ. Bench-to-bedside review: Ventilation-induced renal injury through systemic mediator release--just theory or a causal relationship? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:228. [PMID: 21884646 PMCID: PMC3387589 DOI: 10.1186/cc10282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We review the current literature on the molecular mechanisms involved in the pathogenesis of acute kidney injury induced by plasma mediators released by mechanical ventilation. A comprehensive literature search in the PubMed database was performed and articles were identified that showed increased plasma levels of mediators where the increase was solely attributable to mechanical ventilation. A subsequent search revealed articles delineating the potential effects of each mediator on the kidney or kidney cells. Limited research has focused specifically on the relationship between mechanical ventilation and acute kidney injury. Only a limited number of plasma mediators has been implicated in mechanical ventilation-associated acute kidney injury. The number of mediators released during mechanical ventilation is far greater and includes pro- and anti-inflammatory mediators, but also mediators involved in coagulation, fibrinolysis, cell adhesion, apoptosis and cell growth. The potential effects of these mediators is pleiotropic and include effects on inflammation, cell recruitment, adhesion and infiltration, apoptosis and necrosis, vasoactivity, cell proliferation, coagulation and fibrinolysis, transporter regulation, lipid metabolism and cell signaling. Most research has focused on inflammatory and chemotactic mediators. There is a great disparity of knowledge of potential effects on the kidney between different mediators. From a theoretical point of view, the systemic release of several mediators induced by mechanical ventilation may play an important role in the pathophysiology of acute kidney injury. However, evidence supporting a causal relationship is lacking for the studied mediators.
Collapse
Affiliation(s)
- Jan Willem Kuiper
- Department of Pediatric Intensive Care, VUmc Medical Center, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
81
|
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J. Altered T cell responses in children with autism. Brain Behav Immun 2011; 25:840-9. [PMID: 20833247 PMCID: PMC3039713 DOI: 10.1016/j.bbi.2010.09.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/04/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. A potential etiologic role for immune dysfunction in ASD has been suggested. Dynamic adaptive cellular immune function was investigated in 66 children with a confirmed diagnosis of ASD and 73 confirmed typically developing (TD) controls 2-5 years-of-age. In vitro stimulation of peripheral blood mononuclear cells with PHA and tetanus was used to compare group-associated cellular responses. The production of GM-CSF, TNFα, and IL-13 were significantly increased whereas IL-12p40 was decreased following PHA stimulation in ASD relative to TD controls. Induced cytokine production was associated with altered behaviors in ASD children such that increased pro-inflammatory or T(H)1 cytokines were associated with greater impairments in core features of ASD as well as aberrant behaviors. In contrast, production of GM-CSF and T(H)2 cytokines were associated with better cognitive and adaptive function. Following stimulation, the frequency of CD3(+), CD4(+) and CD8(+) T cells expressing activation markers CD134 and CD25 but not CD69, HLA-DR or CD137 were significantly reduced in ASD, and suggests an altered activation profile for T cells in ASD. Overall these data indicate significantly altered adaptive cellular immune function in children with ASD that may reflect dysfunctional immune activation, along with evidence that these perturbations may be linked to disturbances in behavior and developmental functioning. Further longitudinal analyzes of cellular immunity profiles would delineate the relationship between immune dysfunction and the progression of behavioral and developmental changes throughout the course of this disorder.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, CA, USA.
| | - Paula Krakowiak
- Department of Public Health Sciences, Division of Epidemiology, University of California, Davis, CA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, Division of Epidemiology, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Robin Hansen
- Department of Pediatrics, School of Medicine, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| |
Collapse
|
82
|
Girard BM, Cheppudira BP, Malley SE, Schutz KC, May V, Vizzard MA. Increased expression of interleukin-6 family members and receptors in urinary bladder with cyclophosphamide-induced bladder inflammation in female rats. Front Neurosci 2011; 5:20. [PMID: 21373362 PMCID: PMC3044559 DOI: 10.3389/fnins.2011.00020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/09/2011] [Indexed: 12/12/2022] Open
Abstract
Recent studies suggest that janus-activated kinases-signal transducer and activator of transcription signaling pathways contribute to increased voiding frequency and referred pain of cyclophosphamide (CYP)-induced cystitis in rats. Potential upstream chemical mediator(s) that may be activated by CYP-induced cystitis to stimulate JAK/STAT signaling are not known in detail. In these studies, members of the interleukin (IL)-6 family of cytokines including, leukemia inhibitory factor (LIF), IL-6, and ciliary neurotrophic factor (CNTF) and associated receptors, IL-6 receptor (R) α, LIFR, and gp130 were examined in the urinary bladder in control and CYP-treated rats. Cytokine and receptor transcript and protein expression and distribution were determined in urinary bladder after CYP-induced cystitis using quantitative, real-time polymerase chain reaction (Q-PCR), western blotting, and immunohistochemistry. Acute (4 h; 150 mg/kg; i.p.), intermediate (48 h; 150 mg/kg; i.p.), or chronic (75 mg/kg; i.p., once every 3 days for 10 days) cystitis was induced in adult, female Wistar rats with CYP treatment. Q-PCR analyses revealed significant (p ≤ 0.01) CYP duration- and tissue- (e.g., urothelium, detrusor) dependent increases in LIF, IL-6, IL-6Rα, LIFR, and gp130 mRNA expression. Western blotting demonstrated significant (p ≤ 0.01) increases in IL-6, LIF, and gp130 protein expression in whole urinary bladder with CYP treatment. CYP-induced cystitis significantly (p ≤ 0.01) increased LIF-immunoreactivity (IR) in urothelium, detrusor, and suburothelial plexus whereas increased gp130-IR was only observed in urothelium and detrusor. These studies suggest that IL-6 and LIF may be potential upstream chemical mediators that activate JAK/STAT signaling in urinary bladder pathways.
Collapse
Affiliation(s)
- Beatrice M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine Burlington, VT, USA
| | | | | | | | | | | |
Collapse
|
83
|
Acute phase response in Wistar rats after controlled hemorrhage. ACTA VET-BEOGRAD 2011. [DOI: 10.2298/avb1104391s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
84
|
Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 2011; 25:40-5. [PMID: 20705131 PMCID: PMC2991432 DOI: 10.1016/j.bbi.2010.08.003] [Citation(s) in RCA: 600] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/24/2010] [Accepted: 08/06/2010] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. A potential role for immune dysfunction has been suggested in ASD. To test this hypothesis, we investigated evidence of differential cytokine release in plasma samples obtained from 2 to 5 year-old children with ASD compared with age-matched typically developing (TD) children and children with developmental disabilities other than autism (DD). Participants were recruited as part of the population based case-control CHARGE (Childhood Autism Risks from Genetics and Environment) study and included: 97 participants with a confirmed diagnosis of ASD using standard assessments (DSM IV criteria and ADOS, ADI-R), 87 confirmed TD controls, and 39 confirmed DD controls. Plasma was isolated and cytokine production was assessed by multiplex Luminex™ analysis. Observations indicate significant increases in plasma levels of a number of cytokines, including IL-1β, IL-6, IL-8 and IL-12p40 in the ASD group compared with TD controls (p<0.04). Moreover, when the ASD group was separated based on the onset of symptoms, it was noted that the increased cytokine levels were predominantly in children who had a regressive form of ASD. In addition, increasing cytokine levels were associated with more impaired communication and aberrant behaviors. In conclusion, using larger number of participants than previous studies, we report significantly shifted cytokine profiles in ASD. These findings suggest that ongoing inflammatory responses may be linked to disturbances in behavior and require confirmation in larger replication studies. The characterization of immunological parameters in ASD has important implications for diagnosis, and should be considered when designing therapeutic strategies to treat core symptoms and behavioral impairments of ASD.
Collapse
|
85
|
Ashwood P, Nguyen DV, Hessl D, Hagerman RJ, Tassone F. Plasma cytokine profiles in Fragile X subjects: is there a role for cytokines in the pathogenesis? Brain Behav Immun 2010; 24:898-902. [PMID: 20102735 PMCID: PMC3626458 DOI: 10.1016/j.bbi.2010.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/08/2010] [Accepted: 01/19/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a single-gene disorder with a broad spectrum of involvement and a strong association with autism. Altered immune responses have been described in autism and there is potential that in children with FXS and autism, an abnormal immune response may play a role. OBJECTIVES To delineate specific patterns of cytokine/chemokine profiles in individuals with FXS with and without autism and to compare them with typical developing controls. METHODS Age matched male subjects were recruited through the M.I.N.D. Institute and included: 19 typically developing controls, 64 subjects with FXS without autism and 40 subjects with FXS and autism. Autism diagnosis was confirmed with ADOS, ADI-R and DSM IV criteria. Plasma was isolated and cytokine and chemokine production was assessed by Luminex multiplex analysis. RESULTS Preliminary observations indicate significant differences in plasma protein levels of a number of cytokines, including IL-1alpha, and the chemokines; RANTES and IP-10, between the FXS group and the typical developing controls (p<0.01). In addition, significant differences were observed between the FXS group with autism and the FXS without autism for IL-6, eotaxin, MCP-1 (p<0.04). CONCLUSIONS In this study, the first of its kind, we report a significantly altered cytokine profile in FXS. The characterization of an immunological profile in FXS with and without autism may help to elucidate if an abnormal immune response may play a role and help to identify mechanisms important in the etiology of autism both with and without FXS.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, School of Medicine, Davis, CA, 95616, USA
- M.I.N.D. Institute, UC Davis, Sacramento, CA, 95817, USA
| | - Danh V. Nguyen
- Division of Biostatistics, University of California, Davis, School of Medicine, Davis, CA, 95616, USA
| | - David Hessl
- M.I.N.D. Institute, UC Davis, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California at Davis Medical Center, Sacramento, California, CA 95817, USA
| | - Randi J Hagerman
- M.I.N.D. Institute, UC Davis, Sacramento, CA, 95817, USA
- Department of Pediatrics, University of California at Davis Medical Center, Sacramento, California, CA 95817, USA
| | - Flora Tassone
- M.I.N.D. Institute, UC Davis, Sacramento, CA, 95817, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, 95616, USA
- Corresponding author: Flora Tassone, PhD, Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, One Shields Avenue, Davis, CA 95616 USA, Ph: (530) 754 7268 FAX: (530) 752-3516,
| |
Collapse
|
86
|
Lavu M, Gundewar S, Lefer DJ. Gene therapy for ischemic heart disease. J Mol Cell Cardiol 2010; 50:742-50. [PMID: 20600100 DOI: 10.1016/j.yjmcc.2010.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 12/12/2022]
Abstract
Current pharmacologic therapy for ischemic heart disease suffers multiple limitations such as compliance issues and side effects of medications. Revascularization procedures often end with need for repeat procedures. Patients remain symptomatic despite maximal medical therapy. Gene therapy offers an attractive alternative to current pharmacologic therapies and may be beneficial in refractory disease. Gene therapy with isoforms of growth factors such as VEGF, FGF and HGF induces angiogenesis, decreases apoptosis and leads to protection in the ischemic heart. Stem cell therapy augmented with gene therapy used for myogenesis has proven to be beneficial in numerous animal models of myocardial ischemia. Gene therapy coding for antioxidants, eNOS, HSP, mitogen-activated protein kinase and numerous other anti apoptotic proteins have demonstrated significant cardioprotection in animal models. Clinical trials have demonstrated safety in humans apart from symptomatic and objective improvements in cardiac function. Current research efforts are aimed at refining various gene transfection techniques and regulation of gene expression in vivo in the heart and circulation to improve clinical outcomes in patients that suffer from ischemic heart disease. In this review article we will attempt to summarize the current state of both preclinical and clinical studies of gene therapy to combat myocardial ischemic disease. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
Affiliation(s)
- Madhav Lavu
- Department of Surgery, Division of Cardiothoracic Surgery and the Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308, USA
| | | | | |
Collapse
|
87
|
Therapeutic Activation of Signal Transducer and Activator of Transcription 3 by Interleukin-11 Ameliorates Cardiac Fibrosis After Myocardial Infarction. Circulation 2010; 121:684-91. [DOI: 10.1161/circulationaha.109.893677] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background—
Glycoprotein 130 is the common receptor subunit for the interleukin (IL)-6 cytokine family. Previously, we reported that pretreatment of IL-11, an IL-6 family cytokine, activates the glycoprotein 130 signaling pathway in cardiomyocytes and prevents ischemia/reperfusion injury in vivo; however, its long-term effects on cardiac remodeling after myocardial infarction (MI) remain to be elucidated.
Methods and Results—
MI was generated by ligating the left coronary artery in C57BL/6 mice. Real-time reverse transcription polymerase chain reaction analyses showed that IL-11 mRNA was remarkably upregulated in the hearts exposed to MI. Intravenous injection of IL-11 activated signal transducer and activator of transcription 3 (STAT3), a downstream signaling molecule of glycoprotein 130, in cardiomyocytes in vivo, suggesting that cardiac myocytes are target cells of IL-11 in the hearts. Twenty-four hours after coronary ligation, IL-11 was administered intravenously, followed by consecutive administration every 24 hours for 4 days. IL-11 treatment reduced fibrosis area 14 days after MI, attenuating cardiac dysfunction. Consistent with a previous report that STAT3 exhibits antiapoptotic and angiogenic activity in the heart, IL-11 treatment prevented apoptotic cell death of the bordering myocardium adjacent to the infarct zone and increased capillary density at the border zone. Importantly, cardiac-specific ablation of STAT3 abrogated IL-11–mediated attenuation of fibrosis and was associated with left ventricular enlargement. Moreover, with the use of cardiac-specific transgenic mice expressing constitutively active STAT3, cardiac STAT3 activation was shown to be sufficient to prevent adverse cardiac remodeling.
Conclusions—
IL-11 attenuated cardiac fibrosis after MI through STAT3. Activation of the IL-11/glycoprotein 130/STAT3 axis may be a novel therapeutic strategy against cardiovascular diseases.
Collapse
|
88
|
Abstract
Inflammation and vascular remodeling are hallmarks of atherosclerosis, hypertension, and restenosis after angioplasty. Here we investigated the role of the hepatocyte gp130-dependent systemic acute phase response on vascular remodeling after carotid artery ligation. Mice with a hepatocyte-specific gp130 knockout on an apolipoprotein E
−/−
background (gp130
−
) were compared with control mice (gp130
flox
). Vascular remodeling was induced by permanent ligation of the left common carotid artery. This, in turn, activated the systemic acute phase reaction in gp130
flox
mice, as measured by serum amyloid A plasma levels, which was completely abrogated in gp130
−
mice (
P
<0.05). Morphometric analysis of the carotid artery revealed severe neointima formation and media thickening 28 days after ligation in gp130
flox
mice, which was suppressed in gp130
−
mice (
P
<0.01). Serial sections from gp130
−
carotid segments showed significantly less smooth muscle cell (SMC) proliferation and monocyte recruitment (
P
<0.01). To evaluate the impact of the gp130-dependent systemic acute phase response on SMCs, hepatocytes from gp130
flox
and gp130
−
mice were stimulated with interleukin 6. Interleukin 6–induced secretion of serum amyloid A was completely abolished in gp130
−
hepatocytes (
P
<0.01). Moreover, when stimulated with supernatants from gp130
−
hepatocytes, SMCs showed significantly less migration and proliferation compared with supernatants from gp130
flox
hepatocytes (
P
<0.01). Recombinant serum amyloid A induced SMC migration and proliferation (
P
<0.05) and serum amyloid A injection after carotid artery ligation restored vascular remodeling in gp130
−
mice (
P
<0.01). These results imply a critical role for the gp130-dependent systemic acute phase response for vascular inflammation and SMC migration, as well as proliferation, and, subsequently, for vascular remodeling.
Collapse
|
89
|
A comparative study of leukaemia inhibitory factor and interleukin-1alpha intracellular content in a human keratinocyte cell line after exposure to cosmetic fragrances and sodium dodecyl sulphate. Toxicol Lett 2009; 192:101-7. [PMID: 19878710 DOI: 10.1016/j.toxlet.2009.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/10/2009] [Accepted: 10/12/2009] [Indexed: 11/21/2022]
Abstract
According to European laws animal testing in cosmetic industry will be prohibited in a few years and it will be replaced by alternative methods based on cell and tissue culture. Many ingredients of cosmetic formulations are potentially causes of skin inflammation and sensibilization. Since cytotoxicity is known, among other factors, to trigger irritation, in an alternative model for evaluation of skin irritation, it can be considered also the precocious release of inflammatory mediators, i.e. cytokines, originating mainly from keratinocytes. In this in vitro study we have analysed some parameters directly or indirectly related to irritation/inflammation, in NCTC 2544 human keratinocytes during short-time exposure to some potential irritants cosmetic fragrances, included in the European Laws 2003/15/EEC. IIC50 was extrapolated by MTT and NRU viability indexes after exposure of cell ultures to Geraniol Limonene and Benzylic Alcohol for 1, 3 and 6h. NCTC cells were then exposed to sub-toxic doses of selected compounds and interleukin-1alpha (IL-1alpha) and leukaemia inhibitory factor (LIF) expressions were analysed as early proinflammatory cytokines. To our knowledge our findings demonstrated for the first time that NCTC cells synthesize and modulate LIF after exposure to selected irritating stimuli. Moreover, our results give evidence on LIF role as in vitro precocious endpoint for the assessment of the risk in cosmetic field, because its response under irritation stimuli is very quick and comparable to IL-1alpha.
Collapse
|
90
|
Cheppudira BP, Girard BM, Malley SE, Dattilio A, Schutz KC, May V, Vizzard MA. Involvement of JAK-STAT signaling/function after cyclophosphamide-induced bladder inflammation in female rats. Am J Physiol Renal Physiol 2009; 297:F1038-44. [PMID: 19625377 DOI: 10.1152/ajprenal.00110.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytokines are upregulated in a variety of inflammatory conditions and cytokine/receptor interactions can activate JAK-STAT signaling. Previous studies demonstrated upregulation of numerous cytokines in the urinary bladder following cyclophosphamide (CYP)-induced cystitis. The role of JAK-STAT signaling in urinary bladder inflammation and referred somatic sensitivity has not been addressed. The contribution of JAK-STAT signaling pathways in CYP-induced bladder hyperreflexia and referred somatic hypersensitivity was determined in CYP-treated rats using a JAK2 inhibitor, AG490. Acute (4 h; 150 mg/kg ip), intermediate (48 h; 150 mg/kg ip), or chronic (75 mg/kg ip, once every 3 days for 10 days) cystitis was induced in adult, female Wistar rats with CYP treatment. Phosphorylation status of STAT-3 was increased in urinary bladder after CYP-induced cystitis (4 h, 48 h, chronic). Blockade of JAK2 with AG490 (5-15 mg/kg ip or intravesical) significantly (P < or = 0.05) reduced bladder hyperreflexia and hind paw sensitivity in CYP-treated rats. These studies demonstrate a potential role for JAK-STAT signaling pathways in bladder hyperreflexia and referred pain induced by CYP-induced bladder inflammation.
Collapse
Affiliation(s)
- Bopaiah P Cheppudira
- Dept. of Neurology, Univ. of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Kawase T, Okuda K, Kogami H, Nakayama H, Nagata M, Nakata K, Yoshie H. Characterization of human cultured periosteal sheets expressing bone-forming potential:in vitroandin vivoanimal studies. J Tissue Eng Regen Med 2009; 3:218-29. [DOI: 10.1002/term.156] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
92
|
Ashwood P, Schauer J, Pessah IN, Van de Water J. Preliminary evidence of the in vitro effects of BDE-47 on innate immune responses in children with autism spectrum disorders. J Neuroimmunol 2009; 208:130-5. [PMID: 19211157 DOI: 10.1016/j.jneuroim.2008.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 12/22/2008] [Accepted: 12/30/2008] [Indexed: 01/05/2023]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders that manifest in childhood. Immune dysregulation and autoimmune reactivity may contribute to the etiology of ASD and are likely the result of both genetic and environmental susceptibilities. A common environmental contaminant, 2,2',4,4'-tetrabrominated biphenyl (BDE-47), was tested for differential effects on the immune response of peripheral blood mononuclear cells (PBMC) isolated from children with ASD (n=19) and age-matched typically developing controls (TD, n=18). PBMC were exposed in vitro to either 100 nM or 500 nM BDE-47, before challenge with bacterial lipopolysaccharide (LPS), an innate immune activator, with resultant cytokine production measured using the Luminex multiplex platform. The cytokine responses of LPS stimulated PBMC from ASD and TD subjects diverged in the presence of 100 nM BDE. For example, cells cultured from the TD group demonstrated significantly decreased levels of the cytokines IL-12p40, GM-CSF, IL-6, TNFalpha, and the chemokines MIP-1alpha and MIP-1beta following LPS stimulation of PBMC pretreated with 100 nM BDE-47 compared with samples treated with vehicle control (p<0.05). In contrast, cells cultured from subjects with ASD demonstrated an increased IL-1beta response to LPS (p=0.033) when pretreated with 100 nM BDE-47 compared with vehicle control. Preincubation with 500 nM BDE-47 significantly increased the stimulated release of the inflammatory chemokine IL-8 (p<0.04) in cells cultured from subjects with ASD but not in cells from TD controls. These data suggest that in vitro exposure of PBMC to BDE-47 affects cell cytokine production in a pediatric population. Moreover, PBMC from the ASD subjects were differentially affected when compared with the TD controls suggesting a biological basis for altered sensitivity to BDE-47 in the ASD population.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
93
|
Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN, Hertz-Picciotto I, Van de Water JA, Sharp FR, Ashwood P. Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav Immun 2009; 23:124-33. [PMID: 18762240 PMCID: PMC2636576 DOI: 10.1016/j.bbi.2008.08.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/02/2008] [Accepted: 08/06/2008] [Indexed: 11/20/2022] Open
Abstract
Immune related abnormalities have repeatedly been reported in autism spectrum disorders (ASD), including evidence of immune dysregulation and autoimmune phenomena. NK cells may play an important role in neurodevelopmental disorders such as ASD. Here we performed a gene expression screen and cellular functional analysis on peripheral blood obtained from 52 children with ASD and 27 typically developing control children enrolled in the case-control CHARGE study. RNA expression of NK cell receptors and effector molecules were significantly upregulated in ASD. Flow cytometric analysis of NK cells demonstrated increased production of perforin, granzyme B, and interferon gamma (IFNgamma) under resting conditions in children with ASD (p<0.01). Following NK cell stimulation in the presence of K562 target cells, the cytotoxicity of NK cells was significantly reduced in ASD compared with controls (p<0.02). Furthermore, under similar stimulation conditions the presence of perforin, granzyme B, and IFNgamma in NK cells from ASD children was significantly lower compared with controls (p<0.001). These findings suggest possible dysfunction of NK cells in children with ASD. Abnormalities in NK cells may represent a susceptibility factor in ASD and may predispose to the development of autoimmunity and/or adverse neuroimmune interactions during critical periods of development.
Collapse
Affiliation(s)
- Amanda M Enstrom
- Department of Medical Microbiology and Immunology, University of California at Davis, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Yu Y, Ren W, Ren B. Expression of signal transducers and activator of transcription 3 (STAT3) determines differentiation of olfactory bulb cells. Mol Cell Biochem 2008; 320:101-8. [DOI: 10.1007/s11010-008-9911-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 08/19/2008] [Indexed: 01/10/2023]
|
95
|
Marriott MP, Emery B, Cate HS, Binder MD, Kemper D, Wu Q, Kolbe S, Gordon IR, Wang H, Egan G, Murray S, Butzkueven H, Kilpatrick TJ. Leukemia inhibitory factor signaling modulates both central nervous system demyelination and myelin repair. Glia 2008; 56:686-98. [PMID: 18293407 DOI: 10.1002/glia.20646] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leukemia inhibitory factor (LIF) receptor signaling limits the severity of inflammatory demyelination in experimental autoimmune encephalomyelitis, a T-cell dependent animal model of multiple sclerosis (MS) [Butzkueven et al. (2002) Nat Med 8:613-619]. To identify whether LIF exerts direct effects within the central nervous system to limit demyelination, we have studied the influence of LIF upon the phenotype of mice challenged with cuprizone, a copper chelator, which produces a toxic oligodendrocytopathy. We find that exogenously administered LIF limits cuprizone-induced demyelination. Knockout mice deficient in LIF exhibit both potentiated demyelination and oligodendrocyte loss after cuprizone challenge, an effect that is ameliorated by exogenous LIF, arguing for a direct beneficial effect of endogenous LIF receptor signaling. Numbers of oligodendrocyte progenitor cells in cuprizone-challenged mice are not influenced by either exogenous LIF or LIF deficiency, arguing for effects directed to the differentiated oligodendrocyte. Studies on the influence of LIF upon remyelination after cuprizone challenge fail to reveal any significant effect of exogenous LIF. The LIF-knockout mice do, however, display impaired remyelination, although oligodendrocyte replenishment, previously identified to occur from the progenitor pool, is not significantly compromised. Thus endogenous LIF receptor signaling is not only protective of oligodendrocytes but can also enhance remyelination, and exogenous LIF has therapeutic potential in limiting the consequences of oligodendrocyte damage.
Collapse
Affiliation(s)
- Mark P Marriott
- Howard Florey Institute, The University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Albertini R, Villaverde AB, Aimbire F, Bjordal J, Brugnera A, Mittmann J, Silva JA, Costa M. Cytokine mRNA expression is decreased in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low-level laser therapy. Photomed Laser Surg 2008; 26:19-24. [PMID: 18248157 DOI: 10.1089/pho.2007.2119] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The objective of this work was to investigate the anti-inflammatory effects of low-level laser therapy, applied at different wavelengths (660 and 684 nm), on cytokine mRNA expression after carrageenan-induced acute inflammation in rat paw. BACKGROUND DATA Low-level laser therapy (LLLT) has been observed to reduce pain in inflammatory disorders. However, little is known about the mechanisms behind this effect or whether it is wavelength-specific. MATERIALS AND METHODS The test sample consisted of 32 rats divided into four groups: A(1) (control-saline), A(2) (carrageenan-only), A(3) (carrageenan + 660 nm laser therapy), and A(4) (carrageenan + 684 nm laser therapy). The animals from groups A(3) and A(4) were irradiated 1 h after induction of inflammation by carrageenan injection. Continuous-wave red lasers with wavelengths of 660 and 684 nm and dose of 7.5 J/cm(2) were used. RESULTS Both the 660 nm and 684 nm laser groups had 30%-40% lower mRNA expression for cytokines TNF-alpha, IL-1beta, and IL-6 in the paw muscle tissue than the carrageenan-only control group. Cytokine measurements were made 3 h after laser irradiation of the paw muscle, and all cytokine differences between the carrageenan-only control group and the LLLT groups were statistically significant (p < 0.001). CONCLUSIONS LLLT at the 660-nm and 684-nm wavelengths administered to inflamed rat paw tissue at a dose of 7.5 J/cm(2) reduce cytokine mRNA expression levels within 3 h in the laser-irradiated tissue.
Collapse
Affiliation(s)
- Regiane Albertini
- Instituto de Pesquisa and Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Nechemia-Arbely Y, Barkan D, Pizov G, Shriki A, Rose-John S, Galun E, Axelrod JH. IL-6/IL-6R axis plays a critical role in acute kidney injury. J Am Soc Nephrol 2008; 19:1106-15. [PMID: 18337485 DOI: 10.1681/asn.2007070744] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The response to tissue injury involves the coordination of inflammatory and repair processes. IL-6 expression correlates with the onset and severity of acute kidney injury (AKI), but its contribution to pathogenesis remains unclear. This study established a critical role for IL-6 in both the inflammatory response and the resolution of AKI. IL-6-deficient mice were resistant to HgCl2-induced AKI compared with wild-type mice. The accumulation of peritubular neutrophils was lower in IL-6-deficient mice than in wild-type mice, and neutrophil depletion before HgCl2 administration in wild-type mice significantly reduced AKI; these results demonstrate the critical role of IL-6 signaling in the injurious inflammatory process in AKI. Renal IL-6 expression and STAT3 activation in renal tubular epithelial cells significantly increased during the development of injury, suggesting active IL-6 signaling. Although a lack of renal IL-6 receptors (IL-6R) precludes the activation of classical signaling pathways, IL-6 can stimulate target cells together with a soluble form of the IL-6R (sIL-6R) in a process termed trans-signaling. During injury,serum sIL-6R levels increased three-fold, suggesting a possible role for IL-6 trans-signaling in AKI. Stimulation of IL-6 trans-signaling with an IL-6/sIL-6R fusion protein activated STAT3 in renal tubular epithelium and prevented AKI. IL-6/sIL-6R reduced lipid peroxidation after injury, suggesting that its protective effect may be largely mediated through amelioration of oxidative stress. In summary, IL-6 simultaneously promotes an injurious inflammatory response and, through a mechanism of trans-signaling, protects the kidney from further injury.
Collapse
|
98
|
Yu M, Kissling S, Freyschmidt-Paul P, Hoffmann R, Shapiro J, McElwee KJ. Interleukin-6 cytokine family member oncostatin M is a hair-follicle-expressed factor with hair growth inhibitory properties. Exp Dermatol 2007; 17:12-9. [PMID: 17979974 DOI: 10.1111/j.1600-0625.2007.00643.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The activation of receptor complexes containing glycoprotein 130 (gp130) identifies the interleukin (IL)-6 cytokine family. We examined members of this family for their expression and activity in hair follicles. Quantitative polymerase chain reaction using mRNA derived from microdissected, anagen-stage human hair follicles and comparison to non-follicular skin epithelium revealed higher levels of IL-6 (15.5-fold) and oncostatin M (OSM, 3.4-fold) in hair follicles. In contrast, expression of all mRNAs coding for IL-6 cytokine family receptors was reduced. Immunohistology suggested expression of OSM, gp130, leukaemia inhibitory factor receptor (LIFr) and IL-11r in the hair follicle root sheaths and dermal papilla, while IL-11, IL-6r and OSMr were expressed in root sheaths alone. IL-6 was expressed in the dermal papilla while cardiotrophin-1 (CT-1) and LIF were not observed. OSM and to a lesser extent CT-1 exhibited a dose-dependent growth inhibition capacity on human hair follicles in vitro. OSM and CT-1 incubated with agarose beads and injected subcutaneously at 1 mug per mouse into telogen skin of 65-day-old mice revealed no capacity to induce anagen hair growth. In contrast, injection of 65-day-old mice in which anagen had been induced by hair plucking revealed a moderate hair growth inhibitory capacity for OSM, but no significant effect for CT-1. The data identify OSM as a modulator of hair follicle growth and suggest other family members may also have some degree of hair growth inhibitory effect. In principle, increased expression of some IL-6 cytokine family members in cutaneous inflammation might contribute to the promotion of hair loss.
Collapse
Affiliation(s)
- Mei Yu
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
99
|
Magnus T, Coksaygan T, Korn T, Xue H, Arumugam TV, Mughal MR, Eckley DM, Tang SC, Detolla L, Rao MS, Cassiani-Ingoni R, Mattson MP. Evidence that nucleocytoplasmic Olig2 translocation mediates brain-injury-induced differentiation of glial precursors to astrocytes. J Neurosci Res 2007; 85:2126-37. [PMID: 17510983 DOI: 10.1002/jnr.21368] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanisms by which neural and glial progenitor cells in the adult brain respond to tissue injury are unknown. We studied the responses of these cells to stab wound injury in rats and in two transgenic mouse models in which Y/GFP is driven either by Sox2 (a neural stem cell marker) or by Talpha-1 (which marks newly born neurons). The response of neural progenitors was low in all nonneurogenic regions, and no neurogenesis occurred at the injury site. Glial progenitors expressing Olig2 and NG2 showed the greatest response. The appearance of these progenitors preceded the appearance of reactive astrocytes. Surprisingly, we found evidence of the translocation of the transcription factor Olig2 into cytoplasm in the first week after injury, a mechanism that is known to mediate the differentiation of astrocytes during brain development. Translocation of Olig2, down-regulation of NG2, and increased glial fibrillary acidic protein expression were recapitulated in vitro after exposure of glial progenitors to serum components or bone morphogentic protein by up-regulation of Notch-1. The glial differentiation and Olig2 translocation could be blocked by inhibition of Notch-1 with the gamma-secretase inhibitor DAPT. Together, these data indicate that the prompt maturation of numerous Olig2(+) glial progenitors to astrocytes underlies the repair process after a traumatic injury. In contrast, neural stem cells and neuronal progenitor cells appear to play only a minor role in the injured adult CNS.
Collapse
Affiliation(s)
- Tim Magnus
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Kino T, Boos TL, Sulima A, Siegel EM, Gold PW, Rice KC, Chrousos GP. 3-O-Formyl-20R,21-epoxyresibufogenin suppresses IL-6–type cytokine actions by targeting the glycoprotein 130 subunit: Potential clinical implications. J Allergy Clin Immunol 2007; 120:437-44. [PMID: 17451794 DOI: 10.1016/j.jaci.2007.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 02/26/2007] [Accepted: 03/02/2007] [Indexed: 01/15/2023]
Abstract
BACKGROUND The multifunctional inflammatory cytokine IL-6 regulates the acute phase reaction and plays central roles in the pathogenesis of chronic inflammatory disorders. OBJECTIVES Two small chemical compounds, 3-O-formyl-20R,21-epoxyresibufogenin (TB-2-081) and 3-O-formyl-20S,21-epoxyresibufogenin (TB-2-082), known isolates from the Chinese toad skin extract drug Ch'an Su, were synthesized and tested on the IL-6-induced hepatic acute-phase reaction. METHODS HepG2 cells or rat primary hepatocytes were incubated with the compounds, and the effects on IL-6-induced expression of acute-phase molecules were tested. RESULTS TB-2-081, and to a lesser extent TB-2-082, suppressed IL-6-induced alpha1-antichymotrypsin (AACT) mRNA expression in HepG2 cells, whereas TB-2-081 failed to influence the mRNA expression of the TNF-alpha-induced mRNA expression of the methionine adenosyltransferase 2A gene in these cells. TB-2-081 suppressed IL-6-induced mRNA expression of alpha1-acid glycoprotein, alpha2-macroglobulin, and beta-fibrinogen in and secretion of the C-reactive protein by rat primary hepatocytes. TB-2-081 shifted the IL-6 dose-response curve of the AACT mRNA expression right and downward and inhibited IL-6-induced phosphorylation of signal transducer and activator of transcription 3. In addition to IL-6, TB-2-081 inhibited IL-11-stimulated and oncostatin M-stimulated AACT mRNA expression independently of the IL-6 receptor subunit. The soluble glycoprotein 130, but not the soluble IL-6 receptor, antagonized TB-2-081-induced suppression of IL-6-stimulated AACT mRNA expression. CONCLUSION TB-2-081 inhibits IL-6-type cytokine action by attenuating the function of the common receptor subunit glycoprotein 130. CLINICAL IMPLICATIONS This class of compounds may be beneficial for the treatment of diseases in which excessive circulation/production/action of IL-6-type cytokines play pathologic roles.
Collapse
Affiliation(s)
- Tomoshige Kino
- Pediatric Endocrinology Section, Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, Clinical Research Center, Bethesda, MD 20892-1109, USA.
| | | | | | | | | | | | | |
Collapse
|