51
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Cell-based therapy for ocular disorders: A promising frontier. Curr Stem Cell Res Ther 2021; 17:147-165. [PMID: 34161213 DOI: 10.2174/1574888x16666210622124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
As the ocular disorders causing long-term blindness or optical abnormalities of the ocular tissue affect the quality of life of patients to a large extent, awareness of their corresponding pathogenesis and the earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for development of visual impairment to blindness. Accordingly, stem cells, because of their particular competencies, have gained extensive attention for application in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding mesenchymal stem/stromal cells (MSC), neural stem cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and retinal pigment epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard, in the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from age-related macular degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the in vivo reports published during the last decade.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
52
|
Loo SJQ, Wong NK. Advantages and challenges of stem cell therapy for osteoarthritis (Review). Biomed Rep 2021; 15:67. [PMID: 34155451 PMCID: PMC8212446 DOI: 10.3892/br.2021.1443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disorder of the cartilage and is one of the leading causes of disability, particularly amongst the elderly, wherein patients with advanced-stage OA experience chronic pain and functional impairment of the limbs, thus resulting in a significantly reduced quality of life. The currently available treatments primarily revolve around symptom management, and is thus palliative rather than curative. The aim of the present review is to briefly discuss the limitations of some of the currently available treatments for patients with OA, and highlight the value of the potential use of stem cells in cellular therapy, which is widely regarded as the breakthrough that can address the present unmet medical needs for treatment of degenerative diseases, such as OA. The advantages of stem cell therapy, particularly mesenchymal stem cells, and the challenges involved are also discussed in this review.
Collapse
Affiliation(s)
- Stephanie Jyet Quan Loo
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Nyet Kui Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
53
|
Campos MF, Silva MDBRD, Pinhal MAS, Salati T, Rodrigues LMR, Melo CM. CELL THERAPY IN THE TREATMENT OF INTERVERTEBRAL DISC DEGENERATION. COLUNA/COLUMNA 2021. [DOI: 10.1590/s1808-185120212002229178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Approximately 80% of the world population experiences some type of back pain at some point in their life, and in 10% of this population the pain causes chronic disability resulting in a high cost for the treatment of these patients, in addition to compromising their work and social interaction abilities. Current treatment strategies include the surgical procedure for degenerated intervertebral disc resection, the nerve root block and physiotherapy. However, such treatments only relieve symptoms and do not prevent the degeneration of intervertebral discs. Therefore, new therapeutic strategies have emerged and include manipulating cells to recover the degenerated disc. This article will discuss the possible cell therapy alternatives used in the disc regeneration process, featuring a descriptive study of translational medicine that involves clinical aspects of new treatment alternatives and knowledge of basic research areas, such as cellular and molecular biology. Level of evidence V; Expert Opinion.
Collapse
Affiliation(s)
| | | | | | - Thiago Salati
- Universidade Federal de São Paulo, Brasil; Universidade Federal de São, Brasil
| | | | | |
Collapse
|
54
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
55
|
Wei ZYD, Shetty AK. Treating Parkinson's disease by astrocyte reprogramming: Progress and challenges. SCIENCE ADVANCES 2021; 7:7/26/eabg3198. [PMID: 34162545 PMCID: PMC8221613 DOI: 10.1126/sciadv.abg3198] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/07/2021] [Indexed: 05/04/2023]
Abstract
Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is typified by both motor and nonmotor symptoms. The current medications provide symptomatic relief but do not stimulate the production of new dopaminergic neurons in the substantia nigra. Astrocyte reprogramming has recently received much attention as an avenue for increasing functional dopaminergic neurons in the mouse PD brain. By targeting a microRNA (miRNA) loop, astrocytes in the mouse brain could be reprogrammed into functional dopaminergic neurons. Such in vivo astrocyte reprogramming in the mouse model of PD has successfully added new dopaminergic neurons to the substantia nigra and increased dopamine levels associated with axonal projections into the striatum. This review deliberates the astrocyte reprogramming methods using specific transcription factors and mRNAs and the progress in generating dopaminergic neurons in vivo. In addition, the translational potential, challenges, and potential risks of astrocyte reprogramming for an enduring alleviation of parkinsonian symptoms are conferred.
Collapse
Affiliation(s)
- Zhuang-Yao D Wei
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA.
| |
Collapse
|
56
|
Pasyukova EG, Symonenko AV, Rybina OY, Vaiserman AM. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res Rev 2021; 67:101312. [PMID: 33657446 DOI: 10.1016/j.arr.2021.101312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The development of interventions aimed at improving healthspan is one of the priority tasks for the academic and public health authorities. It is also the main objective of a novel branch in biogerontological research, geroscience. According to the geroscience concept, targeting aging is an effective way to combat age-related disorders. Since aging is an exceptionally complex process, system-oriented integrated approaches seem most appropriate for such an interventional strategy. Given the high plasticity and adaptability of the epigenome, epigenome-targeted interventions appear highly promising in geroscience research. Pharmaceuticals targeted at mechanisms involved in epigenetic control of gene activity are actively developed and implemented to prevent and treat various aging-related conditions such as cardiometabolic, neurodegenerative, inflammatory disorders, and cancer. In this review, we describe the roles of epigenetic mechanisms in aging; characterize enzymes contributing to the regulation of epigenetic processes; particularly focus on epigenetic drugs, such as inhibitors of DNA methyltransferases and histone deacetylases that may potentially affect aging-associated diseases and longevity; and discuss possible caveats associated with the use of epigenetic drugs.
Collapse
Affiliation(s)
- Elena G Pasyukova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Alexander V Symonenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Olga Y Rybina
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia; Federal State Budgetary Educational Institution of Higher Education «Moscow Pedagogical State University», M. Pirogovskaya Str. 1/1, Moscow, 119991, Russia
| | | |
Collapse
|
57
|
Combinatrial treatment of anti-High Mobility Group Box-1 monoclonal antibody and epothilone B improves functional recovery after spinal cord contusion injury. Neurosci Res 2021; 172:13-25. [PMID: 33864880 DOI: 10.1016/j.neures.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
Spinal cord injury (SCI) causes motor and sensory deficits and is currently considered an incurable disease. We have previously reported that administration of anti-High Mobility Group Box-1 monoclonal antibody (anti-HMGB1 mAb) preserved lesion area and improved locomotion recovery in mouse model of SCI. In order to further enhance the recovery, we here examined combinatorial treatment of anti-HMGB1 mAb and epothilone B (Epo B), which has been reported to promote axon regeneration. This combinatorial treatment significantly increased hindlimb movement compared with anti-HMGB1 mAb alone, although Epo B alone failed to increase functional recovery. These results are in agreement with that anti-HMGB1 mAb alone was able to decrease the lesion area spreading and increase the surviving neuron numbers around the lesion, whereas Epo B facilitated axon outgrowth only in combination with anti-HMGB1 mAb, suggesting that anti-HMGB1 mAb-dependent tissue preservation is necessary for Epo B to exhibit its therapeutic effect. Taken together, the combinatorial treatment can be considered as a novel and clinically applicable strategy for SCI.
Collapse
|
58
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
59
|
Apodaca LA, Baddour AAD, Garcia C, Alikhani L, Giedzinski E, Ru N, Agrawal A, Acharya MM, Baulch JE. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2021; 13:57. [PMID: 33676561 PMCID: PMC7937214 DOI: 10.1186/s13195-021-00791-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Background Regenerative therapies to mitigate Alzheimer’s disease (AD) neuropathology have shown very limited success. In the recent era, extracellular vesicles (EVs) derived from multipotent and pluripotent stem cells have shown considerable promise for the treatment of dementia and many neurodegenerative conditions. Methods Using the 5xFAD accelerated transgenic mouse model of AD, we now show the regenerative potential of human neural stem cell (hNSC)-derived EVs on the neurocognitive and neuropathologic hallmarks in the AD brain. Two- or 6-month-old 5xFAD mice received single or two intra-venous (retro-orbital vein, RO) injections of hNSC-derived EVs, respectively. Results RO treatment using hNSC-derived EVs restored fear extinction memory consolidation and reduced anxiety-related behaviors 4–6 weeks post-injection. EV treatment also significantly reduced dense core amyloid-beta plaque accumulation and microglial activation in both age groups. These results correlated with partial restoration of homeostatic levels of circulating pro-inflammatory cytokines in the AD mice. Importantly, EV treatment protected against synaptic loss in the AD brain that paralleled improved cognition. MiRNA analysis of the EV cargo revealed promising candidates targeting neuroinflammation and synaptic function. Conclusions Collectively, these data demonstrate the neuroprotective effects of systemic administration of stem cell-derived EVs for remediation of behavioral and molecular AD neuropathologies. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00791-x.
Collapse
Affiliation(s)
- Lauren A Apodaca
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | - Al Anoud D Baddour
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | - Camilo Garcia
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | - Leila Alikhani
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | - Ning Ru
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | - Anshu Agrawal
- Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA.
| | - Janet E Baulch
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
60
|
Hwang SU, Eun K, Kim M, Yoon JD, Cai L, Choi H, Oh D, Lee G, Kim H, Kim E, Hyun SH. Establishment of 3D Neuro-Organoids Derived from Pig Embryonic Stem-Like Cells. Int J Mol Sci 2021; 22:ijms22052600. [PMID: 33807555 PMCID: PMC7961951 DOI: 10.3390/ijms22052600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Although the human brain would be an ideal model for studying human neuropathology, it is difficult to perform in vitro culture of human brain cells from genetically engineered healthy or diseased brain tissue. Therefore, a suitable model for studying the molecular mechanisms responsible for neurological diseases that can appropriately mimic the human brain is needed. Somatic cell nuclear transfer (SCNT) was performed using an established porcine Yucatan EGFP cell line and whole seeding was performed using SCNT blastocysts. Two Yucatan EGFP porcine embryonic stem-like cell (pESLC) lines were established. These pESLC lines were then used to establish an in vitro neuro-organoids. Aggregates were cultured in vitro until 61 or 102 days after neural induction, neural patterning, and neural expansion. The neuro-organoids were sampled at each step and the expression of the dopaminergic neuronal marker (TH) and mature neuronal marker (MAP2) was confirmed by reverse transcription-PCR. Expression of the neural stem cell marker (PAX6), neural precursor markers (S100 and SOX2), and early neural markers (MAP2 and Nestin) were confirmed by immunofluorescence staining. In conclusion, we successfully established neuro-organoids derived from pESLCs in vitro. This protocol can be used as a tool to develop in vitro models for drug development, patient-specific chemotherapy, and human central nervous system disease studies.
Collapse
Affiliation(s)
- Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Kiyoung Eun
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea; (K.E.); (H.K.)
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Hyunggee Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea; (K.E.); (H.K.)
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| |
Collapse
|
61
|
Stojkovic M, Han D, Jeong M, Stojkovic P, Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:673-696. [PMID: 33586253 DOI: 10.1002/stem.3353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/13/2020] [Indexed: 11/09/2022]
Abstract
Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongjun Han
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Minjin Jeong
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
62
|
Giusto K, Wanczyk H, Jensen T, Finck C. Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies. Dis Model Mech 2021; 14:dmm047753. [PMID: 33729989 PMCID: PMC7927658 DOI: 10.1242/dmm.047753] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease caused by exposure to high levels of oxygen (hyperoxia) and is the most common complication that affects preterm newborns. At present, there is no cure for BPD. Infants can recover from BPD; however, they will suffer from significant morbidity into adulthood in the form of neurodevelopmental impairment, asthma and emphysematous changes of the lung. The development of hyperoxia-induced lung injury models in small and large animals to test potential treatments for BPD has shown some success, yet a lack of standardization in approaches and methods makes clinical translation difficult. In vitro models have also been developed to investigate the molecular pathways altered during BPD and to address the pitfalls associated with animal models. Preclinical studies have investigated the efficacy of stem cell-based therapies to improve lung morphology after damage. However, variability regarding the type of animal model and duration of hyperoxia to elicit damage exists in the literature. These models should be further developed and standardized, to cover the degree and duration of hyperoxia, type of animal model, and lung injury endpoint, to improve their translational relevance. The purpose of this Review is to highlight concerns associated with current animal models of hyperoxia-induced BPD and to show the potential of in vitro models to complement in vivo studies in the significant improvement to our understanding of BPD pathogenesis and treatment. The status of current stem cell therapies for treatment of BPD is also discussed. We offer suggestions to optimize models and therapeutic modalities for treatment of hyperoxia-induced lung damage in order to advance the standardization of procedures for clinical translation.
Collapse
Affiliation(s)
- Kiersten Giusto
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
- Department of Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
63
|
Why Do Muse Stem Cells Present an Enduring Stress Capacity? Hints from a Comparative Proteome Analysis. Int J Mol Sci 2021; 22:ijms22042064. [PMID: 33669748 PMCID: PMC7922977 DOI: 10.3390/ijms22042064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Muse cells are adult stem cells that are present in the stroma of several organs and possess an enduring capacity to cope with endogenous and exogenous genotoxic stress. In cell therapy, the peculiar biological properties of Muse cells render them a possible natural alternative to mesenchymal stromal cells (MSCs) or to in vitro-generated pluripotent stem cells (iPSCs). Indeed, some studies have proved that Muse cells can survive in adverse microenvironments, such as those present in damaged/injured tissues. We performed an evaluation of Muse cells' proteome under basic conditions and followed oxidative stress treatment in order to identify ontologies, pathways, and networks that can be related to their enduring stress capacity. We executed the same analysis on iPSCs and MSCs, as a comparison. The Muse cells are enriched in several ontologies and pathways, such as endosomal vacuolar trafficking related to stress response, ubiquitin and proteasome degradation, and reactive oxygen scavenging. In Muse cells, the protein-protein interacting network has two key nodes with a high connectivity degree and betweenness: NFKB and CRKL. The protein NFKB is an almost-ubiquitous transcription factor related to many biological processes and can also have a role in protecting cells from apoptosis during exposure to a variety of stressors. CRKL is an adaptor protein and constitutes an integral part of the stress-activated protein kinase (SAPK) pathway. The identified pathways and networks are all involved in the quality control of cell components and may explain the stress resistance of Muse cells.
Collapse
|
64
|
Soto F, Guimarães CF, Reis RL, Franco W, Rizvi I, Demirci U. Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models. Cancer Lett 2021; 504:116-124. [PMID: 33577978 DOI: 10.1016/j.canlet.2021.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/12/2023]
Abstract
Tissue engineered organoids are simple biomodels that can emulate the structural and functional complexity of specific organs. Here, we review developments in three-dimensional (3D) artificial cell constructs to model gastrointestinal dynamics towards cancer diagnosis. We describe bottom-up approaches to fabricate close-packed cell aggregates, from the use of biochemical and physical cues to guide the self-assembly of organoids, to the use of engineering approaches, including 3D printing/additive manufacturing and external field-driven protocols. Finally, we outline the main challenges and possible risks regarding the potential translation of gastrointestinal organoids from laboratory settings to patient-specific models in clinical applications.
Collapse
Affiliation(s)
- Fernando Soto
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
| | - Carlos F Guimarães
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA; 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts, Lowell, 01854, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, 02114, MA, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA.
| |
Collapse
|
65
|
Jha BS, Farnoodian M, Bharti K. Regulatory considerations for developing a phase I investigational new drug application for autologous induced pluripotent stem cells-based therapy product. Stem Cells Transl Med 2021; 10:198-208. [PMID: 32946199 PMCID: PMC7848308 DOI: 10.1002/sctm.20-0242] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSC)-based therapies have been hailed as the future of regenerative medicine because of their potential to provide treatment options for most degenerative diseases. A key promise of iPSC-based therapies is the possibility of an autologous transplant that may engraft better in the longer-term due to its compatibility with the patient's immune system. Despite over a decade of research, clinical translation of autologous iPSC-based therapies has been slow-partly due to a lacking pre-defined regulatory path. Here, we outline regulatory considerations for developing an autologous iPSC-based product and challenges associated with the clinical manufacturing of autologous iPSCs and their derivatives. These challenges include donor tissue source, reprogramming methods, heterogeneity of differentiated cells, controls for the manufacturing process, and preclinical considerations. A robust manufacturing process with appropriate quality controls and well-informed, prospectively designed preclinical studies provide a path toward successful approval of autologous iPSC-based therapies.
Collapse
Affiliation(s)
- Balendu Shekhar Jha
- Center for Cell Engineering, Department of Transfusion MedicineClinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Mitra Farnoodian
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function BranchNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function BranchNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
66
|
Budharaju H, Subramanian A, Sethuraman S. Recent advancements in cardiovascular bioprinting and bioprinted cardiac constructs. Biomater Sci 2021; 9:1974-1994. [DOI: 10.1039/d0bm01428a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three-dimensionally bioprinted cardiac constructs with biomimetic bioink helps to create native-equivalent cardiac tissues to treat patients with myocardial infarction.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab
- Centre for Nanotechnology & Advanced Biomaterials
- ACBDE Innovation Centre
- School of Chemical & Biotechnology
- SASTRA Deemed to be University
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab
- Centre for Nanotechnology & Advanced Biomaterials
- ACBDE Innovation Centre
- School of Chemical & Biotechnology
- SASTRA Deemed to be University
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab
- Centre for Nanotechnology & Advanced Biomaterials
- ACBDE Innovation Centre
- School of Chemical & Biotechnology
- SASTRA Deemed to be University
| |
Collapse
|
67
|
Zhao Y, Liu H, Zhao C, Dang P, Li H, Farzaneh M. Paracrine Interactions Involved in Human Induced Pluripotent Stem Cells Differentiation into Chondrocytes. Curr Stem Cell Res Ther 2020; 15:233-242. [PMID: 31889496 DOI: 10.2174/1574888x15666191224122058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA), as a degenerative joint disease, is the most common form of joint disorder that causes pain, stiffness, and other symptoms associated with OA. Various genetic, biomechanical, and environmental factors have a relevant role in the development of OA. To date, extensive efforts are currently being made to overcome the poor self-healing capacity of articular cartilage. Despite the pivotal role of chondrocytes, their proliferation and repair capacity after tissue injury are limited. Therefore, the development of new strategies to overcome these constraints is urgently needed. Recent advances in regenerative medicine suggest that pluripotent stem cells are promising stem cell sources for cartilage repair. Pluripotent stem cells are undifferentiated cells that have the capacity to differentiate into different types of cells and can self-renew indefinitely. In the past few decades, numerous attempts have been made to regenerate articular cartilage by using induced pluripotent stem cells (iPSCs). The potential applications of patient-specific iPSCs hold great promise for regenerative medicine and OA treatment. However, there are different culture conditions for the preparation and characterization of human iPSCs-derived chondrocytes (hiChondrocytes). Recent biochemical analyses reported that several paracrine factors such as TGFb, BMPs, WNT, Ihh, and Runx have been shown to be involved in cartilage cell proliferation and differentiation from human iPSCs. In this review, we summarize and discuss the paracrine interactions involved in human iPSCs differentiation into chondrocytes in different cell culture media.
Collapse
Affiliation(s)
- Yunchang Zhao
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Honghao Liu
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Chunjie Zhao
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Peng Dang
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Haijian Li
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
68
|
Weeratunga P, Shahsavari A, Fennis E, Wolvetang EJ, Ovchinnikov DA, Whitworth DJ. Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells from the Tasmanian Devil ( Sarcophilus harrisii) Express Immunomodulatory Factors and a Tropism Toward Devil Facial Tumor Cells. Stem Cells Dev 2020; 29:25-37. [PMID: 31709909 DOI: 10.1089/scd.2019.0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marsupials have long attracted scientific interest because of their unique biological features and their position in mammalian evolution. Mesenchymal stem cells (MSCs) are of considerable research interest in translational medicine due to their immunomodulatory, anti-inflammatory, and regenerative properties. MSCs have been harvested from various tissues in numerous eutherian species; however, there are no descriptions of MSCs derived from a marsupial. In this study, we have generated Tasmanian devil (Sarcophilus harrisii) MSCs from devil induced pluripotent stem cells (iPSCs), thus providing an unlimited source of devil MSCs and circumventing the need to harvest tissues from live animals. Devil iPSCs were differentiated into MSCs (iMSCs) through both embryoid body formation assays (EB-iMSCs) and through inhibition of the transforming growth factor beta/activin signaling pathway (SB-iMSCs). Both EB-iMSCs and SB-iMSCs are highly proliferative and express the MSC-specific surface proteins CD73, CD90, and CD105, in addition to the pluripotency transcription factors OCT4/POU5F1, SOX2, and NANOG. Expression of the marsupial pluripotency factor POU5F3, a paralogue of OCT4/POU5F1, is significantly reduced in association with the transition from pluripotency to multipotency. Devil iMSCs readily differentiate along the adipogenic, osteogenic, and chondrogenic pathways in vitro, confirming their trilineage differentiation potential. Importantly, in vitro teratoma assays confirmed their multipotency, rather than pluripotency, since the iMSCs only formed derivatives of the mesodermal germ layer. Devil iMSCs show a tropism toward medium conditioned by devil facial tumor cells and express a range of immunomodulatory and anti-inflammatory factors. Therefore, devil iMSCs will be a valuable tool for further studies on marsupial biology and may facilitate the development of an MSC-based treatment strategy against Devil Facial Tumor Disease.
Collapse
Affiliation(s)
- Prasanna Weeratunga
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Arash Shahsavari
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Evelien Fennis
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| | - Dmitry A Ovchinnikov
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia.,StemCore, The University of Queensland, St. Lucia, Australia
| | - Deanne J Whitworth
- School of Veterinary Science, The University of Queensland, Gatton, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
69
|
Lin HD, Fong CY, Biswas A, Bongso A. Allogeneic human umbilical cord Wharton's jelly stem cells increase several-fold the expansion of human cord blood CD34+ cells both in vitro and in vivo. Stem Cell Res Ther 2020; 11:527. [PMID: 33298170 PMCID: PMC7724853 DOI: 10.1186/s13287-020-02048-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background The transplantation of human umbilical cord blood (UCB) CD34+ cells has been successfully used to treat hematological disorders but one major limitation has been the low cell numbers available. Mesenchymal stem cells (MSCs) lying within the bone marrow in vivo behave like a scaffold on which CD34+ cells interact and proliferate. We therefore evaluated the use of allogeneic MSCs from the human UC Wharton’s jelly (hWJSCs) as stromal support for the ex vivo expansion of CD34+ cells. Methods We performed an in-depth evaluation of the primitiveness, migration, adhesion, maturation, mitochondrial behavior, and pathway mechanisms of this platform using conventional assays followed by the evaluation of engraftment potential of the expanded CD34+ cells in an in vivo murine model. Results We demonstrate that hWJSCs and its conditioned medium (hWJSC-CM) support the production of significantly high fold changes of CD34+, CD34+CD133+, CD34+CD90+, CD34+ALDH+, CD34+CD45+, and CD34+CD49f+ cells after 7 days of interaction when compared to controls. In the presence of hWJSCs or hWJSC-CM, the CD34+ cells produced significantly more primitive CFU-GEMM colonies, HoxB4, and HoxA9 gene expression and lower percentages of CD34+CXCR4+ cells. There were also significantly higher N-cadherin+ cell numbers and increased cell migration in transwell migration assays. The CD34+ cells expanded with hWJSCs had significantly lower mitochondrial mass, mitochondrial membrane potential, and oxidative stress. Green Mitotracker-tagged mitochondria from CD34+ cells were observed lying within red CellTracker-tagged hWJSCs under confocal microscopy indicating mitochondrial transfer via tunneling nanotubes. CD34+ cells expanded with hWJSCs and hWJSC-CM showed significantly reduced oxidative phosphorylation (ATP6VIH and NDUFA10) and increased glycolytic (HIF-1a and HK-1) pathway-related gene expression. CD34+ cells expanded with hWJSCs for 7 days showed significant greater CD45+ cell chimerism in the bone marrow of primary and secondary irradiated mice when transplanted intravenously. Conclusions In this report, we confirmed that allogeneic hWJSCs provide an attractive platform for the ex vivo expansion of high fold numbers of UCB CD34+ cells while keeping them primitive. Allogeneic hWJSCs are readily available in abundance from discarded UCs, can be easily frozen in cord blood banks, thawed, and then used as a platform for UCB-HSC expansion if numbers are inadequate.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore.
| |
Collapse
|
70
|
Krasic J, Skara L, Ulamec M, Katusic Bojanac A, Dabelic S, Bulic-Jakus F, Jezek D, Sincic N. Teratoma Growth Retardation by HDACi Treatment of the Tumor Embryonal Source. Cancers (Basel) 2020; 12:cancers12113416. [PMID: 33217978 PMCID: PMC7698704 DOI: 10.3390/cancers12113416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Testicular germ cell tumors are the most common neoplasms in young male populations, with a rising incidence. Among them, teratomas may often be very aggressive and resistant to therapy. Our aim was to investigate the impact of two potential anti-tumor epigenetic drugs (Valproate and Trichostatin A) in a mammalian model of teratoma development from an early trilaminar mouse embryo. Both drugs applied to the embryonic tissue had a significant negative impact on the teratoma growth in a three-dimensional in vitro culture. However, Trichostatin A did not diminish some potentially dangerous features of teratomas in contrast to Valproate. This research is an original contribution to the basic knowledge of the origin and development of teratomas. Such knowledge is necessary for envisioning therapeutic strategies against human testicular tumors. Abstract Among testicular germ cell tumors, teratomas may often be very aggressive and therapy-resistant. Our aim was to investigate the impact of histone deacetylase inhibitors (HDACi) on the in vitro growth of experimental mouse teratoma by treating their embryonic source, the embryo-proper, composed only of the three germ layers. The growth of teratomas was measured for seven days, and histopathological analysis, IHC/morphometry quantification, gene enrichment analysis, and qPCR analysis on a selected panel of pluripotency and early differentiation genes followed. For the first time, within teratomas, we histopathologically assessed the undifferentiated component containing cancer stem cell-like cells (CSCLCs) and differentiated components containing numerous lymphocytes. Mitotic indices were higher than apoptotic indices in both components. Both HDACi treatments of the embryos-proper significantly reduced teratoma growth, although this could be related neither to apoptosis nor proliferation. Trichostatin A increased the amount of CSCLCs, and upregulated the mRNA expression of pluripotency/stemness genes as well as differentiation genes, e.g., T and Eomes. Valproate decreased the amount of CSCLCs, and downregulated the expressions of pluripotency/stemness and differentiation genes. In conclusion, both HDACi treatments diminished the inherent tumorigenic growth potential of the tumor embryonal source, although Trichostatin A did not diminish the potentially dangerous expression of cancer-related genes and the amount of CSCLC.
Collapse
Affiliation(s)
- Jure Krasic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Lucija Skara
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10 000 Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Sanja Dabelic
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Floriana Bulic-Jakus
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Davor Jezek
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-45-66-806; Fax: +385-45-960-199
| |
Collapse
|
71
|
Kupikowska-Stobba B, Lewińska D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater Sci 2020; 8:1536-1574. [PMID: 32110789 DOI: 10.1039/c9bm01337g] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer microcarriers are being extensively explored as cell delivery vehicles in cell-based therapies and hybrid tissue and organ engineering. Spherical microcarriers are of particular interest due to easy fabrication and injectability. They include microbeads, composed of a porous matrix, and microcapsules, where matrix core is additionally covered with a semipermeable membrane. Microcarriers provide cell containment at implantation site and protect the cells from host immunoresponse, degradation and shear stress. Immobilized cells may be genetically altered to release a specific therapeutic product directly at the target site, eliminating side effects of systemic therapies. Cell microcarriers need to fulfil a number of extremely high standards regarding their biocompatibility, cytocompatibility, immunoisolating capacity, transport, mechanical and chemical properties. To obtain cell microcarriers of specified parameters, a wide variety of polymers, both natural and synthetic, and immobilization methods can be applied. Yet so far, only a few approaches based on cell-laden microcarriers have reached clinical trials. The main issue that still impedes progress of these systems towards clinical application is limited cell survival in vivo. Herein, we review polymer biomaterials and methods used for fabrication of cell microcarriers for in vivo biomedical applications. We describe their key limitations and modifications aiming at improvement of microcarrier in vivo performance. We also present the main applications of polymer cell microcarriers in regenerative medicine, pancreatic islet and hepatocyte transplantation and in the treatment of cancer. Lastly, we outline the main challenges in cell microimmobilization for biomedical purposes, the strategies to overcome these issues and potential future improvements in this area.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| | - Dorota Lewińska
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
72
|
Sultan S, Alalmie A, Noorwali A, Alyamani A, Shaabad M, Alfakeeh S, Bahmaid A, Ahmed F, Pushparaj P, Kalamegam G. Resveratrol promotes chondrogenesis of human Wharton’s jelly stem cells in a hyperglycemic state by modulating the expression of inflammation-related cytokines. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1835739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Alalmie
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulwahab Noorwali
- Stem Cell Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Biochemistry, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Alyamani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal Shaabad
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saadiah Alfakeeh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afnan Bahmaid
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gauthaman Kalamegam
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Medicine, AIMST University, Bedong, Malaysia
| |
Collapse
|
73
|
Priester C, MacDonald A, Dhar M, Bow A. Examining the Characteristics and Applications of Mesenchymal, Induced Pluripotent, and Embryonic Stem Cells for Tissue Engineering Approaches across the Germ Layers. Pharmaceuticals (Basel) 2020; 13:E344. [PMID: 33114710 PMCID: PMC7692540 DOI: 10.3390/ph13110344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The field of regenerative medicine utilizes a wide array of technologies and techniques for repairing and restoring function to damaged tissues. Among these, stem cells offer one of the most potent and promising biological tools to facilitate such goals. Implementation of mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) offer varying advantages based on availability and efficacy in the target tissue. The focus of this review is to discuss characteristics of these three subset stem cell populations and examine their utility in tissue engineering. In particular, the development of therapeutics that utilize cell-based approaches, divided by germinal layer to further assess research targeting specific tissues of the mesoderm, ectoderm, and endoderm. The combinatorial application of MSCs, iPSCs, and ESCs with natural and synthetic scaffold technologies can enhance the reparative capacity and survival of implanted cells. Continued efforts to generate more standardized approaches for these cells may provide improved study-to-study variations on implementation, thereby increasing the clinical translatability of cell-based therapeutics. Coupling clinically translatable research with commercially oriented methods offers the potential to drastically advance medical treatments for multiple diseases and injuries, improving the quality of life for many individuals.
Collapse
Affiliation(s)
- Caitlin Priester
- Department of Animal Science, University of Tennessee, Knoxville, TN 37998, USA;
| | - Amber MacDonald
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Austin Bow
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| |
Collapse
|
74
|
Leavitt RJ, Acharya MM, Baulch JE, Limoli CL. Extracellular Vesicle-Derived miR-124 Resolves Radiation-Induced Brain Injury. Cancer Res 2020; 80:4266-4277. [PMID: 32816912 PMCID: PMC7541572 DOI: 10.1158/0008-5472.can-20-1599] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/08/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Radiation-induced cognitive dysfunction (RICD) is a progressive and debilitating health issue facing patients following cranial radiotherapy to control central nervous system cancers. There has been some success treating RICD in rodents using human neural stem cell (hNSC) transplantation, but the procedure is invasive, requires immunosuppression, and could cause other complications such as teratoma formation. Extracellular vesicles (EV) are nanoscale membrane-bound structures that contain biological contents including mRNA, miRNA, proteins, and lipids that can be readily isolated from conditioned culture media. It has been previously shown that hNSC-derived EV resolves RICD following cranial irradiation using an immunocompromised rodent model. Here, we use immunocompetent wild-type mice to show that hNSC-derived EV treatment administered either intravenously via retro-orbital vein injection or via intracranial transplantation can ameliorate cognitive deficits following 9 Gy head-only irradiation. Cognitive function assessed on the novel place recognition, novel object recognition, and temporal order tasks was not only improved at early (5 weeks) but also at delayed (6 months) postirradiation times with just a single EV treatment. Improved behavioral outcomes were also associated with reduced neuroinflammation as measured by a reduction in activated microglia. To identify the mechanism of action, analysis of EV cargo implicated miRNA (miR-124) as a potential candidate in the mitigation of RICD. Furthermore, viral vector-mediated overexpression of miR-124 in the irradiated brain ameliorated RICD and reduced microglial activation. Our findings demonstrate for the first time that systemic administration of hNSC-derived EV abrogates RICD and neuroinflammation in cranially irradiated wild-type rodents through a mechanism involving miR-124. SIGNIFICANCE: Radiation-induced neurocognitive decrements in immunocompetent mice can be resolved by systemic delivery of hNSC-derived EVs involving a mechanism dependent on expression of miR-124.
Collapse
Affiliation(s)
- Ron J Leavitt
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, Irvine, California.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, California.
| |
Collapse
|
75
|
Mashima H, Zhang R, Kobayashi T, Hagiya Y, Tsukamoto H, Liu T, Iwama T, Yamamoto M, Lin C, Nakatsuka R, Mishima Y, Watanabe N, Yamada T, Senju S, Kaneko S, Idiris A, Nakatsura T, Ohdan H, Uemura Y. Generation of GM-CSF-producing antigen-presenting cells that induce a cytotoxic T cell-mediated antitumor response. Oncoimmunology 2020; 9:1814620. [PMID: 33457097 PMCID: PMC7781730 DOI: 10.1080/2162402x.2020.1814620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy using dendritic cells (DCs) is a promising treatment modality for cancer. However, the limited number of functional DCs from peripheral blood has been linked to the unsatisfactory clinical efficacies of current DC-based cancer immunotherapies. We previously generated proliferating antigen-presenting cells (APCs) by genetically engineering myeloid cells derived from induced pluripotent stem cells (iPSC-pMCs), which offer infinite functional APCs for broad applications in cancer therapy. Herein, we aimed to further enhance the antitumor effect of these cells by genetic modification. GM-CSF gene transfer did not affect the morphology, or surface phenotype of the original iPSC-pMCs, however, it did impart good viability to iPSC-pMCs. The resultant cells induced GM-CSF-dependent CD8+ T cell homeostatic proliferation, thereby enhancing antigen-specific T cell priming in vitro. Administration of the tumor antigen-loaded GM-CSF-producing iPSC-pMCs (GM-pMCs) efficiently stimulated antigen-specific T cells and promoted effector cell infiltration of the tumor tissues, leading to an augmented antitumor effect. To address the potential tumorigenicity of iPSC-derived products, irradiation was applied and found to restrict the proliferation of GM-pMCs, while retaining their T cell-stimulatory capacity. Furthermore, the irradiated cells exerted an antitumor effect equivalent to that of bone marrow-derived DCs obtained from immunocompetent mice. Additionally, combination with immune checkpoint inhibitors increased the infiltration of CD8+ or NK1.1+ effector cells and decreased CD11b+/Gr-1+ cells without causing adverse effects. Hence, although GM-pMCs have certain characteristics that differ from endogenous DCs, our findings suggest the applicability of these cells for broad clinical use and will provide an unlimited source of APCs with uniform quality.
Collapse
Affiliation(s)
- Hiroaki Mashima
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Yuichiro Hagiya
- Biochemistry Team, Bio Science Division, Technology General Division, Materials Integration Laboratories, AGC Inc., Yokohama, Japan
| | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tianyi Liu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing, China
| | - Tatsuaki Iwama
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masateru Yamamoto
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Chiahsuan Lin
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ryusuke Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Japan
| | - Yuta Mishima
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (Cira), Kyoto University, Kyoto, Japan
| | - Noriko Watanabe
- Research & Early Development, Brightpath Biotherapeutics Co., Ltd., Kawasaki, Japan
| | - Takashi Yamada
- Research & Early Development, Brightpath Biotherapeutics Co., Ltd., Kawasaki, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (Cira), Kyoto University, Kyoto, Japan
| | - Alimjan Idiris
- Biochemistry Team, Bio Science Division, Technology General Division, Materials Integration Laboratories, AGC Inc., Yokohama, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
76
|
Carluccio M, Ziberi S, Zuccarini M, Giuliani P, Caciagli F, Di Iorio P, Ciccarelli R. Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation? Purinergic Signal 2020; 16:263-287. [PMID: 32500422 DOI: 10.1007/s11302-020-09703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy. .,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy.
| |
Collapse
|
77
|
Magisson J, Sassi A, Xhema D, Kobalyan A, Gianello P, Mourer B, Tran N, Burcez CT, Bou Aoun R, Sigrist S. Safety and function of a new pre-vascularized bioartificial pancreas in an allogeneic rat model. J Tissue Eng 2020; 11:2041731420924818. [PMID: 32523669 PMCID: PMC7257875 DOI: 10.1177/2041731420924818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022] Open
Abstract
Cell encapsulation could overcome limitations of free islets transplantation but is currently limited by inefficient cells immune protection and hypoxia. As a response to these challenges, we tested in vitro and in vivo the safety and efficacy of a new macroencapsulation device named MailPan®. Membranes of MailPan® device were tested in vitro in static conditions. Its bio-integration and level of oxygenation was assessed after implantation in non-diabetic rats. Immune protection properties were also assessed in rat with injection in the device of allogeneic islets with incompatible Major Histocompatibility Complex. Finally, function was assessed in diabetic rats with a Beta cell line injected in MailPan®. In vitro, membranes of the device showed high permeability to glucose, insulin, and rejected IgG. In rat, the device displayed good bio-integration, efficient vascularization, and satisfactory oxygenation (>5%), while positron emission tomography (PET)-scan and angiography also highlighted rapid exchanges between blood circulation and the MailPan®. The device showed its immune protection properties by preventing formation, by the rat recipient, of antibodies against encapsulated allogenic islets. Injection of a rat beta cell line into the device normalized fasting glycemia of diabetic rat with retrieval of viable cell clusters after 2 months. These data suggest that MailPan® constitutes a promising encapsulation device for widespread use of cell therapy for type 1 diabetes.
Collapse
Affiliation(s)
| | | | - Daela Xhema
- Laboratory of Experimental Surgery, Université Catholique de Louvain, Brussels, Belgium
| | | | - Pierre Gianello
- Laboratory of Experimental Surgery, Université Catholique de Louvain, Brussels, Belgium
| | - Brice Mourer
- Ecole de Chirurgie de Nancy-Lorraine, Vandoeuvre-lès-Nancy, France
| | - Nguyen Tran
- Ecole de Chirurgie de Nancy-Lorraine, Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
78
|
Cho YD, Kim BS, Kim WJ, Kim HJ, Baek JH, Woo KM, Seol YJ, Ku Y, Ryoo HM. Histone acetylation together with DNA demethylation empowers higher plasticity in adipocytes to differentiate into osteoblasts. Gene 2020; 733:144274. [DOI: 10.1016/j.gene.2019.144274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
|
79
|
Gorecka J, Gao X, Fereydooni A, Dash BC, Luo J, Lee SR, Taniguchi R, Hsia HC, Qyang Y, Dardik A. Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing. Regen Med 2020; 15:1277-1293. [PMID: 32228292 PMCID: PMC7304438 DOI: 10.2217/rme-2019-0086] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To assess the potential of human induced pluripotent stem cell-derived smooth muscle cells (hiPSC-SMC) to accelerate diabetic wound healing. Methods: hiPSC-SMC were embedded in 3D collagen scaffolds and cultured in vitro for 72 h; scaffolds were then applied to diabetic, nude mouse, splinted back wounds to assess in vivo healing. Cultured medium after scaffold incubation was collected and analyzed for expression of pro-angiogenic cytokines. Results: hiPSC-SMC secrete increased concentration of pro-angiogenic cytokines, compared with murine adipose derived stem cells. Delivery of hiPSC-SMC-containing collagen scaffolds accelerates diabetic wound healing and is associated with an increased number of total and M2 type macrophages. Conclusion: hiPSC-SMC promote angiogenesis and accelerate diabetic wound healing, making them a promising new candidate for treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jolanta Gorecka
- Vascular Biology & Therapeutics Program & The Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519 USA
| | - Xixiang Gao
- Vascular Biology & Therapeutics Program & The Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519 USA.,Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Arash Fereydooni
- Vascular Biology & Therapeutics Program & The Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519 USA
| | - Biraja C Dash
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Jiesi Luo
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA.,Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.,Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519 USA.,Department of Pathology, YaleUniversity, New Haven, CT 06520, USA
| | - Shin Rong Lee
- Vascular Biology & Therapeutics Program & The Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519 USA
| | - Ryosuke Taniguchi
- Vascular Biology & Therapeutics Program & The Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519 USA
| | - Henry C Hsia
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA.,Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.,Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519 USA.,Department of Pathology, YaleUniversity, New Haven, CT 06520, USA
| | - Alan Dardik
- Vascular Biology & Therapeutics Program & The Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519 USA.,Section of Vascular & Endovascular Surgery, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
80
|
Saini AK, Saini R, Bansode H, Singh A, Singh L. Stem Cells: A Review Encompassing the Literature with a Special Focus on the Side-Lined Miraculous Panacea; Pre-Morula Stem Cells. Curr Stem Cell Res Ther 2020; 15:379-387. [PMID: 32160851 DOI: 10.2174/1574888x15666200311141731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/22/2022]
Abstract
Stem cells are the undifferentiated cells in the body that possess the ability to differentiate and give rise to any type of cells in the body. In recent years, there has been a growing interest in therapies involving stem cells as different treatment methods got developed. Depending on the source, there are two major kinds of stem cells, embryonic and adult stem cells. The former type is found in the embryo at the different developmental stages before the implantation and excels the latter owing to pluripotency. On the premise of the attributes of stem cells, they are touted as the "panacea for all ills" and are extensively sought for their potential therapeutic roles. There are a lot of robust pieces of evidence that have proved to cure the different ailments in the body like Huntington disease, Parkinson's disease, and Spinal cord injury with stem cell therapy but associated with adverse effects like immune rejection and teratoma formation. In this regard, the pre-morula (isolated at an early pre-morula stage) stem cells (PMSCs) are one of its kind of embryonic stem cells that are devoid of the aforementioned adverse effects. Taking the beneficial factor into account, they are being used for the treatment of disorders like Cerebral palsy, Parkinson's disorder, Aplastic anemia, Multiple sclerosis and many more. However, it is still illegal to use stem cells in the abovementioned disorders. This review encompasses different stem cells and emphasizes on PMSCs for their uniqueness in therapy as no other previously published literature reviews have taken these into consideration. Later in the review, current regulatory aspects related to stem cells are also considered.
Collapse
Affiliation(s)
- Aryendu K Saini
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, U.P., India
| | - Rakesh Saini
- Department of Pharmacy, Chaudhary Sughar Singh College of Pharmacy, Etawah, U.P., India
| | - Himanshu Bansode
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, U.P., India
| | - Anurag Singh
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, U.P., India
| | - Lalita Singh
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, U.P., India
| |
Collapse
|
81
|
Petazzi P, Torres-Ruiz R, Fidanza A, Roca-Ho H, Gutierrez-Agüera F, Castaño J, Rodriguez-Perales S, Díaz de la Guardia R, López-Millán B, Bigas A, Forrester LM, Bueno C, Menéndez P. Robustness of Catalytically Dead Cas9 Activators in Human Pluripotent and Mesenchymal Stem Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:196-204. [PMID: 32171171 PMCID: PMC7068053 DOI: 10.1016/j.omtn.2020.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells (hPSCs) and mesenchymal stromal/stem cells (hMSCs) are clinically relevant sources for cellular therapies and for modeling human development and disease. Many stem cell-based applications rely on the ability to activate several endogenous genes simultaneously to modify cell fate. However, genetic intervention of these cells remains challenging. Several catalytically dead Cas9 (dCas9) proteins fused to distinct activation domains can modulate gene expression when directed to their regulatory regions by a specific single-guide RNA (sgRNA). In this study, we have compared the ability of the first-generation dCas9-VP64 activator and the second-generation systems, dCas9-SAM and dCas9-SunTag, to induce gene expression in hPSCs and hMSCs. Several stem cell lines were tested for single and multiplexed gene activation. When the activation of several genes was compared, all three systems induced specific and potent gene expression in both single and multiplexed settings, but the dCas9-SAM and dCas9-SunTag systems resulted in the highest and most consistent level of gene expression. Simultaneous targeting of the same gene with multiple sgRNAs did not result in additive levels of gene expression in hPSCs nor hMSCs. We demonstrate the robustness and specificity of second-generation dCas9 activators as tools to simultaneously activate several endogenous genes in clinically relevant human stem cells.
Collapse
Affiliation(s)
- Paolo Petazzi
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
| | - Raul Torres-Ruiz
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain; Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Antonella Fidanza
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Heleia Roca-Ho
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francisco Gutierrez-Agüera
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julio Castaño
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Rafael Díaz de la Guardia
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Belén López-Millán
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Anna Bigas
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer-CIBER-ONC, ISCIII, Barcelona, Spain
| | - Lesley M Forrester
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer-CIBER-ONC, ISCIII, Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer-CIBER-ONC, ISCIII, Barcelona, Spain; Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
82
|
Garbern JC, Escalante GO, Lee RT. Pluripotent stem cell-derived cardiomyocytes for treatment of cardiomyopathic damage: Current concepts and future directions. Trends Cardiovasc Med 2020; 31:85-90. [PMID: 31983535 DOI: 10.1016/j.tcm.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Today, cell replacement therapy using pluripotent stem cell-derived cardiomyocytes (PSC-CMs) remains a research endeavor, with several hurdles that must be overcome before delivery of PSC-CMs can become a therapeutic reality. In this review, we highlight major findings to date from pre-clinical studies involving delivery of PSC-CMs and consider remaining challenges that must be addressed for successful clinical translation. Our goal is to provide an overview of the current status of cardiomyocyte replacement therapy and what challenges must be addressed before successful clinical translation of such therapies will be possible.
Collapse
Affiliation(s)
- Jessica C Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, United States; Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, United States
| | - Gabriela O Escalante
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, United States
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, United States; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, United States.
| |
Collapse
|
83
|
Imafuku A, Sjoqvist S. Extracellular Vesicle Therapeutics in Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1312:131-138. [PMID: 33330962 DOI: 10.1007/5584_2020_599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized, cell-released vesicles which contain lipids, proteins, and nucleic acids derived from the parental cells. EVs play an important role in intercellular communication and influence both physiological and pathological conditions. They are increasingly explored as potential therapeutic agents since they can cross biological barriers, their cargo is protected from degradation and they are involved in the transfer of bioactive components. EVs can promote tissue regeneration and might be alternatives to cell therapy. They can be used both in their native form, and as delivery vehicles for therapeutic agents. However, there are many hurdles to overcome for broad clinical application of EVs as therapeutics. Here, we review recent conditions regarding EVs therapeutics in regenerative medicine.
Collapse
Affiliation(s)
| | - Sebastian Sjoqvist
- ExTherea Inc, Fujisawa, Kanagawa, Japan.
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
84
|
Zhao Z, Fan C, Chen F, Sun Y, Xia Y, Ji A, Wang DA. Progress in Articular Cartilage Tissue Engineering: A Review on Therapeutic Cells and Macromolecular Scaffolds. Macromol Biosci 2019; 20:e1900278. [PMID: 31800166 DOI: 10.1002/mabi.201900278] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Repair and regeneration of articular cartilage lesions have always been a major challenge in the medical field due to its peculiar structure (e.g., sparsely distributed chondrocytes, no blood supply, no nerves). Articular cartilage tissue engineering is considered as one promising strategy to achieve reconstruction of cartilage. With this perspective, the articular cartilage tissue engineering has been widely studied. Here, the recent progress of articular cartilage tissue engineering is reviewed. The ad hoc therapeutic cells and growth factors for cartilage regeneration are summarized and discussed. Various types of bio/macromolecular scaffolds together with their pros and cons are also reviewed and elaborated.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Traumatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changjiang Fan
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China.,Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, P. R. China
| | - Feng Chen
- Department of Traumatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yutai Sun
- School of Information Engineering, Shandong Vocational College of Science & Technology, Weifang, 261053, P. R. China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Aiyu Ji
- Department of Traumatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| |
Collapse
|
85
|
Stem Cells for the Treatment of Intervertebral Disk Degeneration. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
86
|
Tsujimura M, Kusamori K, Nishikawa M. Rapid Regulation of Human Mesenchymal Stem Cell Proliferation Using Inducible Caspase-9 Suicide Gene for Safe Cell-Based Therapy. Int J Mol Sci 2019; 20:ijms20225759. [PMID: 31744061 PMCID: PMC6887989 DOI: 10.3390/ijms20225759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
The regulation of transplanted cell proliferation and function is important to achieve safe cell-based therapies. We previously reported that the proliferation and function of transplanted cells, which expressed the herpes simplex virus thymidine kinase (HSVtk) suicide gene, could be controlled by ganciclovir (GCV) administration. However, there are some concerns regarding the use of GCV. It is reported that the inducible caspase-9 (iC9) gene, a human caspase-9-derived genetically engineered suicide gene, rapidly induces cell apoptosis in the presence of apoptosis inducers, such as AP20187. In this study, we used a combination of the iC9 gene and AP20187 to achieve rapid regulation of transplanted cell proliferation. Cells from the human mesenchymal stem cell line UE7T-13 were transfected with the iC9 gene to obtain UE7T-13/iC9 cells. AP20187 significantly reduced the number of UE7T-13/iC9 cells within 24 h in a concentration-dependent manner. This reduction was much faster than the reduction of HSVtk-expressing UE7T-13 cells induced by GCV addition. Subcutaneous AP20187 administration rapidly reduced the luminescence signal from NanoLuc luciferase (Nluc)-expressing UE7T-13/iC9 cells transplanted into mice. These results indicate that the combined use of the iC9 gene and AP20187 is effective in rapidly regulating transplanted cell proliferation.
Collapse
Affiliation(s)
| | - Kosuke Kusamori
- Correspondence: ; Tel.: +81-4-7124-1501; Fax: +81-4-7121-4450
| | | |
Collapse
|
87
|
Riau AK, Ong HS, Yam GHF, Mehta JS. Sustained Delivery System for Stem Cell-Derived Exosomes. Front Pharmacol 2019; 10:1368. [PMID: 31798457 PMCID: PMC6868085 DOI: 10.3389/fphar.2019.01368] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Recent literature has ascribed that the paracrine action of stem cells is mediated by exosomes. Exosomes are nano-sized extracellular vesicles (30 to 100 nm) of endocytic origin that play important roles in intercellular communication. They have the ability to deliver various therapeutic effects, e.g., skin regeneration or cardiac function recovery, when applied topically or injected systemically. However, injection of exosomes has been shown to result in rapid clearance from blood circulation and accumulation of the exosomes in the liver, spleen, lung, and gastrointestinal tract can be found as early as 2 h after injection. Topical administration of exosomes on the skin or ocular surface would suffer the same fate due to rapid fluid turnover (sweat or tears). Biodegradable or highly porous hydrogels have been utilized to load exosomes and to deliver a sustained therapeutic effect. They can also prevent the exosomes from being cleared prematurely and allow the delivery of a more localized and concentrated exosome dosage by placing the hydrogel directly at or in the proximity of the target site. In this mini-review, we elaborate on the challenges of conventional exosome administration and highlight the solution to the shortcomings in the form of exosome-incorporated hydrogels. Different techniques to encapsulate exosomes and examples of hydrogels that have been used to create sustained delivery systems of exosomes are also discussed.
Collapse
Affiliation(s)
- Andri K Riau
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Hon Shing Ong
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore.,Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Gary H F Yam
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore.,Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
88
|
J Hill M, Qi B, Bayaniahangar R, Araban V, Bakhtiary Z, Doschak M, Goh B, Shokouhimehr M, Vali H, Presley J, Zadpoor A, Harris M, Abadi P, Mahmoudi M. Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine (Lond) 2019; 14:2987-3006. [DOI: 10.2217/nnm-2018-0445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Joint replacement and bone reconstructive surgeries are on the rise globally. Current strategies for implants and bone regeneration are associated with poor integration and healing resulting in repeated surgeries. A multidisciplinary approach involving basic biological sciences, tissue engineering, regenerative medicine and clinical research is required to overcome this problem. Considering the nanostructured nature of bone, expertise and resources available through recent advancements in nanobiotechnology enable researchers to design and fabricate devices and drug delivery systems at the nanoscale to be more compatible with the bone tissue environment. The focus of this review is to present the recent progress made in the rationale and design of nanomaterials for tissue engineering and drug delivery relevant to bone regeneration.
Collapse
Affiliation(s)
- Michael J Hill
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Baowen Qi
- Center for Nanomedicine & Department of Anesthesiology, Brigham & Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Rasoul Bayaniahangar
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Vida Araban
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Zahra Bakhtiary
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian C Goh
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammadreza Shokouhimehr
- Department of Materials Science & Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - John F Presley
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Mitchel B Harris
- Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Parisa PSS Abadi
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Morteza Mahmoudi
- Precision Health Program & Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
89
|
Merola J, Reschke M, Pierce RW, Qin L, Spindler S, Baltazar T, Manes TD, Lopez-Giraldez F, Li G, Bracaglia LG, Xie C, Kirkiles-Smith N, Saltzman WM, Tietjen GT, Tellides G, Pober JS. Progenitor-derived human endothelial cells evade alloimmunity by CRISPR/Cas9-mediated complete ablation of MHC expression. JCI Insight 2019; 4:129739. [PMID: 31527312 PMCID: PMC6824302 DOI: 10.1172/jci.insight.129739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering may address organ shortages currently limiting clinical transplantation. Off-the-shelf engineered vascularized organs will likely use allogeneic endothelial cells (ECs) to construct microvessels required for graft perfusion. Vasculogenic ECs can be differentiated from committed progenitors (human endothelial colony-forming cells or HECFCs) without risk of mutation or teratoma formation associated with reprogrammed stem cells. Like other ECs, these cells can express both class I and class II major histocompatibility complex (MHC) molecules, bind donor-specific antibody (DSA), activate alloreactive T effector memory cells, and initiate rejection in the absence of donor leukocytes. CRISPR/Cas9-mediated dual ablation of β2-microglobulin and class II transactivator (CIITA) in HECFC-derived ECs eliminates both class I and II MHC expression while retaining EC functions and vasculogenic potential. Importantly, dually ablated ECs no longer bind human DSA or activate allogeneic CD4+ effector memory T cells and are resistant to killing by CD8+ alloreactive cytotoxic T lymphocytes in vitro and in vivo. Despite absent class I MHC molecules, these ECs do not activate or elicit cytotoxic activity from allogeneic natural killer cells. These data suggest that HECFC-derived ECs lacking MHC molecule expression can be utilized for engineering vascularized grafts that evade allorejection.
Collapse
Affiliation(s)
- Jonathan Merola
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Melanie Reschke
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut, USA
| | | | - Lingfeng Qin
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susann Spindler
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tania Baltazar
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Thomas D. Manes
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Francesc Lopez-Giraldez
- Yale Center for Genome Analysis and Department of Genetics, Yale University, New Haven, Connecticut, USA
| | - Guangxin Li
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Laura G. Bracaglia
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut, USA
| | - Catherine Xie
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nancy Kirkiles-Smith
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut, USA
| | - Gregory T. Tietjen
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jordan S. Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
90
|
O'Connor KC. Molecular Profiles of Cell-to-Cell Variation in the Regenerative Potential of Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:5924878. [PMID: 31636675 PMCID: PMC6766122 DOI: 10.1155/2019/5924878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell variation in the regenerative potential of mesenchymal stromal cells (MSCs) impedes the translation of MSC therapies into clinical practice. Cellular heterogeneity is ubiquitous across MSC cultures from different species and tissues. This review highlights advances to elucidate molecular profiles that identify cell subsets with specific regenerative properties in heterogeneous MSC cultures. Cell surface markers and global signatures are presented for proliferation and differentiation potential, as well as immunomodulation and trophic properties. Key knowledge gaps are discussed as potential areas of future research. Molecular profiles of MSC heterogeneity have the potential to enable unprecedented control over the regenerative potential of MSC therapies through the discovery of new molecular targets and as quality attributes to develop robust and reproducible biomanufacturing processes. These advances would have a positive impact on the nascent field of MSC therapeutics by accelerating the development of therapies with more consistent and effective treatment outcomes.
Collapse
Affiliation(s)
- Kim C. O'Connor
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
91
|
Hummitzsch L, Zitta K, Rusch R, Cremer J, Steinfath M, Gross J, Fandrich F, Berndt R, Albrecht M. Characterization of the Angiogenic Potential of Human Regulatory Macrophages (Mreg) after Ischemia/Reperfusion Injury In Vitro. Stem Cells Int 2019; 2019:3725863. [PMID: 31341483 PMCID: PMC6614961 DOI: 10.1155/2019/3725863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemia/reperfusion- (I/R-) induced organ damage represents one of the main causes of death worldwide, and new strategies to reduce I/R injury are urgently needed. We have shown that programmable cells of monocytic origin (PCMO) respond to I/R with the release of angiogenic mediators and that transplantation of PCMO results in increased neovascularization. Human regulatory macrophages (Mreg), which are also of monocytic origin, have been successfully employed in clinical transplantation studies due to their immunomodulatory properties. Here, we investigated whether Mreg also possess angiogenic potential in vitro and could represent a treatment option for I/R-associated illnesses. Mreg were differentiated using peripheral blood monocytes from different donors (N = 14) by incubation with M-CSF and human AB serum and stimulation with INF-gamma. Mreg cultures were subjected to 3 h of hypoxia and 24 h of reoxygenation (resembling I/R) or the respective nonischemic control. Cellular resilience, expression of pluripotency markers, secretion of angiogenic proteins, and influence on endothelial tube formation as a surrogate marker for angiogenesis were investigated. Mreg showed resilience against I/R that did not lead to increased cell damage. Mreg express DHRS9 as well as IDO and display a moderate to low expression pattern of several pluripotency genes (e.g., NANOG, OCT-4, and SOX2). I/R resulted in an upregulation of IDO (p < 0.001) while C-MYC and KLF4 were downregulated (p < 0.001 and p < 0.05). Proteome profiling revealed the secretion of numerous angiogenic proteins by Mreg of which several were strongly upregulated by I/R (e.g., MIP-1alpha, 19.9-fold; GM-CSF, 19.2-fold; PTX3, 5.8-fold; IL-1β, 5.2-fold; and MCP-1, 4.7-fold). The angiogenic potential of supernatants from Mreg subjected to I/R remains inconclusive. While Mreg supernatants from 3 donors induced tube formation, 2 supernatants were not effective. We suggest that Mreg may prove beneficial as a cell therapy-based treatment option for I/R-associated illnesses. However, donor characteristics seem to crucially influence the effectiveness of Mreg treatment.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rene Rusch
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Justus Gross
- Clinic for Vascular Surgery, Bad Segeberg, Germany
| | - Fred Fandrich
- Department of Applied Cell Therapy, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
92
|
Stem Cells to Modulate IR: a Regenerative Medicine-Based Approach to Organ Preservation. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
93
|
Bueno C, Calero-Nieto FJ, Wang X, Valdés-Mas R, Gutiérrez-Agüera F, Roca-Ho H, Ayllon V, Real PJ, Arambilet D, Espinosa L, Torres-Ruiz R, Agraz-Doblas A, Varela I, de Boer J, Bigas A, Gottgens B, Marschalek R, Menendez P. Enhanced hemato-endothelial specification during human embryonic differentiation through developmental cooperation between AF4-MLL and MLL-AF4 fusions. Haematologica 2019; 104:1189-1201. [PMID: 30679325 PMCID: PMC6545840 DOI: 10.3324/haematol.2018.202044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
The t(4;11)(q21;q23) translocation is associated with high-risk infant pro-B-cell acute lymphoblastic leukemia and arises prenatally during embryonic/fetal hematopoiesis. The developmental/pathogenic contribution of the t(4;11)-resulting MLL-AF4 (MA4) and AF4-MLL (A4M) fusions remains unclear; MA4 is always expressed in patients with t(4;11)+ B-cell acute lymphoblastic leukemia, but the reciprocal fusion A4M is expressed in only half of the patients. Because prenatal leukemogenesis manifests as impaired early hematopoietic differentiation, we took advantage of well-established human embryonic stem cell-based hematopoietic differentiation models to study whether the A4M fusion cooperates with MA4 during early human hematopoietic development. Co-expression of A4M and MA4 strongly promoted the emergence of hemato-endothelial precursors, both endothelial- and hemogenic-primed. Double fusion-expressing hemato-endothelial precursors specified into significantly higher numbers of both hematopoietic and endothelial-committed cells, irrespective of the differentiation protocol used and without hijacking survival/proliferation. Functional analysis of differentially expressed genes and differentially enriched H3K79me3 genomic regions by RNA-sequencing and H3K79me3 chromatin immunoprecipitation-sequencing, respectively, confirmed a hematopoietic/endothelial cell differentiation signature in double fusion-expressing hemato-endothelial precursors. Importantly, chromatin immunoprecipitation-sequencing analysis revealed a significant enrichment of H3K79 methylated regions specifically associated with HOX-A cluster genes in double fusion-expressing differentiating hematopoietic cells. Overall, these results establish a functional and molecular cooperation between MA4 and A4M fusions during human hematopoietic development.
Collapse
Affiliation(s)
- Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - Fernando J Calero-Nieto
- Department of Hematology, Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, UK
| | - Xiaonan Wang
- Department of Hematology, Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, UK
| | | | - Francisco Gutiérrez-Agüera
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Heleia Roca-Ho
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Veronica Ayllon
- GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government and University of Granada, Department of Biochemistry and Molecular Biology, Granada, Spain
| | - Pedro J Real
- GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government and University of Granada, Department of Biochemistry and Molecular Biology, Granada, Spain
| | - David Arambilet
- Programa de Cáncer, Instituto Hospital del Mar de Investigaciones Médicas. Barcelona. Spain
| | - Lluis Espinosa
- Programa de Cáncer, Instituto Hospital del Mar de Investigaciones Médicas. Barcelona. Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - Raul Torres-Ruiz
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Antonio Agraz-Doblas
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-Sodercan), Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-Sodercan), Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Jasper de Boer
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anna Bigas
- Programa de Cáncer, Instituto Hospital del Mar de Investigaciones Médicas. Barcelona. Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - Bertie Gottgens
- Department of Hematology, Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, UK
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt, Germany
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
94
|
Fernández-Pérez J, Ahearne M. Decellularization and recellularization of cornea: Progress towards a donor alternative. Methods 2019; 171:86-96. [PMID: 31128238 DOI: 10.1016/j.ymeth.2019.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
The global shortage of donor corneas for transplantation has led to corneal bioengineering being investigated as a method to generate transplantable tissues. Decellularized corneas are among the most promising materials for engineering corneal tissue since they replicate the complex structure and composition of real corneas. Decellularization is a process that aims to remove cells from organs or tissues resulting in a cell-free scaffold consisting of the tissues extracellular matrix. Here different decellularization techniques are described, including physical, chemical and biological methods. Analytical techniques to confirm decellularization efficiency are also discussed. Different cell sources for the recellularization of the three layers of the cornea, recellularization methods used in the literature and techniques used to assess the outcome of the implantation of such scaffolds are examined. Studies involving the application of decellularized corneas in animal models and human clinical studies are discussed. Finally, challenges for this technology are explored involving scalability, automatization and regulatory affairs.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Dept of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Mark Ahearne
- Dept of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Ireland.
| |
Collapse
|
95
|
Gorecka J, Kostiuk V, Fereydooni A, Gonzalez L, Luo J, Dash B, Isaji T, Ono S, Liu S, Lee SR, Xu J, Liu J, Taniguchi R, Yastula B, Hsia HC, Qyang Y, Dardik A. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther 2019; 10:87. [PMID: 30867069 PMCID: PMC6416973 DOI: 10.1186/s13287-019-1185-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Wound healing is the physiologic response to a disruption in normal skin architecture and requires both spatial and temporal coordination of multiple cell types and cytokines. This complex process is prone to dysregulation secondary to local and systemic factors such as ischemia and diabetes that frequently lead to chronic wounds. Chronic wounds such as diabetic foot ulcers are epidemic with great cost to the healthcare system as they heal poorly and recur frequently, creating an urgent need for new and advanced therapies. Stem cell therapy is emerging as a potential treatment for chronic wounds, and adult-derived stem cells are currently employed in several commercially available products; however, stem cell therapy is limited by the need for invasive harvesting techniques, immunogenicity, and limited cell survival in vivo. Induced pluripotent stem cells (iPSC) are an exciting cell type with enhanced therapeutic and translational potential. iPSC are derived from adult cells by in vitro induction of pluripotency, obviating the ethical dilemmas surrounding the use of embryonic stem cells; they are harvested non-invasively and can be transplanted autologously, reducing immune rejection; and iPSC are the only cell type capable of being differentiated into all of the cell types in healthy skin. This review focuses on the use of iPSC in animal models of wound healing including limb ischemia, as well as their limitations and methods aimed at improving iPSC safety profile in an effort to hasten translation to human studies.
Collapse
Affiliation(s)
- Jolanta Gorecka
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Valentyna Kostiuk
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Arash Fereydooni
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Jiesi Luo
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, Ste 773A, New Haven, CT, 06511, USA
| | - Biraja Dash
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, PO Box 208062, New Haven, CT, 06520-8062, USA
| | - Toshihiko Isaji
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Shun Ono
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Shirley Liu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Shin Rong Lee
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Jianbiao Xu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Jia Liu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Ryosuke Taniguchi
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Bogdan Yastula
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Henry C Hsia
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, PO Box 208062, New Haven, CT, 06520-8062, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, Ste 773A, New Haven, CT, 06511, USA.,Yale Stem Cell Center, Yale University, New Haven, USA.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, USA.,Department of Pathology, Yale University, New Haven, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA.
| |
Collapse
|
96
|
Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 2019; 37:303-313. [PMID: 30833775 DOI: 10.1038/s41587-019-0048-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/23/2019] [Indexed: 01/10/2023]
Abstract
Adult stem cell-derived organoids are three-dimensional epithelial structures that recapitulate fundamental aspects of their organ of origin. We describe conditions for the long-term growth of primary kidney tubular epithelial organoids, or 'tubuloids'. The cultures are established from human and mouse kidney tissue and can be expanded for at least 20 passages (>6 months) while retaining a normal number of chromosomes. In addition, cultures can be established from human urine. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. We apply tubuloids to model infectious, malignant and hereditary kidney diseases in a personalized fashion. BK virus infection of tubuloids recapitulates in vivo phenomena. Tubuloids are established from Wilms tumors. Kidney tubuloids derived from the urine of a subject with cystic fibrosis allow ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function.
Collapse
|
97
|
Human Pluripotent Stem Cells: Applications and Challenges for Regenerative Medicine and Disease Modeling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:189-224. [PMID: 31740987 DOI: 10.1007/10_2019_117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, human pluripotent stem (hPS) cells have started to emerge as a potential tool with application in fields such as regenerative medicine, disease modeling, and drug screening. In particular, the ability to differentiate human-induced pluripotent stem (hiPS) cells into different cell types and to mimic structures and functions of a specific target organ, resourcing to organoid technology, has introduced novel model systems for disease recapitulation while offering a powerful tool to provide a faster and reproducible approach in the process of drug discovery. All these technologies are expected to improve the overall quality of life of the humankind. Here, we highlight the main applications of hiPS cells and the main challenges associated with the translation of hPS cell derivatives into clinical settings and other biomedical applications, such as the costs of the process and the ability to mimic the complexity of the in vivo systems. Moreover, we focus on the bioprocessing approaches that can be applied towards the production of high numbers of cells as well as their efficient differentiation into the final product and further purification.
Collapse
|
98
|
Burgess JK, Heijink IH. Paving the Road for Mesenchymal Stem Cell-Derived Exosome Therapy in Bronchopulmonary Dysplasia and Pulmonary Hypertension. STEM CELL-BASED THERAPY FOR LUNG DISEASE 2019. [PMCID: PMC7122497 DOI: 10.1007/978-3-030-29403-8_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic neonatal lung disease characterized by inflammation and arrest of alveolarization. Its common sequela, pulmonary hypertension (PH), presents with elevated pulmonary vascular resistance associated with remodeling of the pulmonary arterioles. Despite notable advancements in neonatal medicine, there is a severe lack of curative treatments to help manage the progressive nature of these diseases. Numerous studies in preclinical models of BPD and PH have demonstrated that therapies based on mesenchymal stem/stromal cells (MSCs) can resolve pulmonary inflammation and ameliorate the severity of disease. Recent evidence suggests that novel, cell-free approaches based on MSC-derived exosomes (MEx) might represent a compelling therapeutic alternative offering major advantages over treatments based on MSC transplantation. Here, we will discuss the development of MSC-based therapies, stressing the centrality of paracrine action as the actual vector of MSC therapeutic functionality, focusing on MEx. We will briefly present our current understanding of the biogenesis and secretion of MEx, and discuss potential mechanisms by which they afford such beneficial effects, including immunomodulation and restoration of homeostasis in diseased states. We will also review ongoing clinical trials using MSCs as treatment for BPD that pave the way for bringing cell-free, MEx-based therapeutics from the bench to the NICU setting.
Collapse
Affiliation(s)
- Janette K. Burgess
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Irene H. Heijink
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|
99
|
Abstract
The retina is a very fine and layered neural tissue, which vitally depends on the preservation of cells, structure, connectivity and vasculature to maintain vision. There is an urgent need to find technical and biological solutions to major challenges associated with functional replacement of retinal cells. The major unmet challenges include generating sufficient numbers of specific cell types, achieving functional integration of transplanted cells, especially photoreceptors, and surgical delivery of retinal cells or tissue without triggering immune responses, inflammation and/or remodeling. The advances of regenerative medicine enabled generation of three-dimensional tissues (organoids), partially recreating the anatomical structure, biological complexity and physiology of several tissues, which are important targets for stem cell replacement therapies. Derivation of retinal tissue in a dish creates new opportunities for cell replacement therapies of blindness and addresses the need to preserve retinal architecture to restore vision. Retinal cell therapies aimed at preserving and improving vision have achieved many improvements in the past ten years. Retinal organoid technologies provide a number of solutions to technical and biological challenges associated with functional replacement of retinal cells to achieve long-term vision restoration. Our review summarizes the progress in cell therapies of retina, with focus on human pluripotent stem cell-derived retinal tissue, and critically evaluates the potential of retinal organoid approaches to solve a major unmet clinical need—retinal repair and vision restoration in conditions caused by retinal degeneration and traumatic ocular injuries. We also analyze obstacles in commercialization of retinal organoid technology for clinical application.
Collapse
|
100
|
Mesenchymal stem cells in combination with low-dose rapamycin significantly prolong islet allograft survival through induction of regulatory T cells. Biochem Biophys Res Commun 2018; 506:619-625. [DOI: 10.1016/j.bbrc.2018.10.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
|