51
|
Turner RJ, Renshaw JC, Hamilton A. Biogenic Hydroxyapatite: A New Material for the Preservation and Restoration of the Built Environment. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31401-31410. [PMID: 28737897 DOI: 10.1021/acsami.7b07927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ordinary Portland cement (OPC) is by weight the world's most produced man-made material and is used in a variety of applications in environments ranging from buildings, to nuclear wasteforms, and within the human body. In this paper, we present for the first time the direct deposition of biogenic hydroxyapatite onto the surface of OPC in a synergistic process which uses the composition of the cement substrate. This hydroxyapatite is very similar to that found in nature, having a similar crystallite size, iron and carbonate substitution, and a semi-crystalline structure. Hydroxyapatites with such a structure are known to be mechanically stronger and more biocompatible than synthetic or biomimetic hydroxyapatites. The formation of this biogenic hydroxyapatite coating therefore has significance in a range of contexts. In medicine, hydroxyapatite coatings are linked to improved biocompatibility of ceramic implant materials. In the built environment, hydroxyapatite coatings have been proposed for the consolidation and protection of sculptural materials such as marble and limestone, with biogenic hydroxyapatites having reduced solubility compared to synthetic apatites. Hydroxyapatites have also been established as effective for the adsorption and remediation of environmental contaminants such as radionuclides and heavy metals. We identify that in addition to providing a biofilm scaffold for nucleation, the metabolic activity of Pseudomonas fluorescens increases the pH of the growth medium to a suitable level for hydroxyapatite formation. The generated ammonia reacts with phosphate in the growth medium, producing ammonium phosphates which are a precursor to the formation of hydroxyapatite under conditions of ambient temperature and pressure. Subsequently, this biogenic deposition process takes place in a simple reaction system under mild chemical conditions and is cheap and easy to apply to fragile biological or architectural surfaces.
Collapse
Affiliation(s)
- Ronald J Turner
- Department of Civil and Environmental Engineering, University of Strathclyde , Glasgow, G1 1XQ, United Kingdom
| | - Joanna C Renshaw
- Department of Civil and Environmental Engineering, University of Strathclyde , Glasgow, G1 1XQ, United Kingdom
| | - Andrea Hamilton
- Department of Civil and Environmental Engineering, University of Strathclyde , Glasgow, G1 1XQ, United Kingdom
| |
Collapse
|
52
|
Sarem M, Lüdeke S, Thomann R, Salavei P, Zou Z, Habraken W, Masic A, Shastri VP. Disordered Conformation with Low Pii Helix in Phosphoproteins Orchestrates Biomimetic Apatite Formation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701629. [PMID: 28714191 DOI: 10.1002/adma.201701629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The interplay between noncollagenous proteins and biomineralization is widely accepted, yet the contribution of their secondary structure in mineral formation remains to be clarified. This study demonstrates a role for phosvitin, an intrinsically disordered phosphoprotein, in chick embryo skeletal development, and using circular dichroism and matrix least-squares Henderson-Hasselbalch global fitting, unravels three distinct pH-dependent secondary structures in phosvitin. By sequestering phosvitin on a biomimetic 3D insoluble cationic framework at defined pHs, access is gained to phosvitin in various conformational states. Induction of biomimetic mineralization at near physiological conditions reveals that a disordered secondary structure with a low content of PII helix is remarkably efficient at promoting calcium adsorption, and results in the formation of biomimetic hydroxyapatite through an amorphous calcium phosphate precursor. By extending this finding to phosphorylated full-length human recombinant dentin matrix protein-1 (17-513 AA), this bioinspired approach provides compelling evidence for the role of a disordered secondary structure in phosphoproteins in bone-like apatite formation.
Collapse
Affiliation(s)
- Melika Sarem
- Institute for Macromolecular Chemistry, BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
- Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513, Teltow, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Ralf Thomann
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Pavel Salavei
- BIOSS Toolbox, Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Zhaoyong Zou
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Science Park Golm, 14424, Potsdam, Germany
| | - Wouter Habraken
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Science Park Golm, 14424, Potsdam, Germany
| | - Admir Masic
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02149, USA
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
- Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513, Teltow, Germany
| |
Collapse
|
53
|
Achrai B, Wagner HD. The turtle carapace as an optimized multi-scale biological composite armor – A review. J Mech Behav Biomed Mater 2017; 73:50-67. [DOI: 10.1016/j.jmbbm.2017.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 01/03/2023]
|
54
|
Development of nanocomposite scaffolds based on TiO 2 doped in grafted chitosan/hydroxyapatite by freeze drying method and evaluation of biocompatibility. Int J Biol Macromol 2017; 101:51-58. [DOI: 10.1016/j.ijbiomac.2017.03.067] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 01/29/2023]
|
55
|
In situ examination of osteoblast biomineralization on sulfonated polystyrene-modified substrates using Fourier transform infrared microspectroscopy. Biointerphases 2017; 12:031001. [PMID: 28693327 DOI: 10.1116/1.4992137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is a skeletal disorder that is characterized by the loss of bone mineral density (BMD) resulting in increased risk of fracture. However, it has been shown that BMD is not the only indicator of fracture risk, as the strength of bone depends on a number of factors, including bone mass, architecture and material properties. Physiological mineral deposition requires the formation of a properly developed extracellular matrix (ECM), which recruits calcium and phosphate ions into the synthesis of apatite crystals. Temporal and spatial compositional and structural changes of biological apatite greatly depend on the properties of the crystals initially formed. As such, Fourier-transform infrared microspectroscopy (FTIRM) is capable of examining adaptive remodeling by providing compositional information such as the level of mineralization and carbonate substitution, as well as quality and perfection of the mineral phase. The objective of this study was to evaluate the in vitro mineralization development of MC3T3-E1 murine calvarial preosteoblasts cultured on different substrata by comparing FTIRM measurements from two subclones (mineralizing subclone 4 and nonmineralizing subclone 24) maintained in culture for up to 21 days. The results showed that modulation of the substrate surface using a thin coating of sulfonated polystyrene (SPS) provided favorable conditions for the development of a mineralizable ECM and that the mineral formed by the osteoblasts was similar to that of fully mineralized bone tissue. Specifically, the mineralizing subclone produced significantly more mineral phosphate when cultured on SPS-coated substrates for 21 days, compared to the same culture on bare substrates. In contrast, the level of mineralization in nonmineralizing subclone was low on both SPS-coated and uncoated substrates. The mineralizing subclone also produced comparable amounts of collagen on both substrates; however, mineralization was significantly higher in the SPS culture. The nonmineralizing subclone produced comparable amounts of collagen on day 1 but much less on day 21. Collagen maturity ratio increased in the mineralizing subclone from day 1 to day 21, but remained unchanged in the nonmineralizing subclone. These results suggest that SPS-treatment of the substrate surface may alter collagen remodeling; however, other factors may also influence osteoblast mineralization in the long term.
Collapse
|
56
|
Ko JW, Son EJ, Park CB. Nature-Inspired Synthesis of Nanostructured Electrocatalysts through Mineralization of Calcium Carbonate. CHEMSUSCHEM 2017; 10:2585-2591. [PMID: 28493469 DOI: 10.1002/cssc.201700616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Indexed: 05/12/2023]
Abstract
Biomineralization is a biogenic process that produces elaborate inorganic and organic hybrid materials in nature. Inspired by the natural process, this study explored a new mineralization approach to create nanostructured CaCO3 films composed of amorphous CaCO3 hemispheres by using catechol-rich polydopamine (PDA) as a biomimetic mediator. The thus synthesized biomimetic CaCO3 was successfully transformed to nanostructured films of metal-oxide minerals, such as FeOOH, CoCO3 , NiCO3 , and MnOOH, through a simple procedure. The CaCO3 -templated metal-oxide minerals functioned as efficient electrocatalysts; a CaCO3 -templated cobalt phosphate (nanoCoPi) film exhibited high stability as a water-oxidation electrocatalyst with a current density of 1.5 mA cm-2 . The nanostructure of nanoCoPi, consisting of individual nanoparticles (≈70 nm) and numerous internal pores (BET surface area: 3.17 m2 g-1 ), facilitated an additional charge-transfer pathway from the electrode to individual active sites of the catalyst. This work demonstrates a plausible strategy for facile and green synthesis of nanostructured electrocatalysts through biomimetic CaCO3 mineralization.
Collapse
Affiliation(s)
- Jong Wan Ko
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305701, Republic of Korea
| | - Eun Jin Son
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305701, Republic of Korea
| |
Collapse
|
57
|
Müller WEG, Schröder HC, Wang X. The Understanding of the Metazoan Skeletal System, Based on the Initial Discoveries with Siliceous and Calcareous Sponges. Mar Drugs 2017; 15:E172. [PMID: 28604622 PMCID: PMC5484122 DOI: 10.3390/md15060172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 12/25/2022] Open
Abstract
Initiated by studies on the mechanism of formation of the skeletons of the evolutionary oldest still extant multicellular animals, the sponges (phylum Porifera) have provided new insights into the mechanism of formation of the Ca-phosphate/hydroxyapatite skeleton of vertebrate bone. Studies on the formation of the biomineral skeleton of sponges revealed that both the formation of the inorganic siliceous skeletons (sponges of the class of Hexactinellida and Demospongiae) and of the calcareous skeletons (class of Calcarea) is mediated by enzymes (silicatein: polymerization of biosilica; and carbonic anhydrase: deposition of Ca-carbonate). Detailed studies of the initial mineralization steps in human bone-forming cells showed that this process is also controlled by enzymes, starting with the deposition of Ca-carbonate bio-seeds, mediated by carbonic anhydrases-II and -IX, followed by non-enzymatic transformation of the formed amorphous Ca-carbonate deposits into amorphous Ca-phosphate and finally hydroxyapatite crystals. The required phosphate is provided by enzymatic (alkaline phosphatase-mediated) degradation of an inorganic polymer, polyphosphate (polyP), which also acts as a donor for chemically useful energy in this process. These new discoveries allow the development of novel biomimetic strategies for treatment of bone diseases and defects.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
58
|
Niu X, Fan R, Tian F, Guo X, Li P, Feng Q, Fan Y. Calcium concentration dependent collagen mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:137-143. [DOI: 10.1016/j.msec.2016.12.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/29/2016] [Accepted: 12/16/2016] [Indexed: 11/24/2022]
|
59
|
Biocalcite and Carbonic Acid Activators. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017. [PMID: 28238040 DOI: 10.1007/978-3-319-51284-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Based on evolution of biomineralizing systems and energetic considerations, there is now compelling evidence that enzymes play a driving role in the formation of the inorganic skeletons from the simplest animals, the sponges, up to humans. Focusing on skeletons based on calcium minerals, the principle enzymes involved are the carbonic anhydrase (formation of the calcium carbonate-based skeletons of many invertebrates like the calcareous sponges, as well as deposition of the calcium carbonate bioseeds during human bone formation) and the alkaline phosphatase (providing the phosphate for bone calcium phosphate-hydroxyapatite formation). These two enzymes, both being involved in human bone formation, open novel not yet exploited targets for pharmacological intervention of human bone diseases like osteoporosis, using compounds that act as activators of these enzymes. This chapter focuses on carbonic anhydrases of biomedical interest and the search for potential activators of these enzymes, was well as the interplay between carbonic anhydrase-mediated calcium carbonate bioseed synthesis and metabolism of energy-rich inorganic polyphosphates. Beyond that, the combination of the two metabolic products, calcium carbonate and calcium-polyphosphate, if applied in an amorphous form, turned out to provide the basis for a new generation of scaffold materials for bone tissue engineering and repair that are, for the first time, morphogenetically active.
Collapse
|
60
|
Mechiche Alami S, Rammal H, Boulagnon-Rombi C, Velard F, Lazar F, Drevet R, Laurent Maquin D, Gangloff S, Hemmerlé J, Voegel J, Francius G, Schaaf P, Boulmedais F, Kerdjoudj H. Harnessing Wharton's jelly stem cell differentiation into bone-like nodule on calcium phosphate substrate without osteoinductive factors. Acta Biomater 2017; 49:575-589. [PMID: 27888100 DOI: 10.1016/j.actbio.2016.11.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 01/05/2023]
Abstract
An important aim of bone regenerative medicine is to design biomaterials with controlled chemical and topographical features to guide stem cell fate towards osteoblasts without addition of specific osteogenic factors. Herein, we find that sprayed bioactive and biocompatible calcium phosphate substrates (CaP) with controlled topography induce, in a well-orchestrated manner, Wharton's jelly stem cells (WJ-SCs) differentiation into osteoblastic lineage without any osteogenic supplements. The resulting WJ-SCs commitment exhibits features of native bone, through the formation of three-dimensional bone-like nodule with osteocyte-like cells embedded into a mineralized type I collagen. To our knowledge, these results present the first observation of a whole differentiation process from stem cell to osteocytes-like on a synthetic material. This suggests a great potential of sprayed CaP and WJ-SCs in bone tissue engineering. These unique features may facilitate the transition from bench to bedside and the development of successful engineered bone. STATEMENT OF SIGNIFICANCE Designing materials to direct stem cell fate has a relevant impact on stem cell biology and provides insights facilitating their clinical application in regenerative medicine. Inspired by natural bone compositions, a friendly automated spray-assisted system was used to build calcium phosphate substrate (CaP). Sprayed biomimetic solutions using mild conditions led to the formation of CaP with controlled physical properties, good bioactivity and biocompatibility. Herein, we show that via optimization of physical properties, CaP substrate induce osteogenic differentiation of Wharton's jelly stem cells (WJ-SCs) without adding osteogenic supplement factors. These results suggest a great potential of sprayed CaP and WJ-SCs in bone tissue engineering and may facilitate the transition from bench to beside and the development of clinically successful engineered bone.
Collapse
|
61
|
Thompson KD, Weiss-Bilka HE, McGough EB, Ravosa MJ. Bone up: craniomandibular development and hard-tissue biomineralization in neonate mice. ZOOLOGY 2017; 124:51-60. [PMID: 28807504 DOI: 10.1016/j.zool.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
The presence of regional variation in the osteogenic abilities of cranial bones underscores the fact that the mechanobiology of the mammalian skull is more complex than previously recognized. However, the relationship between patterns of cranial bone formation and biomineralization remains incompletely understood. In four strains of mice, micro-computed tomography was used to measure tissue mineral density during perinatal development in three skull regions (calvarium, basicranium, mandible) noted for variation in loading environment, embryological origin, and ossification mode. Biomineralization levels increased during perinatal ontogeny in the mandible and calvarium, but did not increase in the basicranium. Tissue mineral density levels also varied intracranially, with density in the mandible being highest, in the basicranium intermediate, and in the calvarium lowest. Perinatal increases in, and elevated levels of, mandibular biomineralization appear related to the impending postweaning need to resist elevated masticatory stresses. Similarly, perinatal increases in calvarial biomineralization may be linked to ongoing brain expansion, which is known to stimulate sutural bone formation in this region. The lack of perinatal increase in basicranial biomineralization could be a result of earlier developmental maturity in the cranial base relative to other skull regions due to its role in supporting the brain's mass throughout ontogeny. These results suggest that biomineralization levels and age-related trajectories throughout the skull are influenced by the functional environment and ontogenetic processes affecting each region, e.g., onset of masticatory loads in the mandible, whereas variation in embryology and ossification mode may only have secondary effects on patterns of biomineralization. Knowledge of perinatal variation in tissue mineral density, and of normal cranial bone formation early in development, may benefit clinical therapies aiming to correct developmental defects and traumatic injuries in the skull, and more generally characterize loading environments and skeletal adaptations in mammals by highlighting the need for multi-level analyses for evaluating functional performance of cranial bone.
Collapse
Affiliation(s)
- Khari D Thompson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Holly E Weiss-Bilka
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elizabeth B McGough
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew J Ravosa
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
62
|
Kim HJ, Choi BH, Jun SH, Cha HJ. Sandcastle Worm-Inspired Blood-Resistant Bone Graft Binder Using a Sticky Mussel Protein for Augmented In Vivo Bone Regeneration. Adv Healthc Mater 2016; 5:3191-3202. [PMID: 27896935 DOI: 10.1002/adhm.201601169] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Indexed: 01/27/2023]
Abstract
Xenogenic bone substitutes are commonly used during orthopedic reconstructive procedures to assist bone regeneration. However, huge amounts of blood accompanied with massive bone loss usually increase the difficulty of placing the xenograft into the bony defect. Additionally, the lack of an organic matrix leads to a decrease in the mechanical strength of the bone-grafted site. For effective bone grafting, this study aims at developing a mussel adhesion-employed bone graft binder with great blood-resistance and enhanced mechanical properties. The distinguishing water (or blood) resistance of the binder originates from sandcastle worm-inspired complex coacervation using negatively charged hyaluronic acid (HA) and a positively charged recombinant mussel adhesive protein (rMAP) containing tyrosine residues. The rMAP/HA coacervate stabilizes the agglomerated bone graft in the presence of blood. Moreover, the rMAP/HA composite binder enhances the mechanical and hemostatic properties of the bone graft agglomerate. These outstanding features improve the osteoconductivity of the agglomerate and subsequently promote in vivo bone regeneration. Thus, the blood-resistant coacervated mussel protein glue is a promising binding material for effective bone grafting and can be successfully expanded to general bone tissue engineering.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Chemical Engineering; Pohang University of Science and Technology; Pohang 37673 South Korea
| | - Bong-Hyuk Choi
- Department of Chemical Engineering; Pohang University of Science and Technology; Pohang 37673 South Korea
| | - Sang Ho Jun
- Department of Dentistry; Anam Hospital; Korea University Medical Center; Seoul 02841 South Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering; Pohang University of Science and Technology; Pohang 37673 South Korea
| |
Collapse
|
63
|
Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, Bozec L, Mudera V. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine 2016; 11:4743-4763. [PMID: 27695330 PMCID: PMC5034904 DOI: 10.2147/ijn.s107624] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biomineralization is a dynamic, complex, lifelong process by which living organisms control precipitations of inorganic nanocrystals within organic matrices to form unique hybrid biological tissues, for example, enamel, dentin, cementum, and bone. Understanding the process of mineral deposition is important for the development of treatments for mineralization-related diseases and also for the innovation and development of scaffolds. This review provides a thorough overview of the up-to-date information on the theories describing the possible mechanisms and the factors implicated as agonists and antagonists of mineralization. Then, the role of calcium and phosphate ions in the maintenance of teeth and bone health is described. Throughout the life, teeth and bone are at risk of demineralization, with particular emphasis on teeth, due to their anatomical arrangement and location. Teeth are exposed to food, drink, and the microbiota of the mouth; therefore, they have developed a high resistance to localized demineralization that is unmatched by bone. The mechanisms by which demineralization-remineralization process occurs in both teeth and bone and the new therapies/technologies that reverse demineralization or boost remineralization are also scrupulously discussed. Technologies discussed include composites with nano- and micron-sized inorganic minerals that can mimic mechanical properties of the tooth and bone in addition to promoting more natural repair of surrounding tissues. Turning these new technologies to products and practices would improve health care worldwide.
Collapse
Affiliation(s)
- Ensanya Ali Abou Neel
- Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Anas Aljabo
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Adam Strange
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Salwa Ibrahim
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Melanie Coathup
- UCL Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, London, UK
| | - Anne M Young
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Laurent Bozec
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Vivek Mudera
- UCL Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, London, UK
| |
Collapse
|
64
|
|
65
|
Dickinson GH, Yang X, Wu F, Orihuela B, Rittschof D, Beniash E. Localization of Phosphoproteins within the Barnacle Adhesive Interface. THE BIOLOGICAL BULLETIN 2016; 230:233-42. [PMID: 27365418 PMCID: PMC6377941 DOI: 10.1086/bblv230n3p233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Barnacles permanently adhere to nearly any inert substrate using proteinaceous glue. The glue consists of at least ten major proteins, some of which have been isolated and sequenced. Questions still remain about the chemical mechanisms involved in adhesion and the potential of the glue to serve as a platform for mineralization of the calcified base plate. We tested the hypothesis that barnacle glue contains phosphoproteins, which have the potential to play a role in both adhesion and mineralization. Using a combination of phosphoprotein-specific gel staining and Western blotting with anti-phosphoserine antibody, we identified multiple phosphorylated proteins in uncured glue secretions from the barnacle Amphibalanus amphitrite The protein composition of the glue and the quantity and abundance of phosphoproteins varied distinctly among individual barnacles, possibly due to cyclical changes in the glue secretion over time. We assessed the location of the phosphoproteins within the barnacle glue layer using decalcified barnacle base plates and residual glue deposited by reattached barnacles. Phosphoproteins were found throughout the organic matrix of the base plate and within the residual glue. Staining within the residual glue appeared most intensely in regions where capillary glue ducts, which are involved in cyclical release of glue, had been laid down. Lastly, mineralization studies of glue proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that proteins identified as phosphorylated possibly induce mineralization of calcium carbonate (CaCO3). These results contribute to our understanding of the protein composition of barnacle glue, and provide new insights into the potential roles of phosphoproteins in underwater bioadhesives.
Collapse
Affiliation(s)
- Gary H Dickinson
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213; Department of Biology, The College of New Jersey, 2000 Pennington Road, Ewing, New Jersey 08628; and
| | - Xu Yang
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213
| | - Fanghui Wu
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213
| | - Beatriz Orihuela
- Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, North Carolina 28516
| | - Dan Rittschof
- Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, North Carolina 28516
| | - Elia Beniash
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213;
| |
Collapse
|
66
|
Prajatelistia E, Ju SW, Sanandiya ND, Jun SH, Ahn JS, Hwang DS. Tunicate-Inspired Gallic Acid/Metal Ion Complex for Instant and Efficient Treatment of Dentin Hypersensitivity. Adv Healthc Mater 2016; 5:919-27. [PMID: 26867019 DOI: 10.1002/adhm.201500878] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/07/2016] [Indexed: 12/30/2022]
Abstract
Dentin hypersensitivity is sharp and unpleasant pains caused by exposed dentinal tubules when enamel outside of the tooth wears away. The occlusion of dentinal tubules via in situ remineralization of hydroxyapatite is the best method to alleviate the symptoms caused by dentin hypersensitivity. Commercially available dental desensitizers are generally effective only on a specific area and are relatively toxic, and their performance usually depends on the skill of the clinician. Here, a facile and efficient dentin hypersensitivity treatment with remarkable aesthetic improvement inspired by the tunicate-self-healing process is reported. As pyrogallol groups in tunicate proteins conjugate with metal ions to heal the torn body armor of a tunicate, the ingenious mechanism by introducing gallic acid (GA) as a cheap, abundant, and edible alternative to the pyrogallol groups of the tunicate combined with a varied daily intake of metal ion sources is mimicked. In particular, the GA/Fe(3+) complex exhibits the most promising results, to the instant ≈52% blockage in tubules within 4 min and ≈87% after 7 d of immersion in artificial saliva. Overall, the GA/metal ion complex-mediated coating is facile, instant, and effective, and is suggested as an aesthetic solution for treating dentin hypersensitivity.
Collapse
Affiliation(s)
- Ekavianty Prajatelistia
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Sung-Won Ju
- Dental Research Institute and Department of Biomaterials Science, School of Dentistry, Seoul National University, Seoul, 110-749, South Korea
| | - Naresh D Sanandiya
- Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Sang Ho Jun
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Korea University Anam Hospital, Seoul, 136-705, South Korea
| | - Jin-Soo Ahn
- Dental Research Institute and Department of Biomaterials Science, School of Dentistry, Seoul National University, Seoul, 110-749, South Korea
| | - Dong Soo Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784, South Korea
- Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
67
|
Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:190-8. [DOI: 10.1016/j.msec.2015.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/01/2015] [Accepted: 12/18/2015] [Indexed: 11/17/2022]
|
68
|
Di Mauro V, Iafisco M, Salvarani N, Vacchiano M, Carullo P, Ramírez-Rodríguez GB, Patrício T, Tampieri A, Miragoli M, Catalucci D. Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs. Nanomedicine (Lond) 2016; 11:891-906. [DOI: 10.2217/nnm.16.26] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To develop biocompatible and bioresorbable negatively charged calcium phosphate nanoparticles (CaP-NPs) as an innovative therapeutic system for the delivery of bioactive molecules to the heart. Materials & methods: CaP-NPs were synthesized via a straightforward one-pot biomineralization-inspired protocol employing citrate as a stabilizing agent and regulator of crystal growth. CaP-NPs were administered to cardiac cells in vitro and effects of treatments were assessed. CaP-NPs were administered in vivo and delivery of microRNAs was evaluated. Results: CaP-NPs efficiently internalized into cardiomyocytes without promoting toxicity or interfering with any functional properties. CaP-NPs successfully encapsulated synthetic microRNAs, which were efficiently delivered into cardiac cells in vitro and in vivo. Conclusion: CaP-NPs are a safe and efficient drug-delivery system for potential therapeutic treatments of polarized cells such as cardiomyocytes.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- National Research Council (CNR), Institute of Genetics & Biomedical Research, Milan Unit, Milan 20138, Italy
- Humanitas Clinical & Research Center, Rozzano (MI) 20089, Italy
| | - Michele Iafisco
- National Research Council (CNR), Institute of Science & Technology for Ceramics (ISTEC) 48018 Faenza (RA), Italy
| | - Nicolò Salvarani
- National Research Council (CNR), Institute of Genetics & Biomedical Research, Milan Unit, Milan 20138, Italy
- Humanitas Clinical & Research Center, Rozzano (MI) 20089, Italy
| | - Marco Vacchiano
- National Research Council (CNR), Institute of Genetics & Biomedical Research, Milan Unit, Milan 20138, Italy
| | - Pierluigi Carullo
- National Research Council (CNR), Institute of Genetics & Biomedical Research, Milan Unit, Milan 20138, Italy
- Humanitas Clinical & Research Center, Rozzano (MI) 20089, Italy
| | | | - Tatiana Patrício
- National Research Council (CNR), Institute of Science & Technology for Ceramics (ISTEC) 48018 Faenza (RA), Italy
| | - Anna Tampieri
- National Research Council (CNR), Institute of Science & Technology for Ceramics (ISTEC) 48018 Faenza (RA), Italy
| | - Michele Miragoli
- National Research Council (CNR), Institute of Genetics & Biomedical Research, Milan Unit, Milan 20138, Italy
- Humanitas Clinical & Research Center, Rozzano (MI) 20089, Italy
| | - Daniele Catalucci
- National Research Council (CNR), Institute of Genetics & Biomedical Research, Milan Unit, Milan 20138, Italy
- Humanitas Clinical & Research Center, Rozzano (MI) 20089, Italy
| |
Collapse
|
69
|
Hu C, Zilm M, Wei M. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure. J Biomed Mater Res A 2016; 104:1153-61. [PMID: 26748775 DOI: 10.1002/jbm.a.35649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022]
Abstract
A biomimetic collagen-apatite (Col-Ap) scaffold resembling the composition and structure of natural bone from the nanoscale to the macroscale has been successfully prepared for bone tissue engineering. We have developed a bottom-up approach to fabricate hierarchically biomimetic Col-Ap scaffolds with both intrafibrillar and extrafibrillar mineralization. To achieve intrafibrillar mineralization, polyacrylic acid (PAA) was used as a sequestrating analog of noncollagenous proteins (NCPs) to form a fluidic amorphous calcium phosphate (ACP) nanoprecursor through attraction of calcium and phosphate ions. Sodium tripolyphosphate was used as a templating analog to regulate orderly deposition of apatite within collagen fibrils. Both X-ray diffraction and Fourier transform infrared spectroscopy suggest that the mineral phase was apatite. Field emission scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction confirmed that hierarchical collagen-Ap scaffolds were produced with both intrafibrillar and extrafibrillar mineralization. Biomimetic Col-Ap scaffolds with both intrafibrillar and extrafibrillar mineralization (IE-Col-Ap) were compared with Col-Ap scaffolds with extrafibrillar mineralization only (E-Col-Ap) as well as pure collagen scaffolds in vitro for cellular proliferation using MC3T3-E1 cells. Pure collagen scaffolds had the highest rate of proliferation, while there was no statistically significant difference between IE-Col-Ap and E-Col-Ap scaffolds. Thus, the bottom-up biomimetic fabrication approach has rendered a group of promising Col-Ap scaffolds, which bear high resemblance to natural bone in terms of composition and structure.
Collapse
Affiliation(s)
- Changmin Hu
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| | - Michael Zilm
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| | - Mei Wei
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269.,Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| |
Collapse
|
70
|
Wagermaier W, Klaushofer K, Fratzl P. Fragility of Bone Material Controlled by Internal Interfaces. Calcif Tissue Int 2015; 97:201-12. [PMID: 25772807 PMCID: PMC4525333 DOI: 10.1007/s00223-015-9978-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/28/2015] [Indexed: 12/14/2022]
Abstract
Bone material is built in a complex multiscale arrangement of mineralized collagen fibrils containing water, proteoglycans and some noncollagenous proteins. This organization is not static as bone is constantly remodeled and thus able to repair damaged tissue and adapt to the loading situation. In preventing fractures, the most important mechanical property is toughness, which is the ability to absorb impact energy without reaching complete failure. There is no simple explanation for the origin of the toughness of bone material, and this property depends in a complex way on the internal architecture of the material on all scales from nanometers to millimeters. Hence, fragility may have different mechanical origins, depending on which toughening mechanism is not working properly. This article reviews the toughening mechanisms described for bone material and attempts to put them in a clinical context, with the hope that future analysis of bone fragility may be guided by this collection of possible mechanistic origins.
Collapse
Affiliation(s)
- Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Klaus Klaushofer
- First Medical Department, Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Heinrich Collin Str. 30, 1140 Vienna, Austria
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| |
Collapse
|
71
|
Lausch AJ, Sone ED. A Top-down Approach to Elucidate the Role of Matrix-Bound Phosphoproteins in Control of Collagen Biomineralization. Biomacromolecules 2015; 16:1938-47. [DOI: 10.1021/acs.biomac.5b00287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander J. Lausch
- Institute of Biomaterials and Biomedical Engineering, ‡Department of Materials Science & Engineering, and §Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Eli D. Sone
- Institute of Biomaterials and Biomedical Engineering, ‡Department of Materials Science & Engineering, and §Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
72
|
A novel chitin binding crayfish molar tooth protein with elasticity properties. PLoS One 2015; 10:e0127871. [PMID: 26010981 PMCID: PMC4444123 DOI: 10.1371/journal.pone.0127871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/21/2015] [Indexed: 12/04/2022] Open
Abstract
The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate). This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties.
Collapse
|
73
|
Kawasaki K, Amemiya CT. SCPP genes in the coelacanth: tissue mineralization genes shared by sarcopterygians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 322:390-402. [PMID: 25243252 DOI: 10.1002/jez.b.22546] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The coelacanth is the basal-most extant sarcopterygian that has teeth and tooth-like structures, comprising bone, dentin, and enamel or enameloid. Formation of these tissues involves many members of the secretory calcium-binding protein (SCPP) family. In tetrapods, acidic-residue-rich SCPPs are used in mineralization of bone and dentin, whereas Pro/Gln-rich SCPPs participate in enamel formation. Teleosts also employ many SCPPs for tissue mineralization. Nevertheless, the repertoire of SCPPs is largely different in teleosts and tetrapods; hence, filling this gap would be critical to elucidate early evolution of mineralized tissues in osteichthyans. In the present study, we searched for SCPP genes in the coelacanth genome and identified 11, of which two have clear orthologs in both tetrapods and teleosts, seven only in tetrapods, and two in neither of them. Given the divergence times of these vertebrate lineages, our discovery of this many SCPP genes shared between the coelacanth and tetrapods, but not with teleosts, suggests a complicated evolutionary scheme of SCPP genes in early osteichthyans. Our investigation also revealed both conserved and derived characteristics of SCPPs in the coelacanth and other vertebrates. Notably, acidic SCPPs independently evolved various acidic repeats in different lineages, while maintaining high acidity, presumably important for interactions with calcium. Furthermore, the three Pro/Gln-rich SCPP genes, required for mineralizing enamel matrix and confirmed only in tetrapods, were all identified in the coelacanth, strongly suggesting that enamel is equivalent in the coelacanth and tetrapods. This finding corroborates the previous proposition that true enamel evolved much earlier than the origin of tetrapods.
Collapse
|
74
|
Lee J, Lee EY, Park EJ, Kim ES. An alternative treatment option for a bony defect from large odontoma using recycled demineralization at chairside. J Korean Assoc Oral Maxillofac Surg 2015; 41:109-15. [PMID: 25922824 PMCID: PMC4411726 DOI: 10.5125/jkaoms.2015.41.2.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 11/21/2022] Open
Abstract
Odontoma is the most common odontogenic benign tumor, and the treatment of choice is generally surgical removal. After excision, bone grafts may be necessary depending on the need for further treatment, or the size and location of the odontoma. Although the osteogenic capacity of a demineralized tooth was verified as early as 1967 by Urist and many other investigators, the cumbersome procedure, including a long demineralization time, may be less than comfortable for clinicians. A modified ultrasonic technology, with periodic negative pressure and temperature control, facilitated rapid and aseptic preparation of demineralized teeth for bone grafts. This approach reduces the demineralization time dramatically (≤80 minutes), so that the graft material can be prepared chairside on the same day as the extraction. The purpose of this article is to describe two cases of large compound odonotomas used as graft material prepared chairside for enucleation-induced bony defects. These two clinical cases showed favorable wound healing without complications, and good bony support for future dental implants or orthodontic treatment. Finally, this report will suggest the possibility of recycling the benign pathologic hard tissue as an alternative treatment option for conventional bone grafts in clinics.
Collapse
Affiliation(s)
- JuHyon Lee
- Department of Oral and Maxillofacial Surgery, Dankook University Jukjeon Dental Hospital, Yongin, Korea
| | - Eun-Young Lee
- Department of Oral and Maxillofacial Surgery, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Eun-Jin Park
- Department of Prosthodontics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Eun-Suk Kim
- Department of Oral and Maxillofacial Surgery, Dankook University Jukjeon Dental Hospital, Yongin, Korea
| |
Collapse
|
75
|
Kim ES. Autogenous fresh demineralized tooth graft prepared at chairside for dental implant. Maxillofac Plast Reconstr Surg 2015; 37:8. [PMID: 25705613 PMCID: PMC4331600 DOI: 10.1186/s40902-015-0009-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the clinical usefulness of autogenous fresh demineralized tooth (auto-FDT) graft prepared at the chairside for alveolar bone grafting during dental implant surgery. METHODS In total, 38 patients requiring both tooth extraction (for endodontic or periodontal reasons or third molar extraction) and alveolar bone regeneration for dental implant placement were included. Within 2 h after clean extraction, the teeth were prepared at the chairside to serve as bone graft material. In the same sitting, blocks or chips of this graft material were used to reconstruct defects at the osteotomy site simultaneously with or before implant placement. Twelve months after prosthesis fabrication and placement, the clinical findings and implant success rates were evaluated. Histological studies were randomly conducted for selected cases. RESULTS Clinical evaluation showed favorable wound healing with minimal complications and good bone support for the implants. No implant was lost after 12 months of function following prosthetic rehabilitation. Histological examination revealed new bone formation induced by the graft material. CONCLUSIONS Chairside preparation of autogenous fresh demineralized teeth after extraction can be a useful alternative to the use of autogenous bone or other graft materials for the immediate reconstruction of alveolar bone defects to facilitate subsequent implant placement.
Collapse
Affiliation(s)
- Eun-Seok Kim
- College of Dentistry, Dankook University, 126 Jukjoen-Dong Suji-Gu, Yongin-Si Gyeonggi-Do, 448 Korea
| |
Collapse
|
76
|
Chen L, Jacquet R, Lowder E, Landis WJ. Refinement of collagen-mineral interaction: a possible role for osteocalcin in apatite crystal nucleation, growth and development. Bone 2015; 71:7-16. [PMID: 25284158 DOI: 10.1016/j.bone.2014.09.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/23/2022]
Abstract
Mineralization of vertebrate tissues such as bone, dentin, cementum, and calcifying tendon involves type I collagen, which has been proposed as a template for calcium and phosphate ion binding and subsequent nucleation of apatite crystals. Type I collagen thereby has been suggested to be responsible for the deposition of apatite mineral without the need for non-collagenous proteins or other extracellular matrix molecules. Based on studies in vitro, non-collagenous proteins, including osteocalcin and bone sialoprotein, are thought to mediate vertebrate mineralization associated with type I collagen. These proteins, as possibly related to mineral deposition, have not been definitively localized in vivo. The present study has reexamined their localization in the leg tendons of avian turkeys, a representative model of vertebrate mineralization. Immunocytochemistry of osteocalcin demonstrates its presence at the surface of, outside and within type I collagen while that of bone sialoprotein appears to be localized at the surface of or outside type I collagen. The association between osteocalcin and type I collagen structure is revealed optimally when calcium ions are added to the antibody solution in the methodology. In this manner, osteocalcin is found specifically located along the a4-1, b1, c2 and d bands defining in part the hole and overlap zones within type I collagen. From these data, while type I collagen itself may be considered a stereochemical guide for intrafibrillar mineral nucleation and subsequent deposition, osteocalcin bound to type I collagen may also possibly mediate nucleation, growth and development of platelet-shaped apatite crystals. Bone sialoprotein and osteocalcin as well, each immunolocalized at the surface of or outside type I collagen, may affect mineral deposition in these portions of the avian tendon.
Collapse
Affiliation(s)
- Ling Chen
- Department of Polymer Science, University of Akron, Akron, OH, USA
| | - Robin Jacquet
- Department of Polymer Science, University of Akron, Akron, OH, USA
| | - Elizabeth Lowder
- Department of Polymer Science, University of Akron, Akron, OH, USA
| | - William J Landis
- Department of Polymer Science, University of Akron, Akron, OH, USA.
| |
Collapse
|
77
|
Weber E, Pokroy B. Intracrystalline inclusions within single crystalline hosts: from biomineralization to bio-inspired crystal growth. CrystEngComm 2015. [DOI: 10.1039/c5ce00389j] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A review of the inclusion of organic matter within single crystalline hosts: from biogenic minerals to bio-inspired nanohybrid single crystal composites.
Collapse
Affiliation(s)
- Eva Weber
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute
- Technion Israel Institute of Technology
- , Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute
- Technion Israel Institute of Technology
- , Israel
| |
Collapse
|
78
|
Montoya G, Arenas J, Romo E, Zeichner-David M, Alvarez M, Narayanan AS, Velázquez U, Mercado G, Arzate H. Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo. Bone 2014; 69:154-64. [PMID: 25263524 DOI: 10.1016/j.bone.2014.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 01/11/2023]
Abstract
Cementum extracellular matrix is similar to other mineralized tissues; however, this unique tissue contains molecules only present in cementum. A cDNA of these molecules, cementum attachment protein (hrPTPLa/CAP) was cloned and expressed in a prokaryotic system. This molecule is an alternative splicing of protein tyrosine phosphatase-like A (PTPLa). In this study, we wanted to determine the structural and functional characteristics of this protein. Our results indicate that hrPTPLa/CAP contains a 43.2% α-helix, 8.9% β-sheet, 2% β-turn and 45.9% random coil secondary structure. Dynamic light scattering shows that this molecule has a size distribution of 4.8 nm and aggregates as an estimated mass of 137 kDa species. AFM characterization and FE-SEM studies indicate that this protein self-assembles into nanospheres with sizes ranging from 7.0 to 27 nm in diameter. Functional studies demonstrate that hrPTPLa/CAP promotes hydroxyapatite crystal nucleation: EDS analysis revealed that hrPTPLa/CAP-induced crystals had a 1.59 ± 0.06 Ca/P ratio. Further confirmation with MicroRaman spectrometry and TEM confirm the presence of hydroxyapatite. In vivo studies using critical-size defects in rat cranium showed that hrPTPLa/CAP promoted 73% ± 2.19% and 87% ± 1.97% new bone formation at 4 and 8 weeks respectively. Although originally identified in cementum, PTPLa/CAP is very effective at inducing bone repair and healing and therefore this novel molecule has a great potential to be used for mineralized tissue bioengineering and tissue regeneration.
Collapse
Affiliation(s)
- Gonzalo Montoya
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, México
| | - Jesús Arenas
- Instituto de Física, Universidad Nacional Autónoma de México, México
| | - Enrique Romo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, México
| | | | - Marco Alvarez
- Laboratorio de Bioingeniería de Tejidos, Facultad de Odontología, Universidad Nacional Autónoma de México, México
| | - A Sampath Narayanan
- School of Medicine, Department of Pathology, University of Washington, Seattle, USA
| | - Ulises Velázquez
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, México
| | - Gabriela Mercado
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, México
| | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
79
|
Bidlack FB, Huynh C, Marshman J, Goetze B. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix. Front Physiol 2014; 5:395. [PMID: 25346697 PMCID: PMC4193210 DOI: 10.3389/fphys.2014.00395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/23/2014] [Indexed: 01/21/2023] Open
Abstract
An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D) organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM) was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM) in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.
Collapse
Affiliation(s)
- Felicitas B Bidlack
- Department of Mineralized Tissue Biology, Forsyth Institute Cambridge, MA, USA ; Department of Developmental Biology, Harvard School of Dental Medicine Boston, MA, USA
| | - Chuong Huynh
- Carl Zeiss Microscopy LLC, One Corporation Way Peabody, MA, USA
| | | | - Bernhard Goetze
- Carl Zeiss Microscopy LLC, One Corporation Way Peabody, MA, USA
| |
Collapse
|
80
|
Abstract
Bone defects requiring grafts to promote healing are frequently occurring and costly problems in health care. Chitosan, a biodegradable, naturally occurring polymer, has drawn considerable attention in recent years as scaffolding material in tissue engineering and regenerative medicine. Chitosan is especially attractive as a bone scaffold material because it supports the attachment and proliferation of osteoblast cells as well as formation of mineralized bone matrix. In this review, we discuss the fundamentals of bone tissue engineering and the unique properties of chitosan as a scaffolding material to treat bone defects for hard tissue regeneration. We present the common methods for fabrication and characterization of chitosan scaffolds, and discuss the influence of material preparation and addition of polymeric or ceramic components or biomolecules on chitosan scaffold properties such as mechanical strength, structural integrity, and functional bone regeneration. Finally, we highlight recent advances in development of chitosan-based scaffolds with enhanced bone regeneration capability.
Collapse
Affiliation(s)
- Sheeny Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195 USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
81
|
|
82
|
Sfeir C, Fang PA, Jayaraman T, Raman A, Xiaoyuan Z, Beniash E. Synthesis of bone-like nanocomposites using multiphosphorylated peptides. Acta Biomater 2014; 10:2241-9. [PMID: 24434535 PMCID: PMC4351712 DOI: 10.1016/j.actbio.2014.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/22/2022]
Abstract
There is a great need for novel materials for mineralized tissue repair and regeneration. Two examples of such tissue, bone and dentin, are highly organized hierarchical nanocomposites in which mineral and organic phases interface at the molecular level. In contrast, current graft materials are either ceramic powders or physical blends of mineral and organic phases with mechanical properties far inferior to those of their target tissues. The objective of this study was to synthesize composite nanofibrils with highly integrated organic/inorganic phases inspired by the mineralized collagen fibrils of bone and dentin. Utilizing our understanding of bone and dentin biomineralization, we have first designed bioinspired peptides containing 3 Ser-Ser-Asp repeat motifs based on the highly phosphorylated protein, dentin phosphophoryn (DPP), found in dentin and alveolar bone. We demonstrate that up to 80% of serines in the peptide can be phosphorylated by casein kinases. We further tested the ability of these peptides to induce biomimetic calcium phosphate mineralization of collagen fibrils. Our mineralization studies have revealed that in the presence of these phosphorylated peptides, mineralized collagen fibrils structurally similar to the mineralized collagen fibrils of bone and dentin were formed. Our results demonstrate that using phosphorylated DPP-inspired peptides, we can successfully synthesize biomimetic composite nanofibrils with integrated organic and inorganic phases. These results provide the first step in the development of biomimetic nanostructured materials for mineralized tissue repair and regeneration using phosphopeptides.
Collapse
Affiliation(s)
- Charles Sfeir
- University of Pittsburgh, School of Dental Medicine, McGowan Institute of Regenerative Medicine, Center for Craniofacial Regeneration, 552 Salk Hall, 3501 Terrace St., Pittsburgh, PA 15261, USA.
| | - Ping-An Fang
- Department of Oral Biology, School of Dental Medicine and the Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thottala Jayaraman
- Department of Oral Biology, School of Dental Medicine and the Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aparna Raman
- Department of Oral Biology, School of Dental Medicine and the Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhang Xiaoyuan
- Department of Oral Biology, School of Dental Medicine and the Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elia Beniash
- University of Pittsburgh, School of Dental Medicine, McGowan Institute of Regenerative Medicine, Center for Craniofacial Regeneration, 552 Salk Hall, 3501 Terrace St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
83
|
Wang X, Schröder HC, Schlossmacher U, Neufurth M, Feng Q, Diehl-Seifert B, Müller WEG. Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate. Calcif Tissue Int 2014; 94:495-509. [PMID: 24374859 DOI: 10.1007/s00223-013-9833-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Ca-phosphate/hydroxyapatite (HA) crystals constitute the mineral matrix of vertebrate bones, while Ca-carbonate is the predominant mineral of many invertebrates, like mollusks. Recent results suggest that CaCO₃ is also synthesized during early bone formation. We demonstrate that carbonic anhydrase-driven CaCO₃ formation in vitro is activated by organic extracts from the demosponge Suberites domuncula as well as by quinolinic acid, one component isolated from these extracts. Further results revealed that the stimulatory effect of bicarbonate (HCO₃ (-)) ions on mineralization of osteoblast-like SaOS-2 cells is strongly enhanced if the cells are exposed to inorganic polyphosphate (polyP), a linear polymer of phosphate linked by energy-rich phosphodiester bonds. The effect of polyP, administered as polyP (Ca²⁺ salt), on HA formation was found to be amplified by addition of the carbonic anhydrase-activating sponge extract or quinolinic acid. Our results support the assumption that CaCO₃ deposits, acting as bio-seeds for Ca-carbonated phosphate formation, are formed as an intermediate during HA mineralization and that the carbonic anhydrase-mediated formation of those deposits is under a positive-negative feedback control by bone alkaline phosphatase-dependent polyP metabolism, offering new targets for therapy of bone diseases/defects.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany,
| | | | | | | | | | | | | |
Collapse
|
84
|
Asgarifar H, Oloyede A, Zare F. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone. JOURNAL OF MEDICAL SIGNALS AND SENSORS 2014; 4:113-21. [PMID: 24761375 PMCID: PMC3994715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/08/2014] [Indexed: 12/01/2022]
Abstract
High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electric field at 500 V and 10 kHz through capacitive coupling method was safe and did not destroy the bone tissue construction.
Collapse
Affiliation(s)
- Hajarossadat Asgarifar
- School of Biomedical Engineering and Medical Physics, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia,Address for correspondence: Mrs. Hajarossadat Asgarifar, 3/25, 2nd Street, Kooye Sepahan, Isfahan, Iran. E-mail:
| | - Adekunle Oloyede
- School of Biomedical Engineering and Medical Physics, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia
| | - Firuz Zare
- School of Biomedical Engineering and Medical Physics, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
85
|
Cantaert B, Beniash E, Meldrum FC. The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement. J Mater Chem B 2013; 1:10.1039/C3TB21296C. [PMID: 24409343 PMCID: PMC3881609 DOI: 10.1039/c3tb21296c] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many questions remain regarding the formation of ultrathin hydroxapatite (HAP) crystals within the confines of collagen fibrils of bones. These structures form through the interplay of the collagen matrix and non-collagenous proteins, and in vitro mineralization studies employing poly(aspartic acid) (PAsp) as a mimic of the non-collagenous proteins have generated mineralized fibrils with structures comparable to their biogenic counterparts. In this article, we employ the nanoscale cylindrical pores perforating track-etch filtration membranes to investigate the role of PAsp in controlling the infiltration and crystallization of calcium phosphate (CaP) within confined volumes. Oriented polycrystalline HAP and non-oriented octacalcium phosphate (OCP) rods precipitated within the membrane pores via an amorphous calcium phosphate (ACP) precursor, where PAsp increased the proportion of OCP rods. Further, ACP crystallized faster within the membranes than in bulk solution when PAsp was present, suggesting that PAsp inhibits crystallization in solution, but promotes it when bound to a substrate. Finally, in contrast to the collagen system, PAsp reduced the yield of intra-membrane mineral and failed to enhance infiltration. This suggests that a specific interaction between the collagen matrix and ACP/PAsp precursor particles drives effective infiltration. Thus, while orientation of HAP crystals can be achieved by confinement alone, the chemistry of the collagen matrix is necessary for efficient mineralisation with CaP.
Collapse
Affiliation(s)
- Bram Cantaert
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. ; Tel: 440113 3436414;
| | - Elia Beniash
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, 3501 Terrace Street, 15261 PA, USA.; Tel: 01 412 6480108;
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. ; Tel: 440113 3436414;
| |
Collapse
|
86
|
Wang Y, Von Euw S, Fernandes FM, Cassaignon S, Selmane M, Laurent G, Pehau-Arnaudet G, Coelho C, Bonhomme-Coury L, Giraud-Guille MM, Babonneau F, Azaïs T, Nassif N. Water-mediated structuring of bone apatite. NATURE MATERIALS 2013; 12:1144-53. [PMID: 24193662 DOI: 10.1038/nmat3787] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/18/2013] [Indexed: 05/24/2023]
Abstract
It is well known that organic molecules from the vertebrate extracellular matrix of calcifying tissues are essential in structuring the apatite mineral. Here, we show that water also plays a structuring role. By using solid-state nuclear magnetic resonance, wide-angle X-ray scattering and cryogenic transmission electron microscopy to characterize the structure and organization of crystalline and biomimetic apatite nanoparticles as well as intact bone samples, we demonstrate that water orients apatite crystals through an amorphous calcium phosphate-like layer that coats the crystalline core of bone apatite. This disordered layer is reminiscent of those found around the crystalline core of calcified biominerals in various natural composite materials in vivo. This work provides an extended local model of bone biomineralization.
Collapse
Affiliation(s)
- Yan Wang
- 1] Laboratoire Chimie de la Matière Condensée de Paris, UMR 7574 CNRS, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France [2]
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun 2013; 4:1724. [PMID: 23591891 PMCID: PMC3644085 DOI: 10.1038/ncomms2720] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 03/08/2013] [Indexed: 01/09/2023] Open
Abstract
Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents. Bone is a natural composite of collagen and hydroxyapatite but, surprising, little is known about its characteristics at the molecular scale. Nair et al. conduct molecular-scale simulations of mineralized collagen networks to better understand how bone achieves superior mechanical properties to its constituents.
Collapse
|
88
|
Fernandes EM, Pires RA, Mano JF, Reis RL. Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2013.05.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
89
|
Cantaert B, Beniash E, Meldrum FC. Nanoscale confinement controls the crystallization of calcium phosphate: relevance to bone formation. Chemistry 2013; 19:14918-24. [PMID: 24115275 DOI: 10.1002/chem.201302835] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Indexed: 11/11/2022]
Abstract
A key feature of biomineralization processes is that they take place within confined volumes, in which the local environment can have significant effects on mineral formation. Herein, we investigate the influence of confinement on the formation mechanism and structure of calcium phosphate (CaP). This is of particular relevance to the formation of dentine and bone, structures of which are based on highly mineralized collagen fibrils. CaP was precipitated within 25-300 nm diameter, cylindrical pores of track etched and anodised alumina membranes under physiological conditions, in which this system enables systematic study of the effects of the pore size in the absence of a structural match between the matrix and the growing crystals. Our results show that the main products were polycrystalline hydroxapatite (HAP) rods, together with some single crystal octacalcium phosphate (OCP) rods. Notably, we demonstrate that these were generated though an intermediate amorphous calcium phosphate (ACP) phase, and that ACP is significantly stabilised in confinement. This effect may have significance to the mineralization of bone, which can occur through a transient ACP phase. We also show that orientation of the HAP comparable, or even superior to that seen in bone can be achieved through confinement effects alone. Although this simple experimental system cannot be considered, a direct mimic of the in vivo formation of ultrathin HAP platelets within collagen fibrils, our results show that the effects of physical confinement should not be neglected when considering the mechanisms of formation of structures, such as bones and teeth.
Collapse
Affiliation(s)
- Bram Cantaert
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT (UK), Fax: (+44) 113-343-6565
| | | | | |
Collapse
|
90
|
Farbod K, Nejadnik MR, Jansen JA, Leeuwenburgh SCG. Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:173-88. [PMID: 23902258 DOI: 10.1089/ten.teb.2013.0221] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mimicking the nanostructure of bone and understanding the interactions between the nanoscale inorganic and organic components of the extracellular bone matrix are crucial for the design of biomaterials with structural properties and a functionality similar to the natural bone tissue. Generally, these interactions involve anionic and/or cationic functional groups as present in the organic matrix, which exhibit a strong affinity for either calcium or phosphate ions from the mineral phase of bone. This study reviews the interactions between the mineral and organic extracellular matrix components in bone tissue as a source of inspiration for the design of novel nanocomposites. After providing a brief description of the various structural levels of bone and its main constituents, a concise overview is presented on the process of bone mineralization as well as the interactions between calcium phosphate (CaP) nanocrystals and the organic matrix of bone tissue. Bioinspired synthetic approaches for obtaining nanocomposites are subsequently addressed, with specific focus on chemical groups that have affinity for CaPs or are involved in stimulating and controlling mineral formation, that is, anionic functional groups, including carboxyl, phosphate, sulfate, hydroxyl, and catechol groups.
Collapse
Affiliation(s)
- Kambiz Farbod
- Department of Biomaterials, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
91
|
Müller WEG, Schröder HC, Schlossmacher U, Grebenjuk VA, Ushijima H, Wang X. Induction of carbonic anhydrase in SaOS-2 cells, exposed to bicarbonate and consequences for calcium phosphate crystal formation. Biomaterials 2013; 34:8671-80. [PMID: 23953824 DOI: 10.1016/j.biomaterials.2013.07.096] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
Ca-phosphate/hydroxyapatite crystals constitute the mineralic matrix of vertebrate bones, while Ca-carbonate dominates the inorganic matrix of otoliths. In addition, Ca-carbonate has been identified in lower percentage in apatite crystals. By using the human osteogenic SaOS-2 cells it could be shown that after exposure of the cells to Ca-bicarbonate in vitro, at concentrations between 1 and 10 mm, a significant increase of Ca-deposit formation results. The crystallite nodules formed on the surfaces of SaOS-2 cells become denser and larger in the presence of bicarbonate if simultaneously added together with the mineralization activation cocktail (β-glycerophosphate/ascorbic acid/dexamethasone). In parallel, with the increase of Ca-deposit formation, the expression of the carbonic anhydrase-II (CA-II) gene becomes upregulated. This effect, measured on transcriptional level is also substantiated by immunohistological studies. The stimulatory effect of bicarbonate on Ca-deposit formation is prevented if the carbonic anhydrase inhibitor acetazolamide is added to the cultures. Mapping the surface of the Ca-deposit producing SaOS-2 cells by scanning electron microscopy coupled with energy-dispersive X-ray analysis revealed an accumulation of the signals for the element carbon and, as expected, also for phosphorus. Finally, it is shown that ortho-phosphate and hydrolysis products of polyphosphate inhibit CA-II activity, suggesting a feedback regulatory system between the CA-driven Ca-carbonate deposition and a subsequent inactivation of this process by ortho-phosphate. Based on the presented data we suggest that Ca-carbonate deposits act as bioseeds for a downstream Ca-phosphate deposition process. We propose that activators for CA, especially for CA-II, might be beneficial for the treatment of bone deficiency diseases.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
92
|
Wang X, Liu Z, Cui F. Biomimetic Synthesis of Self‐Assembled Mineralized Collagen‐Based Composites for Bone Tissue Engineering. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
93
|
Holt C. Unfolded phosphopolypeptides enable soft and hard tissues to coexist in the same organism with relative ease. Curr Opin Struct Biol 2013; 23:420-5. [DOI: 10.1016/j.sbi.2013.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 12/11/2022]
|
94
|
Raftery R, O’Brien FJ, Cryan SA. Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules 2013; 18:5611-47. [PMID: 23676471 PMCID: PMC6270408 DOI: 10.3390/molecules18055611] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 01/24/2023] Open
Abstract
Gene therapy involves the introduction of foreign genetic material into cells in order exert a therapeutic effect. The application of gene therapy to the field of orthopaedic tissue engineering is extremely promising as the controlled release of therapeutic proteins such as bone morphogenetic proteins have been shown to stimulate bone repair. However, there are a number of drawbacks associated with viral and synthetic non-viral gene delivery approaches. One natural polymer which has generated interest as a gene delivery vector is chitosan. Chitosan is biodegradable, biocompatible and non-toxic. Much of the appeal of chitosan is due to the presence of primary amine groups in its repeating units which become protonated in acidic conditions. This property makes it a promising candidate for non-viral gene delivery. Chitosan-based vectors have been shown to transfect a number of cell types including human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). Aside from its use in gene delivery, chitosan possesses a range of properties that show promise in tissue engineering applications; it is biodegradable, biocompatible, has anti-bacterial activity, and, its cationic nature allows for electrostatic interaction with glycosaminoglycans and other proteoglycans. It can be used to make nano- and microparticles, sponges, gels, membranes and porous scaffolds. Chitosan has also been shown to enhance mineral deposition during osteogenic differentiation of MSCs in vitro. The purpose of this review is to critically discuss the use of chitosan as a gene delivery vector with emphasis on its application in orthopedic tissue engineering.
Collapse
Affiliation(s)
- Rosanne Raftery
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| | - Sally-Ann Cryan
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
95
|
Stein K, Prondvai E. Rethinking the nature of fibrolamellar bone: an integrative biological revision of sauropod plexiform bone formation. Biol Rev Camb Philos Soc 2013; 89:24-47. [DOI: 10.1111/brv.12041] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Koen Stein
- Steinmann Institut für Geologie, Mineralogie und Paläontologie; University of Bonn; Bonn Germany
| | - Edina Prondvai
- Hungarian Academy of Sciences-Eötvös Loránd University “Lendület” Dinosaur Research Group; Eötvös Loránd University; Budapest Hungary
| |
Collapse
|
96
|
Niu LN, Jiao K, Ryou H, Diogenes A, Yiu CKY, Mazzoni A, Chen JH, Arola DD, Hargreaves KM, Pashley DH, Tay FR. Biomimetic silicification of demineralized hierarchical collagenous tissues. Biomacromolecules 2013; 14:1661-8. [PMID: 23586938 DOI: 10.1021/bm400316e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unlike man-made composite materials, natural biominerals containing composites usually demonstrate different levels of sophisticated hierarchical structures which are responsible for their mechanical properties and other metabolic functions. However, the complex spatial organizations of the organic-inorganic phases are far beyond what they achieved by contemporary engineering techniques. Here, we demonstrate that carbonated apatite present in collagen matrices derived from fish scale and bovine bone may be replaced by amorphous silica, using an approach that simulates what is utilized by phylogenetically ancient glass sponges. The structural hierarchy of these collagen-based biomaterials is replicated by the infiltration and condensation of fluidic polymer-stabilized silicic acid precursors within the intrafibrillar milieu of type I collagen fibrils. This facile biomimetic silicification strategy may be used for fabricating silica-based, three-dimensional functional materials with specific morphological and hierarchical requirements.
Collapse
Affiliation(s)
- Li-Na Niu
- Fourth Military Medical University, Xi'an, China
| | - Kai Jiao
- Fourth Military Medical University, Xi'an, China
| | - Heonjune Ryou
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Anibal Diogenes
- University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| | | | | | - Ji-Hua Chen
- Fourth Military Medical University, Xi'an, China
| | - Dwayne D Arola
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Kenneth M Hargreaves
- University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| | | | | |
Collapse
|
97
|
Nudelman F, Lausch AJ, Sommerdijk NAJM, Sone ED. In vitro models of collagen biomineralization. J Struct Biol 2013; 183:258-69. [PMID: 23597833 DOI: 10.1016/j.jsb.2013.04.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 11/27/2022]
Abstract
Over the last several years, significant progress has been made toward understanding the mechanisms involved in the mineralization of hard collagenous tissues, such as bone and dentin. Particularly notable are the identification of transient mineral phases that are precursors to carbonated hydroxyapatite, the identification and characterization of non-collagenous proteins that are involved in controlling mineralization, and significant improvements in our understanding of the structure of collagen. These advances not only represent a paradigm shift in the way collagen mineralization is viewed and understood, but have also brought new challenges to light. In this review, we discuss how recent in vitro models have addressed critical questions regarding the role of the non-collagenous proteins in controlling mineralization, the nature of the interactions between amorphous calcium phosphate and collagen during the early stages of mineralization, and the role of collagen in the mineralization process. We discuss the significance of these findings in expanding our understanding of collagen biomineralization, while addressing some of the limitations that are inherent to in vitro systems.
Collapse
Affiliation(s)
- Fabio Nudelman
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|
98
|
Hosseini S, Naderi-Manesh H, Mountassif D, Cerruti M, Vali H, Faghihi S. C-terminal amidation of an osteocalcin-derived peptide promotes hydroxyapatite crystallization. J Biol Chem 2013; 288:7885-7893. [PMID: 23362258 PMCID: PMC3597826 DOI: 10.1074/jbc.m112.422048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 01/09/2013] [Indexed: 01/05/2023] Open
Abstract
Genesis of natural biocomposite-based materials, such as bone, cartilage, and teeth, involves interactions between organic and inorganic systems. Natural biopolymers, such as peptide motif sequences, can be used as a template to direct the nucleation and crystallization of hydroxyapatite (HA). In this study, a natural motif sequence consisting of 13 amino acids present in the first helix of osteocalcin was selected based on its calcium binding ability and used as substrate for nucleation of HA crystals. The acidic (acidic osteocalcin-derived peptide (OSC)) and amidic (amidic osteocalcin-derived peptide (OSN)) forms of this sequence were synthesized to investigate the effects of different C termini on the process of biomineralization. Electron microscopy analyses show the formation of plate-like HA crystals with random size and shape in the presence of OSN. In contrast, spherical amorphous calcium phosphate is formed in the presence of OSC. Circular dichroism experiments indicate conformational changes of amidic peptide to an open and regular structure as a consequence of interaction with calcium and phosphate. There is no conformational change detectable in OSC. It is concluded that HA crystal formation, which only occurred in OSN, is attributable to C-terminal amidation of a natural peptide derived from osteocalcin. It is also proposed that natural peptides with the ability to promote biomineralization have the potential to be utilized in hard tissue regeneration.
Collapse
Affiliation(s)
- Samaneh Hosseini
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran; Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran.
| | - Driss Mountassif
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec H3A 0C7, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montréal, Quebec H3A 0C7, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec H3A 0C7, Canada; Facility for Electron Microscopy Research, McGill University, Montréal, Quebec H3A 0C7, Canada
| | - Shahab Faghihi
- Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran.
| |
Collapse
|
99
|
Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc Natl Acad Sci U S A 2013; 110:3788-93. [PMID: 23431140 DOI: 10.1073/pnas.1301419110] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has long been recognized that a suite of proteins exists in coral skeletons that is critical for the oriented precipitation of calcium carbonate crystals, yet these proteins remain poorly characterized. Using liquid chromatography-tandem mass spectrometry analysis of proteins extracted from the cell-free skeleton of the hermatypic coral, Stylophora pistillata, combined with a draft genome assembly from the cnidarian host cells of the same species, we identified 36 coral skeletal organic matrix proteins. The proteome of the coral skeleton contains an assemblage of adhesion and structural proteins as well as two highly acidic proteins that may constitute a unique coral skeletal organic matrix protein subfamily. We compared the 36 skeletal organic matrix protein sequences to genome and transcriptome data from three other corals, three additional invertebrates, one vertebrate, and three single-celled organisms. This work represents a unique extensive proteomic analysis of biomineralization-related proteins in corals from which we identify a biomineralization "toolkit," an organic scaffold upon which aragonite crystals can be deposited in specific orientations to form a phenotypically identifiable structure.
Collapse
|
100
|
Kellermeier M, Glaab F, Melero-García E, García-Ruiz JM. Experimental techniques for the growth and characterization of silica biomorphs and silica gardens. Methods Enzymol 2013; 532:225-56. [PMID: 24188770 DOI: 10.1016/b978-0-12-416617-2.00011-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Silica biomorphs and silica gardens are canonical examples of precipitation phenomena yielding self-assembled nanocrystalline composite materials with outstanding properties in terms of morphology and texture. Both types of structures form spontaneously in alkaline environments and rely on simple, and essentially similar, chemistry. However, the underlying growth processes are very sensitive to a range of experimental parameters, distinct preparation procedures, and external conditions. In this chapter, we report detailed protocols for the synthesis of these extraordinary biomimetic materials and identify critical aspects as well as advantages and disadvantages of different approaches. Furthermore, modifications of established standard procedures are reviewed and discussed with respect to their benefit for the control over morphogenesis and the reproducibility of the experiments in both cases. Finally, we describe currently used techniques for the characterization of these fascinating structures and devise promising ways to analyze their growth behavior and formation mechanisms in situ and as a function of time.
Collapse
Affiliation(s)
- Matthias Kellermeier
- Department of Chemistry, Physical Chemistry, University of Konstanz, Konstanz, Germany; Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|