51
|
Wu ZL, Bartleson CJ, Ham AJL, Guengerich FP. Heterologous expression, purification, and properties of human cytochrome P450 27C1. Arch Biochem Biophys 2006; 445:138-46. [PMID: 16360114 DOI: 10.1016/j.abb.2005.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 11/04/2005] [Accepted: 11/05/2005] [Indexed: 11/18/2022]
Abstract
Cytochrome P450 (P450) 27C1 is one of the "orphan" P450 enzymes without a known biological function. A human P450 27C1 cDNA with a nucleotide sequence modified for Escherichia coli usage was prepared and modified at the N-terminus, based on the expected mitochondrial localization. A derivative with residues 3-60 deleted was expressed at a level of 1350nmol/L E. coli culture and had the characteristic P450 spectra. The identity of the expressed protein was confirmed by mass spectrometry of proteolytic fragments. The purified P450 was in the low-spin iron state, and the spin equilibrium was not perturbed by any of the potential substrates vitamin D(3), 1alpha- or 25-hydroxy vitamin D(3), or cholesterol. P450s 27A1 and 27B1 are known to catalyze the 25-hydroxylation of vitamin D(3) and the 1alpha-hydroxylation of 25-hydroxy vitamin D(3), respectively. In the presence of recombinant human adrenodoxin and adrenodoxin reductase, recombinant P450 27C1 did not catalyze the oxidation of vitamin D(3), 1alpha- or 25-hydroxy vitamin D(3), or cholesterol at detectable rates. P450 27C1 mRNA was determined to be expressed in liver, kidney, pancreas, and several other human tissues.
Collapse
Affiliation(s)
- Zhong-Liu Wu
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | |
Collapse
|
52
|
DeLozier TC, Lee SC, Coulter SJ, Goh BC, Goldstein JA. Functional characterization of novel allelic variants of CYP2C9 recently discovered in southeast Asians. J Pharmacol Exp Ther 2005; 315:1085-90. [PMID: 16099926 DOI: 10.1124/jpet.105.091181] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CYP2C9 was recently resequenced in 150 Asian subjects from Singapore. Several new coding variants were reported, and these variants are now named CYP2C9*14 (R125H), CYP2C9*15 (S162X), CYP2C9*16 (T299A), CYP2C9*17 (P382S), CYP2C9*18 (D397A), and CYP2C9*19 (Q454H). The CYP2C9*18 variant also contained an I359L change previously associated with the CYP2C9*3 allele. In this study, we assessed the functional consequences of the new coding changes. cDNAs containing each of the new coding changes were constructed by site-directed mutagenesis and expressed in a bacterial cDNA expression system, the allelic proteins were partially purified, and their ability to hydroxylate a prototype CYP2C9 substrate was assayed. Expression of cDNAs in Escherichia coli containing either the D397A change or the S162X (premature stop codon) could not be detected either spectrally or at the apoprotein level. CYP2C9.14 and CYP2C9.16 exhibited 80 to 90% lower catalytic activity toward tolbutamide at two substrate concentrations compared with wild-type CYP2C9.1. Kinetic analysis confirmed that CYP2C9.14 and CYP2C9.16 have a higher Km and a >90% lower intrinsic clearance of tolbutamide compared with wild-type CYP2C9.1. Both CYP2C9.17 and CYP2C9.19 proteins exhibited modest 30 to 40% decreases in catalytic activity toward tolbutamide. Thus, CYP2C9*15 and CYP2C9*18 may represent null alleles, whereas CYP2C9*14 and CYP2C9*16 allelic variants produce proteins that are clearly catalytically defective in vitro, indicating the existence of new defective putative alleles of CYP2C9 in Asians.
Collapse
Affiliation(s)
- Tracy C DeLozier
- Human Metabolism Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
53
|
Brezna B, Kweon O, Stingley RL, Freeman JP, Khan AA, Polek B, Jones RC, Cerniglia CE. Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 2005; 71:522-32. [PMID: 16317545 DOI: 10.1007/s00253-005-0190-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/01/2005] [Accepted: 09/09/2005] [Indexed: 11/24/2022]
Abstract
Mycobacterium vanbaalenii PYR-1 has the ability to degrade low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs). In addition to dioxygenases, cytochrome P450 monooxygenases have been implicated in PAH degradation. Three cytochrome P450 genes, cyp151 (pipA), cyp150, and cyp51, were detected and amplified by polymerase chain reaction from M. vanbaalenii PYR-1. The complete sequence of these genes was determined. The translated putative proteins were > or = 80% identical to other GenBank-listed mycobacterial CYP151, CYP150, and CYP51. Genes pipA and cyp150 were cloned, and the proteins partially expressed in Escherichia coli as soluble heme-containing cytochrome P450s that exhibited a characteristic peak at 450 nm in reduced carbon monoxide difference spectra. Monooxygenation metabolites of pyrene, dibenzothiophene, and 7-methylbenz[alpha]anthracene were detected in whole cell biotransformations, with E. coli expressing pipA or cyp150 when analyzed by gas chromatography/mass spectrometry. The cytochrome P450 inhibitor metyrapone strongly inhibited the S-oxidation of dibenzothiophene. Thirteen other Mycobacterium strains were screened for the presence of pipA, cyp150, and cyp51 genes, as well as the initial PAH dioxygenase (nidA and nidB). The results indicated that many of the Mycobacterium spp. surveyed contain both monooxygenases and dioxygenases to degrade PAHs. Our results provide further evidence for the diverse enzymatic capability of Mycobacterium spp. to metabolize polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Barbara Brezna
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Ohkubo Y, Ueta A, Ando N, Ito T, Yamaguchi S, Mizuno K, Sumi S, Maeda T, Yamazaki D, Kurono Y, Fujimoto S, Togari H. Novel mutations in the cytochrome P450 2C19 gene: a pitfall of the PCR-RFLP method for identifying a common mutation. J Hum Genet 2005; 51:118-123. [PMID: 16307177 DOI: 10.1007/s10038-005-0332-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
CYP2C19 is a clinically important enzyme involved in the metabolism of therapeutic drugs such as (S)-mephenytoin, omeprazole, proguanil, and diazepam. Individuals can be characterized as either extensive metabolizers (EM) or poor metabolizers (PM) on the basis of CYP2C19 enzyme activity. The PM phenotype occurs in 2-5% of Caucasian populations, but at higher frequencies (18-23%) in Asians. CYP2C19*2 and CYP2C19*3, which are single-nucleotide polymorphisms of CYP2C19, are the main cause of PM phenotyping in homozygotes or compound heterozygotes. We report two novel mutations in the CYP2C19 gene identified by direct sequencing and subcloning procedures. One of these mutations was considered to be CYP2C19*3 by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). This result suggests that mutations classed as CYP2C19*3 might include other mutations. Further studies are needed to clarify the relationship between these novel mutations and enzyme activity.
Collapse
Affiliation(s)
- Yumiko Ohkubo
- Department of Pediatrics, Neonatology and Congenital Disorders, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Akihito Ueta
- Department of Pediatrics, Neonatology and Congenital Disorders, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Naoki Ando
- Department of Pediatrics, Neonatology and Congenital Disorders, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Tetsuya Ito
- Department of Pediatrics, Neonatology and Congenital Disorders, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Sachiko Yamaguchi
- Department of Pediatrics, Neonatology and Congenital Disorders, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kantaro Mizuno
- Department of Pediatrics, Neonatology and Congenital Disorders, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Satoshi Sumi
- Department of Pediatrics, Neonatology and Congenital Disorders, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Tohru Maeda
- Department of Hospital Pharmacy, Nagoya City University Hospital, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8602, Japan
| | - Daiju Yamazaki
- Laboratory of Hospital Pharmaceutics, Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yukihisa Kurono
- Laboratory of Hospital Pharmaceutics, Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Shinji Fujimoto
- Department of Pediatrics, Neonatology and Congenital Disorders, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
- Laboratory Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hajime Togari
- Department of Pediatrics, Neonatology and Congenital Disorders, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
55
|
Mitsuda M, Iwasaki M. Improvement in the expression of CYP2B6 by co-expression with molecular chaperones GroES/EL in Escherichia coli. Protein Expr Purif 2005; 46:401-5. [PMID: 16310378 DOI: 10.1016/j.pep.2005.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/24/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Improvement of CYP2B6 expression was examined by co-expression with molecular chaperones GroES/EL. Although a CO-reduced difference spectrum was not detected in Escherichia coli transformed only by the CYP2B6-expressing vector, co-expression of GroES/EL resulted in high-level expression which reached over 2000 nmol P450/L. CYP2B6 was purified from the E. coli membrane with a high yield. Purified CYP2B6 showed 7-ethoxy-4-trifluoromethylcoumarin O-deethylase activity in a reconstitution system. This expression system would be useful for the production of large amounts of active CYP2B6 and for the detailed analysis of the enzyme.
Collapse
Affiliation(s)
- Maori Mitsuda
- Department of Biology, Graduate School of Science, Osaka University, 2-17-85, Jusohonmachi, Osaka 532-8686, Japan
| | | |
Collapse
|
56
|
Jørgensen A, Rasmussen LJ, Andersen O. Characterisation of two novel CYP4 genes from the marine polychaete Nereis virens and their involvement in pyrene hydroxylase activity. Biochem Biophys Res Commun 2005; 336:890-7. [PMID: 16154110 DOI: 10.1016/j.bbrc.2005.08.189] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/24/2005] [Indexed: 11/20/2022]
Abstract
Cytochrome P450 enzymes (CYP enzymes) catalyse the initial step in biotransformation of xenobiotics like polycyclic aromatic hydrocarbons (PAHs). The marine polychaete Nereis virens has a high capacity for biotransformation of PAHs. In the present study, the complete cDNA sequences of two novel CYP genes isolated from N. virens gut tissue are reported. One named CYP342A1, the first member of a new family and the other named CYP4BB1, the first member of a new subfamily. This is the first investigation of specific CYP enzymes from marine polychaetes in which catalytic activity has been determined. Both CYP enzymes had monooxygenase activity and catalysed hydroxylation of pyrene to 1-hydroxypyrene. Based on the present results it is likely that both CYP4BB1 and CYP342A1 are involved in xenobiotic biotransformation. Furthermore, site-directed mutagenesis of the conserved cysteine residue of the heme binding domain resulted in complete loss of monooxygenase activity of both CYP enzymes, indicating that this cysteine residue is indispensable for monooxygenase activity of invertebrate CYP enzymes, as has been well documented in vertebrates. Considering the important role of CYP enzymes in biotransformation of xenobiotics and the presence of N. virens in estuarine environments that accumulates organic xenobiotics, our results are important in understanding the molecular mechanism of biotransformation in marine polychaetes.
Collapse
Affiliation(s)
- Anne Jørgensen
- Department of Life Sciences and Chemistry, Roskilde University, Denmark.
| | | | | |
Collapse
|
57
|
Matthias A, Gillam EMJ, Penman KG, Matovic NJ, Bone KM, De Voss JJ, Lehmann RP. Cytochrome P450 enzyme-mediated degradation of Echinacea alkylamides in human liver microsomes. Chem Biol Interact 2005; 155:62-70. [PMID: 15885678 DOI: 10.1016/j.cbi.2005.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/14/2005] [Accepted: 04/14/2005] [Indexed: 10/25/2022]
Abstract
Echinacea preparations are widely used herbal remedies for the prevention and treatment of colds. In this study we have investigated the metabolism by human liver microsomes of the alkylamide components from an Echinacea preparation as well as that of pure synthetic alkylamides. No significant degradation of alkylamides was evident in cytosolic fractions. Time- and NADPH-dependent degradation of alkylamides was observed in microsomal fractions suggesting they are metabolised by cytochrome P450 (P450) enzymes in human liver. There was a difference in the susceptibility of 2-ene and 2,4-diene pure synthetic alkylamides to microsomal degradation with (2E)-N-isobutylundeca-2-ene-8,10-diynamide (1) metabolised to only a tenth the extent of (2E,4E,8Z,10Z)-N-isobutyldodeca-2,4,8,10-tetraenamide (3) under identical incubation conditions. Markedly less degradation of 3 was evident in the mixture of alkylamides present in an ethanolic Echinacea extract, suggesting that metabolism by liver P450s was dependent both on their chemistry and the combination present in the incubation. Co-incubation of 1 with 3 at equimolar concentrations resulted in a significant decrease in the metabolism of 3 by liver microsomes. This inhibition by 1, which has a terminal alkyne moiety, was found to be time- and concentration-dependent, and due to a mechanism-based inactivation of the P450s. Alkylamide metabolites were detected and found to be the predicted epoxidation, hydroxylation and dealkylation products. These findings suggest that Echinacea may effect the P450-mediated metabolism of other concurrently ingested pharmaceuticals.
Collapse
Affiliation(s)
- A Matthias
- MediHerb Research Laboratories, Department of Chemistry, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
58
|
Fujita KI, Kamataki T. Genetically engineered bacterial cells co-expressing human cytochrome P450 with NADPH-cytochrome P450 reductase: prediction of metabolism and toxicity of drugs in humans. Drug Metab Pharmacokinet 2005; 17:1-22. [PMID: 15618648 DOI: 10.2133/dmpk.17.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically engineered bacterial cells expressing human cytochrome P450 (CYP) have been developed as new tools to predict the metabolism and toxicity of drugs in humans. There are various host cells for the heterologous expression of a form of CYP. Among them, bacterial cells such as Escherichia coli (E. coli) have advantages with regard to ease of use and high yield of protein. CYP protein could be first expressed by the modification of the N-terminal amino acid sequence in E. coli cells in 1991. Since then, many forms of human CYP have been successfully expressed in E. coli cells. Since the E. coli cells do not possess endogeneous electron transport systems to support the full catalytic activity of CYP, E. coli strains co-expressing both human CYP and NADPH-cytochrome P450 reductase (OR) have been established. Each form of CYP expressed in the E. coli cells efficiently catalyzed the oxidation of a representative substrate at an efficient rate, indicating that the OR was sufficiently expressed to support the catalytic activity of CYP. According to the studies performed so far, the modification of the N-terminal amino acid sequence of CYP did not seem to affect the catalytic properties of CYP. The human CYP expressed in the E. coli cells were applicable for studies to determine a metabolic pathway(s) of drugs and to estimate kinetic parameters of drug metabolism by human CYP. Drug-drug interactions caused by inhibition of the metabolism of drugs by human CYP could also be examined by in vitro inhibition studies with CYP expressed in the E. coli cells. Recently, human CYP was co-expressed with the OR in Salmonella typhimurium (S. typhimurium) cells used for mutation assay (Ames test) by applying the technology for the expression of human CYP and the OR in E. coli cells, to evaluate whether chemicals including drugs are metabolically activated by human CYP and show mutagenicity. These strains of bacteria are considered as useful tools to study the metabolism and the toxicity of drugs in humans.
Collapse
Affiliation(s)
- Ken-Ichi Fujita
- Laboratory of Drug Metabolism, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | |
Collapse
|
59
|
Boye SL, Kerdpin O, Elliot DJ, Miners JO, Kelly L, McKinnon RA, Bhasker CR, Yoovathaworn K, Birkett DJ. Optimizing bacterial expression of catalytically active human cytochromes P450: comparison of CYP2C8 and CYP2C9. Xenobiotica 2005; 34:49-60. [PMID: 14742136 DOI: 10.1080/00498250310001636868] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. Methods for the co-expression in Escherichia coli of human cytochrome P450 (CYP) 2C8 and CYP2C9 with NADPH-cytochrome P450 reductase (OxR) to produce a catalytically active system were compared. 2. Approaches assessed were expression of a CYP:OxR fusion construct, bicistronic plasmids, simultaneous transformation with CYP and OxR plasmids, and separate expression of CYP and OxR with reconstitution of activity by mixing the bacterial membranes. Two N-terminal modifications (Delta3-20 and 17alpha-leader) of the individual P450s were additionally investigated. 3. Each approach gave efficient expression of CYP2C8 and CYP2C9, but the bicistronic constructs under the expression conditions used gave low OxR expression and low catalytic activity. CYP expression was higher with the Delta3-20 construct for CYP2C9 and with the 17alpha-presequence construct for CYP2C8. 4. Using torsemide as substrate, all methods gave catalytically active systems with K(m) values similar to human liver microsomes. Mixing bacterial membranes containing separately expressed CYP and OxR reconstituted a catalytically active system with the Delta3-20 construct for CYP2C9 but not for CYP2C8, and with neither of the 17alpha- presequence constructs. OxR co-expressed with CYP in the same membrane interacted with CYP to reconstitute activity more effectively than addition of exogenous OxR membranes. 5. Expression construct and OxR co-expression strategy should be individualized for CYP isoforms.
Collapse
Affiliation(s)
- S L Boye
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, SA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Polasek TM, Elliot DJ, Lewis BC, Miners JO. Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J Pharmacol Exp Ther 2004; 311:996-1007. [PMID: 15304522 DOI: 10.1124/jpet.104.071803] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies were conducted to evaluate the potential mechanism-based inactivation of recombinant and human liver microsomal CYP2C8 by clinically used drugs. Several tricyclic antidepressants, calcium channel blockers, monoamine oxidase inhibitors, and various other known CYP3A4 inhibitors exhibited greater inhibition of CYP2C8 (paclitaxel 6alpha-hydroxylation) following preincubation, consistent with mechanism-based inactivation. Inactivation of recombinant CYP2C8 by phenelzine, amiodarone, verapamil, nortriptyline, fluoxetine, and isoniazid was of the pseudo-first order type and was characterized by respective inactivation kinetic constants (KI and kinact) of 1.2 microM and 0.243 min(-1), 1.5 microM and 0.079 min(-1), 17.5 microM and 0.065 min(-1), 49.9 microM and 0.036 min(-1), 294 microM and 0.083 min(-1), and 374 microM and 0.042 min(-1). Spectral scanning of recombinant CYP2C8 demonstrated the formation of metabolite-intermediate complexes with verapamil, nortriptyline, fluoxetine, and isoniazid, but not amiodarone. In contrast, inactivation by phenelzine resulted from heme destruction by free radicals. Studies with human liver microsomes (HLMs) revealed that nortriptyline, verapamil, and fluoxetine were not mechanism-based inactivators (MBIs) of CYP2C8. Simultaneous inactivation of CYP2C8 and CYP3A4 (paclitaxel 3'-phenyl-hydroxylation) was observed using amiodarone, isoniazid, and phenelzine with the efficiency of inactivation greater for the CYP3A4 pathway. With the exception of phenelzine, glutathione and superoxide dismutase failed to protect CYP2C8 (recombinant and HLMs) or CYP3A4 from inactivation by MBIs. However, the alternate CYP2C8 substrate, torsemide, prevented CYP2C8 inactivation in all cases. These data are consistent with mechanism-based inactivation of CYP2C8 by a range of commonly prescribed drugs, several of which have been implicated in clinically important drug-drug interactions.
Collapse
Affiliation(s)
- Thomas M Polasek
- Department of Clinical Pharmacology, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, South Australia 5042, Australia
| | | | | | | |
Collapse
|
61
|
Bühler B, Schmid A. Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J Biotechnol 2004; 113:183-210. [PMID: 15380656 DOI: 10.1016/j.jbiotec.2004.03.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 02/19/2004] [Accepted: 03/04/2004] [Indexed: 11/25/2022]
Abstract
Oxidoreductases catalyze a large variety of regio-, stereo-, and chemoselective hydrocarbon oxyfunctionalizations, reactions, which are important in industrial organic synthesis but difficult to achieve by chemical means. This review summarizes process implementation aspects for the in vivo application of the especially versatile enzyme class of oxygenases, capable of specifically introducing oxygen from molecular oxygen into a large range of organic molecules. Critical issues such as reaching high enzyme activity and specificity, product degradation, cofactor recycling, reactant toxicity, and substrate and oxygen mass transfer can be overcome by biochemical process engineering and biocatalyst engineering. Both strategies provide a growing toolset to facilitate process implementation, optimization, and scale-up. Major advances were achieved via heterologous overexpression of oxygenase genes, directed evolution, metabolic engineering, and in situ product removal. Process examples from industry and academia show that the combined use of different concepts enables efficient oxygenase-based whole-cell catalysis of various commercially interesting reactions such as the biosynthesis of chiral compounds, the specific oxyfunctionalization of complex molecules, and also the synthesis of medium-priced chemicals. Better understanding of the cell metabolism and future developments in both biocatalyst and bioprocess engineering are expected to promote the implementation of many and various industrial biooxidation processes.
Collapse
Affiliation(s)
- Bruno Bühler
- Institute of Biotechnology, Swiss Federal Institute of Technology Zurich, ETH Zurich, Hönggerberg HPT, CH-8093
| | | |
Collapse
|
62
|
Jiang H, Morgan JA. Optimization of an in vivo plant P450 monooxygenase system in Saccharomyces cerevisiae. Biotechnol Bioeng 2004; 85:130-7. [PMID: 14704995 DOI: 10.1002/bit.10867] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cytochrome P450s are heme-thiolate oxygenases involved in a wide number of reactions such as epoxidation, hydroxylation, and demethylation. Heterologously expressed eukaryotic P450s are potentially useful biocatalysts for stereospecific oxygenation reactions under mild conditions. Numerous factors, such as intracellular pH, cytochrome P450, cytochrome P450 reductase, NADPH, and oxygen concentration all influence the in vivo activity. To systematically examine these factors, we selected ferulate 5-hydroxylase (F5H), a plant P450, with the Saccharomyces cerevisiae WAT11 strain as an expression host. Two media compositions and two cultivation procedures were investigated to optimize the in vivo activity of F5H. We modified a previously published selective growth medium (Pompon et al. [1996] Methods Enzymol 272:51-64) that increased the specific growth rate and cell yield of the host strain. A cultivation procedure with separate growth and induction stages that each contained selective media resulted in a 45% increase of whole cell F5H specific activity. In a medium designed for simultaneous growth and induction, we observed a 2.6-fold higher specific F5H activity, but substantially lower cell yield. Surprisingly, in this medium the higher specific F5H activity did not correlate with a higher P450 concentration. The effects of addition of the first committed heme precursor, delta-aminolevulinic acid, and Fe(III) at the beginning of induction period were also studied for our two-stage procedure. A small, but significant (P < 0.05) increase in whole cell F5H activity was observed following ALA addition.
Collapse
Affiliation(s)
- Hanxiao Jiang
- School of Chemical Engineering, FRNY Hall, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
63
|
Blaisdell J, Jorge-Nebert LF, Coulter S, Ferguson SS, Lee SJ, Chanas B, Xi T, Mohrenweiser H, Ghanayem B, Goldstein JA. Discovery of new potentially defective alleles of human CYP2C9. ACTA ACUST UNITED AC 2004; 14:527-37. [PMID: 15284535 DOI: 10.1097/01.fpc.0000114759.08559.51] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CYP2C9 is a clinically important enzyme, responsible for the metabolism of numerous clinically important therapeutic drugs. In the present study, we discovered 38 single nucleotide polymorphisms in CYP2C9 by resequencing of genomic DNA from 92 individuals from three different racial groups. Haplotype analysis predicted that there are at least 21 alleles of CYP2C9 in this group of individuals. Six new alleles were identified that contained coding changes: L19I (CYP2C9*7), R150H (CYP2C9*8), H251R (CYP2C9*9), E272G (CYP2C9*10), R335W(CYP2C9*11) and P489S (CYP2C9*12). When expressed in a bacterial cDNA expression system, several alleles exhibited altered catalytic activity. CYP2C9*11 appeared to be a putative poor metabolizer allele, exhibiting a three-fold increase in the Km and more than a two-fold decrease in the intrinsic clearance for tolbutamide. Examination of the crystal structure of human CYP2C9 reveals that R335 is located in the turn between the J and J' helices and forms a hydrogen-bonding ion pair with D341 from the J' helix. Abolishing this interaction in CYP2C9*11 individuals could destabilize the secondary structure and alter the substrate affinity. This new putative poor metabolizer (PM) allele was found in Africans. A second potentially PM allele CYP2C9*12 found in a racially unidentified sample also exhibited a modest decrease in the Vmax and the intrinsic clearance for tolbutamide in a recombinant system. Further clinical studies are needed to determine the effect of these new polymorphisms on the metabolism of CYP2C9 substrates.
Collapse
Affiliation(s)
- Joyce Blaisdell
- Laboratory of Pharmacology and Chemistry, Human Metabolism Section, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA, DNA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF. The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J Biol Chem 2004; 279:35630-7. [PMID: 15181000 DOI: 10.1074/jbc.m405427200] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of human P450 2C9 complexed with flurbiprofen was determined to 2.0 A by x-ray crystallography. In contrast to other structurally characterized P450 2C enzymes, 2C5, 2C8, and a 2C9 chimera, the native catalytic domain of P450 2C9 differs significantly in the conformation of the helix F to helix G region and exhibits an extra turn at the N terminus of helix A. In addition, a distinct conformation of the helix B to helix C region allows Arg-108 to hydrogen bond with Asp-293 and Asn-289 on helix I and to interact directly with the carboxylate of flurbiprofen. These interactions position the substrate for regioselective oxidation in a relatively large active site cavity and are likely to account for the high catalytic efficiency exhibited by P450 2C9 for the regioselective oxidation of several anionic non-steroidal anti-inflammatory drugs. The structure provides a basis for interpretation of a number of observations regarding the substrate selectivity of P450 2C9 and the observed effects of mutations on catalysis.
Collapse
Affiliation(s)
- Michael R Wester
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Schoch GA, Yano JK, Wester MR, Griffin KJ, Stout CD, Johnson EF. Structure of Human Microsomal Cytochrome P450 2C8. J Biol Chem 2004; 279:9497-503. [PMID: 14676196 DOI: 10.1074/jbc.m312516200] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 2.7-Angstrom molecular structure of human microsomal cytochrome P450 2C8 (CYP2C8) was determined by x-ray crystallography. The membrane protein was modified for crystallization by replacement of the hydrophobic N-terminal transmembrane domain with a short hydrophilic sequence before residue 28. The structure of the native sequence is complete from residue 28 to the beginning of a C-terminal histidine tag used for purification. CYP2C8 is one of the principal hepatic drug-metabolizing enzymes that oxidizes therapeutic drugs such as taxol and cerivastatin and endobiotics such as retinoic acid and arachidonic acid. Consistent with the relatively large size of its preferred substrates, the active site volume is twice that observed for the structure of CYP2C5. The extended active site cavity is bounded by the beta1 sheet and helix F' that have not previously been implicated in substrate recognition by mammalian P450s. CYP2C8 crystallized as a symmetric dimer formed by the interaction of helices F, F', G', and G. Two molecules of palmitic acid are bound in the dimer interface. The dimer is observed in solution, and mass spectrometry confirmed the association of palmitic acid with the enzyme. This novel finding identifies a peripheral binding site in P450s that may contribute to drug-drug interactions in P450 metabolism.
Collapse
|
66
|
Trigui M, Pulvin S, Truffaut N, Thomas D, Poupin P. Molecular cloning, nucleotide sequencing and expression of genes encoding a cytochrome P450 system involved in secondary amine utilization in Mycobacterium sp. strain RP1. Res Microbiol 2004; 155:1-9. [PMID: 14759702 DOI: 10.1016/j.resmic.2003.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 09/12/2003] [Indexed: 11/18/2022]
Abstract
Mycobacterium sp. strain RP1 degrades morpholine, piperidine, and pyrrolidine and is able to use these compounds as the sole source of carbon, nitrogen, and energy. Cytochrome P450 (MorA) is involved in the biodegradation of these secondary amines. A 3.9-PstI genomic DNA fragment, containing the gene encoding MorA, was cloned and sequenced. Four open reading frames were detected on this DNA fragment. The first encoded a cytochrome P450 designated as MorA which was the second member of the CYP151 family and was named CYP151A2. The second open reading frame (morB) featured a [3Fe-4S] type of ferredoxin. A third gene (morC), exhibiting sequence identity to known reductases, and a fourth truncated gene encoding a putative glutamine reductase (orf1' ), were found downstream of morB. Recombinant MorA cytochrome P450 was purified to homogeneity from Escherichia coli. The purified enzyme was a monomeric soluble protein with an apparent Mr of about 45,000. CYP151A2 catalyzed the ring cleavage of the secondary amines and the Vmax/KMapp values indicated that pyrrolidine is the preferred substrate for this monooxygenase.
Collapse
Affiliation(s)
- Mohamed Trigui
- Laboratoire de Technologie Enzymatique, MR 6022 CNRS, Université de Technologie de Compiègne, BP 20529, 60205 Compiègne, France
| | | | | | | | | |
Collapse
|
67
|
Johnson EF. The 2002 Bernard B. Brodie Award lecture: deciphering substrate recognition by drug-metabolizing cytochromes P450. Drug Metab Dispos 2003; 31:1532-40. [PMID: 14625350 DOI: 10.1124/dmd.31.12.1532] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Eric F Johnson
- Department of Molecular and Experimental Medicine, MEM 255, The Scripps Research Institute, 10550 North Torrey Pines Rd. La Jolla, CA 92037, USA.
| |
Collapse
|
68
|
Hussain HA, Ward JM. Ferredoxin reductase enhances heterologously expressed cytochrome CYP105D1 in Escherichia coli and Streptomyces lividans. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00047-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
69
|
Abstract
Oxygenases carry out the regio-, stereo- and chemoselective introduction of oxygen in a tremendous range of organic molecules. This versatility has already been exploited in several commercial processes. There are, however, many hurdles to further practical large-scale applications. Here, we review various issues in biocatalysis using these enzymes, such as screening strategies, overoxidation, uncoupling, substrate uptake, substrate toxicity, and oxygen mass transfer. By addressing these issues in a systematic way, the productivity of promising laboratory scale biotransformations involving oxygenases may be improved to levels that allow industry to realise the full commercial potential of these enzymes.
Collapse
Affiliation(s)
- Jan B van Beilen
- Institute of Biotechnology, ETH Hönggerberg, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
70
|
Hussain HA, Ward JM. Enhanced heterologous expression of two Streptomyces griseolus cytochrome P450s and Streptomyces coelicolor ferredoxin reductase as potentially efficient hydroxylation catalysts. Appl Environ Microbiol 2003; 69:373-82. [PMID: 12514018 PMCID: PMC152428 DOI: 10.1128/aem.69.1.373-382.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herbicide-inducible, soluble cytochrome P450s CYP105A1 and CYP105B1 and their adjacent ferredoxins, Fd1 and Fd2, of Streptomyces griseolus were expressed in Escherichia coli to high levels. Conditions for high-level expression of active enzyme able to catalyze hydroxylation have been developed. Analysis of the expression levels of the P450 proteins in several different E. coli expression hosts identified E. coli BL21 Star(DE3)pLysS as the optimal host cell to express CYP105B1 as judged by CO difference spectra. Examination of the codons used in the CYP1051A1 sequence indicated that it contains a number of codons corresponding to rare E. coli tRNA species. The level of its expression was improved in the modified forms of E. coli BL21(DE3), which contain extra copies of rare codon E. coli tRNA genes. The activity of correctly folded cytochrome P450s was further enhanced by cloning a ferredoxin reductase from Streptomyces coelicolor downstream of CYP105A1 and CYP105B1 and their adjacent ferredoxins. Expression of CYP105A1 and CYP105B1 was also achieved in Streptomyces lividans 1326 by cloning the P450 genes and their ferredoxins into the expression vector pBW160. S. lividans 1326 cells containing CYP105A1 or CYP105B1 were able efficiently to dealkylate 7-ethoxycoumarin.
Collapse
Affiliation(s)
- Haitham A Hussain
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
71
|
Blaisdell J, Mohrenweiser H, Jackson J, Ferguson S, Coulter S, Chanas B, Xi T, Ghanayem B, Goldstein JA. Identification and functional characterization of new potentially defective alleles of human CYP2C19. PHARMACOGENETICS 2002; 12:703-11. [PMID: 12464799 DOI: 10.1097/00008571-200212000-00004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CYP2C19 is a clinically important enzyme responsible for the metabolism of a number of therapeutic drugs, such as mephenytoin, omeprazole, diazepam, proguanil, propranolol and certain antidepressants. Genetic polymorphisms in this enzyme result in poor metabolizers of these drugs. There are racial differences in the incidence of the poor metabolizer trait, which represents 13-23% of Asians but only 3-5% of Caucasians. In this study, single nucleotide polymorphisms (SNPs) in CYP2C19 were identified by direct sequencing of genomic DNA from 92 individuals from three different racial groups of varied ethnic background, including Caucasians, Asians and blacks. Several new alleles were identified containing the coding changes Arg114 His (CYP2C19*9), Pro227 Leu (CYP2C19*10), Arg150 His (CYP2C19*11), stop491 Cys (CYP2C19*12), Arg410 Cys (CYP2C19*13), Leu17 Pro (CYP2C19*14) and Ile19 Leu (CYP2C19*15). When expressed in a bacterial cDNA expression system, CYP2C19*9 exhibited a modest decrease in the V(max) for 4'-hydroxylation of -mephenytoin, and no alteration in its affinity for reductase. CYP2C19*10 exhibited a dramatically higher K(m) and lower V(max) for mephenytoin. CYP2C19*12was unstable and expressed poorly in a bacterial cDNA expression system. Clinical studies will be required to confirm whether this allele is defective in vivo. CYP2C19*9, CYP2C19*10 and CYP2C19*12 all occurred in African-Americans, or individuals of African descent, and represent new potentially defective alleles of CYP2C19 which are predicted to alter risk of these populations to clinically important drugs.
Collapse
Affiliation(s)
- Joyce Blaisdell
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41:913-58. [PMID: 12222994 DOI: 10.2165/00003088-200241120-00002] [Citation(s) in RCA: 599] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 2C19 (CYP2C19) is the main (or partial) cause for large differences in the pharmacokinetics of a number of clinically important drugs. On the basis of their ability to metabolise (S)-mephenytoin or other CYP2C19 substrates, individuals can be classified as extensive metabolisers (EMs) or poor metabolisers (PMs). Eight variant alleles (CYP2C19*2 to CYP2C19*8) that predict PMs have been identified. The distribution of EM and PM genotypes and phenotypes shows wide interethnic differences. Nongenetic factors such as enzyme inhibition and induction, old age and liver cirrhosis can also modulate CYP2C19 activity. In EMs, approximately 80% of doses of the proton pump inhibitors (PPIs) omeprazole, lansoprazole and pantoprazole seem to be cleared by CYP2C19, whereas CYP3A is more important in PMs. Five-fold higher exposure to these drugs is observed in PMs than in EMs of CYP2C19, and further increases occur during inhibition of CYP3A-catalysed alternative metabolic pathways in PMs. As a result, PMs of CYP2C19 experience more effective acid suppression and better healing of duodenal and gastric ulcers during treatment with omeprazole and lansoprazole compared with EMs. The pharmacoeconomic value of CYP2C19 genotyping remains unclear. Our calculations suggest that genotyping for CYP2C19 could save approximately 5000 US dollars for every 100 Asians tested, but none for Caucasian patients. Nevertheless, genotyping for the common alleles of CYP2C19 before initiating PPIs for the treatment of reflux disease and H. pylori infection is a cost effective tool to determine appropriate duration of treatment and dosage regimens. Altered CYP2C19 activity does not seem to increase the risk for adverse drug reactions/interactions of PPIs. Phenytoin plasma concentrations and toxicity have been shown to increase in patients taking inhibitors of CYP2C19 or who have variant alleles and, because of its narrow therapeutic range, genotyping of CYP2C19 in addition to CYP2C9 may be needed to optimise the dosage of phenytoin. Increased risk of toxicity of tricyclic antidepressants is likely in patients whose CYP2C19 and/or CYP2D6 activities are diminished. CYP2C19 is a major enzyme in proguanil activation to cycloguanil, but there are no clinical data that suggest that PMs of CYP2C19 are at a greater risk for failure of malaria prophylaxis or treatment. Diazepam clearance is clearly diminished in PMs or when inhibitors of CYP2C19 are coprescribed, but the clinical consequences are generally minimal. Finally, many studies have attempted to identify relationships between CYP2C19 genotype and phenotype and susceptibility to xenobiotic-induced disease, but none of these are compelling.
Collapse
Affiliation(s)
- Zeruesenay Desta
- Division of Clinical Pharmacology, Indiana University School of Medicine, Wishard Hospital, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
73
|
Johnson EF, Wester MR, Stout CD. The structure of microsomal cytochrome P450 2C5: a steroid and drug metabolizing enzyme. Endocr Res 2002; 28:435-41. [PMID: 12530646 DOI: 10.1081/erc-120016820] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The structure of microsomal P450 2C5 is the first structure of a membrane P450 to be determined by x-ray diffraction. This enzyme was originally identified as a progesterone 21-hydroxylase that is polymorphically expressed in rabbit liver. In contrast to the adrenal 21-hydroxylase, P450 2C5 metabolizes structurally diverse substrates that include a variety of steroids as well as therapeutic drugs. The flexible architecture of the enzyme and the residual solvation of the substrate provide a basis for understanding the catalytic diversity of 2C5 and related drug metabolizing P450s. In addition, the structure of P450 2C5 suggests how mammalian P450s have adapted for membrane binding and interaction with microsomal P450 reductase.
Collapse
Affiliation(s)
- Eric F Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
74
|
Raucy JL, Mueller L, Duan K, Allen SW, Strom S, Lasker JM. Expression and induction of CYP2C P450 enzymes in primary cultures of human hepatocytes. J Pharmacol Exp Ther 2002; 302:475-82. [PMID: 12130704 DOI: 10.1124/jpet.102.033837] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although CYP2C8, CYP2C9, and CYP2C19 play an important role in drug biotransformation, factors influencing the expression and activity of these CYP2C P450s in human liver remain largely undefined. We used primary cultures of human hepatocytes from 15 subjects to assess the inducibility of CYP2C enzyme expression by prototypical inducer agents, including rifampicin, dexamethasone, and phenobarbital. After culture for 72 h in serum-free medium on collagen, Western blotting revealed that CYP2C9 was the only CYP2C enzyme expressed at appreciable levels in untreated hepatocytes. Subsequent treatment with 25 microMrifampicin for 48 h elicited marked increases in CYP2C8 (700 +/- 761%), CYP2C19 (854%), and CYP2C9 (209 +/- 176%) protein content versus a 550 +/- 170% enhancement of CYP3A4 enzyme levels. Parallel increases in CYP2C mRNAs, measured by Northern blotting and/or RNase protection, were found in rifampicin-treated hepatocytes, with CYP2C8, CYP2C9, and CYP2C19 transcripts exhibiting increases of 688 +/- 635, 207 +/- 49, and 230 +/- 60%, respectively, versus an 8.8-fold enhancement of CYP3A4 mRNA levels. Dexamethasone (10 microM) treatment enhanced CYP2C8 mRNA (360 +/- 100%) and protein (274%) content, although this steroid had less effect on CYP2C9 and CYP2C19 transcripts (23 +/- 21% and 21 +/- 36%, respectively) and enzyme levels (55 and 143%, respectively). Phenobarbital (100 microM) was a powerful inducer of CYP2C9 (850%) and CYP2C19 (735%) mRNA content, and also increased CYP2C8 (610%) and CYP3A4 (205%) transcripts. Our results show that CYP2C enzyme expression in human hepatocytes is highly inducible by rifampicin, dexamethasone, and phenobarbital. Because these xenobiotics are ligands and/or activators of the pregnane X receptor and/or constitutive androstane receptor, such orphan nuclear receptors and their response elements may partake in regulating CYP2C gene expression in humans.
Collapse
Affiliation(s)
- Judy L Raucy
- La Jolla Institute for Molecular Medicine, 4570 Executive Drive, Suite 100, San Diego, CA 92121, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Khan KK, He YA, He YQ, Halpert JR. Site-directed mutagenesis of cytochrome P450eryF: implications for substrate oxidation, cooperativity, and topology of the active site. Chem Res Toxicol 2002; 15:843-53. [PMID: 12067252 DOI: 10.1021/tx025539k] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of five active-site residues (Phe-78, Gly-91, Ser-171, Ile-174, and Leu-175) has been investigated in P450eryF, the only bacterial P450 known to show cooperativity. The residues were selected based on two-ligand-bound P450eryF structures and previous mutagenesis studies of other cytochromes P450. To better understand the role of these residues in substrate catalysis and cooperativity, each mutant was generated in the wild-type and A245T background, a substitution that enables P450eryF to oxidize testosterone and 7-benzyloxyquinoline (7-BQ). Replacement of Phe-78 with tryptophan decreased cooperativity of 9-aminophenanthrene binding, with little effect on testosterone binding or oxidation. Interestingly, substitution of Gly-91 with alanine or phenylalanine abolished the type-I spectral change elicited by testosterone and significantly decreased testosterone hydroxylation. However, G91A/A245T showed a 4-fold higher k(cat) value with 7-BQ compared with A245T. Replacement of Ser-171 with alanine or phenylalanine did not alter cooperativity of testosterone binding but significantly decreased binding affinity and oxidation of testosterone and 7-BQ. The only mutant that exhibited an increased testosterone binding affinity and increased rates of testosterone and 7-BQ oxidation was I174F. Substitution of Ile-175 with phenylalanine decreased testosterone and 7-BQ oxidation. Reaction with phenyldiazene showed that P450eryF may be much more open above pyrrole ring B than other cytochromes P450 and indicated significant changes in active-site topology in some of the mutants. The study suggests a crucial role of residues Ser-171, Ile-174, and Leu-175, which are part of a distal ligand site, in addition to the proximal Gly-91 in determining the oxidative properties of P450eryF.
Collapse
Affiliation(s)
- Kishore K Khan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston 77555-1031, USA.
| | | | | | | |
Collapse
|
76
|
Shon JH, Yoon YR, Kim KA, Lim YC, Lee KJ, Park JY, Cha IJ, Flockhart DA, Shin JG. Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans. PHARMACOGENETICS 2002; 12:111-9. [PMID: 11875365 DOI: 10.1097/00008571-200203000-00005] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several recent in-vitro data have revealed that CYP2C19, in addition to CYP2C9, is also involved in the 4-methylhydroxylation of tolbutamide. We evaluated the relative contribution of CYP2C9 and CYP2C19 genetic polymorphisms on the disposition of blood glucose lowering response to tolbutamide in normal healthy Korean subjects in order to reappraise tolbutamide as a selective in-vivo probe substrate of CYP2C9 activity. A single oral dose of tolbutamide (500 mg) or placebo was administered to 18 subjects in a single-blind, randomized, crossover study with a 2-week washout period. Twelve subjects (of whom six were CYP2C19 extensive metabolizer (EM) and six were CYP2C19 poor metabolizer (PM) genotype) were of the homozygous wild-type CYP2C9*1 genotype; the other six subjects were of the CYP2C9*1/*3 and CYP2C19 EM genotype. Pharmacokinetic parameters were estimated from plasma and urine concentrations of tolbutamide and 4-hydroxytolbutamide. Serum glucose concentrations were measured before and after oral intake of 100 g dextrose. In subjects heterozygous for the CYP2C9*3 allele, C(max) and AUC of tolbutamide were significantly greater and the plasma half-life significantly longer than those in homozygous CYP2C9*1 subjects. No pharmacokinetic differences were found between CYP2C19 EM and PM genotype subjects. The estimated AUC of the increase in serum glucose after oral intake of 100 g dextrose was 2.7-fold higher in subjects with the wild-type CYP2C9 genotype than in those with CYP2C9*1/*3, but CYP2C19 genetic polymorphism did not alter the blood glucose lowering effect of tolbutamide. The plasma AUC of 4-hydroxytolbutamide and the ratio of 4-hydroxytolbutamide/tolbutamide did not differ significantly between CYP2C19 PM and EM genotype subjects, while these parameters were about twice as high in subjects with the wild-type CYP2C9 genotype than in heterozygous CYP2C9*3 subjects (P < 0.05). Our results strongly suggest that the disposition and hypoglycemic effect of tolbutamide are affected mainly by CYP2C9 genetic polymorphism, but not by CYP2C19 polymorphism. The in-vivo contribution of CYP2C19 to tolbutamide 4-methylhydroxylation appears to be minor in humans. This suggests that, at least in vivo, tolbutamide remains a selective probe for measuring CYP2C9 activity in humans.
Collapse
Affiliation(s)
- Ji-Hong Shon
- Department of Pharmacology, Inje University College of Medicine and Clinical Pharmacology Center, Pusan Paik Hospital, Pusan, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, Goldstein JA. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. PHARMACOGENETICS 2001; 11:597-607. [PMID: 11668219 DOI: 10.1097/00008571-200110000-00006] [Citation(s) in RCA: 365] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytochrome P450 (CYP) 2C8 is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (Taxol). It is also the predominant P450 responsible for the metabolism of arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs) in human liver and kidney. In this study, we describe two new CYP2C8 alleles containing coding changes: CYP2C8*2 has an Ile269Phe substitution in exon 5 and CYP2C8*3 includes both Arg139Lys and Lys399Arg amino acid substitutions in exons 3 and 8. CYP2C8*2 was found only in African-Americans, while CYP2C8*3 occurred primarily in Caucasians. Neither occurred in Asians. The frequency of the CYP2C8*2 allele was 0.18 in African-Americans, and that of CYP2C8*3 was 0.13 in Caucasians. CYP2C8*1 (wild-type), CYP2C8*2 and CYP2C8*3 cDNAs were expressed in Escherichia coli, and the ability of these enzymes to metabolize both paclitaxel and arachidonic acid was assessed. Recombinant CYP2C8*3 was defective in the metabolism of both substrates. The turnover number of CYP2C8*3 for paclitaxel was 15% of CYP2C8*1. CYP2C8*2 had a two-fold higher Km and two-fold lower intrinsic clearance for paclitaxel than CYP2C8*1. CYP2C8*3 was also markedly defective in the metabolism of arachidonic acid to 11,12- and 14,15-EET (turnover numbers 35-40% that of CYP2C8*1). Thus, CYP2C8*3 is defective in the metabolism of two important CYP2C8 substrates: the anticancer drug paclitaxel and the physiologically important compound arachidonic acid. This polymorphism has important clinical and physiological implications in individuals homozygous for this allele.
Collapse
Affiliation(s)
- D Dai
- Laboratories of Pharmacology and Chemistry and Pulmonary and Pathobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Hanna IH, Kim MS, Guengerich FP. Heterologous expression of cytochrome P450 2D6 mutants, electron transfer, and catalysis of bufuralol hydroxylation: the role of aspartate 301 in structural integrity. Arch Biochem Biophys 2001; 393:255-61. [PMID: 11556812 DOI: 10.1006/abbi.2001.2510] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 (P450) 2D6 is a polymorphic human enzyme involved in the oxidation of >50 drugs, most of which contain a basic nitrogen. In confirmation of previous work by others, substitutions at Asp301 decreased rates of substrate oxidation by P450 2D6. An anionic residue (Asp, Glu) at this position was found to be important in proper protein folding and heme incorporation, and positively charged residues were particularly disruptive in bacterial and also in baculovirus expression systems. Truncation of 20 N-terminal amino acids had no significant effect on catalytic activity except to attenuate P450 2D6 interaction with membranes and NADPH-P450 reductase. The truncation of the N-terminus increased the level of bacterial expression of wild-type P450 2D6 (Asp301) but markedly reduced expression of all codon 301 mutants, including Glu301. Reduction of ferric P450 2D6 by NADPH-P450 reductase was enhanced in the presence of the prototypic substrate bufuralol. Bacterial flavodoxin, an NADPH-P450 reductase homolog, binds tightly to P450 2D6 but is inefficient in electron transfer to the heme. These results collectively indicate that the acidic residue at position 301 in P450 2D6 has a structural role in addition to any in substrate binding and that the N-terminus of P450 2D6 is relatively unimportant to catalytic activity beyond a role in facilitating binding to NADPH-P450 reductase.
Collapse
Affiliation(s)
- I H Hanna
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
79
|
Doray B, Chen CD, Kemper B. N-terminal deletions and His-tag fusions dramatically affect expression of cytochrome p450 2C2 in bacteria. Arch Biochem Biophys 2001; 393:143-53. [PMID: 11516171 DOI: 10.1006/abbi.2001.2473] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of mutants with deletions in the N-terminal signal-anchor sequence of cytochrome P450 2C2 and His-tag fusions was examined in Escherichia coli to determine the influence of N-terminal sequences on expression of the protein. Two mutants predicted to be translocated across the membrane inhibited bacterial growth. In other mutants, deletion of the N-terminal transmembrane domain (residues 2-20) reduced expression of functional P450 by about 75% and further deletion of the following linker sequence (residues 21-27) resulted in a modest further decrease. Expression of the mutant with residues 2-27 deleted contrasts with the lack of expression of functional protein if only the linker was deleted, which suggests that the linker sequence is critical for expression only if the protein is inserted into the membrane by the transmembrane domain. Fusion proteins of green fluorescent protein with full-length P450 2C2 and 2C2(Delta2-20) were predominantly membrane-associated in vivo as determined by fluorescence microscopy. Subcellular fractionation of bacteria expressing these proteins and extraction of the proteins from the membrane by high salt or alkaline buffer demonstrated that P450 2C2 was an integral membrane protein while 2C2(Delta2-20) was a peripheral membrane protein that associated with the membrane mainly by hydrophobic interactions. Residues 1-27 of P450 2C2 fused to green fluorescent protein resulted in a redistribution of fluorescence from cytosol to membrane, which, with the deletion studies, indicates that the P450 signal-anchor is both necessary and sufficient for normal membrane targeting and is the sole transmembrane domain of cytochrome P450 2C2 in bacteria. Addition of a His-tag at the N-terminus completely restored wild-type expression levels to the 2C2(Delta2-20) mutants in bacteria. In insect cells, functional 2C2(Delta2-20) was not expressed but an N-terminal His-tag also restored full expression. The increase in expression may be related to decreased association with the membrane mediated by the His-tag.
Collapse
Affiliation(s)
- B Doray
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
80
|
Gilep AA, Guryev OL, Usanov SA, Estabrook RW. Expression, purification, and physical properties of recombinant flavocytochrome fusion proteins containing rat cytochrome b(5) linked to NADPH-cytochrome P450 reductase by different membrane-binding segments. Arch Biochem Biophys 2001; 390:222-34. [PMID: 11396925 DOI: 10.1006/abbi.2001.2371] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reconstitution of the enzymatic activities using purified microsomal cytochrome P450s (P450) requires the presence of a membrane-binding segment in the mammalian flavoprotein, NADPH--cytochrome P450 reductase (CPR), and the hemeprotein, cytochrome b(5) (b(5)). The mechanism(s) by which the membrane-binding segments of these proteins exert such a critical role in influencing the reconstitution of the NADPH-supported activity of a P450 remains undefined. In the present work we describe the construction, expression, and purification of four different types of recombinant flavocytochromes containing rat b(5) and rat CPR linked by various membrane-binding segments. The physical properties of these artificial fusion proteins have been studied to determine their ability to serve as electron transfer agents. These studies are a prelude to the subsequent study (accompanying paper) evaluating the functional roles of the hydrophobic (membrane-binding) sequences of b(5) and CPR in the reconstitution of P450 activities. The present study shows that the purified recombinant fusion proteins can serve as active electron transport carriers from NADPH to cytochrome c as well as b(5) by intramolecular as well as intermolecular reactions. It is shown here that the electron transport properties of these purified fusion proteins are influenced by high concentrations of KCl, suggesting a role for charged amino acids in protein-protein interactions. The present study illustrates the application of artificial recombinant flavocytochromes as useful proteins for the study of intramolecular electron transport reactions for comparison with intermolecular interactions.
Collapse
Affiliation(s)
- A A Gilep
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9038, USA
| | | | | | | |
Collapse
|
81
|
Saribas AS, Gruenke L, Waskell L. Overexpression and purification of the membrane-bound cytochrome P450 2B4. Protein Expr Purif 2001; 21:303-9. [PMID: 11237692 DOI: 10.1006/prep.2000.1377] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of the membrane-bound cytochrome P450 2B4 by the pLW01-P450 expression vector, which utilizes a T7 promoter, is markedly improved by employing Escherichia coli strain C41(DE3) [Miroux, B., and Walker, J. (1996) J. Mol. Biol 260, 289--298; Bridges, A., Gruenke, L., Chang, Y.-T., Vasker, I., Loew, G., and Waskell, L. (1998) J. Biol. Chem. 273, 17036--17049]. Using this expression system, it was possible to routinely obtain an average of 50--60 mg and as high as 100 mg of cyt P450 2B4 per liter of cell culture in volumes of 500 ml. An improved purification procedure for cyt P450 2B4 is also described which allows recovery of 30% of the expressed protein. It was possible in one step using B-PER reagent and polyoxyethylene-9-lauryl ether to both lyse the E. coli and solubilize the expressed cyt P450. Cyt P450 2B4 with a specific content of 17 nmol/mg protein and a single band on polyacrylamide gel electrophoresis was routinely isolated. The yield of cyt P450 from the improved purification procedure is twice that from the original procedure and the purity of the recovered protein typically has a specific content of 17 nmol cyt P450/mg of protein.
Collapse
Affiliation(s)
- A S Saribas
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48108, USA
| | | | | |
Collapse
|
82
|
Tsao CC, Wester MR, Ghanayem B, Coulter SJ, Chanas B, Johnson EF, Goldstein JA. Identification of human CYP2C19 residues that confer S-mephenytoin 4'-hydroxylation activity to CYP2C9. Biochemistry 2001; 40:1937-44. [PMID: 11329260 DOI: 10.1021/bi001678u] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CYP2C19 is selective for the 4'-hydroxylation of S-mephenytoin while the highly similar CYP2C9 has little activity toward this substrate. To identify critical amino acids determining the specificity of human CYP2C19 for S-mephenytoin 4'-hydroxylation, we constructed chimeras by replacing portions of CYP2C9 containing various proposed substrate recognition sites (SRSs) with those of CYP2C19 and mutating individual residues by site-directed mutagenesis. Only a chimera containing regions encompassing SRSs 1--4 was active (30% of wild-type CYP2C19), indicating that multiple regions are necessary to confer specificity for S-mephenytoin. Mutagenesis studies identified six residues in three topological components of the proteins required to convert CYP2C9 to an S-mephenytoin 4'-hydroxylase (6% of the activity of wild-type CYP2C19). Of these, only the I99H difference located in SRS 1 between helices B and C reflects a change in a side chain that is predicted to be in the substrate-binding cavity formed above the heme prosthetic group. Two additional substitutions, S220P and P221T residing between helices F and G but not in close proximity to the substrate binding site together with five differences in the N-terminal portion of helix I conferred S-mephenytoin 4'-hydroxylation activity with a K(M) similar to that of CYP2C19 but a 3-fold lower K(cat). Three residues in helix I, S286N, V292A, and F295L, were essential for S-mephenytoin 4'-hydroxylation activity. On the basis of the structure of the closely related enzyme CYP2C5, these residues are unlikely to directly contact the substrate during catalysis but are positioned to influence the packing of substrate binding site residues and likely substrate access channels in the enzyme.
Collapse
Affiliation(s)
- C C Tsao
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Domanski TL, Finta C, Halpert JR, Zaphiropoulos PG. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59:386-92. [PMID: 11160876 DOI: 10.1124/mol.59.2.386] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The RACE amplification technology was used on a novel CYP3A-like exon 1 sequence detected during the reverse transcriptase/polymerase chain reaction analysis of human CYP3A gene expression. This resulted in the identification of cDNAs encompassing the complete coding sequence of a new member of the CYP3A gene subfamily, CYP3A43. Interestingly, the majority of the cDNAs identified were characterized by alternative splicing events such as exon skipping and complete or partial intron inclusion. CYP3A43 expression was detected in liver, kidney, pancreas, and prostate. The amino acid sequence is 75% identical to that of CYP3A4 and CYP3A5 and 71% identical to CYP3A7. CYP3A43 differs from CYP3A4 at six amino acid residues, found within the putative substrate recognition sites of CYP3A4, that are known to be determinants of substrate selectivity. The N terminus of CYP3A43 was modified for efficient expression of the protein in Escherichia coli, and a 6X histidine tag was added at the C terminus to facilitate purification. CYP3A43 gave a reduced carbon monoxide difference spectra with an absorbance maximum at 450 nm. The level of heterologous expression was significantly lower than that observed for CYP3A4 and CYP3A5. Immunoblot analyses revealed that CYP3A43 comigrates with CYP3A4 in polyacrylamide gel electrophoresis but does separate from CYP3A5. Monooxygenase assays were performed under a variety of conditions, several of which yielded reproducible, albeit low, testosterone hydroxylase activity. The findings from this study demonstrate that there is a novel CYP3A member expressed in human tissues, although its relative contribution to drug metabolism has yet to be ascertained.
Collapse
Affiliation(s)
- T L Domanski
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | |
Collapse
|
84
|
Bornheim LM. Effects of unsaturated side-chain analogs of tetrahydrocannabinol on cytochromes P450. Biochem Pharmacol 2000; 60:955-61. [PMID: 10974204 DOI: 10.1016/s0006-2952(00)00431-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ability of unsaturated side-chain analogs of Delta(8)-tetrahydrocannabinol (THC) to selectively inactivate mouse hepatic cytochromes P450 3A11 and 2C29 was examined. THC side-chain analogs were preincubated with mouse hepatic microsomes and NADPH for various times before dilution and determination of Delta(9)-THC metabolism specific for P450s 3A11 and 2C29. THC-enyl analogs had little or no effect on P450 3A11 but inactivated P450 2C29 in a time-dependent manner, with approximately 50% inactivation observed after a 30-min preincubation. THC-ynyl analogs were less selective in their P450 inactivation but appeared to be more effective than their corresponding enyl analogs. THC-ynyl analogs inactivated P450s 3A11 and 2C29 in a time-dependent manner and could inactive 40-80% of their activities after a 30-min preincubation. The THC-ynyl analogs were nearly as effective as cannabidiol, a well-characterized inactivator of these mouse P450s. Despite their ability to inactivate P450 in vitro, neither the THC-enyl nor the THC-ynyl analogs were very effective after in vivo administration. Unsaturated side-chain THC analogs may be useful in the development of specific P450 inactivators.
Collapse
Affiliation(s)
- L M Bornheim
- Department of Cellular and Molecular Pharmacology and the Liver Center, University of California, San Francisco, CA 94143-0450, USA.
| |
Collapse
|
85
|
Abstract
Conditions for the optimal expression of the human CYP1B1 hemoprotein in Escherichia coli have been investigated. CYP1B1 cDNA was prepared from a retinal cDNA template and used to generate cDNA fragments with modified 5'-sequences reported to allow enhanced expression in E. coli DH5alpha. Plasmids were constructed, using the pCWori+ expression vector and were used to examine necessity for thiamine, delta-aminolevulinic acid (ALA), and IPTG. The optimal shaking speed in an orbital incubator was 150 rpm at 30 degrees C. Higher speeds resulted in increased cell death and lower speeds resulted in lower expression of cytochrome P450. IPTG was necessary for this expression system, which makes use of the lac repressor, but levels above 0.5 mM were without additional benefit. We were able to show thiamine to be unnecessary in this expression system, although included by others expressing CYP1B1. ALA has been reported to enhance expression of several different forms of cytochrome P450. We examined the dependence of CYP1B1 expression on ALA. The expression proved to be highly dependent upon this heme precursor, with levels of CYP1B1 increasing approximately 20-fold, to 920 nmol/l in the presence of up to 2.5 mM ALA. The question of whether heme synthesis and apoprotein synthesis were coupled was then investigated. It could be shown that although heme synthesis was not limiting (CYP101 holoenzyme expression in the absence of ALA was four times higher than the ALA-supported CYP1B1 holoenzyme expression), it was necessary for optimal expression of CYP1B1. CYP1B1 protein synthesis appears to be coupled to heme precursor availability, as seen by SDS-PAGE, because in the absence of heme precursor apocytochrome P450 1B1 does not accumulate.
Collapse
Affiliation(s)
- I Jansson
- Department of Pharmacology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
86
|
Nielsen JS, Møller BL. Cloning and expression of cytochrome P450 enzymes catalyzing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of cyanogenic glucosides in Triglochin maritima. PLANT PHYSIOLOGY 2000; 122:1311-21. [PMID: 10759528 PMCID: PMC58967 DOI: 10.1104/pp.122.4.1311] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/1999] [Accepted: 12/28/1999] [Indexed: 05/22/2023]
Abstract
Two cDNA clones encoding cytochrome P450 enzymes belonging to the CYP79 family have been isolated from Triglochin maritima. The two proteins show 94% sequence identity and have been designated CYP79E1 and CYP79E2. Heterologous expression of the native and the truncated forms of the two clones in Escherichia coli demonstrated that both encode multifunctional N-hydroxylases catalyzing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of the two cyanogenic glucosides taxiphyllin and triglochinin in T. maritima. This renders CYP79E functionally identical to CYP79A1 from Sorghum bicolor, and unambiguously demonstrates that cyanogenic glucoside biosynthesis in T. maritima and S. bicolor is catalyzed by analogous enzyme systems with p-hydroxyphenylacetaldoxime as a free intermediate. This is in contrast to earlier reports stipulating p-hydroxyphenylacetonitrile as the only free intermediate in T. maritima. L-3,4-Dihydroxyphenyl[3-(14)C]Ala (DOPA) was not metabolized by CYP79E1, indicating that hydroxylation of the phenol ring at the meta position, as required for triglochinin formation, takes place at a later stage. In S. bicolor, CYP71E1 catalyzes the subsequent conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile. When CYP79E1 from T. maritima was reconstituted with CYP71E1 and NADPH-cytochrome P450 oxidoreductase from S. bicolor, efficient conversion of tyrosine to p-hydroxymandelonitrile was observed.
Collapse
Affiliation(s)
- J S Nielsen
- Plant Biochemistry Laboratory, Department of Plant Biology and Center for Molecular Plant Physiology (PlaCe), The Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | |
Collapse
|
87
|
Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 2000; 5:121-31. [PMID: 10678174 DOI: 10.1016/s1097-2765(00)80408-6] [Citation(s) in RCA: 543] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Microsomal cytochrome P450s participate in xenobiotic detoxification, procarcinogen activation, and steroid hormone synthesis. The first structure of a mammalian microsomal P450 suggests that the association of P450s with the endoplasmic reticulum involves a hydrophobic surface of the protein formed by noncontiguous portions of the polypeptide chain. This interaction places the entrance of the putative substrate access channel in or near the membrane and orients the face of the protein proximal to the heme cofactor perpendicular to the plane of the membrane for interaction with the P450 reductase. This structure offers a template for modeling other mammalian P450s and should aid drug discovery and the prediction of drug-drug interactions.
Collapse
Affiliation(s)
- P A Williams
- Department of Molecular Biology MB-8, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
88
|
Abstract
The CYP2C subfamily of human liver P450 isozymes is of major importance in drug metabolism. The most abundant 2C isozyme, CYP2C9, regioselectively hydroxylates a wide variety of substrates. A major obstacle to understanding this specificity in human CYP2C9 is the absence of a 3D structure. A 3D model of CYP2C9 was built, assessed, and used to characterize explicit enzyme-substrate complexes using methods previously developed in our laboratory. The 3D model was assessed by determining its stability to unconstrained molecular dynamics and by comparison of specific properties with those of known protein structures. The CYP2C9 model was then used to characterize explicit enzyme complexes with three structurally and chemically diverse substrates: (S)-naproxen, phenytoin, and progesterone. Each substrate was found to bind to the enzyme with a favorable interaction energy and to remain in the binding site during unconstrained molecular dynamics. Moreover, the mode of binding of each substrate led to calculated preferred hydroxylation sites consistent with experiment. Binding-site residues identified for the models included Arg 105 and Arg97 as key cationic residues, as well as Asn 202, Asp 293, Pro 101, Leu 102, Gly 296, and Phe 476. Site-specific mutations are proposed for further integrated computational and experimental study.
Collapse
Affiliation(s)
- V A Payne
- Molecular Research Institute, Mountain View, California 94043-2316, USA.
| | | | | |
Collapse
|
89
|
Doray B, Chen CD, Kemper B. Substitutions in the C-terminal portion of the catalytic domain partially reverse assembly defects introduced by mutations in the N-terminal linker sequence of cytochrome P450 2C2. Biochemistry 1999; 38:12180-6. [PMID: 10508423 DOI: 10.1021/bi9906266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations in a 7-amino acid linker segment, immediately following the N-terminal signal anchor sequence of cytochrome P450 2C2, have been shown to affect proper assembly of hemoprotein and decrease activity of the mutants expressed in COS cells. In contrast, C2pmBalC1, in which cytochrome P450 2C1 residues were substituted for those of cytochrome P450 2C2 in the C-terminal region, exhibited increased activity when expressed in COS-1 cells. To examine further the basis for the increased activity of C2pmBalC1 in COS-1 cells, the protein was expressed in insect cells and Escherichia coli. The amounts of the functional P450 species of C2pmBalC1 expressed in these systems and the ratios of P450 to P420 were greater than those of cytochrome P450 2C2, indicating that more efficient assembly underlies the increased activity of C2pmBalC1. To determine whether the C-terminal substitutions could compensate for the decreased assembly mediated by the N-terminal linker mutations, the linker mutations were introduced into C2pmBalC1. If all 7 amino acids in the linker were deleted, no enzymatically active cytochrome P450 2C2 or C2pmBalC1 was detected in COS-1, insect, or bacterial cells expressing the mutants. The mutant C2A2, in which two alanines were substituted for the linker, had no detectable laurate hydroxylase activity in COS-1 cells, and minor amounts of hemoprotein for this mutant were expressed in E. coli and insect cells. In contrast, the same mutation in C2pmBalC1 reduced activity only 50% in COS-1 cells and markedly elevated levels of P450 expression in bacteria and insect cells. The A2 mutation did not affect the enzymatic activity of either cytochrome P450 2C2 or C2pmBalC1 assayed in whole cell lysates of insect cells but reduced the activity of partially purified enzymes assayed in a reconstituted assay system. These findings indicate that mutations introduced into the C-terminal region of P450 2C2 can facilitate assembly of the proteins and partially reverse the decreased assembly resulting from the N-terminal mutations.
Collapse
Affiliation(s)
- B Doray
- Department of Cell & Structural Biology, College of Medicine, University of Illinois at Urbana-Champaign 61801, USA
| | | | | |
Collapse
|
90
|
Kusano K, Waterman MR, Sakaguchi M, Omura T, Kagawa N. Protein synthesis inhibitors and ethanol selectively enhance heterologous expression of P450s and related proteins in Escherichia coli. Arch Biochem Biophys 1999; 367:129-36. [PMID: 10375408 DOI: 10.1006/abbi.1999.1248] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The antibiotics chloramphenicol (Cm), tetracycline, and erythromycin, which inhibit bacterial protein synthesis and are known to induce the cold shock response, unexpectedly enhance the heterologous expression of P450s and related proteins in Escherichia coli. In contrast, antibiotics that mimic heat shock in E. coli such as puromycin, streptomycin, and kanamycin decrease the expression of the same proteins. A sublethal dose of Cm (1 microgram/ml) effectively enhances the expression of both membrane-bound proteins (microsomal and mitochondrial P450s) and a soluble mitochondrial protein (adrenodoxin) over the range of two- to eightfold. The expression level of N-terminal truncated P450c17 (1600 nmol/liter culture without Cm), for instance, reached 3500 nmol/liter culture by the addition of Cm, approximately 8.4% of the total cellular protein. Cm also enabled expression at useful levels of active P450s previously difficult to express in E. coli. In contrast, the expression of P450scc, a mitochondrial protein, is decreased by Cm but enhanced by ethanol, a powerful elicitor of heat shock response in E. coli. These results show that both the cold shock response induced by some antibiotics and the heat shock response induced by ethanol may lead to enhanced expression of certain heterologous proteins in E. coli. This study also indicates that protein synthesis inhibitors associated with the cold shock response may act as protein synthesis enhancers under certain conditions.
Collapse
Affiliation(s)
- K Kusano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, USA
| | | | | | | | | |
Collapse
|
91
|
CHO ARTHURK, NARIMATSU SHIZUO, KUMAGAI YOSHITO. Metabolism of drugs of abuse by cytochromes P450. Addict Biol 1999; 4:283-301. [PMID: 20575795 DOI: 10.1080/13556219971498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Studies of most drugs of abuse utilize in vivo animal experimentation so that the responses measured reflect the pharmacokinetics of the administered drug as well as its pharmacodynamics. These drugs are generally lipid soluble chemicals and their elimination is dependent on metabolism, so an understanding of this process is critical to the interpretation of responses. This review summarizes the interaction between drugs of abuse and cytochromes P450, the oxidative enzymes that catalyze the first step of the metabolic process. Although they process their substrates by a common chemical mechanism, these enzymes differ markedly in their regulation, i.e. induction and inhibition, their substrate selectivities, the metabolites they generate and their relative concentration in different species. The activity of an enzyme catalyzing a specific metabolic reaction can be altered by prior xenobiotic exposure, by its genetics and by a co-administered drug, so that the pharmacokinetics of the drug under study can vary with the history of the individual subject. These issues are obviously important in human studies so, when possible, the relevant human enzymes involved in the processes described have been identified.
Collapse
|
92
|
Cabello-Hurtado F, Taton M, Forthoffer N, Kahn R, Bak S, Rahier A, Werck-Reichhart D. Optimized expression and catalytic properties of a wheat obtusifoliol 14alpha-demethylase (CYP51) expressed in yeast. Complementation of erg11Delta yeast mutants by plant CYP51. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:435-46. [PMID: 10336628 DOI: 10.1046/j.1432-1327.1999.00376.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CYP51s form the only family of P450 proteins conserved in evolution from prokaryotes to fungi, plants and mammals. In all eukaryotes, CYP51s catalyse 14alpha-demethylation of sterols. We have recently isolated two CYP51 cDNAs from sorghum [Bak, S., Kahn, R.A., Olsen, C. E. & Halkier, B.A. (1997) Plant J. 11, 191-201] and wheat [Cabello-Hurtado, F., Zimmerlin, A., Rahier, A., Taton, M., DeRose, R., Nedelkina, S., Batard, Y., Durst, F., Pallett, K.E. & Werck-Reichhart, D. (1997) Biophys. Biochem. Res. Commun. 230, 381-385]. Wheat and sorghum CYP51 proteins show a high identity (92%) compared with their identity with their fungal and mammalian orthologues (32-39%). Data obtained with plant microsomes have previously suggested that differences in primary sequences reflect differences in sterol pathways and CYP51 substrate specificities between animals, fungi and plants. To investigate more thoroughly the properties of the plant CYP51, the wheat enzyme was expressed in yeast strains overexpressing different P450 reductases as a fusion with either yeast or plant (sorghum) membrane targeting sequences. The endogenous sterol demethylase gene (ERG11) was then disrupted. A sorghum-wheat fusion protein expressed with the Arabidopsis thaliana reductase ATR1 showed the highest level of expression and activity. The expression induced a marked proliferation of microsomal membranes so as to obtain 70 nmol P450.(L culture)-1, with CYP51 representing 1.5% of microsomal protein. Without disruption of the ERG11 gene, the expression level was fivefold reduced. CYP51 from wheat complemented the ERG11 disruption, as the modified yeasts did not need supplementation with exogenous ergosterol and grew normally under aerobic conditions. The fusion plant enzyme catalysed 14alpha-demethylation of obtusifoliol very actively (Km,app = 197 microm, kcat = 1.2 min-1) and with very strict substrate specificity. No metabolism of lanosterol and eburicol, the substrates of the fungal and mammalian CYP51s, nor metabolism of herbicides and fatty acids was detected in the recombinant yeast microsomes. Surprisingly lanosterol (Ks = 2.2 microM) and eburicol (Ks = 2.5 microm) were found to bind the active site of the plant enzyme with affinities higher than that for obtusifoliol (Ks = 289 microM), giving typical type-I spectra. The amplitudes of these spectra, however, suggested that lanosterol and eburicol were less favourably positioned to be metabolized than obtusifoliol. The recombinant enzyme was also used to test the relative binding constants of two azole compounds, LAB170250F and gamma-ketotriazole, which were previously reported to be potent inhibitors of the plant enzyme. The Ks of plant CYP51 for LAB170250F (0.29 microM) and gamma-ketotriazole (0.40 microM) calculated from the type-II sp2 nitrogen-binding spectra were in better agreement with their reported effects as plant CYP51 inhibitors than values previously determined with plant microsomes. This optimized expression system thus provides an excellent tool for detailed enzymological and mechanistic studies, and for improving the selectivity of inhibitory molecules.
Collapse
Affiliation(s)
- F Cabello-Hurtado
- Département dEnzymologie Cellulaire et Moléculaire, Institut de Biologie Moléculaire des Plantes, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
93
|
Porter TD, Chang S. Strategies to enhance the coexpression of cytochrome P450 2E1 and reductase in bacteria. Drug Metab Rev 1999; 31:159-74. [PMID: 10065370 DOI: 10.1081/dmr-100101912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- T D Porter
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington 40536-0082, USA.
| | | |
Collapse
|
94
|
Hsu PY, Tsai AL, Kulmacz RJ, Wang LH. Expression, purification, and spectroscopic characterization of human thromboxane synthase. J Biol Chem 1999; 274:762-9. [PMID: 9873013 DOI: 10.1074/jbc.274.2.762] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thromboxane A2 (TXA2) is a potent inducer of vasoconstriction and platelet aggregation. Large scale expression of TXA2 synthase (TXAS) is very useful for studies of the reaction mechanism, structural/functional relationships, and drug interactions. We report here a heterologous system for overexpression of human TXAS. The TXAS cDNA was modified by replacing the sequence encoding the first 28 amino acid residues with a CYP17 amino-terminal sequence and by adding a polyhistidine tag sequence prior to the stop codon; the cDNA was inserted into the pCW vector and co-expressed with chaperonins groES and groEL in Escherichia coli. The resulting recombinant protein was purified to electrophoretic homogeneity by affinity, ion exchange, and hydrophobic chromatography. UV-visible absorbance (UV-Vis), magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) spectra indicate that TXAS has a typical low spin cytochrome P450 heme with an oxygen-based distal ligand. The UV-Vis and EPR spectra of recombinant TXAS were essentially identical to those of TXAS isolated from human platelets, except that a more homogenous EPR spectrum was observed for the recombinant TXAS. The recombinant protein had a heme:protein molar ratio of 0.7:1 and a specific activity of 12 micromol of TXA2/min/mg of protein at 23 degreesC. Furthermore, it catalyzed formation of TXA2, 12-hydroxy-5,8,10-heptadecatrienoic acid, and malondialdehyde in a molar ratio of 0.94:1.0:0.93. Spectral binding titrations showed that bulky heme ligands such as clotrimazole bound strongly to TXAS (Kd approximately 0.5 microM), indicating ample space at the distal face of the heme iron. Analysis of MCD and EPR spectra showed that TXAS was a typical low spin hemoprotein with a proximal thiolate ligand and had a very hydrophobic distal ligand binding domain.
Collapse
Affiliation(s)
- P Y Hsu
- Division of Hematology, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
95
|
Jung F, Griffin KJ, Song W, Richardson TH, Yang M, Johnson EF. Identification of amino acid substitutions that confer a high affinity for sulfaphenazole binding and a high catalytic efficiency for warfarin metabolism to P450 2C19. Biochemistry 1998; 37:16270-9. [PMID: 9819219 DOI: 10.1021/bi981704c] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human cytochrome P450s 2C9 and 2C19 metabolize many important drugs including tolbutamide, phenytoin, and (S)-warfarin. Although they differ at only 43 of 490 amino acids, sulfaphenazole (SFZ) is a potent and selective inhibitor of P450 2C9 with an IC50 and a spectrally determined binding constant, KS, of <1 microM. P450 2C19 is not affected by SFZ at concentrations up to 100 microM. A panel of CYP2C9/2C19 chimeric proteins was constructed in order to identify the sequence differences that underlie this difference in SFZ binding. Replacement of amino acids 227-338 in 2C19 with the corresponding region of 2C9 resulted in high-affinity SFZ binding (KS approximately 4 microM) that was not seen when a shorter fragment of 2C9 was substituted (227-282). However, replacement of amino acids 283-338 resulted in extremely low holoenzyme expression levels in Escherichia coli, indicating protein instability. A single mutation, E241K, which homology modeling indicated would restore a favorable charge pair interaction between K241 in helix G and E288 in helix I, led to successful expression of this chimera that exhibited a KS < 10 microM for SFZ. Systematic replacement of the remaining differing amino acids revealed that two amino acid substitutions in 2C19 (N286S, I289N) confer high-affinity SFZ binding (KS < 5 microM). When combined with a third substitution, E241K, the resulting 2C19 triple mutant exhibited a high cataltyic efficiency for warfarin metabolism with the relaxed stereo- and regiospecificity of 2C19 and a lower KM for (S)-warfarin metabolism (<10 microM) typical of 2C9.
Collapse
Affiliation(s)
- F Jung
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
96
|
Gillam EM. Human cytochrome P450 enzymes expressed in bacteria: reagents to probe molecular interactions in toxicology. Clin Exp Pharmacol Physiol 1998; 25:877-86. [PMID: 9807658 DOI: 10.1111/j.1440-1681.1998.tb02338.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Phase I metabolism of drugs is accomplished by the concerted actions of a limited number of cytochrome P450 enzymes with wide but often overlapping substrate specificites. Although metabolism generally accelerates the clearance of drugs, reactive products may also be generated that cause toxic effects. 2. Because individuals vary in the range and levels of different P450 forms, it is useful to be able to determine the specific isoforms involved in a particular metabolic reaction, in order to estimate the extent of variation within a population in the pharmacokinetics of specific drugs. Such studies may also allow predictions to be made regarding the relative susceptibility of different individuals to possible adverse effects associated with drug treatment. 3. Human cytochrome P450 enzymes are now routinely expressed as recombinant proteins in many different systems, including mammalian cell culture, yeast, baculovirus and Escherichia coli. The latter system is particularly useful when large amounts of protein are required for biophysical studies, but can also be adapted to routine examination of pathways of drug metabolism and toxicology. 4. The present review provides an analysis of strategies used for enhancing cytochrome P450 expression in bacteria and for examining the activity of the recombinant proteins. The potential applications of recombinant P450 are discussed, with particular emphasis on investigation of the roles of cytochrome P450 forms in the metabolism and the toxicity of drugs.
Collapse
Affiliation(s)
- E M Gillam
- Department of Physiology and Pharmacology, University of Queensland, St Lucia, Australia.
| |
Collapse
|
97
|
Klose TS, Ibeanu GC, Ghanayem BI, Pedersen LG, Li L, Hall SD, Goldstein JA. Identification of residues 286 and 289 as critical for conferring substrate specificity of human CYP2C9 for diclofenac and ibuprofen. Arch Biochem Biophys 1998; 357:240-8. [PMID: 9735164 DOI: 10.1006/abbi.1998.0826] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specificity of human CYP2C9 for two substrates, diclofenac and ibuprofen, was studied using chimeras and site-directed mutants of CYP2C9 and the highly related CYP2C19 expressed in Escherichia coli. Data were correlated with the presence of putative substrate recognition sites (SRS). A CYP2C19 chimera containing residues 228-340 (SRS 3 and 4) of 2C9 conferred both diclofenac hydroxylation and 2- and 3-hydroxylation of ibuprofen. The regiospecificity of this construct for metabolism of ibuprofen differed from that of CYP2C9 by favoring 2-hydroxylation over 3-hydroxylation. A CYP2C9 construct containing residues 228-340 of CYP2C19 lacked both diclofenac and ibuprofen hydroxylase activities. When residues 228-282 (containing SRS 3) of CYP2C9 were replaced by those of CYP2C19, the chimera retained appreciable activity for diclofenac and ibuprofen, and tolbutamide activity was inhibited by a specific CYP2C9 inhibitor, sulfaphenazole. This suggested that SRS 3 is not important in conferring specificity. CYP2C9 and CYP2C19 differ in five residues within the region 283-340 (within SRS 4). Mutations to analyze SRS 4 were made on a CYP2C19 chimera containing residues 228-282 of CYP2C9. A single I289N mutation conferred a dramatic increase in diclofenac hydroxylation and a small increase in ibuprofen 2-hydroxylation. A second mutation (N286S and I289N) increased diclofenac hydroxylation and conferred a dramatic increase in ibuprofen 2-hydroxylation. A V288E mutation did not increase activity toward either substrate and decreased activity toward the two substrates in combination with the I289N or the N286S, I289N mutants. Therefore residues 286 and 289 of CYP2C9 are important in conferring specificity for diclofenac and ibuprofen.
Collapse
Affiliation(s)
- T S Klose
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Lasker JM, Wester MR, Aramsombatdee E, Raucy JL. Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Arch Biochem Biophys 1998; 353:16-28. [PMID: 9578596 DOI: 10.1006/abbi.1998.0615] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Individuals with drug metabolism polymorphisms involving CYP2C enzymes exhibit deficient oxidation of important therapeutic agents, including S-mephenytoin, omeprazole, warfarin, tolbutamide, and nonsteroidal anti-inflammatory drugs. While recombinant CYP2C19 and CYP2C9 proteins expressed in yeast or Escherichia coli have been shown to oxidize these agents, the capacity of the corresponding native P450s isolated from human liver to do so is ill defined. To that end, we purified CYP2C19, CYP2C9, and CYP2C8 from human liver samples using conventional chromatographic techniques and examined their capacity to oxidize S-mephenytoin, omeprazole, and tolbutamide. Upon reconstitution, CYP2C19 metabolized S-mephenytoin and omeprazole at rates that were 11- and 8-fold higher, respectively, than those of intact liver microsomes, whereas neither CYP2C9 nor CYP2C8 displayed appreciable metabolic activity with these substrates. CYP2C19 also proved an efficient catalyst of tolbutamide metabolism, exhibiting a turnover rate similar to CYP2C9 preparations (2.0-6.4 vs 2.4-4.3 nmol hydroxytolbutamide formed/min/nmol P450). The kinetic parameters of CYP2C19-mediated tolbutamide hydroxylation (Km = 650 microM, Vmax = 3.71 min-1) somewhat resembled those of the CYP2C9-catalyzed reaction (Km = 178-407 microM, Vmax = 2.95-7.08 min-1). Polyclonal CYP2C19 antibodies markedly decreased S-mephenytoin 4'-hydroxylation (98% inhibition) and omeprazole 5-hydroxylation (85% inhibition) by human liver microsomes. CYP2C19 antibodies also potently inhibited (>90%) microsomal tolbutamide hydroxylation, which was similar to the inhibition (>85%) observed with antibodies to CYP2C9. Moreover, excellent correlations were found between immunoreactive CYP2C19 content, S-mephenytoin 4'-hydroxylase activity (r = 0.912; P < 0. 001), and omeprazole 5-hydroxylase activity (r = 0.906; P < 0.001) in liver samples from 13-17 different subjects. A significant relationship was likewise observed between microsomal tolbutamide hydroxylation and CYP2C9 content (r = 0.664; P < 0.02) but not with CYP2C19 content (r = 0.393; P = 0.184). Finally, immunoquantitation revealed that in these human liver samples, expression of CYP2C9 (88. 5 +/- 36 nmol/mg) was 5-fold higher than that of CYP2C19 (17.8 +/- 14 nmol/mg) and nearly 8-fold higher than that of CYP2C8 (11.5 +/- 12 nmol/mg). Our results, like those obtained with recombinant CYP2C enzymes, indicate that CYP2C19 is a primary determinant of S-mephenytoin 4'-hydroxylation and low-Km omeprazole 5-hydroxylation in human liver. Despite its tolbutamide hydroxylase activity, the low levels of hepatic CYP2C19 expression (relative to CYP2C9) may preclude an important role for this enzyme in hepatic tolbutamide metabolism and any polymorphisms thereof.
Collapse
Affiliation(s)
- J M Lasker
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
99
|
Iwata H, Fujita K, Kushida H, Suzuki A, Konno Y, Nakamura K, Fujino A, Kamataki T. High catalytic activity of human cytochrome P450 co-expressed with human NADPH-cytochrome P450 reductase in Escherichia coli. Biochem Pharmacol 1998; 55:1315-25. [PMID: 9719488 DOI: 10.1016/s0006-2952(97)00643-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Forms of human cytochrome P450 (P450 or CYP), such as CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4, were expressed or co-expressed together with human NADPH-P450 reductase in Escherichia coli. When P450 was expressed alone in E. coli, the expression level of holo-P450 ranged from 310 to 1620 nmol/L of culture. The expression level of holo-P450 decreased by co-expression with the reductase, and the level ranged from 66 to 381 nmol/L of culture. The expression level of the reductase varied depending on the forms of P450 co-expressed, and ranged from 204 to 937 U/L of culture. We assayed the catalytic activity of P450 using E. coli cells disrupted by freeze-thaw. When co-expressed with the reductase, human P450 catalyzed the oxidation of representative substrates at efficient rates. The rates appeared comparable to the reported activities of P450 in a reconstituted system containing purified preparations of P450 and the reductase.
Collapse
Affiliation(s)
- H Iwata
- Division of Drug Metabolism, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Cabello-Hurtado F, Batard Y, Salaün JP, Durst F, Pinot F, Werck-Reichhart D. Cloning, expression in yeast, and functional characterization of CYP81B1, a plant cytochrome P450 that catalyzes in-chain hydroxylation of fatty acids. J Biol Chem 1998; 273:7260-7. [PMID: 9516419 DOI: 10.1074/jbc.273.13.7260] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several omega and in-chain fatty acid hydroxylases have been characterized in higher plants. In microsomes from Helianthus tuberosus tuber the omega-2, omega-3, and omega-4 hydroxylation of lauric acid is catalyzed by one or a few closely related aminopyrine- and MnCl2-inducible cytochrome P450(s). To isolate the cDNA and determine the sequences of the(se) enzyme(s), we used antibodies directed against a P450-enriched fraction purified from Mn2+-induced tissues. Screening of a cDNA expression library from aminopyrine-treated tubers led to the identification of a cDNA (CYP81B1) corresponding to a transcript induced by aminopyrine. CYP81B1 was expressed in yeast. A systematic exploration of its function revealed that it specifically catalyzes the hydroxylation of medium chain saturated fatty acids, capric (C10:0), lauric (C12:0), and myristic (C14:0) acids. The same metabolites were obtained with transgenic yeast and plant microsomes, a mixture of omega-1 to omega-5 monohydroxylated products. The three fatty acids were metabolized with high and similar efficiencies, the major position of attack depending on chain length. When lauric acid was the substrate, turnover was 30.7 +/- 1.4 min-1 and Km(app) 788 +/- 400 nM. No metabolism of long chain fatty acids, aromatic molecules, or herbicides was detected. This new fatty acid hydroxylase is typical from higher plants and differs from those already isolated from other living organisms.
Collapse
Affiliation(s)
- F Cabello-Hurtado
- Département d'Enzymologie Cellulaire et Moléculaire, Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique UPR 406, 28 rue Goethe, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|