51
|
Impact of growth factor content on proliferation of mesenchymal stromal cells derived from adipose tissue. PLoS One 2020; 15:e0230265. [PMID: 32298282 PMCID: PMC7162516 DOI: 10.1371/journal.pone.0230265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/25/2020] [Indexed: 01/15/2023] Open
Abstract
Autologous adipose tissue (AT) transfer has gained widespread acceptance and is used for a broad variety of regenerative clinical indications. It is assumed that the successful outcome of AT transfer essentially depends on the amount of autocrine-generated growth factors (GF). It is supposed that several GF enhance and improve the anatomic and functional integration of the transplanted AT grafts at the site of implantation. In the present study we have investigated for the first time the correlation between the concentration of GF of freshly isolated AT and the proliferation and migration capacity of mesenchymal stroma cells (MSCs) derived from the respective AT sample. We here show that the proliferation and migration capacity of MSCs strongly depends on the GF content of the AT the cells were isolated from but in an inversely proportional manner. The lower the GF content of an AT sample was, the higher was the proliferation and migration capacity of the respective MSC population contained in the AT and vice versa. Furthermore, we found that supplementation with recombinant GFs only in the case of AT samples with low but not with higher growth factor contents led to a significant enhancement of proliferation and migration of the AT-resident MSCs. As we further show, this inefficiency of GFs to enhance MSC proliferation and migration in AT samples with high GF contents indicates a GF-mediated negative feedback mechanism leading to an impaired GF signaling in MSC obtained from those AT samples. Our results might explain why the successful use of AT grafting is frequently limited by low and unpredictable survival rates, and we suggest to use the knowledge of GF content of harvested AT as a predictive clinical parameter for risk assessment of the therapeutic outcome of autologous AT transfer.
Collapse
|
52
|
Ayhan E, Aslan Ö, Araç E. Effect of isotretinoin (13-cis-retinoic acid) on levels of soluble VEGF receptors (sVEGFR1, sVEGFR2, sVEGFR3) in patients with acne vulgaris. J DERMATOL TREAT 2020; 32:936-940. [PMID: 32043381 DOI: 10.1080/09546634.2020.1729331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background/aim: The effect of isotretinoin on soluble VEGFRs has not been previously investigated. This study evaluate the effects of isotretinoin (13-cis-retinoic acid) on soluble VEGFR1 (sVEGFR1), soluble VEGFR2 (sVEGFR2) and soluble VEGFR3 (sVEGFR3).Methods: The study included 38 patients (28 females, 10 males) receiving systemic isotretinoin treatment and 38 healthy individuals (28 females, 10 males) with similar age and gender characteristics. The blood samples of the patient group at third months and blood samples of the control group were compared in terms of sVEGFR1, sVEGFR2 and sVEGFR3 concentrations.Results: It was significant that sVEGFR1 was low and sVEGFR3 was high in patients receiving isotretinoin (p: .038, p: .021, respectively). There was no significant change in sVEGFR2 levels between the groups (p: .519).Conclusions: We think that the effect of isotretinoin on sVEGFR1, sVEGFR2 and sVEGFR3 may be secondary to its effects on the VEGF family. However, after clarifying the effect of isotretinoin on the VEGF family, we think that it can be used in some tumors and vascular diseases.
Collapse
Affiliation(s)
- Erhan Ayhan
- Department of Dermatology, University of Health Sciences Gazi Yaşargil Trainning and Research Hospital, Diyarbakır, Turkey
| | - Özgür Aslan
- Department of Biochemistry, University of Health Sciences Gazi Yaşargil Trainning and Research Hospital, Diyarbakır, Turkey
| | - Eşref Araç
- Department of Internal Medicine, University of Health Sciences Gazi Yaşargil Trainning and Research Hospital, Diyarbakır, Turkey
| |
Collapse
|
53
|
Therapeutic Strategies for Corneal Wound Angiogenesis. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
54
|
El-Saie A, Shivanna B. Novel Strategies to Reduce Pulmonary Hypertension in Infants With Bronchopulmonary Dysplasia. Front Pediatr 2020; 8:201. [PMID: 32457857 PMCID: PMC7225259 DOI: 10.3389/fped.2020.00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/02/2020] [Indexed: 01/10/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a developmental lung disorder of preterm infants primarily caused by the failure of host defense mechanisms to prevent tissue injury and facilitate repair. This disorder is the most common complication of premature birth, and its incidence remains unchanged over the past few decades. Additionally, BPD increases long-term cardiopulmonary and neurodevelopmental morbidities of preterm infants. Pulmonary hypertension (PH) is a common morbidity of BPD. Importantly, the presence of PH increases both the short- and long-term morbidities and mortality in BPD infants. Further, there are no curative therapies for this complex disease. Besides providing an overview of the pathogenesis and diagnosis of PH associated with BPD, we have attempted to comprehensively review and summarize the current literature on the interventions to prevent and/or mitigate BPD and PH in preclinical studies. Our goal was to provide insight into the therapies that have a high translational potential to meaningfully manage BPD patients with PH.
Collapse
Affiliation(s)
- Ahmed El-Saie
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Binoy Shivanna
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
55
|
Logan SM, Storey KB. Angiogenic signaling in the lungs of a metabolically suppressed hibernating mammal ( Ictidomys tridecemlineatus). PeerJ 2019; 7:e8116. [PMID: 31763078 PMCID: PMC6870509 DOI: 10.7717/peerj.8116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
To conserve energy in times of limited resource availability, particularly during cold winters, hibernators suppress even the most basic of physiologic processes. Breathing rates decrease from 40 breaths/minute to less than 1 breath/min as they decrease body temperature from 37 °C to ambient. Nevertheless, after months of hibernation, these incredible mammals emerge from torpor unscathed. This study was conducted to better understand the protective and possibly anti-inflammatory adaptations that hibernator lungs may use to prevent damage associated with entering and emerging from natural torpor. We postulated that the differential protein expression of soluble protein receptors (decoy receptors that sequester soluble ligands to inhibit signal transduction) would help identify inhibited inflammatory signaling pathways in metabolically suppressed lungs. Instead, the only two soluble receptors that responded to torpor were sVEGFR1 and sVEGFR2, two receptors whose full-length forms are bound by VEGF-A to regulate endothelial cell function and angiogenesis. Decreased sVEGFR1/2 correlated with increased total VEGFR2 protein levels. Maintained or increased levels of key γ-secretase subunits suggested that decreased sVEGFR1/2 protein levels were not due to decreased levels of intramembrane cleavage complex subunits. VEGF-A protein levels did not change, suggesting that hibernators may regulate VEGFR1/2 signaling at the level of the receptor instead of increasing relative ligand abundance. A panel of angiogenic factors used to identify biomarkers of angiogenesis showed a decrease in FGF-1 and an increase in BMP-9. Torpid lungs may use VEGF and BMP-9 signaling to balance angiogenesis and vascular stability, possibly through the activation of SMAD signaling for adaptive tissue remodeling.
Collapse
Affiliation(s)
- Samantha M. Logan
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
56
|
Mousavi SA, Skjeldal F, Fønhus MS, Haugen LH, Eskild W, Berg T, Bakke O. Receptor-Mediated Endocytosis of VEGF-A in Rat Liver Sinusoidal Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5496197. [PMID: 31583245 PMCID: PMC6754870 DOI: 10.1155/2019/5496197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Vascular endothelial growth factor (VEGF) receptors (VEGFR1 and VEGFR2) bind VEGF-A with high affinity. This study sought to determine the relative contributions of these two receptors to receptor-mediated endocytosis of VEGF-A and to clarify their endocytic itineraries in rat liver sinusoidal endothelial cells (LSECs). METHODS Isolated LSECs and radiolabeled VEGF-A were used to examine surface binding and receptor-mediated endocytosis. Quantitative real time RT-PCR (Q-RT-PCR) and Western blotting were applied to demonstrate receptor expression. RESULTS Q-RT-PCR analysis showed that VEGFR1 and VEGFR2 mRNA were expressed in LSECs. Ligand saturation analysis at 4°C indicated two different classes of [125I]-VEGFA binding sites on LSECs with apparent dissociation constants of 8 and 210 pM. At 37°C, LSECs efficiently took up and degraded [125I]-VEGF-A for at least 2 hours. Uptake of [125I]-VEGF-A by LSECs was blocked by dynasore that inhibits dynamin-dependent internalization, whereas inhibition of cysteine proteases by leupeptin inhibited degradation without affecting the uptake of [125I]-VEGF-A, suggesting that it is degraded following transport to lysosomes. Incubation of LSECs in the continued presence of a saturating concentration of unlabeled VEGF-A at 37°C was associated with a loss of as much as 75% of the total VEGFR2 within 30 min as shown by Western blot analysis, whereas there was no appreciable decrease in protein levels for VEGFR1 after 120 min incubation, suggesting that VEGF-A stimulation downregulates VEGFR2, but not VEGFR1, in LSECs. This possibility was supported by the observation that a hexapeptide that specifically blocks VEGF-A binding to VEGFR1 caused a marked reduction in the uptake of [125I]-VEGF-A, whereas a control peptide had no effect. Finally, live cell imaging studies using a fluorescently labeled anti-VEGFR2 antibody showed that VEGFR2 was transported via early and late endosomes to reach endolysosomes where degradation of the VEGFR2 takes place. CONCLUSION Our studies suggest that, subsequent to VEGF-A binding and internalization, the unoccupied VEGFR1 may recycle to the cell surface allowing its reutilization, whereas the majority of the internalized VEGFR2 is targeted for degradation.
Collapse
Affiliation(s)
- Seyed Ali Mousavi
- Department of Immunology and Transfusion Medicine, Akershus University Hospital, University of Oslo, Norway
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | - Winnie Eskild
- Department of Biosciences, University of Oslo, Norway
| | - Trond Berg
- Department of Biosciences, University of Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
57
|
Bujaldon E, Cornide-Petronio ME, Gulfo J, Rotondo F, Ávalos de León C, Negrete-Sánchez E, Gracia-Sancho J, Novials A, Jiménez-Castro MB, Peralta Uroz C. Relevance of VEGFA in rat livers subjected to partial hepatectomy under ischemia-reperfusion. J Mol Med (Berl) 2019; 97:1299-1314. [PMID: 31254006 PMCID: PMC6713699 DOI: 10.1007/s00109-019-01811-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/13/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
We examined the effects of VEGFA on damage and regeneration in steatotic and non-steatotic livers of rats submitted to PH under I/R, and characterized the underlying mechanisms involved. Our results indicated that VEGFA levels were decreased in both steatotic and non-steatotic livers after surgery. The administration of VEGFA increased VEGFA levels in non-steatotic livers, reducing the incidence of post-operative complications following surgery through the VEGFR2-Wnt2 pathway, independently of Id1. Unexpectedly, administration of VEGFA notably reduced VEGFA levels in steatotic livers, exacerbating damage and regenerative failure. After exogenous administration of VEGFA in steatotic animals, circulating VEGFA is sequestered by the high circulating levels of sFlt1 released from adipose tissue. Under such conditions, VEGFA cannot reach the steatotic liver to exert its effects. Consequently, the concomitant administration of VEGFA and an antibody against sFlt1 was required to avoid binding of sFlt1 to VEGFA. This was associated with high VEGFA levels in steatotic livers and protection against damage and regenerative failure, plus improvement in the survival rate via up-regulation of PI3K/Akt independently of the Id1-Wnt2 pathway. The current study highlights the different effects and signaling pathways of VEGFA in liver surgery requiring PH and I/R based in the presence of steatosis. KEY MESSAGES: VEGFA administration improves PH+I/R injury only in non-steatotic livers of Ln animals. VEGFA benefits are exerted through the VEGFR2-Wnt2 pathway in non-steatotic livers. In Ob rats, exogenous VEGFA is sequestered by circulating sFlt1, exacerbating liver damage. Therapeutic combination of VEGFA and anti-sFlt1 is required to protect steatotic livers. VEGFA+anti-sFlt1 treatment protects steatotic livers through a VEGFR2-PI3K/Akt pathway.
Collapse
Affiliation(s)
- Esther Bujaldon
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - José Gulfo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Floriana Rotondo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cindy Ávalos de León
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elsa Negrete-Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | | | - Carmen Peralta Uroz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain.
- Facultad de Medicina, Universidad International de Cataluña, Barcelona, Spain.
| |
Collapse
|
58
|
Hao D, Li Y, Zhao G, Zhang M. Soluble fms-like tyrosine kinase-1-enriched exosomes suppress the growth of small cell lung cancer by inhibiting endothelial cell migration. Thorac Cancer 2019; 10:1962-1972. [PMID: 31441580 PMCID: PMC6775022 DOI: 10.1111/1759-7714.13175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 01/07/2023] Open
Abstract
Background Previous studies have reported that soluble fms‐like tyrosine kinase‐1 (sFlt‐1) possesses anti‐tumor effects by inhibiting angiogenesis in many cancers. Exosomes can be engineered as delivery vehicles for transferring functional biomolecules, such as proteins, lipids, and nucleic acids (DNA, mRNA, and miRNA) to target cells to affect inflammation, apoptosis, and angiogenesis. The purpose of this study was to investigate whether exosomes can function as efficient carriers of sFlt‐1 in vitro and in vivo, to play a role in SCLC therapy. Methods We adopted three different methods: TEM, NTA and western blot analysis to characterize the cell‐derived exosomes from NCI‐H69 SCLC cell line and normal bronchial epithelial BEAS‐2B cell line. we next explored the effects of these exosomes on HUVE cell proliferation and migration in vitro.To verify sFlt‐1‐loaded exosomes suppress the tumor growth in vivo,we established subcutaneous xenografts in nude mice using the NCI‐H69 cell line. Results We observed that NCI‐H69‐exo significantly increased human umbilical vein endothelial cells (HUVEC) migration compared to BEAS‐2B‐exo in vitro and in vivo. sFlt‐1 protein expression was statistically higher in BEAS‐2B‐exo than NCI‐H69‐exo. sFlt‐1 protein or sFlt‐1‐enriched exosomes can inhibit the migration of HUVECs. Furthermore, sFlt‐1‐enriched exosomes exhibited higher inhibition efficacy on pro‐angiogenesis of NCI‐H69‐exo in comparison with the same concentration of sFlt‐1 protein. Intriguingly, sFlt‐1‐loaded exosomes showed marked anti‐tumor activity by inhibiting the growth of NCI‐H69 tumor xenografts. CD31 staining revealed that sFlt‐1‐loaded exosomes significantly reduced the vascular density of experimental mice. sFlt‐1‐loaded exosomes markedly induced tumor apoptosis and inhibited tumor cell proliferation in mice. Conclusion Exosomes from a SCLC cell line contain low levels of sFlt‐1 and significantly increased the migration of HUVECs. SFlt‐1‐enriched exosomes can inhibit NCI‐H69‐exo‐induced HUVEC migration. Exosomes enriched in sFlt‐1 have the potential to be effective therapeutic agents for SCLC.
Collapse
Affiliation(s)
- Dexun Hao
- Department of Geriatric Respiratory Ward, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanshuang Li
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaofeng Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
59
|
Wallace B, Peisl A, Seedorf G, Nowlin T, Kim C, Bosco J, Kenniston J, Keefe D, Abman SH. Anti-sFlt-1 Therapy Preserves Lung Alveolar and Vascular Growth in Antenatal Models of Bronchopulmonary Dysplasia. Am J Respir Crit Care Med 2019; 197:776-787. [PMID: 29268623 DOI: 10.1164/rccm.201707-1371oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Pregnancies complicated by antenatal stress, including preeclampsia (PE) and chorioamnionitis (CA), increase the risk for bronchopulmonary dysplasia (BPD) in preterm infants, but biologic mechanisms linking prenatal factors with BPD are uncertain. Levels of sFlt-1 (soluble fms-like tyrosine kinase 1), an endogenous antagonist to VEGF (vascular endothelial growth factor), are increased in amniotic fluid and maternal blood in PE and associated with CA. OBJECTIVES Because impaired VEGF signaling has been implicated in the pathogenesis of BPD, we hypothesized that fetal exposure to sFlt-1 decreases lung growth and causes abnormal lung structure and pulmonary hypertension during infancy. METHODS To test this hypothesis, we studied the effects of anti-sFlt-1 monoclonal antibody (mAb) treatment on lung growth in two established antenatal models of BPD that mimic PE and CA induced by intraamniotic (i.a.) injections of sFlt-1 or endotoxin, respectively. In experimental PE, mAb was administered by three different approaches, including antenatal treatment by either i.a. instillation or maternal uterine artery infusion, or by postnatal intraperitoneal injections. RESULTS With each strategy, mAb therapy improved infant lung structure as assessed by radial alveolar count, vessel density, right ventricular hypertrophy, and lung function. As found in the PE model, the adverse lung effects of i.a. endotoxin were also reduced by antenatal or postnatal mAb therapy. CONCLUSIONS We conclude that treatment with anti-sFlt-1 mAb preserves lung structure and function and prevents right ventricular hypertrophy in two rat models of BPD of antenatal stress and speculate that early mAb therapy may provide a novel strategy for the prevention of BPD.
Collapse
Affiliation(s)
| | | | - Gregory Seedorf
- 1 Pediatric Heart Lung Center.,3 Department of Pediatrics, University of Colorado Denver Anschutz Medical Center and Children's Hospital Colorado, Aurora, Colorado; and
| | - Taylor Nowlin
- 1 Pediatric Heart Lung Center.,3 Department of Pediatrics, University of Colorado Denver Anschutz Medical Center and Children's Hospital Colorado, Aurora, Colorado; and
| | - Christina Kim
- 1 Pediatric Heart Lung Center.,2 Department of Surgery, and
| | | | | | - Dennis Keefe
- 4 Shire Pharmaceuticals, Lexington, Massachusetts
| | - Steven H Abman
- 1 Pediatric Heart Lung Center.,3 Department of Pediatrics, University of Colorado Denver Anschutz Medical Center and Children's Hospital Colorado, Aurora, Colorado; and
| |
Collapse
|
60
|
Changes in VEGF-related factors are associated with presence of inflammatory factors in carbohydrate metabolism disorders during pregnancy. PLoS One 2019; 14:e0220650. [PMID: 31415573 PMCID: PMC6695137 DOI: 10.1371/journal.pone.0220650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to determine the action of molecules in carbohydrate metabolism disorders during pregnancy. The concentration of different types of cytokines and vascular endothelial growth factor (VEGF) in the plasma were measured in 4 groups of women: Group I, normal pregnancy (n = 10); Group II, patients with gestational DM (n = 12); Group III, pregnant patients with preexisting DM (n = 16); and Group IV, diabetic non-pregnant women (n = 22). The plasma VEGF concentration was significantly higher in the women in Group IV than in other groups (P <0.01). The concentration of the soluble form of the VEGF receptor-1 (sVEGFR-1) was significantly higher in Group I than in other groups (P <0.01). The concentration of soluble form of the VEGF receptor-2 (sVEGFR-2) was significantly lower in Groups I than in other groups (P <0.05). The concentrations of monocyte chemotactic protein-1 (MCP-1) and eotaxin were significantly lower in Group I than in Groups III and IV. The levels of interleukin (IL)-8, IL-6, and tumor necrosis factor-α (TNF-α) were significantly higher in Group I than in Group IV. Both the VEGF-related molecules and the Inflammatory cytokines are altered in pregnant women with the carbohydrate metabolism disorders.
Collapse
|
61
|
Rattanamahaphoom J, Leaungwutiwong P, Limkittikul K, Kosoltanapiwat N, Srikaitkhachorn A. Activation of dengue virus-specific T cells modulates vascular endothelial growth factor receptor 2 expression. Asian Pac J Allergy Immunol 2019; 35:171-178. [PMID: 27996292 DOI: 10.12932/ap0810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The pathogenic mechanisms underlying the increased vascular permeability in dengue hemorrhagic fever (DHF) are not well understood. Enhanced cellular immune activation, especially activation of serotype-cross reactive T cells, has been implicated in plasma leakage in DHF. Changes in several biological markers and mediators including cytokines, chemokines, angiogenic factors and their receptors have been shown to correlate with disease severity. A decline in plasma levels of a soluble form of vascular endothelial growth factor receptor 2 (VEGFR2), a receptor of vascular endothelial growth factor (VEGF), has been associated with plasma leakage in dengue patients. OBJECTIVE We aimed to investigate the effect of dengue virus (DV)-specific CD8⁺ T cells on the expression of VEGFR2 on endothelial cells. METHODS An in vitro model was developed in which dengue virus-specific CD8⁺ T cells generated from peripheral blood mononuclear cells (PBMCs) of DHF patients were co-cultured with antigen-presenting cells, human umbilical vein endothelial cells (HUVECs) and activated with DV non-structural protein 3 (NS3) peptides. The expression of VEGFR2 by endothelial cells was measured. RESULTS DV-specific CD8⁺ T cells were serotype cross-reactive. Activation of DV-specific CD8⁺ T cells resulted in down-regulation of soluble VEGFR2 production and an up-regulation of cell-associated VEGFR2. CONCLUSIONS Our findings indicate that activation of DV-specific T cell is associated with modulation of VEGFR2 expression that may contribute to increased VEGF responsiveness and vascular permeability.
Collapse
Affiliation(s)
- Jittraporn Rattanamahaphoom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anon Srikaitkhachorn
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, U.S.A
| |
Collapse
|
62
|
Draker N, Torry DS, Torry RJ. Placenta growth factor and sFlt-1 as biomarkers in ischemic heart disease and heart failure: a review. Biomark Med 2019; 13:785-799. [DOI: 10.2217/bmm-2018-0492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coronary heart disease (CHD) and heart failure (HF) produce significant morbidity/mortality but identifying new biomarkers could help in the management of each. In this article, we summarize the molecular regulation and biomarker potential of PIGF and sFlt-1 in CHD and HF. PlGF is elevated during ischemia and some studies have shown PlGF, sFlt-1 or PlGF:sFlt-1 ratio, when used in combination with standard biomarkers, strengthens predictions of outcomes. sFlt-1 and PlGF are elevated in HF with sFlt-1 as a stronger predictor of outcomes. Although promising, we discuss additional study criteria needed to confirm the clinical usefulness of PlGF or sFlt-1 in the detection and management of CHD or HF.
Collapse
Affiliation(s)
- Nicole Draker
- Department of Pharmaceutical & Administrative Sciences, Ellis Pharmacogenomics Lab, College of Pharmacy & Health Sciences, Drake University, Des Moines, IA 50311, USA
| | - Donald S Torry
- Department of Medical Microbiology, Immunology, & Cell Biology, Department of OB/GYN, Southern Illinois University, School of Medicine, Springfield, IL 62702, USA
| | - Ronald J Torry
- Department of Pharmaceutical & Administrative Sciences, Ellis Pharmacogenomics Lab, College of Pharmacy & Health Sciences, Drake University, Des Moines, IA 50311, USA
| |
Collapse
|
63
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
64
|
Modulation of Receptor Tyrosine Kinase Activity through Alternative Splicing of Ligands and Receptors in the VEGF-A/VEGFR Axis. Cells 2019; 8:cells8040288. [PMID: 30925751 PMCID: PMC6523102 DOI: 10.3390/cells8040288] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) signaling is essential for physiological and pathological angiogenesis. Alternative splicing of the VEGF-A pre-mRNA gives rise to a pro-angiogenic family of isoforms with a differing number of amino acids (VEGF-Axxxa), as well as a family of isoforms with anti-angiogenic properties (VEGF-Axxxb). The biological functions of VEGF-A proteins are mediated by a family of cognate protein tyrosine kinase receptors, known as the VEGF receptors (VEGFRs). VEGF-A binds to both VEGFR-1, largely suggested to function as a decoy receptor, and VEGFR-2, the predominant signaling receptor. Both VEGFR-1 and VEGFR-2 can also be alternatively spliced to generate soluble isoforms (sVEGFR-1/sVEGFR-2). The disruption of the splicing of just one of these genes can result in changes to the entire VEGF-A/VEGFR signaling axis, such as the increase in VEGF-A165a relative to VEGF-A165b resulting in increased VEGFR-2 signaling and aberrant angiogenesis in cancer. Research into this signaling axis has recently focused on manipulating the splicing of these genes as a potential therapeutic avenue in disease. Therefore, further research into understanding the mechanisms by which the splicing of VEGF-A/VEGFR-1/VEGFR-2 is regulated will help in the development of drugs aimed at manipulating splicing or inhibiting specific splice isoforms in a therapeutic manner.
Collapse
|
65
|
Wewers TM, Mayer AB, Pfleiderer A, Beul K, Schmidt R, Heitplatz B, Van Marck V, Nolte I, Pavenstädt H, Reuter S, Brand M, Di Marco GS. Increased soluble fms-like tyrosine kinase 1 after ischemia reperfusion contributes to adverse clinical outcomes following kidney transplantation. Kidney Int 2019; 95:1091-1102. [PMID: 30824181 DOI: 10.1016/j.kint.2018.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
Renal ischemia reperfusion injury (IRI) adversely affects clinical outcomes following kidney transplantation. Understanding the cellular mechanisms and the changes in gene/protein expression following IRI may help to improve these outcomes. Serum soluble fms-like tyrosine kinase 1 (sFlt-1), a circulating antiangiogenic protein, is increased in the first week following kidney transplantation. We evaluated the casual relationship of elevated sFlt-1 levels with renal microvascular dysfunction following IRI in a longitudinal study of 93 kidney transplant recipients and in several animal models. Transplant recipients with higher sFlt-1 levels had higher odds of delayed graft function, graft rejection, impaired graft function, and death. In a subgroup of 25 participants who underwent kidney biopsy within 4 months of kidney transplantation, peritubular capillary area was lower in those with elevated serum sFtl-1 levels. The administration of recombinant sFlt-1 into rodents resulted in significant structural and functional changes of the renal microvasculature, including reduced peritubular capillary density and intracapillary blood volume, and lead to increased expression of inflammatory genes and increased fibrosis. In a murine model of IRI, the kidney was a site of sFlt-1 production, and systemic neutralization of sFlt-1 preserved peritubular capillary density and alleviated renal fibrosis. Our data indicate that high sFlt-1 levels after IRI play an important role in the pathogenesis of microvascular dysfunction, thereby contributing to adverse clinical outcomes following kidney transplantation.
Collapse
Affiliation(s)
- Theresa M Wewers
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany; Small Animal Hospital, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anna B Mayer
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Alexander Pfleiderer
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Katrin Beul
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Rene Schmidt
- Institute for Biostatistics and Clinical Research, University Hospital Münster, Münster, Germany
| | - Barbara Heitplatz
- Department of Pathology, University Hospital Münster, Münster, Germany
| | - Veerle Van Marck
- Department of Pathology, University Hospital Münster, Münster, Germany
| | - Ingo Nolte
- Small Animal Hospital, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hermann Pavenstädt
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Stefan Reuter
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Marcus Brand
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Giovana S Di Marco
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany.
| |
Collapse
|
66
|
Jabalie G, Ahmadi M, Koushaeian L, Eghbal‐Fard S, Mehdizadeh A, Kamrani A, Abdollahi‐Fard S, Farzadi L, Hojjat‐ Farsangi M, Nouri M, Yousefi M. Metabolic syndrome mediates proinflammatory responses of inflammatory cells in preeclampsia. Am J Reprod Immunol 2019; 81:e13086. [DOI: 10.1111/aji.13086] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Gisoo Jabalie
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Majid Ahmadi
- Student’s Research CommitteeTabriz University of Medical Sciences Tabriz Iran
- Reproductive Biology Department Tabriz University of Medical Sciences Tabriz Iran
| | - Ladan Koushaeian
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Shadi Eghbal‐Fard
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Amir Mehdizadeh
- Endocrine Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Amin Kamrani
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Sedigheh Abdollahi‐Fard
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hojjat‐ Farsangi
- Department of Oncology‐Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK)Karolinska University Hospital Solna and Karolinska Institute Stockholm Sweden
| | - Mohammad Nouri
- Reproductive Biology Department Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Yousefi
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
- Aging Research Institute Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
67
|
Molbay M, Kipmen-Korgun D, Korkmaz G, Ozekinci M, Turkay Korgun E. Human Trophoblast Progenitor Cells Express and Release Angiogenic Factors. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 7:203-211. [PMID: 31516879 PMCID: PMC6709936 DOI: 10.22088/ijmcm.bums.7.4.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
Abstract
Trophoblast stem cells develop from polar trophectoderm and give rise to the cells that generate the placenta. Trophoblast cells are responsible for the uterine invasion and vascular remodeling during the implantation of the embryo. However this knowledge is not yet to be confirmed for trophoblast progenitor cells (TPCs). In this study, we aimed to demonstrate that human TPCs (hTPCs) express and release angiogenic factors for the first time. TPCs were isolated from the term placenta. Then immunophenotyping was performed by FACS method by analyzing caudal type homeobox 2 (CDX2) and eomesodermin (EOMES). Immunofluorescence staining of CDX2 and EOMES was performed on these cells. Lastly, angiogenesis-related proteins were detected by western blot and ELISA assays. The isolated cells were positive for trophoblast stem cell markers CDX2 and EOMES in 92.5% and 92.7% of cells, respectively showing the characteristics of TPCs. The investigation of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 1 (VEGFR1), and vascular endothelial growth factor receptor 2 (VEGFR2) at protein and mRNA level in comparison with human umbilical vein endothelial cells (HUVECs), revealed that human TPCs (hTPCs) have higher levels of VEGF and VEGFR1 transcripts. Additionally soluble forms of VEGF and VEGFR1 were detected in supernatants of hTPCs. With this information, TPCs seem to be promising for regenerative cell therapies by increasing angiogenesis.
Collapse
Affiliation(s)
- Muge Molbay
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Dijle Kipmen-Korgun
- Department of Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Gizem Korkmaz
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Murat Ozekinci
- Department of Obstetrics and Gynecology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
68
|
Abou Faycal C, Gazzeri S, Eymin B. A VEGF-A/SOX2/SRSF2 network controls VEGFR1 pre-mRNA alternative splicing in lung carcinoma cells. Sci Rep 2019; 9:336. [PMID: 30674935 PMCID: PMC6344584 DOI: 10.1038/s41598-018-36728-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/22/2018] [Indexed: 12/19/2022] Open
Abstract
The splice variant sVEGFR1-i13 is a truncated version of the cell membrane-spanning VEGFR1 receptor that is devoid of its transmembrane and tyrosine kinase domains. We recently showed the contribution of sVEGFR1-i13 to the progression and the response of squamous lung carcinoma to anti-angiogenic therapies. In this study, we identify VEGF165, a splice variant of VEGF-A, as a regulator of sVEGFR1-i13 expression in these tumors, and further show that VEGF165 cooperates with the transcription factor SOX2 and the splicing factor SRSF2 to control sVEGFR1-i13 expression. We also demonstrate that anti-angiogenic therapies up-regulate sVEGFR1-i13 protein level in squamous lung carcinoma cells by a mechanism involving the VEGF165/SOX2/SRSF2 network. Collectively, our results identify for the first time a signaling network that controls VEGFR1 pre-mRNA alternative splicing in cancer cells.
Collapse
Affiliation(s)
- Cherine Abou Faycal
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, Grenoble, 38042, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, 38041, France
| | - Sylvie Gazzeri
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, Grenoble, 38042, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, 38041, France
| | - Beatrice Eymin
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, Grenoble, 38042, France. .,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, 38041, France.
| |
Collapse
|
69
|
Lee SHS, Kim HJ, Shin OK, Choi JS, Kim J, Cho YH, Ha J, Park TK, Lee JY, Park K, Lee H. Intravitreal Injection of AAV Expressing Soluble VEGF Receptor-1 Variant Induces Anti-VEGF Activity and Suppresses Choroidal Neovascularization. ACTA ACUST UNITED AC 2018; 59:5398-5407. [DOI: 10.1167/iovs.18-24926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Steven Hyun Seung Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Jong Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Oh Kyu Shin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Jun-Sub Choi
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Jin Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Young-Hwa Cho
- Department of Biopharmacy, Chungbuk Health & Science University, Cheongju, Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon, Korea
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Joo Yong Lee
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul, Korea
- Asan Medical Center, Seoul, Korea
| | - Keerang Park
- Department of Biopharmacy, Chungbuk Health & Science University, Cheongju, Korea
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
70
|
Receptor Tyrosine Kinase-Targeted Cancer Therapy. Int J Mol Sci 2018; 19:ijms19113491. [PMID: 30404198 PMCID: PMC6274851 DOI: 10.3390/ijms19113491] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
In the past two decades, several molecular targeted inhibitors have been developed and evaluated clinically to improve the survival of patients with cancer. Molecular targeted inhibitors inhibit the activities of pathogenic tyrosine kinases. Particularly, aberrant receptor tyrosine kinase (RTK) activation is a potential therapeutic target. An increased understanding of genetics, cellular biology and structural biology has led to the development of numerous important therapeutics. Pathogenic RTK mutations, deletions, translocations and amplification/over-expressions have been identified and are currently being examined for their roles in cancers. Therapies targeting RTKs are categorized as small-molecule inhibitors and monoclonal antibodies. Studies are underway to explore abnormalities in 20 types of RTK subfamilies in patients with cancer or other diseases. In this review, we describe representative RTKs important for developing cancer therapeutics and predicting or evaluated resistance mechanisms.
Collapse
|
71
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
72
|
The role of placental growth factor (PlGF) and its receptor system in retinal vascular diseases. Prog Retin Eye Res 2018; 69:116-136. [PMID: 30385175 DOI: 10.1016/j.preteyeres.2018.10.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family. Upon binding to VEGF- and neuropilin-receptor sub-types, PlGF modulates a range of neural, glial and vascular cell responses that are distinct from VEGF-A. As PlGF expression is selectively associated with pathological angiogenesis and inflammation, its blockade does not affect the healthy vasculature. PlGF actions have been extensively described in tumor biology but more recently there has been accumulating preclinical evidence that indicates that this growth factor could have an important role in retinal diseases. High levels of PlGF have been found in aqueous humor, vitreous and/or retina of patients exhibiting retinopathies, especially those with diabetic retinopathy (DR) and neovascular age-related macular degeneration (nvAMD). Expression of this growth factor seems to correlate closely with many of the key pathogenic features of early and late retinopathy in preclinical models. For example, studies using genetic modification and/or pharmacological treatment to block PlGF in the laser-induced choroidal neovascularization (CNV) model, oxygen-induced retinopathy model, as well as various murine diabetic models, have shown that PlGF deletion or inhibition can reduce neovascularization, retinal leakage, inflammation and gliosis, without affecting vascular development or inducing neuronal degeneration. Moreover, an inhibitory effect of PlGF blockade on retinal scarring in the mouse CNV model has also been recently demonstrated and was found to be unique for PlGF inhibition, as compared to various VEGF inhibition strategies. Together, these preclinical results suggest that anti-PlGF therapy might have advantages over anti-VEGF treatment, and that it may have clinical applications as a standalone treatment or in combination with anti-VEGF. Additional clinical studies are clearly needed to further elucidate the role of PlGF and its potential as a therapeutic target in ocular diseases.
Collapse
|
73
|
El Marabti E, Younis I. The Cancer Spliceome: Reprograming of Alternative Splicing in Cancer. Front Mol Biosci 2018; 5:80. [PMID: 30246013 PMCID: PMC6137424 DOI: 10.3389/fmolb.2018.00080] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing allows for the expression of multiple RNA and protein isoforms from one gene, making it a major contributor to transcriptome and proteome diversification in eukaryotes. Advances in next generation sequencing technologies and genome-wide analyses have recently underscored the fact that the vast majority of multi-exon genes under normal physiology engage in alternative splicing in tissue-specific and developmental-specific manner. On the other hand, cancer cells exhibit remarkable transcriptome alterations partly by adopting cancer-specific splicing isoforms. These isoforms and their encoded proteins are not insignificant byproducts of the abnormal physiology of cancer cells, but either drivers of cancer progression or small but significant contributors to specific cancer hallmarks. Thus, it is paramount that the pathways that regulate alternative splicing in cancer, including the splicing factors that bind to pre-mRNAs and modulate spliceosome recruitment. In this review, we present a few distinct cases of alternative splicing in cancer, with an emphasis on their regulation as well as their contribution to cancer cell phenotype. Several categories of splicing aberrations are highlighted, including alterations in cancer-related genes that directly affect their pre-mRNA splicing, mutations in genes encoding splicing factors or core spliceosomal subunits, and the seemingly mutation-free disruptions in the balance of the expression of RNA-binding proteins, including components of both the major (U2-dependent) and minor (U12-dependent) spliceosomes. Given that the latter two classes cause global alterations in splicing that affect a wide range of genes, it remains a challenge to identify the ones that contribute to cancer progression. These challenges necessitate a systematic approach to decipher these aberrations and their impact on cancer. Ultimately, a sufficient understanding of splicing deregulation in cancer is predicted to pave the way for novel and innovative RNA-based therapies.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Biological Sciences Program, Carnegie Mellon University in Qatar, Doha, Qatar
| | - Ihab Younis
- Biological Sciences Program, Carnegie Mellon University in Qatar, Doha, Qatar
| |
Collapse
|
74
|
Lacal PM, Graziani G. Therapeutic implication of vascular endothelial growth factor receptor-1 (VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors. Pharmacol Res 2018; 136:97-107. [PMID: 30170190 DOI: 10.1016/j.phrs.2018.08.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
The vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase receptor for VEGF-A, VEGF-B, and placental growth factor (PlGF) ligands that is expressed in endothelial, myelomonocytic and tumor cells. VEGF-B and PlGF exclusively bind to VEGFR-1, whereas VEGF-A also binds to VEGFR-2. At variance with VEGFR-2, VEGFR-1 does not play a relevant role in physiological angiogenesis in the adult, while it is important in tumor-associated angiogenesis. VEGFR-1 and PlGF are expressed in a variety of tumors, promote invasiveness and contribute to resistance to anti-VEGF-A therapy. The currently approved antiangiogenic therapies for the treatment of a variety of solid tumors hamper VEGF-A signaling mediated by both VEGFR-2 and VEGFR-1 [i.e., the monoclonal antibody (mAb) anti-VEGF-A bevacizumab, the chimeric molecule aflibercept and several small molecule tyrosine kinase inhibitors] or exclusively by VEGFR-2 (i.e., the mAb anti-VEGFR-2 ramucirumab). However, molecules that interfere with VEGF-A/VEGFR-2 signaling determine severe adverse effects due to inhibition of physiological angiogenesis and their efficacy is hampered by tumor infiltration of protumoral myeloid cells. Blockade of VEGFR-1 may exert anti-tumor activity by multiple mechanisms: a) inhibition of tumor-associated angiogenesis; b) reduction of myeloid progenitor mobilization and tumor infiltration by VEGFR-1 expressing M2 macrophages, which contribute to tumor progression and spreading; c) inhibition of invasiveness, vasculogenic mimicry and survival of VEGFR-1 positive tumor cells. As a consequence of these properties, molecules targeting VEGFR-1 are expected to produce less adverse effects and to counteract resistance towards anti-VEGF-A therapies. More interestingly, selective VEGFR-1 inhibition might enhance the efficacy of immunotherapy with immune checkpoint inhibitors. In this review, we will examine the experimental evidence available so far that supports targeting VEGFR-1 signal transduction pathway for cancer treatment by competitive inhibitors that prevent growth factor interaction with the receptor and non-competitive inhibitors that hamper receptor activation without affecting ligand binding.
Collapse
Affiliation(s)
- Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
75
|
Eddy AC, Bidwell GL, George EM. Pro-angiogenic therapeutics for preeclampsia. Biol Sex Differ 2018; 9:36. [PMID: 30144822 PMCID: PMC6109337 DOI: 10.1186/s13293-018-0195-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a pregnancy-induced hypertensive disorder resulting from abnormal placentation, which causes factors such as sFlt-1 to be released into the maternal circulation. Though anti-hypertensive drugs and magnesium sulfate can be given in an effort to moderate symptoms, the syndrome is not well controlled. A hallmark characteristic of preeclampsia, especially early-onset preeclampsia, is angiogenic imbalance resulting from an inappropriately upregulated sFlt-1 acting as a decoy receptor binding vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), reducing their bioavailability. Administration of sFlt-1 leads to a preeclamptic phenotype, and several models of preeclampsia also have elevated levels of plasma sFlt-1, demonstrating its role in driving the progression of this disease. Treatment with either VEGF or PlGF has been effective in attenuating hypertension and proteinuria in multiple models of preeclampsia. VEGF, however, may have overdose toxicity risks that have not been observed in PlGF treatment, suggesting that PlGF is a potentially safer therapeutic option. This review discusses angiogenic balance as it relates to preeclampsia and the studies which have been performed in order to alleviate the imbalance driving the maternal syndrome.
Collapse
Affiliation(s)
- Adrian C Eddy
- Department of Physiology and Biophysics, 2500 N State St, Jackson, MS, 39216, USA
| | - Gene L Bidwell
- Department of Cell and Molecular Biology, 2500 N State St, Jackson, MS, 39216, USA.,Department of Neurology, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Eric M George
- Department of Physiology and Biophysics, 2500 N State St, Jackson, MS, 39216, USA. .,Department of Cell and Molecular Biology, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
76
|
Counterbalance: modulation of VEGF/VEGFR activities by TNFSF15. Signal Transduct Target Ther 2018; 3:21. [PMID: 30101034 PMCID: PMC6085396 DOI: 10.1038/s41392-018-0023-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 01/11/2023] Open
Abstract
Vascular hyperpermeability occurs in angiogenesis and several pathobiological conditions, producing elevated interstitial fluid pressure and lymphangiogenesis. How these closely related events are modulated is a fundamentally important question regarding the maintenance of vascular homeostasis and treatment of disease conditions such as cancer, stroke, and myocardial infarction. Signals mediated by vascular endothelial growth factor receptors, noticeably VEGFR-1, −2, and −3, are centrally involved in the promotion of both blood vessel and lymphatic vessel growth. These signaling pathways are counterbalanced or, in the case of VEGFR3, augmented by signals induced by tumor necrosis factor superfamily-15 (TNFSF15). TNFSF15 can simultaneously downregulate membrane-bound VEGFR1 and upregulate soluble VEGFR1, thus changing VEGF/VEGFR1 signals from pro-angiogenic to anti-angiogenic. In addition, TNFSF15 inhibits VEGF-induced VEGFR2 phosphorylation, thereby curbing VEGFR2-mediated enhancement of vascular permeability. Third, and perhaps more interestingly, TNFSF15 is capable of stimulating VEGFR3 gene expression in lymphatic endothelial cells, thus augmenting VEGF-C/D-VEGFR3-facilitated lymphangiogenesis. We discuss the intertwining relationship between the actions of TNFSF15 and VEGF in this review. The ability of tumor necrosis factor superfamily-15 (TNFSF15) protein to balance the actions of vascular endothelial growth factors (VEGFs) highlights new therapeutic strategies for the treatment of diseases that disrupt the circulatory system. Gui-Li Yang at the Tianjin Neurological Institute and Lu-Yuan Li at Nankai University describe the mechanisms through which TNFSF15 inhibits blood vessel growth mediated by VEGF receptor-1 (VEGFR1) and counterbalances the increase in vascular permeability mediated by VEGFR2. Interestingly, TNFSF15 enhances the effects of VEGFR3 on the formation of lymphatic vessels by promoting VEGFR3 gene expression in lymphatic endothelial cells. Further research will determine whether TNFSF15′s unique capacity to regulate the properties of both blood and lymph vessels can be harnessed to improve the treatment of conditions such as cancer, stroke, myocardial infarction and lymphoedema.
Collapse
|
77
|
Sanidas E, Papadopoulos DP, Velliou M, Tsioufis K, Mantzourani M, Iliopoulos D, Perrea D, Barbetseas J, Papademetriou V. The Role of Angiogenesis Inhibitors in Hypertension: Following "Ariadne's Thread". Am J Hypertens 2018; 31:961-969. [PMID: 29788148 DOI: 10.1093/ajh/hpy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Arterial hypertension (HT) is one of the most frequently recorded comorbidities among patients under antiangiogenic therapy. Inhibitors of vascular endothelial growth factor and vascular endothelial growth factor receptors are most commonly involved in new onset or exacerbation of pre-existing controlled HT. From the pathophysiology point of view, data support that reduced nitric oxide release and sodium and fluid retention, microvascular rarefaction, elevated vasoconstrictor levels, and globular injury might contribute to HT. The purpose of this review was to present recent evidence regarding the incidence of HT induced by antiangiogenic agents, to analyze the pathophysiological mechanisms, and to summarize current recommendations for the management of elevated blood pressure in this field.
Collapse
Affiliation(s)
- Elias Sanidas
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Dimitris P Papadopoulos
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Maria Velliou
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Kostas Tsioufis
- First Department of Cardiology, Hippokration Hospital, University of Athens, Medical School, Athens, Greece
| | - Marina Mantzourani
- First Department of Internal Medicine, LAIKO General Hospital, University of Athens, Medical School, Athens, Greece
| | - Dimitris Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research N.S.Christeas, University of Athens, Medical School, Athens, Greece
| | - Despoina Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S.Christeas, University of Athens, Medical School, Athens, Greece
| | - John Barbetseas
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Vasilios Papademetriou
- Hypertension and Cardiovascular Research Clinic, Veterans Affairs and Georgetown University Medical Centers, Washington DC, USA
| |
Collapse
|
78
|
Iosef C, Liu M, Ying L, Rao SP, Concepcion KR, Chan WK, Oman A, Alvira CM. Distinct roles for IκB kinases alpha and beta in regulating pulmonary endothelial angiogenic function during late lung development. J Cell Mol Med 2018; 22:4410-4422. [PMID: 29993183 PMCID: PMC6111877 DOI: 10.1111/jcmm.13741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/13/2018] [Indexed: 01/01/2023] Open
Abstract
Pulmonary angiogenesis is essential for alveolarization, the final stage of lung development that markedly increases gas exchange surface area. We recently demonstrated that activation of the nuclear factor kappa-B (NFκB) pathway promotes pulmonary angiogenesis during alveolarization. However, the mechanisms activating NFκB in the pulmonary endothelium, and its downstream targets are not known. In this study, we sought to delineate the specific roles for the NFκB activating kinases, IKKα and IKKβ, in promoting developmental pulmonary angiogenesis. Microarray analysis of primary pulmonary endothelial cells (PECs) after silencing IKKα or IKKβ demonstrated that the 2 kinases regulate unique panels of genes, with few shared targets. Although silencing IKKα induced mild impairments in angiogenic function, silencing IKKβ induced more severe angiogenic defects and decreased vascular cell adhesion molecule expression, an IKKβ regulated target essential for both PEC adhesion and migration. Taken together, these data show that IKKα and IKKβ regulate unique genes in PEC, resulting in differential effects on angiogenesis upon inhibition, and identify IKKβ as the predominant regulator of pulmonary angiogenesis during alveolarization. These data suggest that therapeutic strategies to specifically enhance IKKβ activity in the pulmonary endothelium may hold promise to enhance lung growth in diseases marked by altered alveolarization.
Collapse
Affiliation(s)
- Cristiana Iosef
- Department of Pharmacology, Faculty of Medicine, University of Nevada Reno, Reno, NV, USA.,Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Min Liu
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lihua Ying
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shailaja P Rao
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine R Concepcion
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Westin K Chan
- Department of Pharmacology, Faculty of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Andrew Oman
- Department of Pharmacology, Faculty of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Cristina M Alvira
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
79
|
Erturk I, Yesildal F, Acar R, Ozgurtas T, Saglam K. Vascular endothelial growth factor and soluble vascular endothelial growth factor receptor-1 in patients with end-stage renal disease. Associations with laboratory findings, comorbidities, and medications. Saudi Med J 2018; 39:586-591. [PMID: 29915853 PMCID: PMC6058753 DOI: 10.15537/smj.2018.6.22024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: To show the levels of vascular endothelial growth factor (VEGF), soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) in patients with end-stage renal disease (ESRD) and to show the associations with clinical findings such as demographic features, laboratory findings, comorbidities, and medications. Methods: A total of 73 people, consisting of patients with ESRD (n=38) and healthy subjects (n=35) in Gulhane Education and Research Hospital, Ankara, Turkey, were included in this cross-sectional study between the years 2011 and 2013. Blood samples were obtained and plasma VEGF, sVEGFR-1 analyzes were performed. Results: The VEGF level of ESRD group was not significantly higher (0.280±0.264) than the control group (0.321±0.210) (p=0.475). The sVEGFR-1 level of ESRD group was significantly higher (0.217±0.135) than the control group (0.068±0.047) (p<0.001). The correlation between VEGF and sVEGFR-1 was significant and negative (r=-0.246, p=0.036). Average VEGF level of ESRD patients using recombinant human erythropoietin (rhEPO) was significantly higher (0.567±0.28) than the ESRD patients not using rhEPO (0.246±0.24) (p=0.025). Conclusion: Our study is the first showing the significance of sVEGFR-1 in ESRD patients, and associations with comorbidities, medications. Especially our finding of rhEPO and VEGF may illuminate a reasonable positive effect of rhEPO on angiogenesis. Soluble vascular endothelial growth factor receptor-1 and VEGF may be important markers in the pathophysiology of ESRD.
Collapse
Affiliation(s)
- Ismail Erturk
- Department of Internal Medicine, University of Health Sciences, Gulhane School of Medicine, Etlik, Ankara, Turkey. E-mail.
| | | | | | | | | |
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW Men and women differ in the prevalence, pathophysiology and control rate of hypertension in an age-dependent manner. The renal endothelin system plays a central role in sex differences in blood pressure regulation by control of sodium excretion and vascular function. Improving our understanding of the sex differences in the endothelin system, especially in regard to blood pressure regulation and sodium homeostasis, will fill a significant gap in our knowledge and may identify sex-specific therapeutic targets for management of hypertension. RECENT FINDINGS The current review will highlight evidence for the potential role for endothelin system in the pathophysiology of hypertension within three female populations: (i) postmenopausal women, (ii) women suffering from preeclampsia, or (iii) pulmonary arterial hypertension. Clinical trials that specifically address cardiovascular and renal diseases in females under different hormonal status are limited. Studies of the modulatory role of gonadal hormones and sex-specific mechanisms on critically important systems involved, such as endothelin, are needed to establish new clinical practice guidelines based on systematic evidence.
Collapse
|
81
|
The sVEGFR1-i13 splice variant regulates a β1 integrin/VEGFR autocrine loop involved in the progression and the response to anti-angiogenic therapies of squamous cell lung carcinoma. Br J Cancer 2018; 118:1596-1608. [PMID: 29795310 PMCID: PMC6008445 DOI: 10.1038/s41416-018-0128-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/13/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND While lung adenocarcinoma patients can somewhat benefit from anti-angiogenic therapies, patients with squamous cell lung carcinoma (SQLC) cannot. The reasons for this discrepancy remain largely unknown. Soluble VEGF receptor-1, namely sVEGFR1-i13, is a truncated splice variant of the cell membrane-spanning VEGFR1 that has no transmembrane or tyrosine kinase domain. sVEGFR1-i13 is mainly viewed as an anti-angiogenic factor which counteracts VEGF-A/VEGFR signalling in endothelial cells. However, its role in tumour cells is poorly known. METHODS mRNA and protein status were analysed by Real-Time qPCR, western blotting, ELISA assay, proximity ligation assay or immunohistochemistry in human tumour cell lines, murine tumourgrafts and non small cell lung carcinoma patients samples. RESULTS We show that anti-angiogenic therapies specifically increase the levels of sVEGFR1-i13 in SQLC cell lines and chemically induced SQLC murine tumourgrafts. At the molecular level, we characterise a sVEGFR1-i13/β1 integrin/VEGFR autocrine loop which determines whether SQLC cells proliferate or go into apoptosis, in response to anti-angiogenic therapies. Furthermore, we show that high levels of both sVEGFR1-i13 and β1 integrin mRNAs and proteins are associated with advanced stages in SQLC patients and with a poor clinical outcome in patients with early stage SQLC. CONCLUSIONS Overall, these results reveal an unexpected pro-tumoural function of sVEGFR1-i13 in SQLC tumour cells, which contributes to their progression and escape from anti-angiogenic therapies. These data might help to understand why some SQLC patients do not respond to anti-angiogenic therapies.
Collapse
|
82
|
Failla CM, Carbo M, Morea V. Positive and Negative Regulation of Angiogenesis by Soluble Vascular Endothelial Growth Factor Receptor-1. Int J Mol Sci 2018; 19:ijms19051306. [PMID: 29702562 PMCID: PMC5983705 DOI: 10.3390/ijms19051306] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor receptor (VEGFR)-1 exists in different forms, derived from alternative splicing of the same gene. In addition to the transmembrane form, endothelial cells produce a soluble VEGFR-1 (sVEGFR-1) isoform, whereas non-endothelial cells produce both sVEGFR-1 and a different soluble molecule, known as soluble fms-like tyrosine kinase (sFlt)1-14. By binding members of the vascular endothelial growth factor (VEGF) family, the soluble forms reduce the amounts of VEGFs available for the interaction with their transmembrane receptors, thereby negatively regulating VEGFR-mediated signaling. In agreement with this activity, high levels of circulating sVEGFR-1 or sFlt1-14 are associated with different pathological conditions involving vascular dysfunction. Moreover, sVEGFR-1 and sFlt1-14 have an additional role in angiogenesis: they are deposited in the endothelial cell and pericyte extracellular matrix, and interact with cell membrane components. Interaction of sVEGFR-1 with α5β1 integrin on endothelial cell membranes regulates vessel growth, triggering a dynamic, pro-angiogenic phenotype. Interaction of sVEGFR-1/sFlt1-14 with cell membrane glycosphingolipids in lipid rafts controls kidney cell morphology and glomerular barrier functions. These cell⁻matrix contacts represent attractive novel targets for pharmacological intervention in addition to those addressing interactions between VEGFs and their receptors.
Collapse
Affiliation(s)
| | - Miriam Carbo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, 00185 Rome, Italy.
| | - Veronica Morea
- National Research Council of Italy (CNR), Department of Biochemical Sciences "A. Rossi Fanelli", Institute of Molecular Biology and Pathology c/o, Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
83
|
Maierean SM, Mikhailidis DP, Toth PP, Grzesiak M, Mazidi M, Maciejewski M, Banach M. The potential role of statins in preeclampsia and dyslipidemia during gestation: a narrative review. Expert Opin Investig Drugs 2018; 27:427-435. [DOI: 10.1080/13543784.2018.1465927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, University College London Medical School, University College London (UCL), London, UK
| | - Peter P. Toth
- Department of Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mariusz Grzesiak
- Department of Gynecology and Obstetrics, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Moshen Mazidi
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Marek Maciejewski
- Department of Cardiology, Chair of Cardiology and Cardiac Surgery Medical University of Lodz, Lodz, Poland
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| |
Collapse
|
84
|
Placental growth factor: A review of literature and future applications. Pregnancy Hypertens 2018; 14:260-264. [PMID: 29555222 DOI: 10.1016/j.preghy.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
|
85
|
Graziani G, Ruffini F, Tentori L, Scimeca M, Dorio AS, Atzori MG, Failla CM, Morea V, Bonanno E, D'Atri S, Lacal PM. Antitumor activity of a novel anti-vascular endothelial growth factor receptor-1 monoclonal antibody that does not interfere with ligand binding. Oncotarget 2018; 7:72868-72885. [PMID: 27655684 PMCID: PMC5341950 DOI: 10.18632/oncotarget.12108] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022] Open
Abstract
Vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase transmembrane receptor that has also a soluble isoform containing most of the extracellular ligand binding domain (sVEGFR-1). VEGF-A binds to both VEGFR-2 and VEGFR-1, whereas placenta growth factor (PlGF) interacts exclusively with VEGFR-1. In this study we generated an anti-VEGFR-1 mAb (D16F7) by immunizing BALB/C mice with a peptide that we had previously reported to inhibit angiogenesis and endothelial cell migration induced by PlGF. D16F7 did not affect binding of VEGF-A or PlGF to VEGFR-1, thus allowing sVEGFR-1 to act as decoy receptor for these growth factors, but it hampered receptor homodimerization and activation. D16F7 inhibited both the chemotactic response of human endothelial, myelomonocytic and melanoma cells to VEGFR-1 ligands and vasculogenic mimicry by tumor cells. Moreover, D16F7 exerted in vivo antiangiogenic effects in a matrigel plug assay. Importantly, D16F7 inhibited tumor growth and was well tolerated by B6D2F1 mice injected with syngeneic B16F10 melanoma cells. The antitumor effect was associated with melanoma cell apoptosis, vascular abnormalities and decrease of both monocyte/macrophage infiltration and myeloid progenitor mobilization. For all the above, D16F7 may be exploited in the therapy of metastatic melanoma and other tumors or pathological conditions involving VEGFR-1 activation.
Collapse
Affiliation(s)
- Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federica Ruffini
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy
| | - Lucio Tentori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Annalisa S Dorio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Cristina M Failla
- Laboratory of Experimental Immunology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy
| | - Veronica Morea
- National Research Council of Italy (CNR), Institute of Molecular Biology and Pathology, Rome, Italy
| | - Elena Bonanno
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy
| |
Collapse
|
86
|
Liu Z, Liu G, Zhang GL, Li J, He YQ, Zhang SS, Wang Y, He WY, Cheng GH, Yang X, Xu J, Wang J. Binding of human recombinant mutant soluble ectodomain of FGFR2IIIc to c subtype of FGFRs: implications for anticancer activity. Oncotarget 2018; 7:68473-68488. [PMID: 28049184 PMCID: PMC5356568 DOI: 10.18632/oncotarget.12067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
FGFRs are considered essential targets for cancer therapy. We previously reported that msFGFR2c, a Ser252Trp mutant soluble ectodomain of FGFR2IIIc, inhibited tumor growth by blocking FGF signaling pathway. However, the underlying molecular mechanism is still obscure. In this study, we reported that msFGFR2c but not wild-type soluble ectodomain of FGFR2IIIc (wsFGFR2c) could selectively bind to c subtype of FGFRs in the presence of FGF-2. Thermodynamic analysis demonstrated that msFGFR2c bound to wsFGFR2c in the presence of FGF-2 with a K value of 6.61 × 105 M−1. Molecular dynamics simulations revealed that the mutated residue Trp252 of msFGFR2c preferred a π-π interaction with His254 of wsFGFR2c. Concomitantly, Arg255 of msFGFR2c and Glu250 of wsFGFR2c adjusted their conformations and formed three H-bonds. These two interactions therefore stabilized the final structure of wsFGFR2c and msFGFR2c heterocomplex. In FGFR2IIIc-positive/high FGF-2-secreted BT-549 cells, msFGFR2c significantly inhibited the proliferation and induced apoptosis by the blockage of FGF-2-activated FGFRs phosphorylation, also the growth and angiogenesis of its xenograft tumors implanted in chick embryo chorioallantoic membrane model. While weaker the above inhibitory effects of msFGFR2c were observed on FGFR2IIIc-negative/low FGF-2-secreted MCF-7 and MDA-MB-231 cell lines in vitro and in vivo. Moreover, msFGFR2c significantly inhibited the proliferation of FGFR1IIIc-positive NCI-H1299 lung cancer cells by the suppression of FGF-2-induced FGFR1 activation and suppressed the growth of NCI-H1299 transplanted tumors in nude mice. In sum, msFGFR2c is a potential anti-tumor agent targeting FGFR2c/FGFR1c-positive tumor cells. These findings also provide a molecular basis for msFGFR2c to disrupt the activation of FGF signaling.
Collapse
Affiliation(s)
- Zhong Liu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Ge Liu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Guang-Lin Zhang
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Jun Li
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Yan-Qing He
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Shu-Shu Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Wang
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Wei-Yi He
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Guo-Hua Cheng
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ju Wang
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
87
|
Alahakoon TI, Zhang W, Arbuckle S, Zhang K, Lee V. Reduced angiogenic factor expression in intrauterine fetal growth restriction using semiquantitative immunohistochemistry and digital image analysis. J Obstet Gynaecol Res 2018; 44:861-872. [DOI: 10.1111/jog.13592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/23/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Thushari I. Alahakoon
- The University of Sydney, Westmead Clinical School; Sydney New South Wales Australia
- Westmead Institute for Maternal and Fetal Medicine; Westmead Hospital; Sydney New South Wales Australia
| | - Weiyi Zhang
- Westmead Institute for Maternal and Fetal Medicine; Westmead Hospital; Sydney New South Wales Australia
| | - Susan Arbuckle
- Anatomical Pathology; The Children's Hospital; Sydney New South Wales Australia
| | - Kewei Zhang
- The University of Sydney, Westmead Clinical School; Sydney New South Wales Australia
- Westmead Institute for Maternal and Fetal Medicine; Westmead Hospital; Sydney New South Wales Australia
| | - Vincent Lee
- The University of Sydney, Westmead Clinical School; Sydney New South Wales Australia
- Renal Medicine; Westmead Hospital; Sydney New South Wales Australia
| |
Collapse
|
88
|
Di Pietro M, Pascuali N, Parborell F, Abramovich D. Ovarian angiogenesis in polycystic ovary syndrome. Reproduction 2018; 155:R199-R209. [PMID: 29386378 DOI: 10.1530/rep-17-0597] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine pathology among women in reproductive age. Its main symptoms are oligo or amenorrhea, hyperandrogenism and the presence of ovarian cysts. It is also associated with infertility, obesity and insulin resistance. Mainly due to its heterogeneity, PCOS treatments are directed to manage its symptoms and to prevent associated diseases. The correct formation and regression of blood vessels during each ovarian cycle is indispensable for proper follicular development, ovulation and corpus luteum formation. The importance of these processes opened a new and promising field: ovarian angiogenesis. Vascular alterations characterize numerous pathologies, either with increased, decreased or abnormal angiogenesis. In the last years, several anomalies of ovarian angiogenesis have been described in women with PCOS. Therefore, it has been suggested that these alterations may be associated with the decreased - or lack of - ovulation rates and for the formation of cysts in the PCOS ovaries. Restoration of a proper vessel formation in the ovaries may lead to improved follicular development and ovulation in these patients. In the present review, we attempt to summarize the alterations in ovarian angiogenesis that have been described in women with PCOS. We also discuss the therapeutic approaches aimed to correct these alterations and their beneficial effects on the treatment of infertility in PCOS.
Collapse
Affiliation(s)
- Mariana Di Pietro
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| |
Collapse
|
89
|
Hoar FJ, Lip GYH, Belgore F, Stonelake PS. Circulating Levels of Vegf-A, VEGF-D and soluble VEGF-A Receptor (sFlt-1) in Human Breast Cancer. Int J Biol Markers 2018; 19:229-35. [PMID: 15503825 DOI: 10.1177/172460080401900308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As circulating levels of vascular endothelial growth factor (VEGF-A) are raised in malignancy, the aim of this study was to investigate whether similar changes occur in two related factors, VEGF-D and the soluble VEGF-A receptor Flt-1 (sFlt-1). Circulating levels of VEGF-A, VEGF-D and sFlt-1 were determined by ELISA in 51 patients with primary breast cancer and matched healthy controls. Results were correlated with clinicopathological data. Whilst there was a difference in VEGF-A levels between patient and control groups (p=0.03), no such difference was observed for sFlt-1 or VEGF-D levels and there was no association between individual factors and the clinicopathological variables examined. However, there was a positive correlation between VEGF-A and sFlt-1 levels in both patient and control groups (p<0.0001). In addition, the ratio of sFlt-1 to VEGF-A was significantly different between patients and controls (p<0.0001) and was also associated with tumour size (p=0.01) within the patient group. During tumour progression there is a change in the relative amounts of sFlt-1 and VEGF-A in the circulation. Measuring the sFlt-1:VEGF-A ratio may have more significance than VEGF-A alone and further studies are needed to determine whether the ratio is of use as a prognostic marker or as a means of monitoring response to anti-angiogenic therapy in cancer.
Collapse
Affiliation(s)
- F J Hoar
- Haemostasis Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham--U.K
| | | | | | | |
Collapse
|
90
|
Hoeres T, Wilhelm M, Smetak M, Holzmann E, Schulze-Tanzil G, Birkmann J. Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor-1. Clin Exp Immunol 2018; 192:54-67. [PMID: 29235095 DOI: 10.1111/cei.13090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/03/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is an important regulator of physiological and pathological angiogenesis. Besides malignant and stromal cells, local immune cells shape VEGF signalling in the tumour microenvironment. Aminobisphosphonates such as zoledronic acid (Zol) are drugs known to inhibit osteoclast activity and bone resorption, but also have immunomodulatory and anti-tumour effects. These properties have been linked previously to the down-regulation of VEGF and interference with tumour neo-angiogenesis. It was therefore surprising to find that treatment with Zol in combination with low-dose interleukin (IL)-2 increased serum VEGF levels in cancer patients. In this study we aimed to characterize the effect of Zol and IL-2 on VEGF signalling of blood-derived immune cells in vitro. Upon stimulation with IL-2, T cells and natural killer (NK) cells increase production of VEGF consecutively to the release of proinflammatory interferon (IFN)-γ, and Zol accelerates this response specifically in γδ T cells. VEGF can, in turn, be antagonized by soluble VEGF receptor (sVEGFR)-1, which is released depending on stimulatory conditions and the presence of monocytes. Additionally, malignant cells represented by leukaemia and lymphoma cell lines produce VEGF and some release sVEGFR-1 simultaneously. Our findings indicate a mechanism by which the VEGF and the sVEGFR-1 production by immune cells regulates local VEGF signalling. Therefore, immunotherapeutic interventions may enable both pro- as well as anti-tumour effects via immune cell-mediated alterations of VEGF homeostasis.
Collapse
Affiliation(s)
- T Hoeres
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - M Wilhelm
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - M Smetak
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - E Holzmann
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - G Schulze-Tanzil
- Institute of Anatomy, Paracelsus Medical University, Nuremberg, Germany
| | - J Birkmann
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
91
|
Richter B, Faul C. FGF23 Actions on Target Tissues-With and Without Klotho. Front Endocrinol (Lausanne) 2018; 9:189. [PMID: 29770125 PMCID: PMC5940753 DOI: 10.3389/fendo.2018.00189] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor (FGF) 23 is a phosphaturic hormone whose physiologic actions on target tissues are mediated by FGF receptors (FGFR) and klotho, which functions as a co-receptor that increases the binding affinity of FGF23 for FGFRs. By stimulating FGFR/klotho complexes in the kidney and parathyroid gland, FGF23 reduces renal phosphate uptake and secretion of parathyroid hormone, respectively, thereby acting as a key regulator of phosphate metabolism. Recently, it has been shown that FGF23 can also target cell types that lack klotho. This unconventional signaling event occurs in an FGFR-dependent manner, but involves other downstream signaling pathways than in "classic" klotho-expressing target organs. It appears that klotho-independent signaling mechanisms are only activated in the presence of high FGF23 concentrations and result in pathologic cellular changes. Therefore, it has been postulated that massive elevations in circulating levels of FGF23, as found in patients with chronic kidney disease, contribute to associated pathologies by targeting cells and tissues that lack klotho. This includes the induction of cardiac hypertrophy and fibrosis, the elevation of inflammatory cytokine expression in the liver, and the inhibition of neutrophil recruitment. Here, we describe the signaling and cellular events that are caused by FGF23 in tissues lacking klotho, and we discuss FGF23's potential role as a hormone with widespread pathologic actions. Since the soluble form of klotho can function as a circulating co-receptor for FGF23, we also discuss the potential inhibitory effects of soluble klotho on FGF23-mediated signaling which might-at least partially-underlie the pleiotropic tissue-protective functions of klotho.
Collapse
|
92
|
Logue OC, Mahdi F, Chapman H, George EM, Bidwell GL. A Maternally Sequestered, Biopolymer-Stabilized Vascular Endothelial Growth Factor (VEGF) Chimera for Treatment of Preeclampsia. J Am Heart Assoc 2017; 6:e007216. [PMID: 29629873 PMCID: PMC5779036 DOI: 10.1161/jaha.117.007216] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Preeclampsia is a hypertensive syndrome that complicates 3% to 5% of pregnancies in the United States. Preeclampsia originates from an improperly vascularized and ischemic placenta that releases factors that drive systemic pathophysiology. One of these factors, soluble fms-like tyrosine kinase-1, is believed to sequester vascular endothelial growth factor (VEGF), leading to systemic endothelial dysfunction and hypertension. With the goal of targeting soluble fms-like tyrosine kinase-1 while simultaneously preventing fetal exposure to VEGF, we fused VEGF to elastin-like polypeptide, a biopolymer carrier that does not cross the placental barrier (ELP-VEGF). METHODS AND RESULTS ELP-VEGF restored in vitro endothelial cell tube formation in the presence of plasma from placental ischemic rats. Long-term administered ELP-VEGF in pregnant rats accumulated in maternal kidneys, aorta, liver, and placenta, but the protein was undetectable in the pups when administered at therapeutic doses in dams. Long-term administration of ELP-VEGF in a placental ischemia rat model achieved dose-dependent attenuation of hypertension, with blood pressure equal to sham controls at a dose of 5 mg/kg per day. ELP-VEGF infusion increased total plasma soluble fms-like tyrosine kinase-1 levels but dramatically reduced free plasma soluble fms-like tyrosine kinase-1 and induced urinary excretion of nitrate/nitrite, indicating enhanced renal nitric oxide signaling. ELP-VEGF at up to 5 mg/kg per day had no deleterious effect on maternal or fetal body weight. However, dose-dependent adverse events were observed, including ascites production and neovascular tissue encapsulation around the minipump. CONCLUSIONS ELP-VEGF has the potential to treat the preeclampsia maternal syndrome, but careful dosing and optimization of the delivery route are necessary.
Collapse
Affiliation(s)
- Omar C Logue
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| | - Fakhri Mahdi
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| | - Heather Chapman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
93
|
Eslani M, Putra I, Shen X, Hamouie J, Afsharkhamseh N, Besharat S, Rosenblatt MI, Dana R, Hematti P, Djalilian AR. Corneal Mesenchymal Stromal Cells Are Directly Antiangiogenic via PEDF and sFLT-1. Invest Ophthalmol Vis Sci 2017; 58:5507-5517. [PMID: 29075761 PMCID: PMC5661382 DOI: 10.1167/iovs.17-22680] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To evaluate the angiogenic properties of corneal derived mesenchymal stromal cells (Co-MSC). Methods Co-MSCs were extracted from human cadaver, and wild-type (C57BL/6J) and SERPINF1−/− mice corneas. The MSC secretome was collected in a serum-free medium. Human umbilical vein endothelial cell (HUVEC) tube formation and fibrin gel bead assay (FIBA) sprout formation were used to assess the angiogenic properties of Co-MSC secretome. Complete corneal epithelial debridement was used to induce corneal neovascularization in wild-type mice. Co-MSCs embedded in fibrin gel was applied over the debrided cornea to evaluate the angiogenic effects of Co-MSCs in vivo. Immunoprecipitation was used to remove soluble fms-like tyrosine kinase-1 (sFLT-1) and pigment epithelium-derived factor (PEDF, SERPINF1 gene) from the Co-MSC secretome. Results Co-MSC secretome significantly inhibited HUVECs tube and sprout formation. Co-MSCs from different donors consistently contained high levels of antiangiogenic factors including sFLT-1 and PEDF; and low levels of the angiogenic factor VEGF-A. In vivo, application of Co-MSCs to mouse corneas after injury prevented the development of corneal neovascularization. Removing PEDF or sFLT-1 from the secretome significantly diminished the antiangiogenic effects of Co-MSCs. Co-MSCs isolated from SERPINF1−/− mice had significantly reduced antiangiogenic effects compared to SERPINF1+/+ (wild-type) Co-MSCs. Conclusions These results illustrate the direct antiangiogenic properties of Co-MSCs, the importance of sFLT-1 and PEDF, and their potential clinical application for preventing pathologic corneal neovascularization.
Collapse
Affiliation(s)
- Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Ilham Putra
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Judy Hamouie
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Soroush Besharat
- Department of Medicine and University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Peiman Hematti
- Department of Medicine and University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
94
|
Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017; 119:20-43. [PMID: 27913120 PMCID: PMC5449271 DOI: 10.1016/j.addr.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023]
Abstract
Angiogenesis is naturally balanced by many pro- and anti-angiogenic factors while an imbalance of these factors leads to aberrant angiogenesis, which is closely associated with many diseases. Gene therapy has become a promising strategy for the treatment of such a disordered state through the introduction of exogenous nucleic acids that express or silence the target agents, thereby engineering neovascularization in both directions. Numerous non-viral gene delivery nanoparticles have been investigated towards this goal, but their clinical translation has been hampered by issues associated with safety, delivery efficiency, and therapeutic effect. This review summarizes key factors targeted for therapeutic angiogenesis and anti-angiogenesis gene therapy, non-viral nanoparticle-mediated approaches to gene delivery, and recent gene therapy applications in pre-clinical and clinical trials for ischemia, tissue regeneration, cancer, and wet age-related macular degeneration. Enhanced nanoparticle design strategies are also proposed to further improve the efficacy of gene delivery nanoparticles to modulate angiogenesis.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Neurosurgery, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
95
|
Li G, Miao F, Zhu J, Chen Y. Anti‑angiogenesis gene therapy for hepatocellular carcinoma via systemic injection of mesenchymal stem cells engineered to secrete soluble Flt‑1. Mol Med Rep 2017; 16:5799-5806. [PMID: 28849176 PMCID: PMC5865760 DOI: 10.3892/mmr.2017.7310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/19/2017] [Indexed: 01/05/2023] Open
Abstract
Anti‑angiogenesis gene therapy has attracted interest as a potential treatment for hepatocellular carcinoma (HCC). Studies have indicated that soluble fms‑like tyrosine kinase‑1 (sFlt‑1) may suppress angiogenesis by sequestering free vascular endothelial growth factor (VEGF) or by forming inactive heterodimers with VEGF receptor‑2. Mesenchymal stem cells (MSCs) have been widely used as prospective delivery vehicles for therapeutic agents, owing to their ability to migrate towards tumor sites. In the present study, a subcutaneous HCC mouse model was used to assess the anti‑angiogenesis effects of lentivirus‑transfected MSCs engineered to secrete sFlt‑1 (LV‑sFlt‑1‑MSCs). LV‑sFlt‑1‑MSCs effectively secreted sFlt‑1, which inhibited tube formation in vitro. MSCs labeled with green fluorescence protein primarily migrated to tumor sites in vivo. An immunohistochemical assay indicated that microvessel density was reduced in mice treated with LV‑sFlt‑1‑MSCs, compared with the control group treated with PBS. Additionally, LV‑sFlt‑1‑MSCs inhibited tumor growth and prolonged survival in an HCC mouse model via systemic injection. Overall, the present study was designed to investigate the potential of LV‑sFlt‑1‑MSCs for anti‑angiogenesis gene therapy in HCC.
Collapse
Affiliation(s)
- Guanglin Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Fei Miao
- Department of Obstetrics and Gynecology, The First Hospital of Fuzhou, Fuzhou, Fujian 350001, P.R. China
| | - Jinhai Zhu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
96
|
Al-ofi EA, Anumba DO. Ligands of toll-like receptors 2/4 differentially alter markers of inflammation, adhesion and angiogenesis by monocytes from women with pre-eclampsia in co-culture with endothelial cells. J Reprod Immunol 2017; 121:26-33. [DOI: 10.1016/j.jri.2017.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 02/03/2023]
|
97
|
Zhao G, Cheng XW, Piao L, Hu L, Lei Y, Yang G, Inoue A, Ogasawara S, Wu H, Hao CN, Okumura K, Kuzuya M. The Soluble VEGF Receptor sFlt-1 Contributes to Impaired Neovascularization in Aged Mice. Aging Dis 2017; 8:287-300. [PMID: 28580185 PMCID: PMC5440109 DOI: 10.14336/ad.2016.0920] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/20/2016] [Indexed: 11/05/2022] Open
Abstract
The mechanism by which angiogenesis declines with aging is not fully understood. Soluble vascular endothelial growth factor receptor 1 (VEGFR1) form (sFlt1) contributes to endothelial dysfunction in pathological conditions. However, the roles of sFlt1 in ischemia-induced neovascularizationof aged animals have not been investigated. To study aging-related sFlt1 change and its impact on ischemia-induced neovascularization, a hindlimb ischemia model was applied to young and aged mice. Blood flow imaging assay revealed that the blood flow recovery remained impaired throughout the follow-up period. At day 14, immunostaining showed lesser capillary formation in the aged mice. An ELISA showed that the aged mice had increased plasma sFlt-1 levels at indicated time points after surgery. On operative day 4, the aged ischemic muscles had decreased levels of p-VEGFR2 and p-Akt and increased levels of sFlt-1, Wnt5a, and SC35 genes or/and protein as well as increased numbers of inflammatory cells (macrophages and leucocytes) and matrix metalloproteinase-9 activity. Immnunofluorescence showed that Flt-1 was co-localized with CD11b+ macrophages of aged ischemic muscles. Hypoxia stimulated sFlt1 expression in CD11b+ cells of aged bone-marrow (BM), and this effect was diminished by siWnt5a. The cultured medium of aged mice BM-derived CD11b+ cells suppressed human endothelial cell (EC) and endothelial progenitor cell (EPC) angiogenic actions induced by VEGF, and these decreases were improved by treatment with siWnt5a-conditioned medium. Thus, aging appears to decline neovascularization in response to ischemic stress via the VEGFR2/Akt signaling inactivation in ECs and ECPs that is mediated by Wnt5a/SC35 axis activated macrophages-derived sFlt1 production in advanced age.
Collapse
Affiliation(s)
- Guangxian Zhao
- 1Department of Cardiology, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Xian W Cheng
- 1Department of Cardiology, Yanbian University Hospital, Yanji, Jilin 133000, China.,7Institute for Future Society, NAGOYA STREAM, Nagoya University, Nagoya, Aichiken 4668550, Japan.,8Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul 130701, Republic of Korea
| | - Limei Piao
- 1Department of Cardiology, Yanbian University Hospital, Yanji, Jilin 133000, China.,2Department of Health Care & Geriatrics, Nagoya University Graduate School of Medicine, Aichiken 4668550, Japan
| | - Lina Hu
- 3Department of Public Health, Guilin Medical College, Guilin, Guangxi 541004, China
| | - Yanna Lei
- 1Department of Cardiology, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Guang Yang
- 1Department of Cardiology, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Aiko Inoue
- 2Department of Health Care & Geriatrics, Nagoya University Graduate School of Medicine, Aichiken 4668550, Japan
| | - Shinyu Ogasawara
- 2Department of Health Care & Geriatrics, Nagoya University Graduate School of Medicine, Aichiken 4668550, Japan
| | - Hongxian Wu
- 4Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20160527, China
| | - Chang-Ning Hao
- 5Department of vascular surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200126, China
| | - Kenji Okumura
- 6Department of Cardiology, Tohno Kosei Hospital, Mizunai, Japan
| | - Masafumi Kuzuya
- 3Department of Public Health, Guilin Medical College, Guilin, Guangxi 541004, China.,7Institute for Future Society, NAGOYA STREAM, Nagoya University, Nagoya, Aichiken 4668550, Japan
| |
Collapse
|
98
|
Lizano PL, Yao JK, Tandon N, Mothi SS, Montrose DM, Keshavan MS. Association of sFlt-1 and worsening psychopathology in relatives at high risk for psychosis: A longitudinal study. Schizophr Res 2017; 183:75-81. [PMID: 27863935 PMCID: PMC5432401 DOI: 10.1016/j.schres.2016.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Angiogenic dysfunction and abnormalities in psychopathology and brain structure have been reported in schizophrenia, but their relationships are mostly unknown. We recently demonstrated that sFlt-1, anti-angiogenic factor, was significantly elevated in patients at familial high-risk for psychosis (FHR). We hypothesized that elevated sFlt-1 correlates with baseline and longitudinal changes in psychopathology, cognition, and brain structure. METHODS Plasma sFlt-1 in FHR (n=35) and HC (n=39) was obtained at baseline. Schizotypal, cognitive, soft neurologic signs, and structural brain imaging (1.5T T1-weighted MRI, FreeSurfer software) measures were obtained in both groups. Longitudinal clinical and brain structural measures were obtained in a subgroup of FHR patients. Baseline data analysis used correlations between sFlt-1 and clinical/imaging measures and adjusted for multiple corrections. Linear mixed-effects models described differences in trajectories between high sFlt-1 and low sFlt-1. RESULTS Baseline sFlt-1 was significantly correlated with soft neurologic signs (r=0.27, p=0.02) and right entorhinal volume (r=0.50, p=0.02), but not other baseline clinical/brain structural measures. Longitudinal examination of the FHR group (sFlt-1 high, n=14; sFlt-1 low, n=14) demonstrated that high sFlt-1 was significantly associated with worsening schizotypal symptoms (t=2.4, p=0.018). Reduced right hippocampal/parahippocampal volume/thickness trajectories were observed in high versus low sFlt-1 groups. CONCLUSIONS The findings from this FHR study demonstrate that peripheral markers of angiogenic dysfunction can predict longitudinal clinical and brain structural changes. Also, these findings further support the hypothesis of altered microvascular circulation in schizophrenia and those at risk.
Collapse
Affiliation(s)
- Paulo L Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States
| | - Jeffrey K Yao
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; VA Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States.
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Baylor College of Medicine, Houston, TX, United States
| | - Suraj Sarvode Mothi
- Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States
| | - Debra M Montrose
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
99
|
Teixeira SC, Lopes DS, Gimenes SNC, Teixeira TL, da Silva MS, Brígido RTES, da Luz FAC, da Silva AA, Silva MA, Florentino PV, Tavares PCB, dos Santos MA, Ávila VDMR, Silva MJB, Elias MC, Mortara RA, da Silva CV. Mechanistic Insights into the Anti-angiogenic Activity of Trypanosoma cruzi Protein 21 and its Potential Impact on the Onset of Chagasic Cardiomyopathy. Sci Rep 2017; 7:44978. [PMID: 28322302 PMCID: PMC5359584 DOI: 10.1038/srep44978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/17/2017] [Indexed: 12/31/2022] Open
Abstract
Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10-30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a recombinant protein from T. cruzi named P21 (rP21) and the potential impact of the native protein on CCC. Our data suggest that the anti-angiogenic activity of rP21 depends on the protein's direct interaction with the CXCR4 receptor. This capacity is likely related to the modulation of the expression of actin and angiogenesis-associated genes. Thus, our results indicate that T. cruzi P21 is an attractive target for the development of innovative therapeutic agents against CCC.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Daiana Silva Lopes
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, MG, Brasil
| | - Sarah Natalie Cirilo Gimenes
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, MG, Brasil
| | - Thaise Lara Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Marcelo Santos da Silva
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Rebecca Tavares e Silva Brígido
- Laboratório de Patologia Molecular e Biotecnologia do Centro de Referência Nacional em Dermatologia Sanitária/Hanseníase, Faculdade de Medicina, Universidade Federal de Uberlândia, MG, Brasil
| | - Felipe Andrés Cordero da Luz
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Aline Alves da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Makswell Almeida Silva
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, MG, Brasil
| | - Pilar Veras Florentino
- Departamento de Microbiologia Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brasil
| | - Paula Cristina Brígido Tavares
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Marlus Alves dos Santos
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | | | - Marcelo José Barbosa Silva
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Maria Carolina Elias
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Renato Arruda Mortara
- Departamento de Microbiologia Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brasil
| | - Claudio Vieira da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| |
Collapse
|
100
|
Clegg LE, Mac Gabhann F. A computational analysis of in vivo VEGFR activation by multiple co-expressed ligands. PLoS Comput Biol 2017; 13:e1005445. [PMID: 28319199 PMCID: PMC5378411 DOI: 10.1371/journal.pcbi.1005445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/03/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
The splice isoforms of vascular endothelial growth A (VEGF) each have different affinities for the extracellular matrix (ECM) and the coreceptor NRP1, which leads to distinct vascular phenotypes in model systems expressing only a single VEGF isoform. ECM-immobilized VEGF can bind to and activate VEGF receptor 2 (VEGFR2) directly, with a different pattern of site-specific phosphorylation than diffusible VEGF. To date, the way in which ECM binding alters the distribution of isoforms of VEGF and of the related placental growth factor (PlGF) in the body and resulting angiogenic signaling is not well-understood. Here, we extend our previous validated cell-level computational model of VEGFR2 ligation, intracellular trafficking, and site-specific phosphorylation, which captured differences in signaling by soluble and immobilized VEGF, to a multi-scale whole-body framework. This computational systems pharmacology model captures the ability of the ECM to regulate isoform-specific growth factor distribution distinctly for VEGF and PlGF, and to buffer free VEGF and PlGF levels in tissue. We show that binding of immobilized growth factor to VEGF receptors, both on endothelial cells and soluble VEGFR1, is likely important to signaling in vivo. Additionally, our model predicts that VEGF isoform-specific properties lead to distinct profiles of VEGFR1 and VEGFR2 binding and VEGFR2 site-specific phosphorylation in vivo, mediated by Neuropilin-1. These predicted signaling changes mirror those observed in murine systems expressing single VEGF isoforms. Simulations predict that, contrary to the 'ligand-shifting hypothesis,' VEGF and PlGF do not compete for receptor binding at physiological concentrations, though PlGF is predicted to slightly increase VEGFR2 phosphorylation when over-expressed by 10-fold. These results are critical to design of appropriate therapeutic strategies to control VEGF availability and signaling in regenerative medicine applications.
Collapse
Affiliation(s)
- Lindsay E. Clegg
- Institute for Computational Medicine, Institute for NanoBioTechnology, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Feilim Mac Gabhann
- Institute for Computational Medicine, Institute for NanoBioTechnology, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|