51
|
Xie Y, Wang F, Zhong W, Puscheck E, Shen H, Rappolee DA. Shear Stress Induces Preimplantation Embryo Death That Is Delayed by the Zona Pellucida and Associated with Stress-Activated Protein Kinase-Mediated Apoptosis1. Biol Reprod 2006; 75:45-55. [PMID: 16571875 DOI: 10.1095/biolreprod.105.049791] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this study, we discovered that embryos sense shear stress and sought to characterize the kinetics and the enzymatic mechanisms underlying induction of embryonic lethality by shear stress. Using a rotating wall vessel programmed to produce 1.2 dynes/cm2 shear stress, it was found that shear stress caused lethality within 12 h for E3.5 blastocysts. Embryos developed an approximate 100% increase in mitogen-activated protein kinase 8/9 (formerly known as stress-activated protein kinase/junC kinase 1/2) phosphorylation by 6 h of shear stress that further increased to approximately 350% by 12 h. Terminal deoxynucleotidyltransferase dUTP nick end labeling/apoptosis was at baseline levels at 6 h and increased to approximately 500% of baseline at 12 h, when irreversible commitment to death occurred. A mitogen-activated protein kinase 8/9 phosphorylation inhibitor, D-JNKI1, was able to inhibit over 50% of the apoptosis, suggesting a causal role for mitogen-activated protein kinase 8/9 phosphorylation in the shear stress-induced lethality. The E2.5 (compacted eight-cell/early morula stage) embryo was more sensitive to shear stress than the E3.5 (early blastocyst stage) embryo. Additionally, zona pellucida removal significantly accelerated shear stress-induced lethality while having no lethal effect on embryos in the static control. In conclusion, preimplantation embryos sense shear stress, chronic shear stress is lethal, and the zona pellucida lessens the lethal and sublethal effects of shear stress. Embryos in vivo would not experience as high a sustained velocity or shear stress as induced experimentally here. Lower shear stresses might induce sufficient mitogen-activated protein kinase 8/9 phosphorylation that would slow growth or cause premature differentiation if the zona pellucida were not intact.
Collapse
Affiliation(s)
- Yufen Xie
- CS Mott Center for Human Growth and Development of Ob/Gyn, Department of Anatomy and Cell Biology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
52
|
Jouneau A, Zhou Q, Camus A, Brochard V, Maulny L, Collignon J, Renard JP. Developmental abnormalities of NT mouse embryos appear early after implantation. Development 2006; 133:1597-607. [PMID: 16556918 DOI: 10.1242/dev.02317] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammals, cloning by nuclear transfer (NT) into an enucleated oocyte is a very inefficient process, even if it can generate healthy adults. We show that blastocysts derived from embryonic stem (ES) donor cells develop at a high rate, correctly express the pluripotential marker gene Oct4 in ICM cells and display normal growth in vitro. Moreover, the majority of them implant in the uterus of recipient females. We combine embryological studies, gene expression analysis during gastrulation and generation of chimaeric embryos to identify the developmental origin (stage and tissue affected) of NT embryo mortality. The majority died before mid-gestation from defects arising early, either at peri-implantation stages or during the gastrulation period. The first type of defect is a non-cell autonomous defect of the epiblast cells and is rescued by complementation of NT blastocysts with normal ES or ICM cells. The second type of defect affects growth regulation and the shape of the embryo but does not directly impair the initial establishment of the patterning of the embryo. Only chimaeras formed by the aggregation of NT and tetraploid embryos reveal no growth abnormalities at gastrulation. These studies indicate that the trophoblast cell lineage is the primary source of these defects. These embryological studies provide a solid basis for understanding reprogramming errors in NT embryos. In addition, they unveil new aspects of growth regulation while increasing our knowledge on the role of crosstalk between the extra-embryonic and the embryonic regions of the conceptus in the control of growth and morphogenesis.
Collapse
Affiliation(s)
- Alice Jouneau
- Unité de Biologie du Développement et de la Reproduction, UMR INRA-ENVA, Institut National de la Recherche Agronomique (INRA 78352, France
| | | | | | | | | | | | | |
Collapse
|
53
|
Imakawa K, Kim MS, Matsuda-Minehata F, Ishida S, Iizuka M, Suzuki M, Chang KT, Echternkamp SE, Christenson RK. Regulation of the ovine interferon-tau gene by a blastocyst-specific transcription factor, Cdx2. Mol Reprod Dev 2006; 73:559-67. [PMID: 16489630 DOI: 10.1002/mrd.20457] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of ovine interferon-tau (oIFNtau), a factor essential for the process of maternal recognition of pregnancy in ruminant ungulates, is restricted to the trophoblast. However, the molecular mechanisms by which oIFNtau expression is restricted to the trophectoderm have not been fully elucidated. The objective of this study was to determine whether oIFNtau gene transcription could be regulated through Cdx2 expression, a transcription factor implicated in the control of cell differentiation in the trophectoderm. Human choriocarcinoma JEG3 cells were co-transfected with an oIFNtau (-654 base pair, bp)-luciferase reporter (-654-oIFNtau-Luc) construct and several transcription factor expression plasmids. Compared to -654-oIFNtau-Luc alone, transcription of the -654-oIFNtau-Luc increased more than 30 times when this construct was co-transfected with Cdx2, Ets-2, and c-jun. The degree of transcription decreased to 1/4 levels when the upstream region was reduced to -551 bp, and became minimal with further deletions; this was confirmed with the use of the reporter constructs with mutated c-jun, Ets-2, and/or Cdx2 sites. In trophoblast unrelated NIH3T3 cells, which do not support IFNtau gene transcription, the oIFNtau-Luc transcription was enhanced approximately eightfold when the cells were co-transfected with the Cdx2/Ets-2 or Cdx2/Ets-2/c-jun expression plasmids. These findings were confirmed by gel-shift assays examining Cdx binding site on the oIFNtau gene's upstream region, by immunohistochemical study identifying the presence of Cdx2 in day 15 and 17 ovine conceptuses, and by Western blot detecting Cdx2 in day 17 conceptuses. Our results indicate that oIFNtau gene transcription is regulated by Cdx2, and suggest that Cdx2 could be a key molecule in determining oIFNtau gene transcription by the trophectoderm.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Zhong W, Wang QT, Sun T, Wang F, Liu J, Leach R, Johnson A, Puscheck EE, Rappolee DA. FGF Ligand Family mRNA Expression Profile for Mouse Preimplantation Embryos, Early Gestation Human Placenta, and Mouse Trophoblast Stem Cells. Mol Reprod Dev 2006; 73:540-50. [PMID: 16470835 DOI: 10.1002/mrd.20417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Signaling by fibroblast growth factor (FGF) is essential is for trophoblast stem (TS) cells and preimplantation embryos. FGF4 provides essential signaling, but the expression of the complete set of 23 FGF family members has not been analyzed. Here, semi-quantitative RT-PCR and microarray analyses were used to define expression of all FGF ligand mRNA. RT-PCR was done for developmentally important FGF subfamilies, FGF10/FGF22 and FGF8/FGF17/FGF18 as well as FGF11. FGF4 and FGF18 are detected at highest levels by RT-PCR and microarrays. FGF10 was detected at low levels in both assays. FGF11 was detected at moderate levels by microarray, but not by RT-PCR. FGF17 was detected at low levels by array and moderate levels by RT-PCR. FGF8 and FGF22 were detected by RT-PCR, but not by microarrays during late cleavage divisions. FGF8, FGF5, and FGF9 were detected in the oocyte by microarray. FGF2, FGF3, and FGF7 were not detected by RT-PCR or microarrays and FGF13, FGF14, and FGF23 were not detected by microarray. Since a major role of FGF is to maintain TS cells, we tested human and mouse placental cell lines and early gestation human placenta for expression of FGF ligands. Expression in mouse TS cells was compared with preimplantation embryos, and human placental cell line expression was compared with human placenta, to infer which ligands are expressed in placental lineage vs. other cell lineages. The data suggest that human and mouse placenta share FGF18 and its high expression suggests preimplantation and early placental function.
Collapse
Affiliation(s)
- W Zhong
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Armant DR. Blastocysts don't go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev Biol 2005; 280:260-80. [PMID: 15882572 PMCID: PMC2715296 DOI: 10.1016/j.ydbio.2005.02.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 01/16/2005] [Accepted: 02/08/2005] [Indexed: 01/02/2023]
Abstract
The preimplantation embryo floats freely within the oviduct and is capable of developing into a blastocyst independently of the maternal reproductive tract. While establishment of the trophoblast lineage is dependent on expression of developmental regulatory genes, further differentiation leading to blastocyst implantation in the uterus requires external cues emanating from the microenvironment. Recent studies suggest that trophoblast differentiation requires intracellular signaling initiated by uterine-derived growth factors and integrin-binding components of the extracellular matrix. The progression of trophoblast development from the early blastocyst stage through the onset of implantation appears to be largely independent of new gene expression. Instead, extrinsic signals direct the sequential trafficking of cell surface receptors to orchestrate the developmental program that initiates blastocyst implantation. The dependence on external cues could coordinate embryonic activities with the developing uterine endometrium. Biochemical events that regulate trophoblast adhesion to fibronectin are presented to illustrate a developmental strategy employed by the peri-implantation blastocyst.
Collapse
Affiliation(s)
- D Randall Armant
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201-1415, USA.
| |
Collapse
|
56
|
Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 2005; 132:2093-102. [PMID: 15788452 DOI: 10.1242/dev.01801] [Citation(s) in RCA: 835] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blastocyst formation marks the segregation of the first two cell lineages in the mammalian preimplantation embryo: the inner cell mass (ICM) that will form the embryo proper and the trophectoderm (TE) that gives rise to the trophoblast lineage. Commitment to ICM lineage is attributed to the function of the two transcription factors, Oct4 (encoded by Pou5f1) and Nanog. However, a positive regulator of TE cell fate has not been described. The T-box protein eomesodermin (Eomes) and the caudal-type homeodomain protein Cdx2 are expressed in the TE, and both Eomes and Cdx2homozygous mutant embryos die around the time of implantation. A block in early TE differentiation occurs in Eomes mutant blastocysts. However, Eomes mutant blastocysts implant, and Cdx2 and Oct4expression are correctly restricted to the ICM TE. Blastocoel formation initiates in Cdx2 mutants but epithelial integrity is not maintained and embryos fail to implant. Loss of Cdx2 results in failure to downregulate Oct4 and Nanog in outer cells of the blastocyst and subsequent death of those cells. Thus, Cdx2 is essential for segregation of the ICM and TE lineages at the blastocyst stage by ensuring repression of Oct4 and Nanog in the TE.
Collapse
Affiliation(s)
- Dan Strumpf
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
57
|
Wang Y, Puscheck EE, Lewis JJ, Trostinskaia AB, Wang F, Rappolee DA. Increases in phosphorylation of SAPK/JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media. Fertil Steril 2005; 83 Suppl 1:1144-54. [PMID: 15831287 DOI: 10.1016/j.fertnstert.2004.08.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 08/18/2004] [Accepted: 08/18/2004] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To test whether signal transduction proteins that mediate stress may be used to detect responses of embryos to different media in a prospective randomized study. DESIGN Controlled laboratory study. SETTING None. PATIENT(S) None. INTERVENTION(S) Mouse embryos isolated at E3.5 (3.5 days after fertilization) or E1.5 were cultured in different media for 24 hours or 72 hours, respectively. Expression of p38 mitogen activated protein kinases (MAPKs) and stress-activated protein kinase/Jun kinase (SAPK/JNK) phosphoproteins in the mouse embryo and their correlation with preimplantation development were studied. MAIN OUTCOME MEASURE(S) [1] In E3.5 embryos, SAPK/JNK and p38MAPK are phosphorylated at different levels in different media after 24 hours, with Ham's F10+BSA and M-16 having the highest intensity of both SAPK/JNK and p38MAPK phosphorylation and Quinn's cleavage medium and potassium simplex optimized medium supplemented with amino acids (KSOM+AA) the lowest intensity. [2] The stress-induced increase in phosphorylation of SAPK/JNK and p38MAPK appears to be post-translational in embryos. [3] The intensity of SAPK/JNK phosphorylation measured at E1.5+72 hours culture is inversely correlated with 4-cell/compaction rate, morula formation rate, blastocyst formation rate, and hatching rate. RESULT(S) SAPK/JNK and p38MAPK phosphoprotein levels, but not all forms of protein, are affected during culture of preimplantation embryos in seven different media. During culture, the rate of progress to four developmental events was assayed and each rate was inversely proportional to the level of SAPK/JNK phosphorylation measured by immunocytochemical means or Western blot analysis at the end of culture. CONCLUSION(S) Culture stresses embryos; different media exert different levels of stress on the embryos. There is a negative correlation between the amount of stress and the development rate. Taken together, the data suggest that SAPK/JNK phosphorylation may constitute a measure of homeostatic response to negative stimuli of media.
Collapse
Affiliation(s)
- Yingchun Wang
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Hutzel Hospital, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
58
|
Xie Y, Wang Y, Sun T, Wang F, Trostinskaia A, Puscheck E, Rappolee DA. Six post-implantation lethal knockouts of genes for lipophilic MAPK pathway proteins are expressed in preimplantation mouse embryos and trophoblast stem cells. Mol Reprod Dev 2005; 71:1-11. [PMID: 15736129 DOI: 10.1002/mrd.20116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways play an important role in controlling embryonic proliferation and differentiation. It has been demonstrated that sequential lipophilic signal transduction mediators that participate in the MAPK pathway are null post-implantation lethal. It is not clear why the lethality of these null mutants arises after implantation and not before. One hypothesis is that the gene product of these post-implantation lethal null mutants are not present before implantation in normal embryos and do not have function until after implantation. To test this hypothesis, we selected a set of lipophilic genes mediating MAPK signal transduction pathways whose null mutants result in early peri-implantation or placental lethality. These included FRS2alpha, GAB1, GRB2, SOS1, Raf-B, and Raf1. Products of these selected genes were detected and their locations and functions indicated by indirect immunocytochemistry and Western blotting for proteins and RT-polymerase chain reaction (PCR) for mRNA transcription. We report here that all six signal mediators are detected at the protein level in preimplantation mouse embryo, placental trophoblasts, and in cultured trophoblast stem cells (TSC). Proteins are all detected in E3.5 embryos at a time when the first known mitogenic intercellular communication has been documented. mRNA transcripts of two post-implantation null mutant genes are expressed in mouse preimplantation embryos and unfertilized eggs. These mRNA transcripts were detected as maternal mRNA in unfertilized eggs that could delay the lethality of null mutants. All of the proteins were detected in the cytoplasm or in the cell membrane. This study of spatial and temporal expression revealed that all of these six null mutants post-implantation genes in MAPK pathway are expressed and, where tested, phosphorylated/activated proteins are detected in the blastocyst. Studies on RNA expression using RT-PCR suggest that maternal RNA could play an important role in delaying the presence of the lethal phenotype of null mutations.
Collapse
Affiliation(s)
- Yufen Xie
- CS Mott Center for Human Growth and Development of Ob/Gyn, Wayne State University School of Medicine, East Hancock, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Xie Y, Sun T, Wang QT, Wang Y, Wang F, Puscheck E, Rappolee DA. Acquisition of essential somatic cell cycle regulatory protein expression and implied activity occurs at the second to third cell division in mouse preimplantation embryos. FEBS Lett 2004; 579:398-408. [PMID: 15642350 DOI: 10.1016/j.febslet.2004.10.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 10/25/2004] [Accepted: 10/26/2004] [Indexed: 10/26/2022]
Abstract
It is clear that G1-S phase control is exerted after the mouse embryo implants into the uterus 4.5 days after fertilization (E4.5); null mutants of genes that control cell cycle commitment such as max, rb (retinoblastoma), and dp1 are embryonic lethal after implantation with proliferation phenotypes. But, a number of studies of genes mediating proliferation control in the embryo after fertilization-implantation have yielded confusing results. In order to understand when embryos might first exert G1-S phase regulatory control, we assayed preimplantation mouse embryos for the acquisition of expression of mRNA, protein, and phospho-protein for max, Rb, and DP-1, and for the proliferation-promoting phospho-protein forms of mycC (thr58/ser62) and Rb (ser795). The key findings are that: (1) DP-1 protein was present in the nucleus as early as the four-cell stage onwards, (2) max protein was in the nucleus, suggesting function from the four-cell stage onwards, (3) both mycC and Rb all form protein was present at increasing quantities in the cytoplasm from the 2 cell and 4/8 cell stage, respectively, (4) the phosphorylated form of mycC phospho was present in the nucleus at high levels from the two-cell stage through blastocyst-stage, and (5) the phosphorylated form of Rb was detected at low levels in the two-cell stage embryo and was highly expressed at the 4/8-cell stage through the blastocyst stage. Taken together, these data suggest that activation of mycC phospho/max dimer pairs, (E2F)/DP-1 dimer pairs, and repression of Rb inhibition of cell cycle progression via phosphorylation at ser795 occurs at the earliest stages of embryonic development. In addition, the presence of max, mycC phospho, DP-1, and Rb phospho in the nuclei of embryonic and placental lineage cells in the blastocyst and in trophoblast stem cells suggests that a similar type of cell cycle regulation is present throughout preimplantation development and in both embryonic and extra-embryonic cell lineages.
Collapse
Affiliation(s)
- Yufen Xie
- CS Mott Center for Human Growth and Development of Ob/Gyn, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Haraguchi S, Saga Y, Naito K, Inoue H, Seto A. Specific gene silencing in the pre-implantation stage mouse embryo by an siRNA expression vector system. Mol Reprod Dev 2004; 68:17-24. [PMID: 15039944 DOI: 10.1002/mrd.20047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recently, small interfering RNAs (siRNAs) have become a powerful and widely used tool for the analysis of gene function in mammalian cells. Here we report that the microinjection of an siRNA expression vector into the nucleus is an efficient and powerful method of specific gene silencing in pre-implantation mouse embryos. We used this method to examine the expression of two genes EGFP and Oct4. Vectors encoding siRNAs targeted against EGFP or Oct4 were injected into the pronucleus or nucleus of zygotes, which were then cultured until the blastocyst stage. When the effects of RNAi were examined in blastocyst stage eggs, there was robust inhibition of the gene product in a concentration-dependent manner at both the mRNA and the protein level. The expression of other endogenous genes was not affected, showing the specificity of the vector-mediated RNAi. In addition, this method was effective for inhibiting maternally expressed mRNA. To demonstrate that RNAi of Oct4 induced a similar phenotype to that of Oct4-null embryos, the blastocysts were further cultured in ES medium. After the fourth day of culture, the embryos either had outgrown only a layer of trophoblast cells or showed developmental arrest at the blastocyst stage (>90%). Moreover, concomitant with Oct4 suppression at the blastocyst stage, we observed inhibition of Fgf4, a gene that is known to be induced downstream of Oct4 expression. Taken together, these results demonstrate that the use of siRNA expression vector is a powerful way to achieve gene silencing in the pre-implantation stage embryo.
Collapse
Affiliation(s)
- Seiki Haraguchi
- Department of Microbiology, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan.
| | | | | | | | | |
Collapse
|
61
|
Abstract
During mammalian development, the first cell lineage diversification event occurs in the blastocyst, when the trophectoderm (TE) and the inner cell mass (ICM) become established. Part of the TE (polar) remains in contact with the ICM and differs from the mural TE (mTE) which is separated from the ICM by a cavity known as the blastocoele. The presence of filopodia connecting ICM cells with the distant mural TE cells through the blastocoelic fluid was investigated in this work. We describe two types of actin-based cell projections found in freshly dissected and in vitro cultured expanding blastocysts: abundant short filopodia projecting into the blastocoelic cavity that present a continuous undulating behavior; and long, thin traversing filopodia connecting the mural TE with the ICM. Videomicroscopy analyses revealed the presence of vesicle-like structures moving along traversing filopodia and dynamic cytoskeletal rearrangements. These observations, together with immunolocalization of the FGFR2 and the ErbB3 receptors to these cell extensions, suggest that they display signal transduction activity. We propose that traversing filopodia are employed by mitotic mTE cells to receive the required signals for cell division after they become distant to the ICM.
Collapse
Affiliation(s)
- Enrique Salas-Vidal
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62271, México
| | | |
Collapse
|
62
|
Imakawa K, Chang KT, Christenson RK. Pre-Implantation Conceptus and Maternal Uterine Communications: Molecular Events Leading to Successful Implantation. J Reprod Dev 2004; 50:155-69. [PMID: 15118242 DOI: 10.1262/jrd.50.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Implantation, a critical step for mammals in establishing pregnancy, requires successful completion of sequential events such as maternal uterine development, conceptus development and attachment, and placental formation. To reach the stage of placental formation, synchronized development of the conceptus and uterus throughout the implantation period is absolutely required. A number of factors expressed at the uterine endometrium and/or conceptus, which are associated with peri-implantation development, have been identified. In addition to a temporal and spatial expression of these factors, their roles in intra- and inter-cellular interactions make it difficult to fully understand physiological roles played during the critical period. This paper focuses on early conceptus development, maternal preparation for implantation and uterine-conceptus communication during the pre-implantation period, rather than the subsequent events such as conceptus attachment to the maternal endometrium. New aspects of pre-implantation processes are evaluated through simultaneous expressions of transcription factors as they possibly regulate the complex processes of implantation events in murine species and ruminant ungulates.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Implantation Research Group, Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| | | | | |
Collapse
|
63
|
Wang Y, Wang F, Sun T, Trostinskaia A, Wygle D, Puscheck E, Rappolee DA. Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos. Dev Dyn 2004; 231:72-87. [PMID: 15305288 DOI: 10.1002/dvdy.20114] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To understand how mitogenic signals are transduced into the trophoblasts in preimplantation embryos, the expression of mitogen-activated protein kinase (MAPK) pathway molecules was tested. We used immunocytochemical means and reverse transcriptase-polymerase chain reaction to test whether MAPK pathway molecule gene products exist at the protein and phosphoprotein level in the zygote and the RNA level in the egg and zygote. In addition, all antibodies detected the correct-sized major band in Westerns of placental cell lines representing the most prevalent cell type in preimplantation embryos. A majority of mRNA transcripts of MAPK pathway genes were detected in unfertilized eggs, and all were expressed in the zygote. We found that the MAPK pathway protein set consisting of the following gene products was present: FRS2 alpha, GRB2, GAB1, SOS1, Ha-ras, Raf1/RafB, MEK1,2,5, MAPK/ERK1,2, MAPK/ERK5, and RSK1,2,3 (see abbreviations). These proteins were detected in trophoblasts in embryonic day (E) 3.5 embryos when they could mediate mitogenic fibroblast growth factor signals from the embryo or colony stimulating factor-1 signals from the uterus. The phosphorylation state and position of the phosphoproteins in the cells suggested that they might function in mediating mitogenic signals. Interestingly, a subtle transition from maternal MAPK function to zygotic function was suggested by the localization for three MAPK pathway enzymes between E2.5 and E3.5, Raf1 phospho is largely cell membrane-localized at E2.5 and E3.5, and MEK1,2 phospho accumulates in the nucleus on E2.5 and E3.5. However, MAPK phospho shifts from nuclear accumulation at E2.5 to cytoplasmic accumulation at E3.5. This finding is similar to the cytoplasmic MAPK phospho localization reported in fibroblast growth factor signaling fields in postimplantation embryos (Corson et al. [2003] Development 130:4527-4537). This spatial and temporal expression study lays a foundation to plan and analyze perturbation studies aimed at understanding the role of the major mitogenic pathway in preimplantation mouse embryos.
Collapse
Affiliation(s)
- Yingchun Wang
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Hützel Hospital, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Rossant J, Chazaud C, Yamanaka Y. Lineage allocation and asymmetries in the early mouse embryo. Philos Trans R Soc Lond B Biol Sci 2003; 358:1341-8; discussion 1349. [PMID: 14511480 PMCID: PMC1693231 DOI: 10.1098/rstb.2003.1329] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mouse blastocyst, at the time of implantation, has three distinct cell lineages: epiblast (EPI), trophoblast and primitive endoderm (PE). Interactions between these three lineages and their directional growth and migration are critical for establishing the initial asymmetries that result in anterior-posterior patterning of the embryo proper. We have re-investigated the timing of specification of the three lineages in relation to the differential allocation of progeny of the first two blastomeres to the embryonic versus abembryonic axis of the blastocyst. We find that the majority of cells of the inner cell mass (ICM) are specified to be EPI or PE by the mid 3.5 day blastocyst and that this is associated with localized expression of GATA-6 in the ICM. We propose a model for molecular specification of the blastocyst lineages in which a combination of cell division order, signal transduction differences between inner and outer cells and segregation of key transcription factors can produce a blastocyst in which all three lineages are normally set up in an ordered, lineage-dependent manner, but which can also reconstruct a blastocyst when division order or cell interactions are disturbed.
Collapse
Affiliation(s)
- Janet Rossant
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada.
| | | | | |
Collapse
|
65
|
Cahana A, Jin XL, Reiner O, Wynshaw-Boris A, O'Neill C. A study of the nature of embryonic lethality in LIS1-/- mice. Mol Reprod Dev 2003; 66:134-42. [PMID: 12950100 DOI: 10.1002/mrd.10339] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Homozygous deletion of the Lis1 gene (Lis1(-/-)) in mouse resulted in early embryonic lethality immediately after embryo implantation by an undefined mechanism. We seek to define the nature of this demise. LIS1 (pafah1b1) is a 46 kDa protein with seven tryptophan-aspartate (WD) repeats. It docks with many proteins and has been implicated in microtubular function, cell division, intercellular transport, and nuclear and cellular motility. Combined Western and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analyses showed that LIS1 expression from the blastocyst stage required new transcription from the embryonic genome. Consequently, the death of post-implantation embryos may not reflect the first time during development that LIS1 was required, rather, it may reflect the first time following depletion of gametic stores that its actions were essential. Following culture of blastocysts in vitro for 96 hr the inner cell mass (ICM) of null embryos were significantly smaller than ICM of wild-type siblings. Normal blastocyst outgrowths after 96-hr culture had high levels of LIS1 expression in the outer cells of developing ICM and extensive expression in trophoblast cells. Lis1(-/-) embryos had significantly smaller trophoblast nuclei than wild-type embryos. The results show that LIS1 expression is required for the continued normal development of the ICM and optimal trophoblast giant cell formation.
Collapse
Affiliation(s)
- A Cahana
- Human Reproduction Unit, Department of Physiology, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | | | | | | | | |
Collapse
|
66
|
Sutherland A. Mechanisms of implantation in the mouse: differentiation and functional importance of trophoblast giant cell behavior. Dev Biol 2003; 258:241-51. [PMID: 12798285 DOI: 10.1016/s0012-1606(03)00130-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, P.O. Box 800732, Charlottesville, VA 22908, USA.
| |
Collapse
|
67
|
Goldin SN, Papaioannou VE. Paracrine action of FGF4 during periimplantation development maintains trophectoderm and primitive endoderm. Genesis 2003; 36:40-7. [PMID: 12748966 DOI: 10.1002/gene.10192] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
FGF4, a member of the fibroblast growth factor (FGF) family, is absolutely required for periimplantation mouse development, although its precise role at this stage remains unknown. The nature of the defect leading to postimplantation lethality of embryos lacking zygotic FGF4 is unclear and little is known about downstream targets of FGF4-initiated signaling within the various cellular compartments of the blastocyst. Here we report that postimplantation lethality of Fgf4(-/-) embryos is unlikely to reflect strictly mitogenic requirements for FGF4. Rather, our results suggest that FGF4 is required to maintain trophectoderm and primitive endoderm identity at embryonic day 4.5. This result is consistent with the reported in vitro activity of FGF4 in maintaining trophoblast stem cells and with the requirement for receptor tyrosine kinase signaling in primitive endoderm formation. Thus, postimplantation lethality of Fgf4(-/-) embryos likely results from the failure of proper differentiation and function of extraembryonic cell types.
Collapse
|
68
|
Bleckmann SC, Blendy JA, Rudolph D, Monaghan AP, Schmid W, Schütz G. Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol Cell Biol 2002; 22:1919-25. [PMID: 11865068 PMCID: PMC135604 DOI: 10.1128/mcb.22.6.1919-1925.2002] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activating transcription factor 1 (ATF1), CREB, and the cyclic AMP (cAMP) response element modulatory protein (CREM), which constitute a subfamily of the basic leucine zipper transcription factors, activate gene expression by binding as homo- or heterodimers to the cAMP response element in regulatory regions of target genes. To investigate the function of ATF1 in vivo, we inactivated the corresponding gene by homologous recombination. In contrast to CREB-deficient mice, which suffer from perinatal lethality, mice lacking ATF1 do not exhibit any discernible phenotypic abnormalities. Since ATF1 and CREB but not CREM are strongly coexpressed during early mouse development, we generated mice deficient for both CREB and ATF1. ATF1(-/-) CREB(-/-) embryos die before implantation due to developmental arrest. ATF1(+/-) CREB(-/-) embryos display a phenotype of embryonic lethality around embryonic day 9.5 due to massive apoptosis. These results indicate that CREB and ATF1 act in concert to mediate signals essential for maintaining cell viability during early embryonic development.
Collapse
Affiliation(s)
- Susanne C Bleckmann
- Department of Molecular Biology of the Cell I, German Cancer Research Centre, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
69
|
Reim G, Brand M. spiel-ohne-grenzen/pou2mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development 2002; 129:917-33. [PMID: 11861475 DOI: 10.1242/dev.129.4.917] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neural patterning of the vertebrate brain starts within the ectoderm during gastrulation and requires the activity of organizer cell populations in the neurectoderm. One such organizer is located at the prospective midbrain-hindbrain boundary (MHB) and controls development of the midbrain and the anterior hindbrain via the secreted signaling molecule Fgf8. However, little is known about how the ability of neural precursors to respond to Fgf8 is regulated. We have studied the function of the zebrafish spiel-ohne-grenzen (spg) gene in early neural development. Genetic mapping and molecular characterization presented in the accompanying paper revealed that spg mutations disrupt the pou2 gene, which encodes a POU domain transcription factor that is specifically expressed in the MHB primordium, and is orthologous to mammalian Oct3/Oct4. We show that embryos homozygous for spg/pou2 have severe defects in development of the midbrain and hindbrain primordium. Key molecules that function in the formation of the MHB, such as pax2.1, spry4, wnt1, her5, eng2 and eng3, and in hindbrain development, such as krox20, gbx2, fkd3 and pou2, are all abnormal in spg mutant embryos. By contrast, regional definition of the future MHB in the neuroectoderm by complementary expression of otx2 and gbx1, before the establishment of the complex regulatory cascade at the MHB, is normal in spg embryos. Moreover, the Fgf8 and Wnt1 signaling pathways are activated normally at the MHB but become dependent on spg towards the end of gastrulation. Therefore, spg plays a crucial role both in establishing and in maintaining development of the MHB primordium. Transplantation chimeras show that normal spg function is required within the neuroectoderm but not the endomesoderm. Importantly, gain-of-function experiments by mRNA injection of fgf8 and pou2 or Fgf8 bead implantations, as well as analysis of spg-ace double mutants show that spg embryos are insensitive to Fgf8, although Fgf receptor expression and activity of the downstream MAP kinase signaling pathway appear intact. We suggest that spg/pou2 is a transcription factor that mediates regional competence to respond to Fgf8 signaling.
Collapse
Affiliation(s)
- Gerlinde Reim
- Max Planck Institute for Molecular, Cell Biology and Genetics, Dresden, Pfotenhauer Str. 108, 01307 Dresden, FR of Germany
| | | |
Collapse
|
70
|
Abstract
The formation of a developmentally competent mammalian blastocyst requires the transition from a unicellular state, the fertilized zygote, to a differentiated multicellular structure. In common with other developing organisms, generation of the required cell population involves the processes of cell division, differentiation and cell death, all of which can be regulated by peptide growth factors. Cell death in the preimplantation embryo occurs by apoptosis and, by analogy with other systems, may serve to eliminate unwanted cells during the critical developmental transitions that take place during this period. Cells may be eliminated because they are abnormal or possess defects, including damaged DNA or chromosomal abnormalities. At the early cleavage stages, apoptosis may be associated with activation of the embryonic genome and may contribute to the blastomere fragmentation commonly observed in human IVF embryos. The major wave of apoptosis occurs in a number of species in the inner cell mass of the blastocyst, as identified using nuclear labelling including terminal transferase-mediated dUTP nick end labelling (TUNEL) and fluorescence and confocal microscopy. Apoptosis may protect the integrity and cellular composition of the inner cell mass, by eliminating damaged cells or possibly those with an inappropriate phenotype. Preimplantation embryos express genes involved in the regulation and execution of apoptosis and their cells can undergo this default pathway in the absence of exogenous survival signals. Evidence is now accumulating from several species that apoptosis in the embryo is regulated by soluble peptide growth factors acting as survival factors in an autocrine or paracrine manner. To date, these include transforming growth factor alpha and members of the insulin-like growth factor family. Apoptosis may also be affected by environmental factors, including culture conditions and the composition of media. The regulation of apoptosis in the preimplantation embryo is likely to be of critical importance for both embryo viability and for later development, since the cells of the inner cell mass give rise to the fetus and carry the germ line.
Collapse
Affiliation(s)
- Daniel R. Brison
- Department of Reproductive Medicine, St Mary's Hospital, Manchester M13 OJH, UK
| |
Collapse
|
71
|
Moroni E, Dell'Era P, Rusnati M, Presta M. Fibroblast growth factors and their receptors in hematopoiesis and hematological tumors. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:19-32. [PMID: 11847001 DOI: 10.1089/152581602753448513] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fibroblast growth factors (FGFs) belong to a family of pleiotropic heparin-binding growth factors. They exert multiple functions on various cell types of mesodermal and neuroectodermal origin, affecting cell proliferation, motility, survival, and differentiation. FGF's exert their activity by interacting with tyrosine kinase receptors (FGFRs) and cell-surface heparan sulfate proteoglycans. This article reviews recent studies on the role of the FGF/FGFR system in embryonic hematopoietic development, hematopoiesis, and hematological tumors. FGFs exert both autocrine and paracrine functions in these biological processes by acting on blood cells and their precursors and accessory cells in the bone marrow, including stromal and endothelial cells.
Collapse
Affiliation(s)
- Emanuela Moroni
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Via Valsabbina 19, 25123 Brescia, Italy
| | | | | | | |
Collapse
|
72
|
Klaffky E, Williams R, Yao CC, Ziober B, Kramer R, Sutherland A. Trophoblast-specific expression and function of the integrin alpha 7 subunit in the peri-implantation mouse embryo. Dev Biol 2001; 239:161-75. [PMID: 11784026 DOI: 10.1006/dbio.2001.0404] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For implantation and placentation to occur, mouse embryo trophoblast cells must penetrate the uterine stroma to make contact with maternal blood vessels. A major component of the uterine epithelial basement membrane and underlying stromal matrix with which they interact is the extracellular matrix protein laminin. We have identified integrin alpha 7 beta 1 as a major receptor for trophoblast-laminin interactions during implantation and yolk sac placenta formation. It is first expressed by trophectoderm cells of the late blastocyst and by all trophectoderm descendants in the early postimplantation embryo through E8.5, then disappears except in cells at the interface between the allantois and the ectoplacental plate. Integrin alpha 7 expression is a general characteristic of the early differentiation stages of rodent trophoblast, given that two different cultured trophoblast cell lines also express this integrin. Trophoblast cells interact with at least three different laminin isoforms (laminins 1, 2/4, and 10/11) in the blastocyst and in the uterus at the time of implantation. Outgrowth assays using function-blocking antibodies show that alpha 7 beta 1 is the major trophoblast receptor for laminin 1 and a functional receptor for laminins 2/4 and 10/11. When trophoblast cells are cultured on substrates of these three laminins, they attach and spread on all three, but show decreased proliferation on laminin 1. These results show that the alpha 7 beta 1 integrin is expressed by trophoblast cells and acts as receptor for several isoforms of laminin during implantation. These interactions are not only important for trophoblast adhesion and spreading but may also play a role in regulating trophectoderm proliferation and differentiation.
Collapse
Affiliation(s)
- E Klaffky
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia 22908-0732, USA
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
Cells resident in an organism that possess the dual capacity for self-renewal and differentiation into a spectrum of subtypes are referred to as stem cells. In the past decade, basic research performed on stem cells has shed light on the molecular pathways operating in vivo which can be harnessed in vitro for the establishment of cell lines mirroring the stem cells in the organism. The attractiveness of stem cells as in vitro models of organotypic differentiation and their potential application in a clinical context holds great promise and is only beginning to be exploited. Stem cells can be broadly grouped into two categories based on their origin from either the embryonic or the adult. Only the early embryo possesses truly pluripotent cells that can give rise to all the cell types present in the embryo proper and adult. The adult, on the other hand, possesses specialized, tissue- or organ-specific stem cell types, which can give rise to the differentiated cell types of that specific organ and have in some instances been shown to transdifferentiate. However, no stem cell obtained from an adult organism has yet been shown to exhibit developmental potential matching the breadth of that of stem cells obtained from embryos. This review focuses on the different types of stem cells that are resident in early stage mammalian embryos, detailing their derivation and propagation in addition to highlighting their developmental potential and opportunities for future applications.
Collapse
Affiliation(s)
- A Hadjantonakis
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
74
|
Leunda-Casi A, de Hertogh R, Pampfer S. Control of trophectoderm differentiation by inner cell mass-derived fibroblast growth factor-4 in mouse blastocysts and corrective effect of FGF-4 on high glucose-induced trophoblast disruption. Mol Reprod Dev 2001; 60:38-46. [PMID: 11550266 DOI: 10.1002/mrd.1059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies have suggested that fibroblast growth factor-4 (FGF-4) may be a paracrine signal used by inner cell mass (ICM) cells to maintain adjacent trophectoderm (TE) cells in an undifferentiated state. In the present work, immunocytochemical analysis of mouse blastocysts confirmed that FGF-4 was predominantly detected in the ICM before and after spreading over a fibronectin-coated culture substrate. Addition of human recombinant FGF-4 did not influence morphological progression, cell allocation and proliferation in ICM and TE lineages or mitosis and karyorhexis frequencies during blastocyst expansion. Addition of FGF-4 to outgrowing blastocysts, in contrast, induced a significant decrease in the surface of the trophoblast outgrowths formed by the TE cells and in the proportion of giant trophoblasts per outgrowth. The fact that blastocysts display excessive trophoblast expansion and spreading over their culture substrate upon pre-exposure to high concentrations of glucose in vitro was used to further assess the regulatory effect of FGF-4. Addition of FGF-4 was indeed found to fully neutralize the disruptive impact of high glucose on trophoblast outgrowths. Altogether, our data indicate that ICM-derived FGF-4 participates actively in the regulation of trophoblast development.
Collapse
Affiliation(s)
- A Leunda-Casi
- OBST 5330 Research Unit, Université Catholique de Louvain School of Medicine, Brussels, Belgium
| | | | | |
Collapse
|
75
|
Abstract
The placenta is the first organ to form during mammalian embryogenesis. Problems in its formation and function underlie many aspects of early pregnancy loss and pregnancy complications in humans. Because the placenta is critical for survival, it is very sensitive to genetic disruption, as reflected by the ever-increasing list of targeted mouse mutations that cause placental defects. Recent studies of mouse mutants with disrupted placental development indicate that signalling interactions between the placental trophoblast and embryonic cells have a key role in placental morphogenesis. Furthering our understanding of mouse trophoblast development should provide novel insights into human placental function.
Collapse
Affiliation(s)
- J Rossant
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5.
| | | |
Collapse
|
76
|
Parast MM, Aeder S, Sutherland AE. Trophoblast giant-cell differentiation involves changes in cytoskeleton and cell motility. Dev Biol 2001; 230:43-60. [PMID: 11161561 DOI: 10.1006/dbio.2000.0102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trophoblast giant-cell differentiation is well-characterized at the molecular level, yet very little is known about how molecular changes affect the cellular functions of trophoblast in embryo implantation. We have found, using both explanted E7.5 mouse embryo ectoplacental cone and the rat choriocarcinoma (Rcho-1) cell line, that trophoblast differentiation is distinguished by dramatic changes in cytoarchitecture and cell behavior. Undifferentiated trophoblast cells contain little organized actin and few small, peripheral focal complexes and exhibit high membrane protrusive activity, while differentiated trophoblast giant cells contain prominent stress fibers, large internal as well as peripheral focal adhesions, and become immotile. The dramatic changes in cell behavior and cytoskeletal organization of giant cells correlate with changes in the activities of the Rho family of small GTPases and a decrease in tyrosine phosphorylation of focal adhesion kinase. Together, these data provide detailed insight into the cellular properties of trophoblast giant cells and suggest that giant-cell differentiation is characterized by a transition from a motile to a specialized epithelial phenotype. Furthermore, our data support a phagocytic erosion, rather than a migratory infiltration, mechanism for trophoblast giant-cell invasion of the uterine stroma.
Collapse
Affiliation(s)
- M M Parast
- Department of Cell Biology, University of Virginia Health System, School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
77
|
Thomas T, Voss AK, Petrou P, Gruss P. The murine gene, Traube, is essential for the growth of preimplantation embryos. Dev Biol 2000; 227:324-42. [PMID: 11071758 DOI: 10.1006/dbio.2000.9915] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the genetic control of preimplantation development. We have isolated, characterized, and mutated a previously undescribed mouse gene, Traube (Trb), essential for preimplantation development. Similar protein coding sequences are found in rats, humans, and yeast. The TRB protein contained two amino-terminal acidic domains, a leucine zipper, and three putative nuclear localization signals. The Trb gene was expressed at low levels ubiquitously early in development and became restricted to the liver and the central nervous system from E11.5 onward. Myc-tagged TRB protein was localized to the nucleus, and in a large proportion of the cells to the nucleoli. The Trb mutant embryos halted in development at the compacted morula stage at E2.5. At E3.5 they started to decompact and a day later they disintegrated and died. The observed defect was cell autonomous, as mutant cells failed to participate in the formation of chimeric embryos. The Trb mutant embryos showed a 50% reduction of the total cell number. The mutant embryos exhibited a paucity of ribosomes, polyribosomes, and rough endoplasmic reticulum. This paucity of ribosomes together with the localization of TRB to the nucleoli, the site of ribosome synthesis, suggests that TRB is involved in the synthesis of ribosomes.
Collapse
Affiliation(s)
- T Thomas
- Department of Molecular Cell Biology, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, Goettingen, 37077, Germany
| | | | | | | |
Collapse
|
78
|
Chen Y, Li X, Eswarakumar VP, Seger R, Lonai P. Fibroblast growth factor (FGF) signaling through PI 3-kinase and Akt/PKB is required for embryoid body differentiation. Oncogene 2000; 19:3750-6. [PMID: 10949929 DOI: 10.1038/sj.onc.1203726] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of FGF signaling in early epithelial differentiation was investigated in ES (embryonic stem) cell derived embryoid bodies. A dominant negative fibroblast growth factor receptor (FGFR) mutation was created by stably introducing into ES cells an Fgfr2 cDNA, truncated in its enzymatic domains. These cells failed to differentiate into cystic embryoid bodies. No epithelial differentiation and cavitation morphogenesis could be observed, in the mutant, although its rate of cell proliferation remained unchanged. This phenotype was associated with a significant decrease in the activation of Akt/PKB and PLCgamma-1, as compared to the wild type, while the activation of MAPK/Erk was less affected. Requirement for PI 3-kinase signaling in embryoid body differentiation was demonstrated by specific inhibitors. Akt/PKB activation was abrogated by wortmannin in short-term experiments. In long-term cultures Ly294002 inhibited the differentiation of ES cells into embryoid bodies. Our data demonstrate that for early epithelial differentiation FGF signaling is required through the PI 3-kinase-Akt/ PKB pathway.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Enzyme Activation
- Epithelium
- Fibroblast Growth Factors/metabolism
- Gene Expression
- Isoenzymes/metabolism
- Mutagenesis
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phospholipase C gamma
- Protein Serine-Threonine Kinases
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/genetics
- Signal Transduction
- Stem Cells/cytology
- Stem Cells/metabolism
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Y Chen
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
79
|
Rassoulzadegan M, Rosen BS, Gillot I, Cuzin F. Phagocytosis reveals a reversible differentiated state early in the development of the mouse embryo. EMBO J 2000; 19:3295-303. [PMID: 10880442 PMCID: PMC313953 DOI: 10.1093/emboj/19.13.3295] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mural trophectoderm cells of the mouse embryo possess a phagocytic potential as early as 3.5 days post coitum (d.p.c.). This first differentiated function shows a graded variation along the embryonic-abembryonic axis, from a maximal activity in the non-dividing cells of the abembryonic pole to a complete lack of activity in the replicating polar trophectoderm overlying the inner cell mass (ICM). This pattern can be explained by a negative control exerted by the ICM. Addition of FGF4, a factor secreted by ICM cells, strongly inhibited phagocytosis while inducing resumption of DNA synthesis in mural trophectoderm cells, revealing a reversible, FGF4-dependent differentiation state. Under conditions in which a small cluster of mural trophectoderm cells (<10) had internalized large particles, these otherwise morphologically normal embryos could not implant in the uterus, indicating that cells at the abembryonic pole have a critical role in initiating the implantation process. At post-implantation stages (6.5-8.5 d.p.c.), the ectoplacental cone and secondary giant cells derived from the polar trophectoderm also contained active phagocytes, but at that stage, differentiation was not reversed by FGF4.
Collapse
Affiliation(s)
- M Rassoulzadegan
- Unité 470 de l'INSERM, Faculté des Sciences, Université de Nice, France
| | | | | | | |
Collapse
|
80
|
Patel Y, Kim H, Rappolee DA. A role for hepatocyte growth factor during early postimplantation growth of the placental lineage in mice. Biol Reprod 2000; 62:904-12. [PMID: 10727259 DOI: 10.1095/biolreprod62.4.904] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatocyte growth factor (HGF) is implicated in placental development; hgfr and hgf null mutant embryos develop placental insufficiency and lethality at 11.5 days (E11.5) after fertilization. The function of HGF in placentation at implantation (E4.5) has not been studied. Using reverse transcription-polymerase chain reaction, we detected HGF receptor (HGFR) mRNA in preimplantation embryos and in cultured blastocyst outgrowths. HGFR protein was detected in trophoblast cells in blastocyst outgrowths. HGF mRNA was not detected at these stages but was detected in the uterus at E5.5. Using in situ hybridization, we detected HGF mRNA in the mesometrial uterus, near the embryo, from E6.5 through E8.5. At E8.5, HGFR mRNA was detected in the chorionic placenta, and HGF mRNA was detected in the allantois. The expression for HGF and HGFR suggested a maternal-to-embryonic communication before the development of the allantois. To test this, blastocyst outgrowths were cultured with HGF. HGF stimulated the outgrowth of trophoblasts in a time-dependent manner and stimulated the expression of proliferating cell nuclear antigen, but it did not scatter trophoblasts. HGF stimulated an increase in the trophoblast cell number, but caused a decrease in the total number of terminally differentiated trophoblasts expressing placental lactogen-1 protein. These data suggest that HGF stimulates the cell division, but not the differentiation, of trophoblast cells during implantation.
Collapse
Affiliation(s)
- Y Patel
- Department of Obstetrics and Gynecology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
81
|
Abstract
The transcription factor Oct-4 is expressed in totipotent embryonic cells and germ cells. As totipotent cells differentiate to form somatic and/or extraembryonic tissues, the Oct-4 gene is downregulated. Primordial germ cells are the only cells in which Oct-4 expression is maintained after postgastrulation. Recent in vivo ablation of the Oct-4 function has shown that the absence of this transcription factor causes early embryonic lethality due to trophectodermal differentiation of cells which normally would give rise to the inner cell mass of the blastocyst. This result strongly suggests that Oct-4 is necessary for the maintenance of the totipotent phenotype of embryonic cells and that this factor likely plays a role as a determinant of the totipotency of germ cells by preventing their differentiation to a somatic cell phenotype during gastrulation. The involvement of Oct-4 in the biology of totipotent and germ cells is here discussed in view of new understanding about Oct-4 function.
Collapse
Affiliation(s)
- M Pesce
- Dipartimento di Sanità Pubblica e Biologia Cellulare, Università di Roma "Tor Vergata," sezione di Istologia ed Embriologia, Rome, Italy
| | | |
Collapse
|
82
|
Haffner-Krausz R, Gorivodsky M, Chen Y, Lonai P. Expression of Fgfr2 in the early mouse embryo indicates its involvement in preimplantation development. Mech Dev 1999; 85:167-72. [PMID: 10415357 DOI: 10.1016/s0925-4773(99)00082-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report that the IIIc transcriptional alternative of Fgfr2 is transcribed in the unfertilized egg and that during early zygotic transcription, messages encoded by both Fgfr2 alternatives (IIIc and IIIb) are present. The Fgfr2 protein was first detected in peripheral blastomeres of compacted morulae. Trophectoderm specificity of Fgfr2 became obvious in the early blastocyst and with maturation its localization underwent further specification, Fgfr2 concentration increased at the abembryonic pole and decreased at the embryonic pole. Moreover Fgfr2 expression became markedly asymmetrical along the animal-vegetal axis of the mature blastocyst. Our observations indicate a role for Fgfr2 in trophectoderm growth and specification and in the orientation and polarity of the preimplantation conceptus.
Collapse
Affiliation(s)
- R Haffner-Krausz
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
83
|
Rappolee DA. It's not just baby's babble/Babel: recent progress in understanding the language of early mammalian development: a minireview. Mol Reprod Dev 1999; 52:234-40. [PMID: 9890755 DOI: 10.1002/(sici)1098-2795(199902)52:2<234::aid-mrd15>3.0.co;2-h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- D A Rappolee
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| |
Collapse
|
84
|
Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J. Promotion of trophoblast stem cell proliferation by FGF4. Science 1998; 282:2072-5. [PMID: 9851926 DOI: 10.1126/science.282.5396.2072] [Citation(s) in RCA: 1069] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The trophoblast cell lineage is essential for the survival of the mammalian embryo in utero. This lineage is specified before implantation into the uterus and is restricted to form the fetal portion of the placenta. A culture of mouse blastocysts or early postimplantation trophoblasts in the presence of fibroblast growth factor 4 (FGF4) permitted the isolation of permanent trophoblast stem cell lines. These cell lines differentiated to other trophoblast subtypes in vitro in the absence of FGF4 and exclusively contributed to the trophoblast lineage in vivo in chimeras.
Collapse
Affiliation(s)
- S Tanaka
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | |
Collapse
|
85
|
Abstract
FGF receptor (FGFR) function is essential during peri-implantation mouse development. To understand which receptors are functioning, we tested for the expression of all four FGF receptors in peri-implantation blastocysts. By RT-PCR, FGFR-3 and FGFR-4 were detected at high levels, FGFR-2 at lower levels, and FGFR-1 was detected at background levels compared to control tissues. Because FGFR-3 and FGFR-4 were detected at the highest levels, we studied these in detail. Between 3.5 days after fertilization (E3.5) and E6.0, FGFR-4 mRNA was detected ubiquitously in the peri-implantation embryo, restricted to the inner cell mass (ICM) and its derivatives and primitive endoderm by E6.0, and was not detected at E6.5. FGFR-3 mRNA was detected ubiquitously in the peri-implantation embryo with a tendency towards extraembryonic cells. We tested blastocyst outgrowths, a model for implantation, for FGFR-3 and FGFR-4 protein. FGFR-3 protein was detected in all cells early during the outgrowth. Later, FGFR-3 was detected in the extraembryonic endoderm and trophoblast giant cells (TGC), but not in the ICM. FGFR-4 protein was detected in all cells of the implanting embryo, but was restricted to the ICM/primitive endoderm in later stage outgrowths. The distribution of the receptor proteins in the blastocyst outgrowths is similar to the distribution of the mRNA detected by in situ hybridization of sections of embryos. The data suggest roles for FGFR-3 and FGFR-4 in peri-implantation development.
Collapse
Affiliation(s)
- D A Rappolee
- Department of Cell and Molecular Biology, Lurie Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|