51
|
Afonso-Oramas D, Cruz-Muros I, de la Rosa DÁ, Abreu P, Giráldez T, Castro-Hernández J, Salas-Hernández J, Lanciego JL, Rodríguez M, González-Hernández T. Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson's disease. Neurobiol Dis 2009; 36:494-508. [DOI: 10.1016/j.nbd.2009.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/03/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022] Open
|
52
|
Liu HM, Gao J, Miao H, Xiao CH, Sun Y, Du X, Yuan HH, Yu HL, Gao DS. Influence of aging on the calbindin-D-28k immunoreactive positive dopaminergic neurons in the substantia nigra pars compacta of rats. Neurosci Lett 2009; 468:3-6. [PMID: 19857553 DOI: 10.1016/j.neulet.2009.10.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 11/19/2022]
Abstract
We studied the relationship between aging and the vulnerability of substantia nigra pars compacta (SNc) calbindin-D-28k immunoreactive positive (CB+) dopaminergic (DA) neurons. Immunohistochemistry and cell counting were used to determine the number of CB+ DA neuron in aged rats (24 mon) compared to adult rats (5 mon). Furthermore, the expression of CB mRNA and protein levels in SN was studied by semi-quantitative RT-PCR and Western blotting. An 11% loss of CB+ DA neurons was detected in both the rostral (8.9%) and caudal (1.7%) segments but not in the intermedial segment of SNc in aged rats compared to adult rats (P<0.05). No difference was detected in CB mRNA and protein levels between aged and adult rats (P>0.05). These data suggest that expression levels of CB mRNA and protein may increase in the existing SNc DA neurons, which may compensate for the partial age dependent loss of CB+ DA neurons in the SNc.
Collapse
Affiliation(s)
- Hong-mei Liu
- Department of Neurobiology and Anatomy, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
González-Hernández T, Afonso-Oramas D, Cruz-Muros I. Phenotype, compartmental organization and differential vulnerability of nigral dopaminergic neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:21-37. [PMID: 20411765 DOI: 10.1007/978-3-211-92660-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The degeneration of nigral dopaminergic (DA-) neurons is the histopathologic hallmark of Parkinson's disease (PD), but not all nigral DA-cells show the same susceptibility to degeneration. This starts in DA-cells in the ventrolateral and caudal regions of the susbtantia nigra (SN) and progresses to DA-cells in the dorsomedial and rostral regions of the SN and the ventral tegmental area, where many neurons remain intact until the final stages of the disease. This fact indicates a relationship between the topographic distribution of midbrain DA-cells and their differential vulnerability, and the possibility that this differential vulnerability is associated with phenotypic differences between different subpopulations of nigral DA-cells. Studies carried out during the last two decades have contributed to establishing the existence of different compartments of nigral DA-cells according to their neurochemical profile, and a possible relationship between the expression of some factors and the relative vulnerability or resistance of DA-cell subpopulations to degeneration. These aspects are reviewed and discussed here.
Collapse
Affiliation(s)
- Tomás González-Hernández
- Department of Anatomy, Faculty of Medicine, University of La Laguna, 38071, La Laguna, Tenerife, Spain.
| | | | | |
Collapse
|
54
|
Thompson LH, Björklund A. Transgenic reporter mice as tools for studies of transplantability and connectivity of dopamine neuron precursors in fetal tissue grafts. PROGRESS IN BRAIN RESEARCH 2009; 175:53-79. [PMID: 19660649 DOI: 10.1016/s0079-6123(09)17505-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Cell therapy for Parkinson's disease (PD) is based on the idea that new midbrain dopamine (mDA) neurons, implanted directly into the brain of the patient, can structurally and functionally replace those lost to the disease. Clinical trials have provided proof-of-principle that the grafted mDA neurons can survive and function after implantation in order to provide sustained improvement in motor function for some patients. Nonetheless, there are a number of issues limiting the application of this approach as mainstream therapy, including: the use of human fetal tissue as the only safe and reliable source of transplantable mDA neurons, and variability in the therapeutic outcome. Here we review recent progress in this area from investigations using rodent models of PD, paying particular attention to the use of transgenic reporter mice as tools for neural transplantation studies. Cell type-specific expression of reporter genes, such as green fluorescent protein, affords valuable technical advantages in transplantation experiments, such as the ability to selectively isolate specific cell fractions from mixed populations prior to grafting, and the unambiguous visualization of graft-derived dopamine neuron fiber patterns after transplantation. The results from these investigations have given new insights into the transplantability of mDA precursors as well as their connectivity after grafting and have interesting implications for the development of stem cell based approaches for the treatment of PD.
Collapse
Affiliation(s)
- Lachlan H Thompson
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
55
|
Caudle WM, Pan S, Shi M, Quinn T, Hoekstra J, Beyer RP, Montine TJ, Zhang J. Proteomic identification of proteins in the human brain: Towards a more comprehensive understanding of neurodegenerative disease. Proteomics Clin Appl 2008; 2:1484-97. [PMID: 21136796 DOI: 10.1002/prca.200800043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Indexed: 12/21/2022]
Abstract
Proteomics has revealed itself as a powerful tool in the identification and determination of proteins and their biological significance. More recently, several groups have taken advantage of the high-throughput nature of proteomics in order to gain a more in-depth understanding of the human brain. In turn, this information has provided researchers with invaluable insight into the potential pathways and mechanisms involved in the pathogenesis of several neurodegenerative disorders, e.g., Alzheimer and Parkinson disease. Furthermore, these findings likely will improve methods to diagnose disease and monitor disease progression as well as generate novel targets for therapeutic intervention. Despite these advances, comprehensive understanding of the human brain proteome remains challenging, and requires development of improved sample enrichment, better instrumentation, and innovative analytic techniques. In this review, we will focus on the most recent progress related to identification of proteins in the human brain under normal as well as pathological conditions, mainly Alzheimer and Parkinson disease, their potential application in biomarker discovery, and discuss current advances in protein identification aimed at providing a more comprehensive understanding of the brain.
Collapse
Affiliation(s)
- W Michael Caudle
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Rodriguez-Pallares J, Rey P, Parga JA, Muñoz A, Guerra MJ, Labandeira-Garcia JL. Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol Dis 2008; 31:58-73. [PMID: 18499466 DOI: 10.1016/j.nbd.2008.03.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (AII) plays a major role in the progression of inflammation and NADPH-derived oxidative stress (OS) in several tissues. The brain possesses a local angiotensin system, and OS and inflammation are key factors in the progression of Parkinson's disease. In rat mesencephalic cultures, AII increased 6-OHDA-induced dopaminergic (DA) cell death, generation of superoxide in DA neurons and microglial cells, the expression of NADPH-oxidase mRNA, and the number of reactive microglial cells. These effects were blocked by AII type-1 (AT1) antagonists, NADPH inhibitors, or elimination of glial cells. DA degeneration increased angiotensin converting enzyme activity and AII levels. In rats, 6-OHDA-induced dopaminergic cell loss and microglial activation were reduced by treatment with AT1 antagonists. The present data suggest that AII, via AT1 receptors, increases the dopaminergic degeneration process by amplifying the inflammatory response and intraneuronal levels of OS, and that glial cells play a major role in this process.
Collapse
Affiliation(s)
- J Rodriguez-Pallares
- Department of Morphological Sciences, Faculty of Medicine, Laboratory of Neuroanatomy and Experimental Neurology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
57
|
Allain H, Bentué-Ferrer D, Akwa Y. Disease-modifying drugs and Parkinson's disease. Prog Neurobiol 2007; 84:25-39. [PMID: 18037225 DOI: 10.1016/j.pneurobio.2007.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/11/2007] [Indexed: 12/21/2022]
Abstract
Symptomatic medications, l-Dopa and dopaminergic agents, remain the only clinically pertinent pharmacological treatment proven effective and available for the large population of patients with Parkinson's disease. The challenge for the pharmaceutical industry is to develop disease-modifying drugs which could arrest, delay or at least oppose the progression of the specific pathogenic processes underlying Parkinson's disease. The purpose of this review, based on recent biological and genetic data to be validated with appropriate animal models, was to re-examine the putative neuroprotective agents in Parkinson's disease and discuss the development of new strategies with the ultimate goal of demonstrating neurocytoprotective activity in this neurodegenerative disease. Since guidelines for research on neurocytoprotective drugs remain to be written, innovation will be the key to success of future clinical trials. It is reasonable to expect that future advances in our understanding of the pathogenic processes of Parkinson's disease will open the way to new perspectives for the treatment of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hervé Allain
- Laboratoire de Pharmacologie Expérimentale et Clinique, Faculté de Médecine, 2 av. du Pr Léon Bernard, F-35043 Rennes, France
| | | | | |
Collapse
|
58
|
Chung CY, Koprich JB, Endo S, Isacson O. An endogenous serine/threonine protein phosphatase inhibitor, G-substrate, reduces vulnerability in models of Parkinson's disease. J Neurosci 2007; 27:8314-23. [PMID: 17670978 PMCID: PMC2074880 DOI: 10.1523/jneurosci.1972-07.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/17/2007] [Accepted: 06/18/2007] [Indexed: 11/21/2022] Open
Abstract
Relative neuronal vulnerability is a universal yet poorly understood feature of neurodegenerative diseases. In Parkinson's disease, dopaminergic (DA) neurons in the substantia nigra (SN) (A9) are particularly vulnerable, whereas adjacent DA neurons within the ventral tegmental area (A10) are essentially spared. Our previous laser capture microdissection and microarray study (Chung et al., 2005) demonstrated that molecular differences between these DA neurons may underlie their differential vulnerability. Here we show that G-substrate, an endogenous inhibitor of Ser/Thr protein phosphatases, exhibits higher expression in A10 compared with A9 DA neurons in both rodent and human midbrain. Overexpression of G-substrate protected dopaminergic BE(2)-M17 cells against toxins, including 6-OHDA and MG-132 (carbobenzoxy-L-leucyl- L-leucyl-L-leucinal), whereas RNA interference (RNAi)-mediated knockdown of endogenous G-substrate increased their vulnerability to these toxins. G-substrate reduced 6-OHDA-mediated protein phosphatase 2A (PP2A) activation in vitro and increased phosphorylated levels of PP2A targets including Akt, glycogen synthase kinase 3beta, and extracellular signal-regulated kinase 2 but not p38. RNAi to Akt diminished the protective effect of G-substrate against 6-OHDA. In vivo, lentiviral delivery of G-substrate to the rat SN increased baseline levels of phosphorylated Akt and protected A9 DA neurons from 6-OHDA-induced toxicity. These results suggest that inherent differences in the levels of G-substrate contribute to the differential vulnerability of DA neurons and that enhancing G-substrate levels may be a neuroprotective strategy for the vulnerable A9 (SN) DA neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Chee Yeun Chung
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, Belmont, Massachusetts 02478
- Harvard Center for Neurodegeneration and Repair, Boston, Massachusetts 02114
- Udall Parkinson's Disease Research Center of Excellence, McLean Hospital and Harvard University, Belmont, Massachusetts 02478
| | - James B. Koprich
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, Belmont, Massachusetts 02478
- Harvard Center for Neurodegeneration and Repair, Boston, Massachusetts 02114
- Udall Parkinson's Disease Research Center of Excellence, McLean Hospital and Harvard University, Belmont, Massachusetts 02478
| | - Shogo Endo
- Okinawa Institute of Science and Technology, Okinawa 904-2234, Japan, and
| | - Ole Isacson
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, Belmont, Massachusetts 02478
- Harvard Center for Neurodegeneration and Repair, Boston, Massachusetts 02114
- Udall Parkinson's Disease Research Center of Excellence, McLean Hospital and Harvard University, Belmont, Massachusetts 02478
| |
Collapse
|
59
|
Martí J, Santa-Cruz MC, Bayer SA, Ghetti B, Hervás JP. Generation and survival of midbrain dopaminergic neurons in weaver mice. Int J Dev Neurosci 2007; 25:299-307. [PMID: 17582722 DOI: 10.1016/j.ijdevneu.2007.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 05/02/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022] Open
Abstract
Generation and survival of midbrain dopaminergic (DA) neurons were investigated using tyrosine hydroxylase (TH) immunocytochemistry combined with tritiated thymidine autoradiography at appropriate anatomical levels throughout the anteroposterior (A/P) axes of the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA). The wild-type (+/+) and homozygous weaver (wv/wv) mice used here were the offspring of pregnant dams injected with the radioactive precursor when the mesencephalic neurons were being produced (gestational days 11-15). Data reveal that, at postnatal day 90, depletion of TH-stained cells in the wv/wv presented an A/P pattern of increasing severity and, therefore, the DA cells located in posterior parts of the SNc or the VTA appear to be more vulnerable than the settled anterior neurons. When the time of neuron origin is inferred for each level of these cell groups, it is found that the neurogenesis span is similar for both experimental groups, although significant deficits in the frequency of wv/wv late-generated neurons were observed in any level considered. On the other hand, it has been found that TH-positive neurons were settled along the extent of the SNc and the VTA following precise and differential neurogenetic gradients. Thus, the acute rostrocaudal increase in the proportion of late-generated neurons detected in both+/+DA-cell groups is disturbed in the weaver homozygotes due to the indicated A/P depletion.
Collapse
Affiliation(s)
- Joaquín Martí
- Unidad de Citología e Histología, Facultad de Ciencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
60
|
Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol 2007; 150:963-76. [PMID: 17339843 PMCID: PMC2013918 DOI: 10.1038/sj.bjp.0707167] [Citation(s) in RCA: 471] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/12/2006] [Accepted: 01/11/2007] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting mainly the elderly, although a small proportion of PD patients develop the illness at a much younger age. In the former group, idiopathic PD patients, the causes of the illness have been the subject of longstanding debate with environmental toxins, mitochondrial dysfunction, abnormal protein handling and oxidative stress being suggested. One problem has been that the epidemiology of PD has offered few clues to provide evidence for a single major causative factor. Comparatively recently it has been found that in both patients and experimental models of PD in animals neuroinflammation appears to be a ubiquitous finding. These cases present with all of the classical features of inflammation including phagocyte activation, increased synthesis and release of proinflammatory cytokines and complement activation. Although this process is vital for normal function and protection in both the CNS, as in the periphery, it is postulated that in the aetiology of PD this process may spiral out of control with over activation of microglia, over production of cytokines and other proinflammatory mediators as well as the release of destructive molecules such as reactive oxygen species. Given that dopaminergic neurons in the substantia nigra are relatively vulnerable to 'stress' and the region has a large population of microglia in comparison to other CNS structures, these events may easily trigger neurodegeneration. These factors are examined in this review along with a consideration of the possible use of anti-inflammatory drugs in PD.
Collapse
Affiliation(s)
- P S Whitton
- 1Department of Pharmacology, The School of Pharmacy, London, UK.
| |
Collapse
|
61
|
Cruz-Muros I, Afonso-Oramas D, Abreu P, Barroso-Chinea P, Rodríguez M, González MC, Hernández TG. Aging of the rat mesostriatal system: Differences between the nigrostriatal and the mesolimbic compartments. Exp Neurol 2007; 204:147-61. [PMID: 17112516 DOI: 10.1016/j.expneurol.2006.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 10/05/2006] [Accepted: 10/09/2006] [Indexed: 01/21/2023]
Abstract
The impairment of the mesostriatal dopaminergic system has been considered responsible for motor and affective disturbances associated with aging and a risk factor for Parkinson's disease. However, the basic mechanisms underlying this phenomenon are still unknown. Here we used biochemical, molecular and morphological techniques directed at detecting flaws in the dopamine synthesis route and signs of dopaminergic degeneration in the rat mesostriatal system during normal aging. We found two different age-related processes. One is characterized by a dopa decarboxylase decrease, and involves both the nigrostriatal and mesolimbic compartments, and is responsible for a moderate dopamine loss in the dorsal striatum, where other parameters of dopamine synthesis are not affected. The other is characterized by axonal degeneration with aggregation of phosphorylated forms of tyrosine hydroxylase (TH) and amyloid precursor protein in degenerate terminals, and alpha-synuclein in their original somata. This process is restricted to mesolimbic regions and is responsible for the decline of TH activity and l-dopa levels and the greater decrease in dopamine levels in this compartment. These findings suggest that both the nigrostriatal and the mesolimbic systems are vulnerable to aging, but in contrast to what occurs in Parkinson's disease, the mesolimbic system is more vulnerable to aging than the nigrostriatal one.
Collapse
Affiliation(s)
- Ignacio Cruz-Muros
- Department of Anatomy, Faculty of Medicine, University of La Laguna, Laguna, Tenerife, Spain
| | | | | | | | | | | | | |
Collapse
|
62
|
de Meira Santos Lima M, Braga Reksidler A, Marques Zanata S, Bueno Machado H, Tufik S, Vital MABF. Different parkinsonism models produce a time-dependent induction of COX-2 in the substantia nigra of rats. Brain Res 2006; 1101:117-25. [PMID: 16781689 DOI: 10.1016/j.brainres.2006.05.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/02/2006] [Accepted: 05/07/2006] [Indexed: 11/25/2022]
Abstract
The present study investigated the effects on general activity, COX-2 and TH protein expression of intranigral neurotoxins LPS, MPTP or 6-OHDA infusion in rats. Results indicate that LPS produced an increase in locomotion frequency (3 and 7 days after surgery) and a strong up-regulation of COX-2 protein 16 and 24 h after surgery, as observed in the substantia nigra (SN). The MPTP model generated impairment in locomotion frequency 24 h after surgery. Besides, MPTP caused a marked up-regulation in COX-2 protein observed in the SN 16 h after surgery. Moreover, the 6-OHDA model produced severe motor impairment indicated by the decrease in locomotion (24 h) and rearing (24 h, 3 and 7 days) frequencies and also an increase in latency (24 h, 3 and 7 days) and immobility (24 h and 3 days) times. We also demonstrated an up-regulation of COX-2, which occurred in the SN 4-24 h after surgery. TH protein did not appear to be reduced in the striatum in the groups lesioned with the neurotoxins. In contrast, the TH content of SN was significantly reduced in the groups lesioned with the very same neurotoxins. For all the models analyzed, we observed no statistical differences in the expression of COX-2 in the striatum along the time-points. The results of the present study suggest that COX-2 induction patterns differ in function of the neurotoxin tested. Such time-dependent induction has been found to be relatively constant, a fact of great significance considering the importance of the neuroinflammatory process in Parkinson's disease.
Collapse
Affiliation(s)
- Marcelo de Meira Santos Lima
- Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Caixa Postal 19031, 81531-980 Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
63
|
Zheng Y, Sudou K, Nawa H, Namba H. Field potential recording in the ventral tegmental area: pharmacological and toxicological evaluations of postsynaptic dopaminergic neuron activity. Neurosci Res 2006; 55:426-33. [PMID: 16740331 DOI: 10.1016/j.neures.2006.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 04/05/2006] [Accepted: 04/25/2006] [Indexed: 11/20/2022]
Abstract
Addictive drugs and psychologic stress influence the input strength of ventral tegmental area (VTA) neurons, which implies the involvement of synaptic plasticity in dopaminergic neurons. Properties of excitatory synaptic transmission to the dopaminergic neurons have been analyzed using intracellular and patch-clamp recording methods. In the present study, we attempted to establish the field recording procedure in VTA slice preparations to monitor excitatory synaptic transmission. We evaluated this procedure using slice preparations from 6-hydroxydopamine (6-OHDA)-treated animals. In horizontal slices containing the VTA, electrical stimulation of anterior afferent fibers produced two distinct negative field potentials, presumably a fiber volley component and a transsynaptic component. Pharmacological analysis revealed that the transsynaptic component was composed of bicuculline-sensitive and CNQX-sensitive components. Neonatal 6-OHDA administration reduced approximately 90% of tyrosine hydroxylase expression in the VTA and eliminated more than 50% of the transsynaptic components. This result suggests that at least 50% of the observed transsynaptic component reflected the postsynaptic responses of the dopaminergic neurons.
Collapse
Affiliation(s)
- Yingjun Zheng
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata 951-8585, Japan
| | | | | | | |
Collapse
|
64
|
McCormack AL, Atienza JG, Langston JW, Di Monte DA. Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration. Neuroscience 2006; 141:929-937. [PMID: 16677770 DOI: 10.1016/j.neuroscience.2006.03.069] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 03/23/2006] [Accepted: 03/31/2006] [Indexed: 11/18/2022]
Abstract
The vulnerability of different dopaminergic cell populations to damage caused by the herbicide paraquat was assessed by stereological counts of tyrosine hydroxylase-positive and calbindin-D28k-immunoreactive neurons in A9 (substantia nigra pars compacta) and A10 (ventral tegmental area and other cell groups). In saline-treated control mice, tyrosine hydroxylase-immunoreactive neurons represented 80% and 45% of the total neuronal population in A9 and A10, respectively, and the number of calbindin-D28k-positive neurons was five times greater in A10 than A9. Sequential injections with paraquat resulted in a significant loss of dopaminergic neurons in A9. In contrast, tyrosine hydroxylase-positive cells in A10 were spared from paraquat-induced degeneration. Furthermore, expression of calbindin-D28k was consistently associated with neuronal resistance to the herbicide in both A9 and A10. Paraquat exposure also induced oxidative stress as indicated by an increase in the number of midbrain cells positive for 4-hydroxy-2-nonenal, a marker of lipid peroxidation. Co-localization studies revealed that calbindin-D28k immunoreactivity overlapped with tyrosine hydroxylase labeling and that, after paraquat administration, (i) the vast majority of midbrain 4-hydroxy-2-nonenal-immunoreactive cells were dopaminergic (tyrosine hydroxylase-immunoreactive), (ii) tyrosine hydroxylase/4-hydroxy-2-nonenal-positive neurons were much more prevalent in A9 than A10, and (iii) all calbindin-D28k-containing neurons were characterized by lack of lipid peroxidation (4-hydroxy-2-nonenal immunoreactivity). Results in this paraquat model emphasize that, despite sharing a similar dopaminergic phenotype, different groups of midbrain neurons vary dramatically in their vulnerability to injury. Data also indicate that these differences are attributable, at least in part, to a varying susceptibility of dopaminergic cell populations to oxidative stress.
Collapse
Affiliation(s)
- A L McCormack
- The Parkinson's Institute, Basic Research Department, 1170 Morse Avenue, Sunnyvale, CA 94089, USA
| | - J G Atienza
- The Parkinson's Institute, Basic Research Department, 1170 Morse Avenue, Sunnyvale, CA 94089, USA
| | - J W Langston
- The Parkinson's Institute, Basic Research Department, 1170 Morse Avenue, Sunnyvale, CA 94089, USA
| | - D A Di Monte
- The Parkinson's Institute, Basic Research Department, 1170 Morse Avenue, Sunnyvale, CA 94089, USA.
| |
Collapse
|
65
|
Rey P, Lopez-Real A, Sanchez-Iglesias S, Muñoz A, Soto-Otero R, Labandeira-Garcia JL. Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol Aging 2006; 28:555-67. [PMID: 16621167 DOI: 10.1016/j.neurobiolaging.2006.02.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 02/20/2006] [Accepted: 02/27/2006] [Indexed: 02/07/2023]
Abstract
Angiotensin II activates (via type 1 receptors) NAD(P)H-dependent oxidases, which are a major source of superoxide, and is relevant in the pathogenesis of several cardiovascular diseases and certain degenerative changes associated with ageing. Given that there is a brain renin-angiotensin system and that oxidative stress is a key contributor to Parkinson's disease, we investigated the effects of angiotensin II and angiotensin type 1 (AT(1)) receptor antagonists in the 6-hydroxydopamine model of Parkinson's disease. Rats subjected to intraventricular injection of 6-hydroxydopamine showed bilateral reduction in the number of dopaminergic neurons and terminals. Injection of angiotensin alone did not induce any significant effect. However, angiotensin increased the toxic effect of 6-hydroxydopamine. Rats treated with the AT(1) receptor antagonist ZD 7155 and then 6-hydroxydopamine (with or without exogenous administration of angiotensin) showed a significant reduction in 6-hydroxydopamine-induced oxidative stress (lipid peroxidation and protein oxidation) and dopaminergic degeneration. Dopaminergic degeneration was also reduced by the NAD(P)H inhibitor apocynin. Angiotensin may play a pivotal role, via AT(1) receptors, in increasing the oxidative damage of dopaminergic cells, and treatment with AT(1) antagonists may reduce the progression of Parkinson's disease.
Collapse
Affiliation(s)
- P Rey
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
66
|
Lee DC, Close FT, Goodman CB, Jackson IM, Wight-Mason C, Wells LM, Womble TA, Palm DE. Enhanced cystatin C and lysosomal protease expression following 6-hydroxydopamine exposure. Neurotoxicology 2006; 27:260-76. [PMID: 16414118 DOI: 10.1016/j.neuro.2005.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 09/02/2005] [Accepted: 11/17/2005] [Indexed: 11/30/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is a selective neurotoxin used to induce apoptosis in catecholamine-containing neurons. Although biochemical products and reactive oxygen species (ROS) of 6-OHDA have been well documented, the activation of cellular pathways following exposure are not well understood. Apoptosis in PC12 (Pheochromocytoma) cells was induced by 6-OHDA in a dose (10-150 microM) and time-dependent (24-72 h) manner compared to experimental controls (no treatment). PC 12 cells exposed to 50 microM 6-OHDA demonstrated the involvement of caspase 3 and lysosomal protease alterations. Following 6-OHDA exposure, the caspase 3-like inhibitor Ac-DEVD-CHO significantly decreased 6-OHDA induced cell death. In addition, alterations in expression of the lysosomal cysteine and aspartic proteases, cathepsin B (CB) and cathepsin D (CD) and the endogenous cysteine protease inhibitor cystatin C were observed utilizing immunocytochemical analysis at 24, 48, and 72 h following 6-OHDA exposure. Furthermore, CB and CD and cystatin C immuno-like reactivity was more pronounced in TUNEL positive cells. Moreover, Western blot analysis confirmed a significant increase in protein expression for CB and CD at 72 h and a temporal and concentration dependent increase in cystatin C in response to 6-OHDA. Cells treated with pepstatin A, an inhibitor for CD, showed a significant decrease in cell death, however, CA-074ME, a specific inhibitor for CB, failed to protect cells from 6-OHDA induced cell death. Thus, these results suggest that apoptosis induced by 6-OHDA exposure is mediated in part through caspase 3 activation and lysosomal protease CD.
Collapse
Affiliation(s)
- Daniel C Lee
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Marin C, Rodriguez-Oroz MC, Obeso JA. Motor complications in Parkinson's disease and the clinical significance of rotational behavior in the rat: Have we wasted our time? Exp Neurol 2006; 197:269-74. [PMID: 16375892 DOI: 10.1016/j.expneurol.2005.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/20/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Affiliation(s)
- C Marin
- Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
| | | | | |
Collapse
|
68
|
Truong L, Allbutt H, Kassiou M, Henderson JM. Developing a preclinical model of Parkinson's disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res 2006; 169:1-9. [PMID: 16413939 DOI: 10.1016/j.bbr.2005.11.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/23/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
Injection of increasing concentrations of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB) can be used to establish a graded model of different clinical stages of Parkinson's disease (PD). We investigated the relationship between behavioural alterations and loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Forty female Sprague-Dawley rats were injected with either (i) 4 microg (ii) 8 microg or (iii) 16 microg 6-hydroxydopamine (6-OHDA) to mimic the preclinical, mild and advanced clinical stages of PD, respectively. Vehicle was injected in a separate control group. Behaviours analysed included postural asymmetry, balance, locomotion, sensorimotor deficits and apomorphine rotation. At post-mortem the degree of tyrosine immunoreactive dopaminergic cell (TH-ir) loss was then estimated. There was a graded and consistent trend in each of the behaviours studied with respect to cell loss between the different sized lesion groups when examined using correlation analysis (all comparisons, r > 0.8, p < 0.001). Rats with large lesions demonstrated more significant behavioural changes over 8 weeks of testing than those with intermediate and smaller lesions (group comparisons p < 0.001). PD symptomatology became overt when cell loss reached 70%, however some significant changes can be observed with as little as 40% dopaminergic cell loss. Thus, injection with increasing concentrations 6-OHDA into the MFB can produce increasing extents of cell loss and behavioural changes, which were well correlated. This graded model can be useful for testing potential neuroprotective compounds for PD.
Collapse
Affiliation(s)
- L Truong
- Department of Pharmacology, Institute for Biochemical Research, Bosch Building, School of Medical Sciences, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
69
|
Lopez-Real A, Rey P, Soto-Otero R, Mendez-Alvarez E, Labandeira-Garcia JL. Angiotensin-converting enzyme inhibition reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of Parkinsonism. J Neurosci Res 2005; 81:865-73. [PMID: 16015598 DOI: 10.1002/jnr.20598] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is now established that the brain possesses a local renin-angiotensin system and that angiotensin II exerts multiple actions in the nervous system, including regulation of striatal dopamine release. Furthermore, angiotensin activates NADPH-dependent oxidases, which are a major source of superoxide, and angiotensin-converting enzyme inhibitors, commonly used in the treatment of hypertension and chronic heart failure, have shown antioxidant properties in several tissues. Oxidative stress is a key contributor to the pathogenesis and progression of Parkinson's disease. In the present study, we treated rats with intraventricular injections of the dopaminergic neurotoxin 6-hydroxydopamine and subcutaneous injections of the angiotensin-converting enzyme inhibitor Captopril to study the possible neuroprotective effect of the latter on the dopaminergic system and on 6-hydroxydopamine-induced oxidative stress. Rats treated with Captopril and 6-hydroxydopamine showed significantly less reduction in the number of dopaminergic neurons (i.e., immunoreactive to tyrosine hydroxylase) in the substantia nigra and in the density of striatal dopaminergic terminals than 6-hydroxydopamine-lesioned rats not treated with Captopril. In addition, Captopril reduced the levels of major oxidative stress indicators (i.e., lipid peroxidation and protein oxidation) in the ventral midbrain and the striatum of 6-hydroxydopamine-lesioned rats. Our results suggest that angiotensin-converting enzyme inhibitors may be useful for treatment of Parkinson's disease and that further investigation should focus on the neuroprotective capacity of these compounds.
Collapse
Affiliation(s)
- A Lopez-Real
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
70
|
Ferro MM, Bellissimo MI, Anselmo-Franci JA, Angellucci MEM, Canteras NS, Da Cunha C. Comparison of bilaterally 6-OHDA- and MPTP-lesioned rats as models of the early phase of Parkinson's disease: Histological, neurochemical, motor and memory alterations. J Neurosci Methods 2005; 148:78-87. [PMID: 15939479 DOI: 10.1016/j.jneumeth.2005.04.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 11/23/2022]
Abstract
This study compares histological, neurochemical, behavioral, motor and cognitive alterations as well as mortality of two models of Parkinson's disease in which 100 microg 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6 microg 6-hydroxydopamine (6-OHDA) was bilaterally infused into the central region of the substantia nigra, compact part, of adult male Wistar rats. Both neurotoxins caused a significant loss of nigral tyrosine hydroxylase-immunostained cells and striatal dopamine depletion, but 6-OHDA caused more widespread and intense cell loss, more intense body weight loss and more mortality than MPTP. Both 6-OHDA- and MPTP-lesioned rats presented similar deficits in performing a working memory and a cued version of the Morris water maze task and few exploratory/motor alterations in the open field and catalepsy tests. However, rats presented a significant and transitory increase in locomotor activity after the MPTP lesion and a hypolocomotor behavior tended to be present after the 6-OHDA lesion. The picture of mild motor effects and robust impairment of habit learning and spatial working memory observed in MPTP-lesioned rats models the early phase of Parkinson's disease.
Collapse
|
71
|
Korotkova TM, Ponomarenko AA, Haas HL, Sergeeva OA. Differential expression of the homeobox gene Pitx3 in midbrain dopaminergic neurons. Eur J Neurosci 2005; 22:1287-93. [PMID: 16190884 DOI: 10.1111/j.1460-9568.2005.04327.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transcription factor Pitx3 is expressed selectively in the midbrain and regulates the differentiation and survival of dopaminergic neurons. Lack of this factor results in a degeneration similar to that seen in Parkinson's disease. We have studied the pattern and the level of expression of Pitx3 in dopaminergic neurons of 3- to 4-week-old Wistar rats. We report Pitx3 expression in almost all dopaminergic substantia nigra (SN) and ventral tegmental area (VTA) neurons. It is coexpressed with the neuroprotective marker calbindin (CB) in a larger population of VTA (43%) than SN (16%) dopaminergic neurons. The level of Pitx3 mRNA, determined by semiquantitative RT-PCR, is approximately 6x higher in VTA than in SN single neurons. In the VTA but not in SN the level of Pitx3 is associated with the presence of CB: in CB-positive neurons the expression of Pitx3 mRNA is 3.6x higher than in CB-negative cells. CB is expressed in a larger population of VTA than SN neurons and the relative level of CB expression is 4x higher in VTA than in SN. A higher Pitx3 expression level and higher coexpression of Pitx3 and CB in VTA than in SN neurons may contribute to the different vulnerability of these dopaminergic nuclei to neurodegeneration.
Collapse
Affiliation(s)
- Tatiana M Korotkova
- Institute of Neurophysiology, Heinrich-Heine-University, Physiology II, POB 101007, Duesseldorf, Germany.
| | | | | | | |
Collapse
|
72
|
Fitzpatrick E, Ashkan K, Wallace BA, Benabid AL, Mitrofanis J. Differential survival patterns among midbrain dopaminergic cells of MPTP-treated monkeys and 6OHDA-lesioned rats. ACTA ACUST UNITED AC 2005; 210:101-23. [PMID: 16151853 DOI: 10.1007/s00429-005-0003-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
We explore the patterns of survival among dopaminergic cells of the midbrain in MPTP-treated macaque monkeys and 6OHDA-lesioned Sprague-Dawley rats. For the monkeys, animals were injected intramuscularly with MPTP for 8 days consecutively and then allowed to survive for 21 days. For the rats, 6OHDA was injected into the midbrain and then allowed to survive for either 7, 28 or 84 days. Brains were processed for tyrosine hydroxylase (TH) and calbindin immunocytochemistry to label populations in the ventral and dorsal tiers of midbrain dopaminergic cells. In monkeys, while there was a decrease in the TH+ cell number in the ventral tier of MPTP-treated cases (65%), there was an overall increase (22%) in the TH+ and calbindin+ cell number in the dorsal tier. Double labelling studies indicate that approximately 50% of TH+ cells of the dorsal tier contain calbindin also. In rats, there was a decrease in TH+ cell number in the ventral tier of 6OHDA-lesioned cases (97%), and to a lesser extent, in the TH+ and calbindin+ cell number in the dorsal tier ( approximately 40%). In conclusion, we show a surprising increase in TH+ and calbindin+ cell number in the dorsal tier in response to MPTP insult; such an increase was not evident after 6OHDA insult. We suggest that the increase in antigen expression relates to the dopaminergic reinnervation of the striatum in MPTP-treated cases. We also suggest that the greater loss of dopaminergic cells in the ventral tier when compared to the dorsal tier relates to glutamate toxicity.
Collapse
|
73
|
Datla KP, Zbarsky V, Dexter DT. Effects of anaesthetics on the loss of nigrostriatal dopaminergic neurons by 6-hydroxydopamine in rats. J Neural Transm (Vienna) 2005; 113:583-91. [PMID: 16082506 DOI: 10.1007/s00702-005-0353-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Accepted: 06/25/2005] [Indexed: 12/21/2022]
Abstract
Various studies use ketamine/xylazine, fentanyl/medetomidine, etorphine/methotrimeprazine, and isoflurane anaesthesia for creating the 6-hydroxydopamine (6-OHDA)-lesion rat model of Parkinson's disease. As these anaesthetics are known to modulate uptake and turnover of dopamine and that 6-OHDA-induced neurotoxicity is also dependents on uptake/turnover, we studied the effects of these anaesthetics on the extent of nigrostriatal dopaminergic damage caused by 6-OHDA. Infusion of 8 microg of 6-OHDA into the medial forebrain bundle significantly reduced the numbers of dopaminergic cells in nigra and striatal concentrations of dopamine in animals anaesthetized with fentanyl/medetomidine, etorphine/methotrimeprazine and isoflurane but not with ketamine/xylazine. In the latter group, however, increasing the dose of 6-OHDA to 10 and 12 microg resulted in a moderate (15 and 29%), but significant loss of dopaminergic cells. A severe loss of dopaminergic cells (59% and 81%) was seen with these doses in isoflurane-anaesthetized animals, but with only 8 microg in etorphine/methotrimeprazine-anaesthetized animals. Thus, these results suggest that the extent of nigrostriatal dopaminergic neuronal loss with 6-OHDA seems to be influenced by anaesthetic used during the surgery.
Collapse
Affiliation(s)
- K P Datla
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, Charing Cross Campus, London, United Kingdom
| | | | | |
Collapse
|
74
|
Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 2005; 14:1709-25. [PMID: 15888489 PMCID: PMC2674782 DOI: 10.1093/hmg/ddi178] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson's disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [> 2-fold; false discovery rate (FDR) < 1%]. Genes of interest for further functional analysis were selected by criteria of (i) fold differences in gene expression, (ii) real-time PCR validation and (iii) potential roles in neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both alpha-synuclein overexpressing PC12 (PC12-alphaSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-alphaSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-alphaSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD.
Collapse
Affiliation(s)
- Chee Yeun Chung
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Center for Neurodegeneration and Repair, Boston, MA 02114, USA
| | - Hyemyung Seo
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Kai Christian Sonntag
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Andrew Brooks
- Department of Environmental Medicine, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ling Lin
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Ole Isacson
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Center for Neurodegeneration and Repair, Boston, MA 02114, USA
- To whom correspondence should be addressed. Tel: +1 6178553283; Fax: +1 6178553284;
| |
Collapse
|
75
|
Muñoz AM, Rey P, Parga J, Guerra MJ, Labandeira-Garcia JL. Glial overexpression of heme oxygenase-1: a histochemical marker for early stages of striatal damage. J Chem Neuroanat 2005; 29:113-26. [PMID: 15652698 DOI: 10.1016/j.jchemneu.2004.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 07/31/2004] [Accepted: 10/02/2004] [Indexed: 11/19/2022]
Abstract
The level of heme oxygenase-1 (HO-1) in the normal striatum is below the limit of immunodetection. However, HO-1 is overexpressed in both neural and non-neural cells in response to a wide range of lesions. We induced different types of lesions affecting the striatal cells or the main striatal afferent systems in rats to investigate if overexpression of HO-1 could be a useful histochemical marker of striatal damage. Thirty-six hours after intrastriatal or intraventricular injection of excitotoxins that affect striatal neurons (ibotenic acid) or of neurotoxins that affect striatal dopaminergic (6-hydroxydopamine) or serotonergic (5,7-dihydroxytriptamine) afferent terminals, or after surgical lesioning of cortico-striatal projections, there was intense induction of striatal HO-1 immunoreactivity (HO-1-ir). Double immunolabeling revealed that the HO-1-ir was located in glial cells. After intrastriatal injection of ibotenic acid, a central zone of neuronal degeneration contained numerous round and pseudopodic HO-1-ir cells, and was surrounded by a ring of HO-1-ir cells, most of which were immunoreactive for astroglial markers. Intraventricular injection of neurotoxins induced astroglial HO-1-ir cells which were more evenly distributed throughout the lesioned or denervated areas. HO-1-ir microglial cells were also observed in areas subjected to mechanical damage. The HO-1-ir was markedly lower or absent 1 week after lesion, and even more so 3 weeks after, although some HO-1-ir cells were still observed after intrastriatal injection of ibotenic acid or surgical corticostriatal deafferentation. The results indicate that determination of glial HO-1-ir is a useful histochemical marker for early stages of striatal damage.
Collapse
Affiliation(s)
- Ana M Muñoz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
76
|
Barroso-Chinea P, Cruz-Muros I, Aymerich MS, Rodríguez-Díaz M, Afonso-Oramas D, Lanciego JL, González-Hernández T. Striatal expression of GDNF and differential vulnerability of midbrain dopaminergic cells. Eur J Neurosci 2005; 21:1815-27. [PMID: 15869477 DOI: 10.1111/j.1460-9568.2005.04024.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a member of the transforming growth factor-beta superfamily that when exogenously administrated exerts a potent trophic action on dopaminergic (DA) cells. Although we know a lot about its signalling mechanisms and pharmacological effects, physiological actions of GDNF on the adult brain remain unclear. Here, we have used morphological and molecular techniques, and an experimental model of Parkinson's disease in rats, to investigate whether GDNF constitutively expressed in the adult mesostriatal system plays a neuroprotective role on midbrain DA cells. We found that although all midbrain DA cells express both receptor components of GDNF (GFRalpha1 and Ret), those in the ventral tegmental area (VTA) and rostromedial substantia nigra (SNrm) also contain GDNF but not GDNFmRNA. The levels of GDNFmRNA are significantly higher in the ventral striatum (vSt), the target region of VTA and SNrm cells, than in the dorsal striatum (dSt), the target region of DA cells in the caudoventral substantia nigra (SNcv). After fluoro-gold injection in striatum, VTA and SNrm DA cells show triple labelling for tyrosine hydroxylase, GDNF and fluoro-gold, and after colchicine injection in the lateral ventricle, they become GDNF-immunonegative, suggesting that GDNF in DA somata comes from their striatal target. As DA cells in VTA and SNrm are more resistant than those in SNcv to intracerebroventricular injection of 6-OHDA, as occurs in Parkinson's disease, we can suggest that the fact that they project to vSt, where GDNF expression is significantly higher than in the dSt, is a neuroprotective factor involved in the differential vulnerability of midbrain DA neurons.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, 38207 La Laguna,Tenerife, Spain
| | | | | | | | | | | | | |
Collapse
|
77
|
Marin C, Aguilar E, Bonastre M, Tolosa E, Obeso JA. Early administration of entacapone prevents levodopa-induced motor fluctuations in hemiparkinsonian rats. Exp Neurol 2005; 192:184-93. [PMID: 15698633 DOI: 10.1016/j.expneurol.2004.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 09/27/2004] [Accepted: 10/05/2004] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to investigate the effect of the catechol-O-methyltransferase (COMT) inhibitor, entacapone, in the reversal and prevention of "wearing-off" phenomena in hemiparkinsonian rats. Catechol-O-methyltransferase (COMT) inhibitors increase the half-life and bioavailability of levodopa, providing more continuous dopamine receptor stimulation. This raises the possibility of using levodopa and a COMT inhibitor not only to treat motor complications, but also to prevent their development. Male Sprague-Dawley rats received a unilateral 6-hydroxydopamine (6-OHDA) administration in the nigrostriatal pathway. Two sets of experiments were performed. First, animals were treated with levodopa (50 mg/kg/day with benserazide 12.5 mg/kg/day, twice daily (b.i.d.), intraperitoneally (i.p.) for 22 days. On day 23, animals received either entacapone (30 mg/kg, i.p.) or vehicle with each levodopa dose. In the second set, animals were treated either with levodopa (50 mg/kg/day, i.p.) plus entacapone (30 mg/kg/day, i.p.) or levodopa (50 mg/kg/day, i.p.) plus vehicle, administered two or three times daily [b.i.d. or thrice daily (t.i.d.), respectively] for 22 consecutive days. Entacapone both reversed and prevented the shortening of the motor response duration that defines "wearing-off" motor fluctuations. Entacapone also decreased the frequency of failures to levodopa. The combination of levodopa and entacapone may reduce the likelihood of motor fluctuation development and may thus become a valuable approach to treat Parkinson disease whenever levodopa is needed.
Collapse
Affiliation(s)
- C Marin
- Laboratori de Neurologia Experimental, Servei de Neurologia, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
78
|
González-Hernández T, Barroso-Chinea P, De La Cruz Muros I, Del Mar Pérez-Delgado M, Rodríguez M. Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. J Comp Neurol 2004; 479:198-215. [PMID: 15452855 DOI: 10.1002/cne.20323] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Numerous studies suggest that the dopamine transporter (DAT), responsible for dopamine reuptake, may act as a vulnerability factor in the pathogenesis of Parkinson's disease (PD) and the vesicular monoamine transporter (VMAT2), responsible for its vesicular storage, as a neuroprotective factor. However, the relevance of each on the differential vulnerability of midbrain DA cells remains unknown. Here we studied the relationship between the expression pattern (mRNA and protein) of both transporters and the differential vulnerability of midbrain DA cells in a model of PD (intracerebroventricular injection of 6-OHDA in rats) and in monkey and human midbrain. Our results revealed that the expression patterns for VMAT2 mRNA and protein and DAT mRNA are similar, with the highest levels in the rostromedial region of substantia nigra (SNrm), followed by the caudoventral region of SN (SNcv), the ventral tegmental area and pigmented parabrabraquial nucleus (VTA/PBP), and finally the linear and interfascicular nuclei (Li/IF). In contrast, the expression of DAT protein in rats, monkeys, and humans followed a caudoventrolateral-to-rostrodorsomedial decreasing gradient (SNcv > SNrm > VTA/PBP > Li/IF), matching the degeneration profile observed after intracerebroventricular injection of 6-OHDA and in PD. In addition, DAT blockade made all midbrain DA cells equally resistant to 6-OHDA. These data indicate that DAT protein levels, but not DAT mRNA levels, are closely related to the differential vulnerability of midbrain DA cells and that this relationship is unaffected by the relative levels of VMAT2. Furthermore, the difference between DAT mRNA and protein profiles suggests internuclear differences in its posttransductional regulation.
Collapse
Affiliation(s)
- Tomás González-Hernández
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife 38320, Spain.
| | | | | | | | | |
Collapse
|
79
|
Korotkova TM, Ponomarenko AA, Brown RE, Haas HL. Functional diversity of ventral midbrain dopamine and GABAergic neurons. Mol Neurobiol 2004; 29:243-59. [PMID: 15181237 DOI: 10.1385/mn:29:3:243] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 11/14/2003] [Indexed: 12/21/2022]
Abstract
Recent findings indicate that VTA and SN dopaminergic (DA) and GABAergic neurons form subpopulations that are divergent in their electrophysiological features, vulnerability to neurodegeneration, and regulation by neuropeptides. This diversity can be correlated with the anatomical organization of the VTA and SN and their inputs and outputs. In this review we describe the heterogeneity in ion channels and firing patterns, especially burst firing, in subpopulations of dopamine neurons. We go on to describe variations in vulnerability to neurotoxic damage in models of Parkinson's disease in subgroups of DA neurons and its possible relationship to developmental gene regulation, the expression of different ion channels, and the expression of different protein markers, such as the neuroprotective marker calbindin. The electrophysiological properties of subgroups of GABAergic midbrain neurons, patterns of expression of protein markers and receptors, possible involvement of GABAergic neurons in a number of processes that are usually attributed exclusively to dopaminergic neurons, and the characteristics of a subgroup of neurons that contains both dopamine and GABA are also discussed.
Collapse
Affiliation(s)
- Tatiana M Korotkova
- Institute of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany.
| | | | | | | |
Collapse
|
80
|
Agnati LF, Leo G, Vergoni AV, Martínez E, Hockemeyer J, Lluis C, Franco R, Fuxe K, Ferré S. Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson’s disease. Brain Res Bull 2004; 64:155-64. [PMID: 15342103 DOI: 10.1016/j.brainresbull.2004.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/04/2004] [Accepted: 06/09/2004] [Indexed: 11/24/2022]
Abstract
Adenosine A2A receptors are a new target for drug development in Parkinson's disease. Some experimental and clinical data suggest that A2A receptor antagonists can provide symptomatic improvement by potentiating the effects of L-DOPA as well as a decrease in secondary effects such as L-DOPA-induced dyskinesia. L-DOPA-induced behavioral sensitization in unilateral 6-hydroxydopamine-lesioned rats is frequently used as an experimental model of L-DOPA-induced dyskinesia. In the present work this model was used to evaluate the effect of the A2A receptor agonist CGS 21680 and the A2A receptor antagonist MSX-3 on L-DOPA-induced behavioral sensitization and 6-hydroxydopamine-induced striatal dopamine denervation. L-DOPA-induced behavioral sensitization was determined as an increase in L-DOPA-induced abnormal involuntary movements and enhancement of apomorphine-induced turning behavior. Striatal dopamine innervation was determined by measuring tyrosine-hydroxylase immunoreactivity. Chronic administration of MSX-3 was not found to be effective at counteracting L-DOPA-induced behavioral sensitization. On the other hand, CGS 21680 completely avoided the development of L-DOPA-induced behavioral sensitization. The analysis of the striatal dopamine innervation showed that L-DOPA-CGS 21680 co-treatment conferred neuroprotection to the toxic effects of 6-hydroxydopamine. This neuroprotective effect was dependent on A2A and D2 receptor stimulation, since it was counteracted by MSX-3 and by the D2 receptor antagonist haloperidol. These results open new therapeutic avenues in early events in Parkinson's disease.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Biomedial Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Mazzio EA, Reams RR, Soliman KFA. The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro. Brain Res 2004; 1004:29-44. [PMID: 15033417 DOI: 10.1016/j.brainres.2003.12.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2003] [Indexed: 11/16/2022]
Abstract
The neurotoxin, 6-hydroxydopamine (6-OHDA) has been implicated in the neurodegenerative process of Parkinson's disease. The current study was designed to elucidate the toxicological effects of 6-OHDA on energy metabolism in neuroblastoma (N-2A) cells. The toxicity of 6-OHDA corresponds to the total collapse of anaerobic/aerobic cell function, unlike other mitochondrial toxins such as MPP+ that target specific loss of aerobic metabolism. The toxicity of 6-OHDA paralleled the loss of mitochondrial oxygen (O2) consumption (MOC), glycolytic activity, ATP, H+ ion gradients, membrane potential and accumulation of the autoxidative product, hydrogen peroxide (H2O2). Removing H2O2 with nonenzymatic stoichiometric scavengers, such as carboxylic acids, glutathione and catalase yielded partial protection. The rapid removal of H2O2 with pyruvate or catalase restored only anaerobic glycolysis, but did not reverse the loss of MOC, indicating mitochondrial impairment is independent of H2O2. The H2O2 generated by 6-OHDA contributed toward the loss of anaerobic glycolysis through lipid peroxidation and lactic acid dehydrogenase inhibition. The ability of 6-OHDA to maintain oxidized cytochrome c (CYT-C-OX) in its reduced form (CYT-C-RED), appears to play a role in mitohondrial impairment. The reduction of CYT-C by 6-OHDA, was extensive, occurred within minutes, preceded formation of H2O2 and was unaffected by catalase or superoxide dismutase. At similar concentrations, 6-OHDA readily altered the valence state of iron [Fe(III)] to Fe(II), which would also theoretically sustain CYT-C in its reduced form. In isolated mitochondria, 6-OHDA had negligible effects on complex I, inhibited complex II and interfered with complex III by maintaining the substrate, CYT-C in a reduced state. 6-OHDA caused a transient and potent surge in isolated cytochrome oxidase (complex IV) activity, with rapid recovery as a result of 6-OHDA recycling CYT-C-OX to CYT-C-RED. Typical mitochondrial toxins such as MPP+, azide and antimycin appeared to inhibit the catalytic activity of ETC enzymes. In contrast, 6-OHDA alters the redox of the cytochromes, resulting in loss of substrate availability and obstruction of oxidation-reduction events. Complete cytoprotection against 6-OHDA toxicity and restored MOC was achieved by combining catalase with CYT-C (horse heart). In summary, CYT-C reducing properties are unique to catecholamine neurotransmitters, and may play a significant role in selective vulnerability of dopaminergic neurons to mitochondrial insults.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | |
Collapse
|
82
|
Ling ZD, Chang Q, Lipton JW, Tong CW, Landers TM, Carvey PM. Combined toxicity of prenatal bacterial endotoxin exposure and postnatal 6-hydroxydopamine in the adult rat midbrain. Neuroscience 2004; 124:619-28. [PMID: 14980732 DOI: 10.1016/j.neuroscience.2003.12.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2003] [Indexed: 12/21/2022]
Abstract
We previously reported that injection of the Gram (-) bacteriotoxin, lipopolysaccharide (LPS), into gravid females at embryonic day 10.5 led to the birth of animals with fewer than normal dopamine (DA) neurons when assessed at postnatal days (P) 10 and 21. To determine if these changes continued into adulthood, we have now assessed animals at P120. As part of the previous studies, we also observed that the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha) was elevated in the striatum, suggesting that these animals would be more susceptible to subsequent DA neurotoxin exposure. In order to test this hypothesis, we injected (at P99) 6-hydroxydopamine (6OHDA) or saline into animals exposed to LPS or saline prenatally. The results showed that animals exposed to prenatal LPS or postnatal 6OHDA alone had 33% and 46%, respectively, fewer DA neurons than controls, while the two toxins combined produced a less than additive 62% loss. Alterations in striatal DA were similar to, and significantly correlated with (r(2)=0.833) the DA cell losses. Prenatal LPS produced a 31% increase in striatal TNFalpha, and combined exposure with 6OHDA led to an 82% increase. We conclude that prenatal exposure to LPS produces a long-lived THir cell loss that is accompanied by an inflammatory state that leads to further DA neuron loss following subsequent neurotoxin exposure. The results suggest that individuals exposed to LPS prenatally, as might occur had their mother had bacterial vaginosis, would be at increased risk for Parkinson's disease.
Collapse
Affiliation(s)
- Z D Ling
- Department of Pharmacology, 1735 West Harrison Street, Room 410, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Kim ST, Chang JW, Hong HN, Hwang O. Loss of striatal dopaminergic fibers after intraventricular injection of tetrahydrobiopterin in rat brain. Neurosci Lett 2004; 359:69-72. [PMID: 15050714 DOI: 10.1016/j.neulet.2004.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 02/03/2004] [Accepted: 02/08/2004] [Indexed: 11/21/2022]
Abstract
We have reported previously that tetrahydrobiopterin (BH4), an obligatory cofactor for dopamine synthesis, exerts preferential toxicity on dopamine producing cells. We report in the present study that BH4 injection into the lateral ventricle leads to degeneration of the dopaminergic terminals in the striatum, evidenced by a loss of tyrosine hydroxylase (TH) immunopositive fibers, a decreased amount of TH protein, and decreased dopamine content. Thus, the results of our study further provide evidence that BH4, the molecule endogenously present in the dopaminergic neurons, may participate in the nigrostriatal degeneration as in Parkinson's disease.
Collapse
Affiliation(s)
- Sung Tae Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-ku, Seoul, South Korea
| | | | | | | |
Collapse
|
84
|
García Dopico J, Perdomo Díaz J, Alonso TJ, González Hernández T, Castro Fuentes R, Rodríguez Díaz M. Extracellular taurine in the substantia nigra: Taurine-glutamate interaction. J Neurosci Res 2004; 76:528-38. [PMID: 15114625 DOI: 10.1002/jnr.20108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Taurine has been proposed as an inhibitory transmitter in the substantia nigra (SN), but the mechanisms involved in its release and uptake remain practically unexplored. We studied the extracellular pool of taurine in the rat's SN by using microdialysis methods, paying particular attention to the taurine-glutamate (GLU) interaction. Extracellular taurine increased after cell depolarization with high-K(+) in a Ca(2+)-dependent manner, being modified by the local perfusion of GLU, GLU receptor agonists, and zinc. Nigral administration of taurine increased the extracellular concentration of gamma-aminobutyric acid (GABA) and GLU, the transmitters of the two main inputs of the SN. The modification of the glial metabolism with fluocitrate and L-methionine sulfoximine also changed the extracellular concentration of taurine. The complex regulation of the extracellular pool of taurine, its interaction with GABA and GLU, and the involvement of glial cells in its regulation suggest a volume transmission role for taurine in the SN.
Collapse
Affiliation(s)
- José García Dopico
- Unidad de Investigación del Hospital Universitario de Canarias, La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | | | | | |
Collapse
|
85
|
Muñoz AM, Rey P, Soto-Otero R, Guerra MJ, Labandeira-Garcia JL. Systemic administration of N-acetylcysteine protects dopaminergic neurons against 6-hydroxydopamine-induced degeneration. J Neurosci Res 2004; 76:551-62. [PMID: 15114627 DOI: 10.1002/jnr.20107] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The results of several in vitro studies have shown that cysteine prodrugs, particularly N-acetylcysteine, are effective antioxidants that increase the survival of dopaminergic neurons. N-acetylcysteine can be systemically administered to deliver cysteine to the brain and is of potential use for providing neuroprotection in the treatment of Parkinson's disease. However, it has also been reported that an excess of cysteine may induce neurotoxicity. In the present study, we injected adult rats intrastriatally with 2.5 microl of 6-hydroxydopamine (7.5 microg) and N-acetylcysteine (240 mM) or cysteine (240 mM) or intraventricularly with 6-hydroxydopamine (200 microg) and subcutaneously with N-acetylcysteine (10 and 100 mg/kg). We studied the effects of these compounds on both the nigrostriatal dopaminergic terminals and the surrounding striatal tissue. The tissue was stained with fluoro-jade (a marker of neuronal degeneration) and processed by immunohistochemistry to detect tyrosine hydroxylase, neuronal and glial markers, and the stress protein heme-oxygenase-1. After intrastriatal injection, both cysteine and N-acetylcysteine had clear neuroprotective effects on the striatal dopaminergic terminals, but also led to neuronal degeneration (as revealed by fluoro-jade staining) and astroglial and microglial activation, as well as intense induction of heme-oxygenase-1 in astrocytes and microglial cells. Subcutaneous administration of N-acetylcysteine also induced significant reduction of the dopaminergic lesion (about 30% reduction). However, we did not observe appreciable N-acetylcysteine-induced fluoro-jade labeling in striatal neurons or any of the above-mentioned changes in striatal glial cells. The results suggest that low doses of cysteine prodrugs may be useful neuroprotectors in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Ana M Muñoz
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
86
|
Creutz LM, Kritzer MF. Mesostriatal and mesolimbic projections of midbrain neurons immunoreactive for estrogen receptor beta or androgen receptors in rats. J Comp Neurol 2004; 476:348-62. [PMID: 15282710 DOI: 10.1002/cne.20229] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dopamine (DA) inputs to the caudate putamen, the nucleus accumbens, and the amygdala in rats are sensitive to circulating estrogens and androgens. One mechanism for the hormone modulation of these systems may be via actions at cognate intracellular estrogen and androgen receptors. However, although it is known that specific subsets of midbrain DA neurons are immunopositive for estrogen receptor beta (ERbeta) or androgen receptors (ARs), it is not known where these receptor-bearing cells project. To address this issue, we combined double-label immunocytochemistry with retrograde tract tracing to identify the forebrain projections of ERbeta- or AR-immunoreactive (IR) midbrain neurons. Specifically, Fluoro-Gold and/or cholera toxin were injected into discrete subregions of the caudate-putamen, the nucleus accumbens, or the amygdala. Evaluations of the resultant midbrain labeling revealed that ERbeta-IR neurons sent collateral projections mainly to both the ventral caudate-putamen and the amygdala, but not to the dorsal caudate or nucleus accumbens. In contrast, AR-IR neurons projected either to the amygdala or the nucleus accumbens but not to the caudate-putamen. The organization of these forebrain projections concurs with some of the known hormone sensitivities of mesostriatal and mesolimbic DA systems in rats and provides an anatomical model that predicts separate influences for androgens and estrogens over mesostriatal and mesolimbic DA systems.
Collapse
Affiliation(s)
- Lela M Creutz
- Graduate Program in Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794-5230, USA.
| | | |
Collapse
|
87
|
Smith AD, Antion M, Zigmond MJ, Austin MC. Effect of 6-hydroxydopamine on striatal GDNF and nigral GFRα1 and RET mRNAs in the adult rat. ACTA ACUST UNITED AC 2003; 117:129-38. [PMID: 14559146 DOI: 10.1016/s0169-328x(03)00289-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exogenous GDNF as well as vectors containing the gene for this trophic factor has been shown to be neuroprotective in animal models of Parkinson's disease. We therefore investigated whether changes in striatal GDNF protein and nigral mRNA levels of its co-receptors GFRalpha1 and RET occur in response to lesions of dopamine (DA) neurons and examined the temporal profile of these changes as they relate to the loss of dopaminergic markers. Rats were lesioned with 6-hydroxydopamine and sacrificed 3 h to 60 days post-infusion. DA tissue levels in the striatum and tyrosine hydroxylase immunoreactivity in the substantia nigra (SN) and ventral tegmental area (VTA) were used to determine the size of the lesions. GDNF protein was measured in the striatum using radioimmunocytochemistry. In situ hybridization was used to determine alterations in the mRNAs of RET and GFRalpha1 in the SN and VTA. We observed no persistent changes in GDNF protein in the striatum in response to 6-hydroxydopamine over the 60-day observation period, suggesting that compensatory changes in this trophic factor do not occur in response to injury. Dramatic decreases in RET and GFRalpha1 were observed in both SN and VTA that were generally correlated with the loss of TH protein and striatal DA content, strongly suggesting that these receptors are located on DA neurons and that the protective effect of GDNF reflects a direct action of the trophic factor on these neurons.
Collapse
Affiliation(s)
- Amanda D Smith
- Department of Neurology, University of Pittsburgh, S-510 Biomedical Science Tower, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
88
|
Abstract
The symptoms of Parkinson's disease (PD) were first described nearly two centuries ago and its characteristic pathology identified nearly a century ago, yet its pathogenesis is still poorly understood. Parkinson's disease is the most prevalent neurodegenerative movement disorder and research into its pathogenesis recently accelerated following the identification of a number of causal genetic mutations. The mutant gene products all cause dysfunction of the ubiquitin-proteosome system, identifying protein modification and degradation as critical for pathogenesis. Modified non-degraded intracellular proteins accumulate in certain neuronal populations in all forms of the disease. However, neuronal degeneration is more highly selective and associates with substantial activation of microglia, the inflammatory cells of the brain. We review the current change in thinking regarding the role of microglia in the brain in the context of Parkinson's disease and animal models of the disease. Comparison of the cellular tissue changes across a number of animal models using diverse stimuli to mimic Parkinson's disease reveals a consistent pattern implicating microglia as the effector for the selective degeneration of dopaminergic neurons. While previous reviews have concentrated on the intracellular neuronal changes in Parkinson's disease, we highlight the cell to cell interactions and immune regulation critical for neuronal homeostasis and survival in Parkinson's disease.
Collapse
Affiliation(s)
- C F Orr
- Prince of Wales Medical Research Institute and the University of New South Wales, Sydney 2031, Royal North Shore Hospital, Sydney 2065, Australia
| | | | | |
Collapse
|
89
|
Cho J, Duke D, Manzino L, Sonsalla PK, West MO. Dopamine depletion causes fragmented clustering of neurons in the sensorimotor striatum: evidence of lasting reorganization of corticostriatal input. J Comp Neurol 2002; 452:24-37. [PMID: 12205707 DOI: 10.1002/cne.10349] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Firing during sensorimotor exam was used to categorize single neurons in the lateral striatum of awake, unrestrained rats. Five rats received unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle to deplete striatal dopamine (DA; >98% depletion, postmortem assay). Three months after treatment, rats exhibited exaggerated rotational behavior induced by L-dihydroxyphenylalanine (L-DOPA) and contralateral sensory neglect. Electrode track "depth profiles" on the DA-depleted side showed fragmented clustering of neurons related to sensorimotor activity of single body parts (SBP neurons). Clusters were smaller than normal, and more SBP neurons were observed in isolation, outside of clusters. More body parts were represented per unit volume. No recovery in these measures was observed up to one year post lesion. Overall distributions of neurons related to different body parts were not altered. The fragmentation of SBP clusters after DA depletion indicates that a percentage of striatal SBP neurons switched responsiveness from one body part to one or more different body parts. Because the specific firing that characterizes striatal SBP neurons is mediated by corticostriatal inputs (Liles and Updyke [1985] Brain Res. 339:245-255), the data indicate that DA depletion resulted in a reorganization of corticostriatal connections, perhaps via unmasking or sprouting of connections to adjacent clusters of striatal neurons. After reorganization, sensory activity in a localized body part activates striatal neurons that have switched to that body part. In turn, switched signals sent from basal ganglia to premotor and motor neurons, which likely retain their original connections, would create mismatches in these normally precise topographic connections. Switched signals could partially explain parkinsonian deficits in motor functions involving somatosensory guidance and their intractability to L-DOPA therapy-particularly if the switching involves sprouting.
Collapse
Affiliation(s)
- Jeiwon Cho
- Department of Psychology, Rutgers University, New Brunswick, New Jersey 08903, USA
| | | | | | | | | |
Collapse
|
90
|
Soto-Otero R, Méndez-Alvarez E, Hermida-Ameijeiras A, López-Real AM, Labandeira-García JL. Effects of (-)-nicotine and (-)-cotinine on 6-hydroxydopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson's disease. Biochem Pharmacol 2002; 64:125-35. [PMID: 12106613 DOI: 10.1016/s0006-2952(02)01070-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In view of the apparent controversial properties of (-)-nicotine (NIC) in relation to both oxidative stress and neuroprotection, we studied the effects of NIC on hydroxyl radical (*OH) formation, oxidative stress production by 6-hydroxydopamine (6-OHDA) autoxidation in the presence and absence of ascorbate, and 6-OHDA neurotoxicity. Both NIC and (-)-cotinine (COT) exhibited increased *OH production during 6-OHDA autoxidation. Although the same effect was observed in *OH generation by the Fenton reaction (H2O2 + Fe2+), this reaction was completely prevented with the previous incubation of Fe2+ with NIC or COT. Furthermore, both NIC and COT demonstrated a capacity to be able to reduce the TBARS formation provoked in rat brain mitochondrial preparations by 6-OHDA autoxidation. This effect is assumed as a consequence of the action of NIC and COT on lipid peroxidation propagation. We treated with NIC (1mg/kg, i.p.) two 6-OHDA-induced rat models of Parkinson's disease. However, only in one of these models did we obtain clear evidence of a neuroprotective effect of NIC on nigrostriatal terminals, as revealed by immunohistochemistry against tyrosine hydroxylase. Thus, the antioxidant properties of both NIC and COT in relation to the lipid peroxidation induced by 6-OHDA autoxidation, together with their reported capacity to prevent the Fenton reaction, probably by sequestration of Fe2+, may contribute to an understanding of its neuroprotective properties. In addition, the reported capacity of both NIC and COT to increase the production of *OH by 6-OHDA autoxidation might help explain the controversial observation found under different experimental conditions.
Collapse
Affiliation(s)
- Ramón Soto-Otero
- Grupo de Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco 1, Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
91
|
Johansson S, Strömberg I. Guidance of dopaminergic neuritic growth by immature astrocytes in organotypic cultures of rat fetal ventral mesencephalon. J Comp Neurol 2002; 443:237-49. [PMID: 11807834 DOI: 10.1002/cne.10119] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Astrocytes, with their many functions in producing and controlling the environment in the brain, are of great interest when it comes to studying regeneration after injury and neurodegenerative diseases such as in grafting in Parkinson's disease. This study was performed to investigate astrocytic guidance of growth derived from dopaminergic neurons using organotypic cultures of rat fetal ventral mesencephalon. Primary cultures were studied at different time points starting from 3 days up to 28 days. Cultures were treated with either interleukin-1 beta (IL-1 beta), which has stimulating effects on astrocytic proliferation, or the astrocytic inhibitor cytosine arabinoside (Ara-C). Tyrosine hydroxylase (TH)-immunohistochemistry was used to visualize dopaminergic neurons, and antibodies against glial fibrillary acidic protein (GFAP) and S100 beta were used to label astrocytes. The results revealed that a robust TH-positive nerve fiber production was seen already at 3 days in vitro. These neurites had disappeared by 5 days. This early nerve fiber outgrowth was not guided by direct interactions with glial cells. Later, at 7 days in vitro, a second wave of TH-positive neuritic outgrowth was clearly observed. GFAP-positive astrocytic processes guided these neurites. TH-positive neurites arborized overlying S100 beta-positive astrocytes in an area distal to the GFAP-positive astrocytic processes. Treatment with IL-1 beta resulted in an increased area of TH-positive nerve fiber network. In cultures treated with Ara-C, neither astrocytes nor outgrowth of dopaminergic neurites were observed. In conclusion, this study shows that astrocytes play a major role in long-term dopaminergic outgrowth, both in axonal elongation and branching of neurites. The long-term nerve fiber growth is preceded by an early transient outgrowth of dopamine neurites.
Collapse
Affiliation(s)
- Saga Johansson
- Department of Neuroscience, Karolinska Institutet, S 171 77 Stockholm, Sweden
| | | |
Collapse
|