51
|
Gubinelli F, Sarauskyte L, Venuti C, Kulacz I, Cazzolla G, Negrini M, Anwer D, Vecchio I, Jakobs F, Manfredsson F, Davidsson M, Heuer A. Characterisation of functional deficits induced by AAV overexpression of alpha-synuclein in rats. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100065. [PMID: 36632447 PMCID: PMC9827042 DOI: 10.1016/j.crneur.2022.100065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background In the last decades different preclinical animal models of Parkinson's disease (PD) have been generated, aiming to mimic the progressive neuronal loss of midbrain dopaminergic (DA) cells as well as motor and non-motor impairment. Among all the available models, AAV-based models of human alpha-synuclein (h-aSYN) overexpression are promising tools for investigation of disease progression and therapeutic interventions. Objectives The goal with this work was to characterise the impairment in motor and non-motor domains following nigrostriatal overexpression of h-aSYN and correlate the behavioural deficits with histological assessment of associated pathology. Methods Intranigral injection of an AAV9 expressing h-aSYN was compared with untreated animals, 6-OHDA and AAV9 expressing either no transgene or GFP. The animals were assessed on a series of simple and complex behavioural tasks probing motor and non-motor domains. Post-mortem neuropathology was analysed using immunohistochemical methods. Results Overexpression of h-aSYN led to progressive degeneration of DA neurons of the SN and axonal terminals in the striatum (STR). We observed extensive nigral and striatal pathology, resembling that of human PD brain, as well as the development of stable progressive deficit in simple motor tasks and in non-motor domains such as deficits in motivation and lateralised neglect. Conclusions In the present work we characterized a rat model of PD that closely resembles human PD pathology at the histological and behavioural level. The correlation of cell loss with behavioural performance enables the selection of rats which can be used in neuroprotective or neurorestorative therapies.
Collapse
Affiliation(s)
- F. Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - L. Sarauskyte
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - C. Venuti
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - I. Kulacz
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - G. Cazzolla
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - M. Negrini
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - D. Anwer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - I. Vecchio
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - F. Jakobs
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - F.P. Manfredsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - M. Davidsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA,Molecular Neuromodulation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - A. Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden,Corresponding author. Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Sölvegatan 19, 22 184, Lund, Sweden.
| |
Collapse
|
52
|
Zhang L, Li Q. Neuroprotective effects of tanshinone IIA in experimental model of Parkinson disease in rats. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
53
|
Role of gut microbiota-derived branched-chain amino acids in the pathogenesis of Parkinson's disease: An animal study. Brain Behav Immun 2022; 106:307-321. [PMID: 36126853 DOI: 10.1016/j.bbi.2022.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation caused by the disorder of gut microbiota and its metabolites is associated with the pathogenesis of Parkinson's disease (PD). Thus, it is necessary to identify certain molecules derived from gut microbiota to verify whether they could become intervention targets for the treatment of PD. The branched-chain amino acids (BCAAs), as a common dietary supplement, could modulate brain function. Herein, we investigated the longitudinal shifts of microbial community in mice treated with rotenone for 0, 3 and 4 weeks by 16S rRNA gene sequencing to identify the microbial markers at different PD stages. Serum BCAAs were determined by gas chromatography-mass spectrometry. Then, rotenone-induced mice were given a high BCAA diet to evaluate the motor and non-motor functions, dopaminergic neuron loss, and inflammation levels. Using a PD mouse model, we discovered that during PD progression, the alterations of gut microbiota compositions led to the peripheral decrease of BCAAs. Based on the serum lipopolysaccharide binding protein concentrations and the levels of pro-inflammatory factors (including tumor necrosis factor-α, interleukin [IL]-1β, and IL-6) in the colon and substantia nigra, we found that the high BCAA diet could attenuate the inflammatory levels in PD mice, and reverse motor and non-motor dysfunctions and dopaminergic neuron impairment. Together, our results emphasize the dynamic changes of gut microbiota and BCAA metabolism and propose a novel strategy for PD therapy: a high BCAA diet intervention could improve PD progression by regulating the levels of inflammation.
Collapse
|
54
|
Bonaccorso Marinelli MP, Baiardi G, Valdez SR, Cabrera RJ. Automated quantification of dopaminergic immunostained neurons in substantia nigra using freely available software. Med Biol Eng Comput 2022; 60:2995-3007. [DOI: 10.1007/s11517-022-02643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
|
55
|
Yan Z, Li R, Shi W, Yao L. Role of the gut-microbiota-metabolite axis in the rotenone model of early-stage Parkinson's Disease. Metab Brain Dis 2022; 37:2511-2520. [PMID: 35895243 DOI: 10.1007/s11011-022-01004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 10/16/2022]
Abstract
Gastrointestinal symptoms are common in the early-stage Parkinson's disease (PD), but its potential pathogenesis remains unclear. Therefore, in the present study, we used the 16S ribosomal RNA gene sequencing and gas chromatography coupled with mass spectrometry-based metabolomics to investigate the alterations of gut microbiome and serum amino acid levels in the early-stage PD mice model induced with rotenone. The results demonstrated that the microbial taxa at phylum, family and genus levels remarkably altered in rotenone-induced mice relative to vehicle-induced mice. The rotenone-induced mice had higher relative abundance of Flavobacteriaceae, Staphylococcaceae, and Prevotellaceae as well as lower relative abundance of Lachnospiraceae_UCG-001, Ruminiclostridium, and Prevotellaceae_NK3B31_group than vehicle-induced mice. The evaluation of serum amino acids revealed the alterations in several classes of amino acids, including L-proline, L-alanine, L-serine, L-asparagine, L-threonine, L-glutamine, L-methionine, and L-4-hydroxyproline. Notably, the altered serum amino acid levels were significantly associated with the abundance of gut microbiota, especially Ruminococcaceae and Ruminiclostridium. Our study explored the possible role of the gut-microbiota-metabolite axis in the early-stage PD and provided the possibility of prevention and treatment of PD by gut-microbiota-metabolite axis in the future.
Collapse
Affiliation(s)
- Zhenzhen Yan
- First Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang Province, China
| | - Ruihua Li
- First Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang Province, China
| | - Wanying Shi
- First Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang Province, China
| | - Lifen Yao
- First Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang Province, China.
| |
Collapse
|
56
|
Lee DW, Ryu YK, Chang DH, Park HY, Go J, Maeng SY, Hwang DY, Kim BC, Lee CH, Kim KS. Agathobaculum butyriciproducens Shows Neuroprotective Effects in a 6-OHDA-Induced Mouse Model of Parkinson's Disease. J Microbiol Biotechnol 2022; 32:1168-1177. [PMID: 36168204 PMCID: PMC9628974 DOI: 10.4014/jmb.2205.05032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disease and is characterized by dopaminergic neuronal death in the midbrain. Recently, the association between alterations in PD pathology and the gut microbiota has been explored. Microbiota-targeted interventions have been suggested as a novel therapeutic approach for PD. Agathobaculum butyriciproducens SR79T (SR79) is an anaerobic bacterium. Previously, we showed that SR79 treatment induced cognitive improvement and reduced Alzheimer's disease pathologies in a mouse model. In this study, we hypothesized that SR79 treatment may have beneficial effects on PD pathology. To investigate the therapeutic effects of SR79 on PD, 6-hydroxydopamine (6-OHDA)-induced mouse models were used. D-Amphetamine sulfate (d-AMPH)-induced behavioral rotations and dopaminergic cell death were analyzed in unilateral 6-OHDA-lesioned mice. Treatment with SR79 significantly decreased ipsilateral rotations induced by d-AMPH. Moreover, SR79 treatment markedly activated the AKT/GSK3β signaling pathway in the striatum. In addition, SR79 treatment affected the Nrf2/ARE signaling pathway and its downstream target genes in the striatum of 6-OHDA-lesioned mice. Our findings suggest a protective role of SR79 in 6-OHDA-induced toxicity by regulating the AKT/Nrf2/ARE signaling pathway and astrocyte activation. Thus, SR79 may be a potential microbe-based intervention and therapeutic strategy for PD.
Collapse
Affiliation(s)
- Da Woon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biomaterials Science, College of Natural Resources and Life Science and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - So-Young Maeng
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,College of Biosciences and Biotechnology, Chung-Nam National University, Daejeon 34134, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,HealthBiome, Inc., Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea,Corresponding authors C.H. Lee E-mail:
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,
K.S. Kim Phone: 82-42-860-4634 Fax : 82-42-860-4609 E-mail:
| |
Collapse
|
57
|
Patricio F, Morales Dávila E, Patricio-Martínez A, Arana Del Carmen N, Martínez I, Aguilera J, Perez-Aguilar JM, Limón ID. Intrapallidal injection of cannabidiol or a selective GPR55 antagonist decreases motor asymmetry and improves fine motor skills in hemiparkinsonian rats. Front Pharmacol 2022; 13:945836. [PMID: 36120297 PMCID: PMC9479130 DOI: 10.3389/fphar.2022.945836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Cannabidiol (CBD) presents antiparkinsonian properties and neuromodulatory effects, possibly due to the pleiotropic activity caused at multiple molecular targets. Recently, the GPR55 receptor has emerged as a molecular target of CBD. Interestingly, GPR55 mRNA is expressed in the external globus pallidus (GPe) and striatum, hence, it has been suggested that its activity is linked to motor dysfunction in Parkinson’s disease (PD). The present study aimed to evaluate the effect of the intrapallidal injection of both CBD and a selective GPR55 antagonist (CID16020046) on motor asymmetry, fine motor skills, and GAD-67 expression in hemiparkinsonian rats. The hemiparkinsonian animal model applied involved the induction of a lesion in male Wistar rats via the infusion of the neurotoxin 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle via stereotaxic surgery. After a period of twenty days, a second surgical procedure was performed to implant a guide cannula into the GPe. Seven days later, lysophosphatidylinositol (LPI), CBD, or CID16020046 were injected once a day for three consecutive days (from the 28th to the 30th day post-lesion). Amphetamine-induced turning behavior was evaluated on the 14th and 30th days post-injury. The staircase test and fine motor skills were evaluated as follows: the rats were subject to a ten-day training period prior to the 6-OHDA injury; from the 15th to the 19th days post-lesion, the motor skills alterations were evaluated under basal conditions; and, from the 28th to the 30th day post-lesion, the pharmacological effects of the drugs administered were evaluated. The results obtained show that the administration of LPI or CBD generated lower levels of motor asymmetry in the turning behavior of hemiparkinsonian rats. It was also found that the injection of CBD or CID16020046, but not LPI, in the hemiparkinsonian rats generated significantly superior performance in the staircase test, in terms of the use of the forelimb contralateral to the 6-OHDA-induced lesion, when evaluated from the 28th to the 30th day post-lesion. Similar results were also observed for superior fine motor skills performance for pronation, grasp, and supination. Finally, the immunoreactivity levels were found to decrease for the GAD-67 enzyme in the striatum and the ipsilateral GPe of the rats injected with CBD and CID16020046, in contrast with those lesioned with 6-OHDA. The results obtained suggest that the inhibitory effects of CBD and CID16020046 on GPR55 in the GPe could be related to GABAergic overactivation in hemiparkinsonism, thus opening new perspectives to explain, at a cellular level, the reversal of the motor impairment observed in PD models.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Eliud Morales Dávila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Nayeli Arana Del Carmen
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Isabel Martínez
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - José Aguilera
- Departament de Bioquímica i de Biologia Molecular, Facultad de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Ilhuicamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Ilhuicamina Daniel Limón, ,
| |
Collapse
|
58
|
Cunha DMG, Becegato M, Meurer YSR, Lima AC, Gonçalves N, Bioni VS, Engi SA, Bianchi PC, Cruz FC, Santos JR, Silva RH. Neuroinflammation in early, late and recovery stages in a progressive parkinsonism model in rats. Front Neurosci 2022; 16:923957. [PMID: 36090265 PMCID: PMC9459164 DOI: 10.3389/fnins.2022.923957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by motor and non-motor signs, which are accompanied by progressive degeneration of dopaminergic neurons in the substantia nigra. Although the exact causes are unknown, evidence links this neuronal loss with neuroinflammation and oxidative stress. Repeated treatment with a low dose of reserpine—inhibitor of VMAT2—has been proposed as a progressive pharmacological model of PD. The aim of this study was to investigate whether this model replicates the neuroinflammation characteristic of this disease. Six-month-old Wistar rats received repeated subcutaneous injections of reserpine (0.1 mg/kg) or vehicle on alternate days. Animals were euthanized after 5, 10, or 15 injections, or 20 days after the 15th injection. Catalepsy tests (motor assessment) were conducted across treatment. Brains were collected at the end of each treatment period for immunohistochemical and RT-PCR analyzes. Reserpine induced a significant progressive increase in catalepsy duration. We also found decreased immunostaining for tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNpc) and increased GFAP + cells in the SNpc and dorsal striatum after 10 and 15 reserpine injections. Phenotyping microglial M1 and M2 markers showed increased number of CD11b + cells and percentage of CD11b + /iNOS + cells in reserpine-treated animals after 15 injections, which is compatible with tissue damage and production of cytotoxic factors. In addition, increased CD11b + /ArgI + cells were found 20 days after the last reserpine injection, together with an increment in IL-10 gene expression in the dorsal striatum, which is indicative of tissue repair or regeneration. Reserpine also induced increases in striatal interleukin TNF-alpha mRNA levels in early stages. In view of these results, we conclude that reserpine-induced progressive parkinsonism model leads to neuroinflammation in regions involved in the pathophysiology of PD, which is reversed 20 days after the last injection. These findings reveal that withdrawal period, together with the shift of microglial phenotypes from the pro-inflammatory to the anti-inflammatory stage, may be important for the study of the mechanisms involved in reversing this condition, with potential clinical applicability.
Collapse
Affiliation(s)
- Debora M. G. Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ywlliane S. R. Meurer
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alvaro C. Lima
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Narriman Gonçalves
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vinícius S. Bioni
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sheila A. Engi
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula C. Bianchi
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fabio C. Cruz
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jose R. Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Bioscience, Universidade Federal do Sergipe, Itabaiana, Brazil
| | - Regina H. Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Regina H. Silva,
| |
Collapse
|
59
|
Imbriani P, Martella G, Bonsi P, Pisani A. Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiol Dis 2022; 173:105851. [PMID: 36007757 DOI: 10.1016/j.nbd.2022.105851] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
60
|
Abdelrahman S, Alsanie WF, Khan ZN, Albalawi HI, Felimban RI, Moretti M, Steiner N, Chaudhary AG, Hauser CAE. A Parkinson's disease model composed of 3D bioprinted dopaminergic neurons within a biomimetic peptide scaffold. Biofabrication 2022; 14. [PMID: 35793642 DOI: 10.1088/1758-5090/ac7eec] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder that affects movement. It is associated with lost dopaminergic (DA) neurons in thesubstantia nigra, a process that is not yet fully understood. To understand this deleterious disorder, there is an immense need to develop efficientin vitrothree-dimensional (3D) models that can recapitulate complex organs such as the brain. However, due to the complexity of neurons, selecting suitable biomaterials to accommodate them is challenging. Here, we report on the fabrication of functional DA neuronal 3D models using ultrashort self-assembling tetrapeptide scaffolds. Our peptide-based models demonstrate biocompatibility both for primary mouse embryonic DA neurons and for human DA neurons derived from human embryonic stem cells. DA neurons encapsulated in these scaffolds responded to 6-hydroxydopamine, a neurotoxin that selectively induces loss of DA neurons. Using multi-electrode arrays, we recorded spontaneous activity in DA neurons encapsulated within these 3D peptide scaffolds for more than 1 month without decrease of signal intensity. Additionally, vascularization of our 3D models in a co-culture with endothelial cells greatly promoted neurite outgrowth, leading to denser network formation. This increase of neuronal networks through vascularization was observed for both primary mouse DA and cortical neurons. Furthermore, we present a 3D bioprinted model of DA neurons inspired by the mouse brain and created with an extrusion-based 3D robotic bioprinting system that was developed during previous studies and is optimized with time-dependent pulsing by microfluidic pumps. We employed a hybrid fabrication strategy that relies on an external mold of the mouse brain construct that complements the shape and size of the desired bioprinted model to offer better support during printing. We hope that our 3D model provides a platform for studies of the pathogenesis of PD and other neurodegenerative disorders that may lead to better understanding and more efficient treatment strategies.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Zainab N Khan
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hamed I Albalawi
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manola Moretti
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nadia Steiner
- Biological and Environmental Science and Engineering (BESE), Laboratory of Cellular Imaging and Energetics (LCIE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adeel G Chaudhary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
61
|
Melo-Thomas L, Tacken L, Richter N, Almeida D, Rapôso C, de Melo SR, Thomas U, de Paiva YB, Medeiros P, Coimbra NC, Schwarting R. Lateralization in hemi-parkinsonian rats is affected by deep brain stimulation or glutamatergic neurotransmission in the inferior colliculus. eNeuro 2022; 9:ENEURO.0076-22.2022. [PMID: 35817565 PMCID: PMC9337613 DOI: 10.1523/eneuro.0076-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/16/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022] Open
Abstract
After unilateral lesion of the medial forebrain bundle (MFB) by 6-OHDA rats exhibit lateralized deficits in spontaneous behavior or apomorphine-induced rotations. We investigated whether such lateralization is attenuated by either deep brain stimulation (DBS) or glutamatergic neurotransmission in the inferior colliculus (IC) of Wistar rats. Intracollicular DBS did not affect spontaneous lateralization but attenuated apomorphine-induced rotations. Spontaneous lateralization disappeared after both glutamatergic antagonist MK-801 or the agonist NMDA microinjected in the IC. Apomorphine-induced rotations were potentiated by MK-801 but were not affected by NMDA intracollicular microinjection. After injecting a bidirectional neural tract tracer into the IC, cell bodies and/or axonal fibers were found in the periaqueductal gray, superior colliculus, substantia nigra, cuneiform nucleus and pedunculo-pontine tegmental nucleus, suggesting the involvement of these structures in the motor improvement after IC manipulation. Importantly, the side of the IC microinjection regarding the lesion (ipsi- or contralateral) is particularly important and this effect may not involve the neostriatum directly.Significance StatementThe inferior colliculus, usually viewed as an auditory structure, when properly manipulated may counteract motor deficits in Parkinsonian rats. Indeed, the present study showed that 30 Hz deep brain stimulation or glutamatergic neural network in the inferior colliculus reduced body asymmetry induced by medial forebrain bundle unilateral 6-OHDA lesion in rats, an animal model of Parkinsonism. Understanding how glutamatergic mechanisms in the inferior colliculus influence motor control, classically attributed to the basal nuclei circuitry, could be useful in the development of new therapeutics to treat Parkinson's disease and other motor disorders.
Collapse
Affiliation(s)
- Liana Melo-Thomas
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032, Marburg, Germany.
- Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Straße 6, 35032, Marburg, Germany
- Behavioral Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - Lars Tacken
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032, Marburg, Germany
| | - Nicole Richter
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032, Marburg, Germany
| | - Davina Almeida
- Laboratory of Drug Development, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, 13083-865, Brazil
| | - Catarina Rapôso
- Laboratory of Drug Development, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, 13083-865, Brazil
| | - Silvana Regina de Melo
- Department of Morphological Sciences, State University of Maringá, Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Uwe Thomas
- Thomas RECORDING GmbH, Winchester Strasse 8, 35394 Giessen, Germany
| | - Yara Bezerra de Paiva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto (SP), 14049-900, Brazil
| | - Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto (SP), 14049-900, Brazil
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto (SP), 14049-900, Brazil
| | - Norberto C Coimbra
- Behavioral Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto (SP), 14049-900, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), 14049-900, Brazil
| | - Rainer Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| |
Collapse
|
62
|
Huang YL, Zhang JN, Hou TZ, Gu L, Yang HM, Zhang H. Inhibition of Wnt/β-catenin signaling attenuates axonal degeneration in models of Parkinson's disease. Neurochem Int 2022; 159:105389. [PMID: 35809720 DOI: 10.1016/j.neuint.2022.105389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/27/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
There are currently no treatments to delay or prevent Parkinson's disease (PD), and protective treatments require early administration. Targeting axonal degeneration in early PD could have an important clinical effect; however, the underlying molecular mechanisms controlling axonal degeneration in PD are not fully understood. Here, we studied the role of Wnt/β-catenin signaling in axonal degeneration induced by 6-hydroxydopamine (6-OHDA) or overexpression of alpha-synuclein (α-Syn) in vitro and in vivo. We found that the levels of both β-catenin and p-S9-glycogen synthase kinase-3β (GSK-3β) increased and the levels of phosphorylated β-catenin (p-β-catenin) decreased during 6-OHDA-induced axonal degeneration and that the inhibitors of the Wnt/β-catenin pathway IWR-1 and Dickkopf-1 (DKK-1) attenuated the degenerative process in primary neurons in vitro. Furthermore, IWR-1 enhanced the increase of LC3-II levels and the decrease of p62 triggered by 6-OHDA treatment, whereas the autophagy inhibitor 3-Methyladenine (3-MA) alleviated the protective effect of IWR-1 on axons in vitro. Consistent with the in vitro findings, both β-catenin and p-S9-GSK-3β were upregulated in a 6-OHDA-induced rat PD model, and blocking the Wnt/β-catenin pathway with DKK-1 attenuated the degeneration of dopaminergic axons at an early time point in vivo. The protective effect of inhibition of Wnt/β-catenin signaling was further confirmed in an α-Syn overexpression-induced animal models of PD. Taken together, these data indicate that the Wnt/β-catenin pathway is involved axonal degeneration in PD, and suggest that Wnt/β-catenin pathway inhibitors have the therapeutic potential for the prevention of PD.
Collapse
Affiliation(s)
- Yan-Lin Huang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| | - Tian-Zhong Hou
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
63
|
Fathi M, Vakili K, Yaghoobpoor S, Qadirifard MS, Kosari M, Naghsh N, Asgari taei A, Klegeris A, Dehghani M, Bahrami A, Taheri H, Mohamadkhani A, Hajibeygi R, Rezaei Tavirani M, Sayehmiri F. Pre-clinical Studies Identifying Molecular Pathways of Neuroinflammation in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2022; 14:855776. [PMID: 35912090 PMCID: PMC9327618 DOI: 10.3389/fnagi.2022.855776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by neuroinflammation, formation of Lewy bodies, and progressive loss of dopaminergic neurons in the substantia nigra of the brain. In this review, we summarize evidence obtained by animal studies demonstrating neuroinflammation as one of the central pathogenetic mechanisms of PD. We also focus on the protein factors that initiate the development of PD and other neurodegenerative diseases. Our targeted literature search identified 40 pre-clinical in vivo and in vitro studies written in English. Nuclear factor kappa B (NF-kB) pathway is demonstrated as a common mechanism engaged by neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), as well as the bacterial lipopolysaccharide (LPS). The α-synuclein protein, which plays a prominent role in PD neuropathology, may also contribute to neuroinflammation by activating mast cells. Meanwhile, 6-OHDA models of PD identify microsomal prostaglandin E synthase-1 (mPGES-1) as one of the contributors to neuroinflammatory processes in this model. Immune responses are used by the central nervous system to fight and remove pathogens; however, hyperactivated and prolonged immune responses can lead to a harmful neuroinflammatory state, which is one of the key mechanisms in the pathogenesis of PD.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Qadirifard
- Department of Nursing and Midwifery, Islamic Azad University, Tehran, Iran
- Department of Nursing, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Mohammadreza Kosari
- The First Clinical College, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Afsaneh Asgari taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Mina Dehghani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Hamed Taheri
- Dental School, Kazan Federal University, Kazan, Russia
| | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mostafa Rezaei Tavirani
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Fatemeh Sayehmiri
| |
Collapse
|
64
|
Zhang Y, Roy DS, Zhu Y, Chen Y, Aida T, Hou Y, Shen C, Lea NE, Schroeder ME, Skaggs KM, Sullivan HA, Fischer KB, Callaway EM, Wickersham IR, Dai J, Li XM, Lu Z, Feng G. Targeting thalamic circuits rescues motor and mood deficits in PD mice. Nature 2022; 607:321-329. [PMID: 35676479 PMCID: PMC9403858 DOI: 10.1038/s41586-022-04806-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/26/2022] [Indexed: 01/03/2023]
Abstract
Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.
Collapse
Affiliation(s)
- Ying Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Dheeraj S Roy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Yi Zhu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yefei Chen
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Tomomi Aida
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuanyuan Hou
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chenjie Shen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas E Lea
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret E Schroeder
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keith M Skaggs
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyle B Fischer
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ji Dai
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Zhejiang University, Hangzhou, China
- Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China
| | - Zhonghua Lu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
65
|
Lee LHN, Huang CS, Wang RW, Lai HJ, Chung CC, Yang YC, Kuo CC. Deep brain stimulation rectifies the noisy cortex and irresponsive subthalamus to improve parkinsonian locomotor activities. NPJ Parkinsons Dis 2022; 8:77. [PMID: 35725730 PMCID: PMC9209473 DOI: 10.1038/s41531-022-00343-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
The success of deep brain stimulation (DBS) therapy indicates that Parkinson's disease is a brain rhythm disorder. However, the manifestations of the erroneous rhythms corrected by DBS remain to be established. We found that augmentation of α rhythms and α coherence between the motor cortex (MC) and the subthalamic nucleus (STN) is characteristically prokinetic and is decreased in parkinsonian rats. In multi-unit recordings, movement is normally associated with increased changes in spatiotemporal activities rather than overall spike rates in MC. In parkinsonian rats, MC shows higher spike rates at rest but less spatiotemporal activity changes upon movement, and STN burst discharges are more prevalent, longer lasting, and less responsive to MC inputs. DBS at STN rectifies the foregoing pathological MC-STN oscillations and consequently locomotor deficits, yet overstimulation may cause behavioral restlessness. These results indicate that delicate electrophysiological considerations at both cortical and subcortical levels should be exercised for optimal DBS therapy.
Collapse
Affiliation(s)
- Lan-Hsin Nancy Lee
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, Fu Jen Catholic University Hospital, New Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Syuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ren-Wei Wang
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsing-Jung Lai
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,National Taiwan University Hospital, Jin-Shan Branch, New Taipei, Taiwan
| | - Chih-Ching Chung
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chin Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan. .,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
66
|
Neural stem cell secretome exerts a protective effect on damaged neuron mitochondria in Parkinson's disease model. Brain Res 2022; 1790:147978. [PMID: 35690143 DOI: 10.1016/j.brainres.2022.147978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. The main pathological changes are the loss of dopaminergic neurons and the formation of Lewy bodies. There is still no effective cure for PD, and cell replacement therapy has entered a bottleneck period due to tumorigenicity and rejection. Therefore, stem cell secretome has received widespread attention. However, the exploration of the secretome components of neural stem cells (NSCs) is still in its infancy. In this study, 6-hydroxydopamine (6-OHDA) was used to establish a PD rat model in vito and the PC12 cell-damaged model in vitro. The results indicated that the injection of neural stem cell-conditioned medium (NSC-CM) into the striatum and substantia nigra could improve the motor and non-motor deficits of PD rats and rescue the loss of dopaminergic neurons. In addition, NSC-CM alleviated 6-OHDA-induced apoptosis of PC12 cells, reduced the level of oxidative stress, and improved mitochondrial dysfunction in vitro. Parkinson disease protein 7 (Park7) was found in NSC-CM by Liquid chromatography-tandem mass spectrometry (LC-MS/MS), and it may be related to the protective effect of NSC-CM on 6-OHDA-injured neurons through Sirt1 pathway. In conclusion, NSC secretome might provide new ideas for the treatment of PD.
Collapse
|
67
|
Expression Analysis of Genes Involved in Transport Processes in Mice with MPTP-Induced Model of Parkinson’s Disease. Life (Basel) 2022; 12:life12050751. [PMID: 35629417 PMCID: PMC9146539 DOI: 10.3390/life12050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Processes of intracellular and extracellular transport play one of the most important roles in the functioning of cells. Changes to transport mechanisms in a neuron can lead to the disruption of many cellular processes and even to cell death. It was shown that disruption of the processes of vesicular, axonal, and synaptic transport can lead to a number of diseases of the central nervous system, including Parkinson’s disease (PD). Here, we studied changes in the expression of genes whose protein products are involved in the transport processes (Snca, Drd2, Rab5a, Anxa2, and Nsf) in the brain tissues and peripheral blood of mice with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced models of PD. We detected changes in the expressions of Drd2, Anxa2, and Nsf at the earliest modeling stages. Additionally, we have identified conspicuous changes in the expression level of Anxa2 in the striatum and substantia nigra of mice with MPTP-induced models of PD in its early stages. These data clearly suggest the involvement of protein products in these genes in the earliest stages of the pathogenesis of PD.
Collapse
|
68
|
Cassar IR, Grill WM. The cortical evoked potential corresponds with deep brain stimulation efficacy in rats. J Neurophysiol 2022; 127:1253-1268. [PMID: 35389751 PMCID: PMC9054265 DOI: 10.1152/jn.00353.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 01/21/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) antidromically activates the motor cortex (M1), and this cortical activation appears to play a role in the treatment of hypokinetic motor behaviors (Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Science 324: 354-359, 2009; Yu C, Cassar IR, Sambangi J, Grill WM. J Neurosci 40: 4323-4334, 2020). The synchronous antidromic activation takes the form of a short-latency cortical evoked potential (cEP) in electrocorticography (ECoG) recordings of M1. We assessed the utility of the cEP as a biomarker for STN DBS in unilateral 6-hydroxydopamine-lesioned female Sprague Dawley rats, with stimulating electrodes implanted in the STN and the ECoG recorded above M1. We quantified the correlations of the cEP magnitude and latency with changes in motor behavior from DBS and compared them to the correlation between motor behaviors and several commonly used spectral-based biomarkers. The cEP features correlated strongly with motor behaviors and were highly consistent across animals, whereas the spectral biomarkers correlated weakly with motor behaviors and were highly variable across animals. The cEP may thus be a useful biomarker for assessing the therapeutic efficacy of DBS parameters, as its features strongly correlate with motor behavior, it is consistent across time and subjects, it can be recorded under anesthesia, and it is simple to quantify with a large signal-to-noise ratio, enabling rapid, real-time evaluation. Additionally, our work provides further evidence that antidromic cortical activation mediates changes in motor behavior from STN DBS and that the dependence of DBS efficacy on stimulation frequency may be related to antidromic spike failure.NEW & NOTEWORTHY We characterize a new potential biomarker for deep brain stimulation (DBS), the cortical evoked potential (cEP), and demonstrate that it exhibits a robust correlation with motor behaviors as a function of stimulation frequency. The cEP may thus be a useful clinical biomarker for changes in motor behavior. This work also provides insight into the cortical mechanisms of DBS, suggesting that motor behaviors are strongly affected by the rate of antidromic spike failure during DBS.
Collapse
Affiliation(s)
- Isaac R Cassar
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Neurobiology, Duke University, Durham, North Carolina
- Department of Neurosurgery, Duke University, Durham, North Carolina
| |
Collapse
|
69
|
Guatteo E, Berretta N, Monda V, Ledonne A, Mercuri NB. Pathophysiological Features of Nigral Dopaminergic Neurons in Animal Models of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23094508. [PMID: 35562898 PMCID: PMC9102081 DOI: 10.3390/ijms23094508] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
The degeneration of nigral dopaminergic neurons is considered the hallmark of Parkinson’s disease (PD), and it is triggered by different factors, including mitochondrial dysfunction, Lewy body accumulation, neuroinflammation, excitotoxicity and metal accumulation. Despite the extensive literature devoted to unravelling the signalling pathways involved in neuronal degeneration, little is known about the functional impairments occurring in these cells during illness progression. Of course, it is not possible to obtain direct information on the properties of the dopaminergic cells in patients. However, several data are available in the literature reporting changes in the function of these cells in PD animal models. In the present manuscript, we focus on dopaminergic neuron functional properties and summarize shared or peculiar features of neuronal dysfunction in different PD animal models at different stages of the disease in an attempt to design a picture of the functional modifications occurring in nigral dopaminergic neurons during disease progression preceding their eventual death.
Collapse
Affiliation(s)
- Ezia Guatteo
- Department of Motor Science and Wellness, University of Naples Parthenope, 80133 Naples, Italy; (E.G.); (V.M.)
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Nicola Berretta
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Vincenzo Monda
- Department of Motor Science and Wellness, University of Naples Parthenope, 80133 Naples, Italy; (E.G.); (V.M.)
| | - Ada Ledonne
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Correspondence: (A.L.); (N.B.M.)
| | - Nicola Biagio Mercuri
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00143 Rome, Italy
- Correspondence: (A.L.); (N.B.M.)
| |
Collapse
|
70
|
Chaudhry ZL, Gamal M, Ferhati I, Warda M, Ahmed BY. ER Stress in COVID-19 and Parkinson’s Disease: In Vitro and In Silico Evidences. Brain Sci 2022; 12:brainsci12040507. [PMID: 35448038 PMCID: PMC9025812 DOI: 10.3390/brainsci12040507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023] Open
Abstract
The outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signifies a serious worldwide concern to public health. Both transcriptome and proteome of SARS-CoV-2-infected cells synergize the progression of infection in host, which may exacerbate symptoms and/or progression of other chronic diseases such as Parkinson’s disease (PD). Oxidative stress is a well-known cause of endoplasmic reticulum (ER) stress observed in both SARS-CoV-2 and PD. In the current study, we aimed to explore the influence of PKR-like ER kinase (PERK) stress pathway under SARS-CoV-2-mediated infection and in human cell model of PD. Furthermore, we investigated whether they are interconnected and if the ER stress inhibitors could inhibit cell death and provide cellular protection. To achieve this aim, we have incorporated in silico analysis obtained from gene set enrichment analysis (GSEA), a literature review and laboratory data. The neurotoxin, 6-hydroxy dopamine (6OHDA), was used to mimic the biochemical and neuropathological characteristics of PD by inducing oxidative stress in dopamine-containing neurons differentiated from ReNVM cell line (dDCNs). Furthermore, we explored if ER stress influences activation of caspases-2, -4 and -8 in SARS-CoV-2 and in stressed dDCNs. Our laboratory data using Western blot, immunocytochemistry and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) analyses indicated that 6OHDA-induced toxicity triggered activation of caspases-2, -4 and -8 in dDCNs. Under SARS-CoV-2 infection of different cell types, GSEA revealed cell-specific sensitivities to oxidative and ER stresses. Cardiomyocytes and type II alveolar epithelial-like cells were more vulnerable to oxidative stress than neural cells. On the other side, only cardiomyocytes activated the unfolded protein response, however, the PERK pathway was operative in both cardiomyocytes and neural cells. In addition, caspase-4 activation by a SARS-CoV-2 was observed via in silico analyses. These results demonstrate that the ER stress pathway under oxidative stress in SARS-CoV-2 and PD are interconnected using diverse pathways. Furthermore, our results using the ER stress inhibitor and caspase specific inhibitors provided cellular protection suggesting that the use of specific inhibitors can provide effective therapeutic approaches for the treatment of COVID-19 and PD.
Collapse
Affiliation(s)
- Zahara L. Chaudhry
- Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK; (Z.L.C.); (I.F.)
| | - Mahmoud Gamal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.G.); (M.W.)
| | - Ingrid Ferhati
- Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK; (Z.L.C.); (I.F.)
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.G.); (M.W.)
| | - Bushra Y. Ahmed
- Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK; (Z.L.C.); (I.F.)
- Correspondence:
| |
Collapse
|
71
|
The α7 nAChR allosteric modulator PNU-120596 amends neuroinflammatory and motor consequences of parkinsonism in rats: Role of JAK2/NF-κB/GSk3β/ TNF-α pathway. Biomed Pharmacother 2022; 148:112776. [PMID: 35272136 DOI: 10.1016/j.biopha.2022.112776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and a leading cause of disability. The current gold standard for PD treatment, L-Dopa, has limited clinical efficacy and multiple side effects. Evidence suggests that activation of α7 nicotinic acetylcholine receptors (α7nAChRs) abrogates neuronal and inflammatory insults. Here we tested whether PNU-120596 (PNU), a type II positive allosteric modulator of α7 nAChR, has a critical role in regulating motor dysfunction and neuroinflammation correlated with the associated PD dysfunction. Neuroprotective mechanisms were investigated through neurobehavioral, molecular, histopathological, and immunohistochemical studies. PNU reversed motor incoordination and hypokinesia induced via the intrastriatal injection of 6-hydroxydopamine and manifested by lower falling latency in the rotarod test, short ambulation time and low rearing incidence in open field test. Tyrosine hydroxylase immunostaining showed a significant restoration of dopaminergic neurons following PNU treatment, in addition to histopathological restoration in nigrostriatal tissues. PNU halted striatal neuroinflammation manifested as a suppressed expression of JAK2/NF-κB/GSk3β accompanied by a parallel decline in the protein expression of TNF-α in nigrostriatal tissue denoting the modulator anti-inflammatory capacity. Moreover, the protective effects of PNU were partially reversed by the α7 nAChR antagonist, methyllycaconitine, indicating the role of α7 nAChR modulation in the mechanism of action of PNU. This is the first study to reveal the positive effects of PNU-120596 on motor derangements of PD via JAK2/NF-κB/GSk3β/ TNF-α neuroinflammatory pathways, which could offer a potential therapeutic strategy for PD.
Collapse
|
72
|
Tiwari PC, Chaudhary MJ, Pal R, Kartik S, Nath R. Pharmacological, Biochemical and Immunological Studies on Protective Effect of Mangiferin in 6-Hydroxydopamine (6-OHDA)-Induced Parkinson's Disease in Rats. Ann Neurosci 2022; 28:137-149. [PMID: 35341236 PMCID: PMC8948331 DOI: 10.1177/09727531211051976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/25/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Parkinson’s disease is a neurodegenerative disorder and is marked by
inflammation and death of neurons in the striatum region of the midbrain. It
has been reported that expression of NF-κB increases during Parkinson’s
disease, which promotes oxidative stress, stimulates release of
proinflammatory cytokines, and induces expression of nitric oxide.
Therefore, in this study, we have used mangiferin a specific NF-κB
inhibitor. Mangiferin is a polyphenolic compound traditionally used for its
antioxidant and anti-inflammatory properties. Methods: The study utilized male Wistar rats weighing 200–250 g (56 rats;
n = 8/group). On day “0,” stereotaxic surgery of rats
was done to induce 6-hydroxydopamine lesioning in rats. Coordinates for
substantia nigra were anteroposterior-2 mm, mediolateral-5 mm and
dorsoventral-8.2 mm. After 14 days, those rats which show at least 210
contralateral rotations after administration of apomorphine (0.5 mg/kg S.C.)
were selected for the study and were given treatment for 28 days. On day 28
of treatment, rats were subjected to behavioral studies to evaluate the
effect of mangiferin and their brains were taken out after euthanasia to
perform biochemical, molecular and immunological studies. Results: Treatment with mangiferin significantly improves the key parameters of
locomotor activity and oxidative stress and reduces the parameters of
inflammatory stress. Also, the activity of caspases was reduced. Significant
decrease in activity of both cyclooxygenase 1 and 2 was also observed.
Maximum improvement in all parameters was observed in rats treated with
grouping of mangiferin 45 µg/kg and levodopa 10 mg/kg. Treatment with
levodopa alone has no significant effect on biochemical and molecular
parameters though it significantly improves behavioral parameters. Conclusion: Current treatment of Parkinson’s disease does not target progression of
Parkinson’s disease. Results of this study suggest that mangiferin has
protective effect in hemi-Parkinsonian rats. Therefore, the combination
therapy of mangiferin and levodopa can be helpful in management of
Parkinson’s disease.
Collapse
Affiliation(s)
- Prafulla Chandra Tiwari
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Manju J Chaudhary
- Department of Physiology, Government Medical College, Kannauj, Uttar Pradesh, India
| | - Rishi Pal
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shipra Kartik
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
73
|
Nano-MgO composites containing plasmid DNA to silence SNCA gene displays neuroprotective effects in Parkinson's rats induced by 6-hydroxydopamine. Eur J Pharmacol 2022; 922:174904. [DOI: 10.1016/j.ejphar.2022.174904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
|
74
|
Asymmetric Interaction of Neuropeptidase Activities between Cortico-Limbic Structures, Plasma and Cardiovascular Function after Unilateral Dopamine Depletions of the Nigrostriatal System. Biomedicines 2022; 10:biomedicines10020326. [PMID: 35203536 PMCID: PMC8869292 DOI: 10.3390/biomedicines10020326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
In emotional processing, dopamine (DA) plays an essential role, and its deterioration involves important consequences. Under physiological conditions, dopamine exhibits brain asymmetry and coexists with various neuropeptides that can coordinate the processing of brain functions. Brain asymmetry can extend into a broader concept of asymmetric neurovisceral integration, including behavior. The study of the activity of neuropeptide regulatory enzymes (neuropeptidases, NPs) is illustrative. We have observed that the left and right brain areas interact intra- and inter-hemispherically, as well as with peripheral tissues or with physiological parameters such as blood pressure or with behaviors such as turning preference. To obtain data that reflect this integrative behavior, we simultaneously analyzed the impact of left or right brain DA depletion on the activity of various NPs in corticolimbic regions of the left and right hemispheres, such as the medial prefrontal cortex, amygdala and hippocampus, as well as on the plasma activity of the same aminopeptidase activities (APs) and on systolic blood pressure (SBP). Intra- and inter-hemispheric interactions as well as the interactions of NPs from the left or right hemispheres were analyzed with the same plasma APs and the SBP obtained from sham and from left or right lesioned rats. The results demonstrate a complex profile depending on the hemisphere considered. They definitively confirm an asymmetric neurovisceral integration and reveal a higher level of inter-hemispheric corticolimbic interactions including with SBP after left dopamine depletion.
Collapse
|
75
|
Masini D, Kiehn O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat Commun 2022; 13:504. [PMID: 35082287 PMCID: PMC8791953 DOI: 10.1038/s41467-022-28075-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD. Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora Masini
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
76
|
Sanna F, Bratzu J, Angioni L, Pina Sorighe M, Cocco C, Argiolas A, Melis MR. Oxytocin-conjugated saporin injected into the substantia nigra of male rats alters the activity of the nigrostriatal dopaminergic system: A behavioral and neurochemical study. Brain Res 2021; 1773:147705. [PMID: 34744015 DOI: 10.1016/j.brainres.2021.147705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Saporin conjugated to oxytocin (OXY-SAP) destroys neurons expressing oxytocinergic receptors. When injected unilaterally in the substantia nigra of male rats, OXY-SAP causes a dose-dependent decrease up to 55 % in nigral Tyrosine Hydroxylase (TH)-immunoreactivity compared to control mock peptide BLANK-SAP- and PBS-treated rats or the contralateral substantia nigra. TH decrease was parallel to a dopamine content decrease in the ipsilateral striatum compared to BLANK-SAP- or PBS-treated rats or the contralateral striatum. OXY-SAP-treated rats showed a small but significant increase of locomotor activity 28 days after intranigral injection in the Open field test compared to BLANK-SAP- or PBS-treated rats, in line with an inhibitory role of nigral oxytocin on locomotor activity. OXY-SAP-, but not BLANK-SAP- or PBS-treated rats, also showed marked dose-dependent rotational turning ipsilateral to the injected substantia nigra when challenged with d-amphetamine, but not with apomorphine. Under isoflurane anesthesia OXY-SAP-treated rats showed levels of extracellular dopamine in the dialysate from the ipsilateral striatum only half those of BLANK-SAP- or PBS-treated rats or the contralateral striatum. When treated with d-amphetamine, OXY-SAP_60/120 rats showed increased extracellular dopamine levels in the dialysate from the ipsilateral striatum two third/one third only of those found in BLANK-SAP- or PBS-treated rats or the contralateral striatum, respectively. These results show that OXY-SAP destroys nigrostriatal dopaminergic neurons expressing oxytocin receptors leading to a reduced striatal dopamine function.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Jessica Bratzu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Laura Angioni
- Department of Biomedical Sciences, Neuro-Endocrine-Fluorescence (NEF) Laboratory, University of Cagliari, Italy.
| | - Maria Pina Sorighe
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Cristina Cocco
- Department of Biomedical Sciences, Neuro-Endocrine-Fluorescence (NEF) Laboratory, University of Cagliari, Italy.
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy; Institute of Neuroscience, National Research Council, Cagliari Section, University of Cagliari, Cagliari, Italy.
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
77
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
78
|
Molska GR, Paula-Freire LIG, Sakalem ME, Köhn DO, Negri G, Carlini EA, Mendes FR. Green coffee extract attenuates Parkinson's-related behaviors in animal models. AN ACAD BRAS CIENC 2021; 93:e20210481. [PMID: 34730624 DOI: 10.1590/0001-3765202120210481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies have shown an inverse association between coffee consumption and the development of Parkinson's disease (PD). The effects of the oral treatment with green (non-roasted) coffee extracts (CE, 100 or 400 mg/kg) and caffeine (31.2 mg/kg) were evaluated on catalepsy induced by haloperidol in mice, and unilateral 6-OHDA lesion of medial forebrain bundle (MFB) or striatum in rats. Also, the in vitro antioxidant activity and the monoamine levels in the striatum were investigated. CE presented a mild antioxidant activity in vitro and its administration decreased the catalepsy index. CE at the dose of 400 mg/kg induced ipsilateral rotations 14 days after lesion; however, chronic 30-day CE and caffeine treatments did not interfere with the animals' rotation after apomorphine or methamphetamine challenges in animals with MFB lesion, nor on monoamines levels. Furthermore, CE and caffeine were effective in inhibiting the asymmetry between ipsilateral and contralateral rotations induced by methamphetamine and apomorphine in animals with lesion in the striatum but did not avoid the monoamines depletion. These results indicate that CE components indirectly modulate dopaminergic transmission, suggesting a pro-dopaminergic action of CE, and further investigation must be conducted to elucidate the mechanisms of action and the possible neuroprotective role in PD.
Collapse
Affiliation(s)
- Graziella R Molska
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil.,Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G6, Canada
| | - Lyvia Izaura G Paula-Freire
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Marna E Sakalem
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Daniele O Köhn
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Giuseppina Negri
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Elisaldo A Carlini
- Universidade Federal de São Paulo, Departamento de Medicina Preventiva, Rua Botucatu, 740, 4º andar, 04024-002 São Paulo, SP, Brazil
| | - Fúlvio R Mendes
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Rua Arcturus, 03, 09606-070 São Bernardo do Campo, SP, Brazil
| |
Collapse
|
79
|
Barón-Quiroz K, García-Ramirez M, Chuc-Meza E. Dopaminergic denervation of the globus pallidus produces short-memory impairment in rats. Physiol Behav 2021; 240:113535. [PMID: 34303714 DOI: 10.1016/j.physbeh.2021.113535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Rats with low-level globus pallidus (GP) dopaminergic denervation can develop anxiety without any motor alterations. The aim of this study was to evaluate the effect of low-level 6-OHDA-induced unilateral and bilateral GP lesions in male Wistar rats (n = 8/group) on recognition memory, motor activity, and the number of TH+ neurons in the SNc. For unilateral- and bilateral-lesioned animals, there was a significant decrease in the number of TH+ neurons (27% and 42%, respectively) and in the object, location, and temporal order discrimination indexes of recognition memory tests. Motor activity was unaffected. Thus, GP dopamine denervation was detrimental to short-memory.
Collapse
Affiliation(s)
- Katia Barón-Quiroz
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticoman, CP 07340, Ciudad de México, México
| | - Martha García-Ramirez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu sn, San Pedro Zacatenco, CP 07738, Ciudad de México, México
| | - Eliezer Chuc-Meza
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu sn, San Pedro Zacatenco, CP 07738, Ciudad de México, México.
| |
Collapse
|
80
|
Herrera ML, Deza-Ponzio R, Ghersi MS, de la Villarmois EA, Virgolini MB, Pérez MF, Molina VA, Bellini MJ, Hereñú CB. Early Cognitive Impairment Behind Nigrostriatal Circuit Neurotoxicity: Are Astrocytes Involved? ASN Neuro 2021; 12:1759091420925977. [PMID: 32466659 PMCID: PMC7263115 DOI: 10.1177/1759091420925977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cognitive dysfunction is one of the most severe nonmotor symptoms of nigrostriatal impairment. This occurs as a result of profound functional and morphological changes of different neuronal circuits, including modifications in the plasticity and architecture of hippocampal synapses. Such alterations can be implicated in the genesis and progression of dementia associated with neurodegenerative diseases including Parkinson-like symptoms. There are few studies regarding cognitive changes in nigrostriatal animal models. The aim of this study was to characterize the onset of memory deficit after induction of neurotoxicity with 6-hydroxydopamine (6-OHDA) and its correlation with hippocampal dysfunction. For this, we bilaterally microinjected 6-OHDA in dorsolateral Caudate-Putamen unit (CPu) and then, animals were tested weekly for working memory, spatial short-term memory, and motor performance. We evaluated tyrosine hydroxylase (TH) as a dopamine marker, aldehyde dehydrogenase 2 (ALDH2), a mitochondria detoxification enzyme and astrocyte glial fibrillar acid protein (GFAP) an immunoreactivity marker involved in different areas: CPu, substantia nigra, prefrontal cortex, and hippocampus. We observed a specific prefrontal cortex and nigrostriatal pathway TH reduction while ALDH2 showed a decrease-positive area in all the studied regions. Moreover, GFAP showed a specific CPu decrease and hippocampus increase of positively stained area on the third week after toxicity. We also evaluated the threshold to induce long-term potentiation in hippocampal excitability. Our findings showed that reduced hippocampal synaptic transmission was accompanied by deficits in memory processes, without affecting motor performance on the third-week post 6-OHDA administration. Our results suggest that 3 weeks after neurotoxic administration, astrocytes and ALDH2 mitochondrial enzyme modifications participate in altering the properties that negatively affect hippocampal function and consequently cognitive behavior.
Collapse
Affiliation(s)
- Macarena L Herrera
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Romina Deza-Ponzio
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Marisa S Ghersi
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Emilce A de la Villarmois
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Miriam B Virgolini
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Mariela F Pérez
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Victor A Molina
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - María J Bellini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Claudia B Hereñú
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| |
Collapse
|
81
|
Curcuma longa extract ameliorates motor and cognitive deficits of 6-hydroxydopamine-infused Parkinson’s disease model rats. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00606-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
82
|
Tanguay W, Ducrot C, Giguère N, Bourque MJ, Trudeau LE. Neonatal 6-OHDA lesion of the SNc induces striatal compensatory sprouting from surviving SNc dopaminergic neurons without VTA contribution. Eur J Neurosci 2021; 54:6618-6632. [PMID: 34470083 DOI: 10.1111/ejn.15437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
Dopamine (DA) neurons of the substantia nigra pars compacta (SNc) are uniquely vulnerable to neurodegeneration in Parkinson's disease (PD). We hypothesize that their large axonal arbor is a key factor underlying their vulnerability, due to increased bioenergetic, proteostatic and oxidative stress. In keeping with this model, other DAergic populations with smaller axonal arbors are mostly spared during the course of PD and are more resistant to experimental lesions in animal models. Aiming to improve mouse PD models, we examined if neonatal partial SNc lesions could lead to adult mice with fewer SNc DA neurons that are endowed with larger axonal arbors because of compensatory mechanisms. We injected 6-hydroxydopamine (6-OHDA) unilaterally in the SNc at an early postnatal stage at a dose selected to induce loss of approximately 50% of SNc DA neurons. We find that at 10 and 90 days after the lesion, the axons of SNc DA neurons show massive compensatory sprouting, as revealed by the proportionally smaller decrease in tyrosine hydroxylase (TH) in the striatum compared with the loss of SNc DA neuron cell bodies. The extent and origin of this axonal sprouting was further investigated by AAV-mediated expression of eYFP in SNc or ventral tegmental area (VTA) DA neurons of adult mice. Our results reveal that SNc DA neurons have the capacity to substantially increase their axonal arbor size and suggest that mice designed to have reduced numbers of SNc DA neurons could potentially be used to develop better mouse models of PD, with elevated neuronal vulnerability.
Collapse
Affiliation(s)
- William Tanguay
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Charles Ducrot
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Giguère
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
83
|
Mitkova Z, Kamusheva M, Kalpachka D, Ignatova D, Tachkov K, Petrova G. Review of medicine utilization for Parkinson's disease management: the Bulgarian perspective. J Public Health Res 2021; 10. [PMID: 34351100 PMCID: PMC8744085 DOI: 10.4081/jphr.2021.2396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/06/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Parkinson’s disease (PD), which occurs in 1% of the population, is the second most common neurodegenerative disorder. Despite the broad spectrum of PD manifestations and high disease prevalence, there are insufficient data on medicine utilization and prescription strategies. The purpose of the current study was to analyze published data concerning treatment approaches and to compare them with Bulgarian therapeutic practice. Design and methods: We conducted a systematic review of the PubMed and Google Scholar databases, and we calculated medicine utilization in Bulgaria during 2018 and 2019 using the WHO methodology. Results: The literature search identified a total of 311 publications, but only 12 met the inclusion criteria. Eleven studies pointed out that levodopa-containing medicine are the most frequently used, followed by dopamine agonists. The highest rate was found for levodopa-containing products and decarboxylase inhibitor (1.06 and 1.33 DDD/1000 inh/day), followed by anticholinergic Biperiden (0.494 and 0.455 DDD/1000 inh/day) during 2018 and 2019 in Bulgaria. Conclusion: Overall, the treatment approaches used in the last decade comply with guideline recommendations, despite variations in levodopa and dopamine agonist utilization. Even though new medicines have been approved for PD management, levodopa- containing products are still most often prescribed and used worldwide. Significance for public health Parkinson’s disease is the second most common neurodegenerative disorder affecting high number of the population. The achieved clinical results and disease control depending on early patients’ diagnostic and treatment. This study emphasizes on medicines utilization and most often used treatment approaches on Parkinson’s disease management. In addition, this is the first study exploring medicines utilization in Bulgaria. The findings reveal real medicines utilization in Bulgaria during 2018-2019 and its comparison with those found in the other countries. Regardless development of new therapies, levodopa-containing products reveals the highest rate of utilization as in most of the compared countries as in Bulgaria
Collapse
Affiliation(s)
- Zornitsa Mitkova
- Department of Organisation and Economy of Pharmacy, Faculty of Pharmacy, Medical University of Sofia.
| | - Maria Kamusheva
- Department of Organisation and Economy of Pharmacy, Faculty of Pharmacy, Medical University of Sofia.
| | | | - Desislava Ignatova
- Department of Psychiatry and Medical Psychology, Medical University of Sofia.
| | - Konstantin Tachkov
- Department of Organisation and Economy of Pharmacy, Faculty of Pharmacy, Medical University of Sofia.
| | - Guenka Petrova
- Department of Organisation and Economy of Pharmacy, Faculty of Pharmacy, Medical University of Sofia.
| |
Collapse
|
84
|
Teruya PY, Farfán FD, Pizá ÁG, Soletta JH, Lucianna FA, Albarracín AL. Quantifying muscle alterations in a Parkinson's disease animal model using electromyographic biomarkers. Med Biol Eng Comput 2021; 59:1735-1749. [PMID: 34297299 DOI: 10.1007/s11517-021-02400-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease currently diagnosed based on characteristic motor dysfunctions. The most common Parkinson's disease animal model induces massive nigrostriatal degeneration by intracerebral infusion of 6-hydroxydopamine (6-OHDA). Motor deficits in rat models of Parkinson's disease were previously addressed in other works. However, an accurate quantification of muscle function in freely moving PD-lesioned rats over time has not been described until now. In this work, we address the muscular activity characterization of a 6-OHDA-lesion model of PD along 6 weeks post-lesion based on spectral and morphological analysis of the signals. Using chronic implanted EMG electrodes in a hindlimb muscle of freely moving rats, we have evaluated the effect of the PD neurotoxic model in the muscular activity during locomotion. EMG signals obtained from animals with different time post-injury were analyzed. Power spectral densities were characterized by the mean and median frequency, and the EMG burst stationarity was previously verified for all animals. Our results show that as the time post-lesion increases both frequency parameters decrease. Probability distribution function analysis was also performed. The results suggest that contractile dynamics of the biceps femoris muscle change with time post-lesion. We have also demonstrated here the usefulness of frequency parameters as biomarkers for monitoring the muscular function changes that could be used for early detection of motor dysfunction.
Collapse
Affiliation(s)
- Pablo Y Teruya
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina
| | - Fernando D Farfán
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Álvaro G Pizá
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Jorge H Soletta
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Facundo A Lucianna
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Ana L Albarracín
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina. .,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
85
|
Ivashko-Pachima Y, Seroogy KB, Sharabi Y, Gozes I. Parkinson Disease-Modification Encompassing Rotenone and 6-Hydroxydopamine Neurotoxicity by the Microtubule-Protecting Drug Candidate SKIP. J Mol Neurosci 2021; 71:1515-1524. [PMID: 34286456 DOI: 10.1007/s12031-021-01876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Encompassing live cell imaging and morphometrics at the microscopical level, we showed here, for the first time, protection of neuronal-like cells by the novel drug candidate, SKIP, against the Parkinson's disease-related neurotoxin, rotenone. Mechanistically, rotenone disrupted microtubule dynamics, which SKIP partially repaired through microtubule end-binding proteins, coupled with increasing neurite branch length. Given the previous association of rotenone toxicity with increased dopaminergic cell death hallmarking Parkinson's disease, we chose an established rat model of 6-hydroxydopamine (6-OHDA) toxicity to initially evaluate SKIP in vivo. SKIP pretreatment showed protection against nigral dopaminergic cell degeneration and improved motor behavior in the forelimb asymmetry test. With Parkinson's disease being a major neurodegenerative disorder, afflicting millions of people globally, and with disease modification challenges, SKIP may hold promise for future therapeutic development.
Collapse
Affiliation(s)
- Yanina Ivashko-Pachima
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Kim B Seroogy
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yehonatan Sharabi
- Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
86
|
Krasko MN, Hoffmeister JD, Schaen-Heacock NE, Welsch JM, Kelm-Nelson CA, Ciucci MR. Rat Models of Vocal Deficits in Parkinson's Disease. Brain Sci 2021; 11:925. [PMID: 34356159 PMCID: PMC8303338 DOI: 10.3390/brainsci11070925] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, degenerative disorder that affects 10 million people worldwide. More than 90% of individuals with PD develop hypokinetic dysarthria, a motor speech disorder that impairs vocal communication and quality of life. Despite the prevalence of vocal deficits in this population, very little is known about the pathological mechanisms underlying this aspect of disease. As such, effective treatment options are limited. Rat models have provided unique insights into the disease-specific mechanisms of vocal deficits in PD. This review summarizes recent studies investigating vocal deficits in 6-hydroxydopamine (6-OHDA), alpha-synuclein overexpression, DJ1-/-, and Pink1-/- rat models of PD. Model-specific changes to rat ultrasonic vocalization (USV), and the effects of exercise and pharmacologic interventions on USV production in these models are discussed.
Collapse
Affiliation(s)
- Maryann N. Krasko
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jesse D. Hoffmeister
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicole E. Schaen-Heacock
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacob M. Welsch
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
| | - Michelle R. Ciucci
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53706, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
87
|
Yang Y, Liu J, Wang Y, Wu X, Li L, Bian G, Li W, Yuan H, Zhang Q. Blockade of pre-synaptic and post-synaptic GABA B receptors in the lateral habenula produces different effects on anxiety-like behaviors in 6-hydroxydopamine hemiparkinsonian rats. Neuropharmacology 2021; 196:108705. [PMID: 34246684 DOI: 10.1016/j.neuropharm.2021.108705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
Although the output of the lateral habenula (LHb) controls the activity of midbrain dopaminergic and serotonergic systems, which are implicated in the pathophysiology of anxiety, it is not known how blockade of GABAB receptors in the region affects anxiety-like behaviors, particularly in Parkinson's disease-related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, led to hyperactivity of LHb neurons and decreased the level of extracellular dopamine (DA) in the basolateral amygdala (BLA) compared to sham-lesioned rats. Intra-LHb injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both groups. Further, intra-LHb injection of CGP36216 decreased the firing rate of the neurons, and increased the GABA/glutamate ratio in the LHb and release of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 increased the firing rate of the neurons and decreased the GABA/glutamate ratio and release of DA and 5-HT in sham-lesioned and the lesioned rats. However, the doses of the antagonists producing these behavioral effects in the lesioned rats were lower than those in sham-lesioned rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in the lesioned rats. Collectively, these findings suggest that pre-synaptic and post-synaptic GABAB receptors in the LHb are involved in the regulation of anxiety-like behaviors, and degeneration of the nigrostriatal pathway up-regulates function and/or expression of these receptors.
Collapse
Affiliation(s)
- Yaxin Yang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiang Wu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Libo Li
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guanyun Bian
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenjuan Li
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Haifeng Yuan
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
88
|
Lyu S, Guo Y, Zhang L, Tang G, Li R, Yang J, Gao S, Li W, Liu J. Downregulation of astroglial glutamate transporter GLT-1 in the lateral habenula is associated with depressive-like behaviors in a rat model of Parkinson's disease. Neuropharmacology 2021; 196:108691. [PMID: 34197892 DOI: 10.1016/j.neuropharm.2021.108691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 01/11/2023]
Abstract
Recent studies show that neuron-glial communication plays an important role in neurological diseases. Particularly, dysfunction of astroglial glutamate transporter GLT-1 has been involved in various neuropsychiatric disorders, including Parkinson's disease (PD) and depression. Our previous studies indicated hyperactivity of neurons in the lateral habenula (LHb) of hemiparkinsonian rats with depressive-like behaviors. Thus, we hypothesized that impaired expression or function of GLT-1 in the LHb might be a potential contributor to LHb hyperactivity, which consequently induces PD-related depression. In the study, unilateral lesions of the substantia nigra pars compacta (SNc) by 6-hydroxydopamine in rats induced depressive-like behaviors and resulted in neuronal hyperactivity as well as increased glutamate levels in the LHb compared to sham-lesioned rats. Intra-LHb injection of GLT-1 inhibitor WAY-213613 induced the depressive-like behaviors in both groups, but the dose producing behavioral effects in the lesioned rats was lower than that of sham-lesioned rats. In the two groups of rats, WAY-213613 increased the firing rate of LHb neurons and extracellular levels of glutamate, and these excitatory effects in the lesioned rats lasted longer than those in sham-lesioned rats. The functional changes of the GLT-1 which primarily expresses in astrocytes in the LHb may attribute to its downregulation after degeneration of the nigrostriatal pathway. Bioinformatics analysis showed that GLT-1 is correlated with various biomarkers of PD and depression risks. Collectively, our study suggests that astroglial GLT-1 in the LHb regulates the firing activity of the neurons, whereupon its downregulation and dysfunction are closely associated with PD-related depression.
Collapse
Affiliation(s)
- Shuxuan Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guoyi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ruotong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Shasha Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Wenjuan Li
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
89
|
Güzelad Ö, Özkan A, Parlak H, Sinen O, Afşar E, Öğüt E, Yıldırım FB, Bülbül M, Ağar A, Aslan M. Protective mechanism of Syringic acid in an experimental model of Parkinson’s disease. Metab Brain Dis 2021; 36:1003-1014. [DOI: https:/doi.org/10.1007/s11011-021-00704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/23/2021] [Indexed: 07/22/2023]
|
90
|
Güzelad Ö, Özkan A, Parlak H, Sinen O, Afşar E, Öğüt E, Yıldırım FB, Bülbül M, Ağar A, Aslan M. Protective mechanism of Syringic acid in an experimental model of Parkinson's disease. Metab Brain Dis 2021; 36:1003-1014. [PMID: 33666819 DOI: 10.1007/s11011-021-00704-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is a widely used chemical to model Parkinson's disease (PD) in rats. Syringic acid (SA) is a polyphenolic compound which has antioxidant and anti-inflammatory properties. The present study aimed to evaluate the neuroprotective role of SA in a rat model of 6-OHDA-induced PD. Parkinson's disease was created by injection of 6-OHDA into the medial forebrain bundle via stereotaxic surgery. Syringic acid was administered daily by oral gavage, before or after surgery. All groups were tested for locomotor activity, rotarod performance and catatony. Dopamine levels in SN were determined by an optimized multiple reaction monitoring method using ultra-fast liquid chromatography coupled with tandem mass spectrometry (MS/MS). The immunoreactivities for tyrosine hydroxylase (TH) and inducible nitric oxide synthase (iNOS) were detected by immunohistochemistry in frozen substantia nigra (SN) sections. Nitrite/nitrate levels, iNOS protein, total oxidant (TOS) and total antioxidant (TAS) status were assayed in SN tissue by standard kits. Motor dysfunction, impaired nigral dopamine release, increased iNOS expression and elevated nitrite/nitrate levels induced by 6-OHDA were significantly restored by SA treatment. Syringic acid significantly improved the loss of nigral TH-positive cells, while increasing TAS capacity and reducing TOS capacity in SN of PD rats. These data conclude that SA is a potential therapeutic agent for the treatment of 6-OHDA-induced rat model of PD. Syringic acid reduced the progression of PD via its neuroprotective, antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Özge Güzelad
- Department of Anatomy, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Ayşe Özkan
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Hande Parlak
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Ebru Afşar
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Eren Öğüt
- Department of Anatomy, School of Medicine, Bahçeşehir University, 34734, İstanbul, Turkey
| | - Fatoş Belgin Yıldırım
- Department of Anatomy, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Aysel Ağar
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Mutay Aslan
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey.
- Department of Medical Biochemistry, Akdeniz University Medical School, 07070, Antalya, Turkey.
| |
Collapse
|
91
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
92
|
Swamy G, Holla R, Rao SR. Establishing the Rotenone-Induced Parkinson's Disease Animal Model in Wistar Albino Rats. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2021. [DOI: 10.1055/s-0041-1726690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Objective The aim of this study was to establish the safe and effective dose of rotenone-induced Parkinson’s disease (PD) in Wistar albino rat.
Materials and Methods Male Wistar albino rats (n = 6) aged between 9 and 11 weeks, weight 200 to 250 g, were selected for the study. Rats were divided into four groups namely, A, B, C, and D; Group A served as control received only isotonic saline, groups B, C, and D were administered with rotenone 2, 2.5, and 3 mg/kg body weight (BW), respectively, with a specialized vehicle through intraperitoneal (IP) route once daily. During the procedure, they were observed for the development of the PD signs such as stooped posture, postural instability, akinesia, bradykinesia, and muscular rigidity. BW and behavioral pattern were recorded before the rotenone introduction and also after the onset of PD signs in them. They were sacrificed when the PD phenotype became debilitating and followed by neurochemical assay for dopamine and antioxidants; histological assay for TH-neuronal density and Lewy bodies were performed in the substantia nigra pars compacta (SNpc) of midbrain.
Results Group C and D animals were developed with the PD signs by the 9th day and also there was a significant decrease in the BW noticed in them. Additionally, histological studies revealed the decrease in neuronal density and the presence of Lewy bodies in the dopamine neurons of the SNpc. However, it was also noticed that the group D had shown more mortality rate when compared with the Group C.
Conclusion Rotenone with 2.5 mg/kg BW IP was an ideal dose to develop PD signs in Wistar albino rats model that is a highly reproducible and may offer an excellent tool to establish the new neuroprotective treatment strategies.
Collapse
Affiliation(s)
- Gangadhara Swamy
- Department of Anatomy, Subbiah Institute of Medical Sciences and Research Center, Shivamogga, Karnataka, India
| | - Rajendra Holla
- Department of Pharmacology, K.S. Hegde Medical Academy, Mangalore, Karnataka, India
| | - Suresh R. Rao
- Department of Anatomy, Subbiah Institute of Medical Sciences and Research Center, Shivamogga, Karnataka, India
| |
Collapse
|
93
|
Binda KH, Lillethorup TP, Real CC, Bærentzen SL, Nielsen MN, Orlowski D, Brooks DJ, Chacur M, Landau AM. Exercise protects synaptic density in a rat model of Parkinson's disease. Exp Neurol 2021; 342:113741. [PMID: 33965411 DOI: 10.1016/j.expneurol.2021.113741] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by Lewy body and neurite pathology associated with dopamine terminal dysfunction. Clinically, it is associated with motor slowing, rigidity, and tremor. Postural instability and pain are also features. Physical exercise benefits PD patients - possibly by promoting neuroplasticity including synaptic regeneration. OBJECTIVES In a parkinsonian rat model, we test the hypotheses that exercise: (a) increases synaptic density and reduces neuroinflammation and (b) lowers the nociceptive threshold by increasing μ-opioid receptor expression. METHODS Brain autoradiography was performed on rats unilaterally injected with either 6-hydroxydopamine (6-OHDA) or saline and subjected to treadmill exercise over 5 weeks. [3H]UCB-J was used to measure synaptic vesicle glycoprotein 2A (SV2A) density. Dopamine D2/3 receptor and μ-opioid receptor availability were assessed with [3H]Raclopride and [3H]DAMGO, respectively, while neuroinflammation was detected with the 18kDA translocator protein (TSPO) marker [3H]PK11195. The nociceptive threshold was determined prior to and throughout the exercise protocol. RESULTS We confirmed a dopaminegic deficit with increased striatal [3H]Raclopride D2/3 receptor availability and reduced nigral tyrosine hydroxylase immunoreactivity in the ipsilateral hemisphere of all 6-OHDA-injected rats. Sedentary rats lesioned with 6-OHDA showed significant reduction of ipsilateral striatal and substantia nigra [3H]UCB-J binding while [3H]PK11195 showed increased ipsilateral striatal neuroinflammation. Lesioned rats who exercised had higher levels of ipsilateral striatal [3H]UCB-J binding and lower levels of neuroinflammation compared to sedentary lesioned rats. Striatal 6-OHDA injections reduced thalamic μ-opioid receptor availability but subsequent exercise restored binding. Exercise also raised thalamic and hippocampal SV2A synaptic density in 6-OHDA lesioned rats, accompanied by a rise in nociceptive threshold. CONCLUSION These data suggest that treadmill exercise protects nigral and striatal synaptic integrity in a rat lesion model of PD - possibly by promoting compensatory mechanisms. Exercise was also associated with reduced neuroinflammation post lesioning and altered opioid transmission resulting in an increased nociceptive threshold.
Collapse
Affiliation(s)
- K H Binda
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - T P Lillethorup
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - C C Real
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Nuclear Medicine (LIM 43), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - S L Bærentzen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - M N Nielsen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark.
| | - D Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University and Department of Neurosurgery, Aarhus University Hospital, Aarhus N, 8200, Denmark.
| | - D J Brooks
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Institute for Translational and Clinical Research, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - M Chacur
- Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - A M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| |
Collapse
|
94
|
Liu W, Zhang R, Feng H, Zhu H. Fluoxetine tunes the abnormal hippocampal oscillations in association with cognitive impairments in 6-OHDA lesioned rats. Behav Brain Res 2021; 409:113314. [PMID: 33894299 DOI: 10.1016/j.bbr.2021.113314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Cognitive decline is a common clinical symptom in Parkinson's disease (PD) patients. Fluoxetine (FLU), a selective serotonin reuptake inhibitor, can improve cognitive deficits in demented patients. The present study investigated the effects of FLU on spatial learning and memory cognitions in 6-OHDA lesioned rats. Morris water maze (MWM) test showed that FLU significantly improved spatial cognitive deficits in rats with unilateral 6-OHDA injection at 4 and 7 weeks after 6-OHDA injection. Electrophysiological recordings demonstrated that the number and duration of high voltage spindles(HVSs)in the ipsilateral hippocampus of 6-OHDA lesioned rats were decreased by the administration of FLU. Furthermore, the spectral analysis of per frequency revealed increases in δ and θ rhythm power and decreases in α, β and γ rhythm power in the ipsilateral hippocampus of 6-OHDA lesioned rats in contrast to the saline-treated rats. Acute FLU treatment can reduce δ and θ rhythm power, and enhance α, β and γ rhythm power in the ipsilateral hippocampus of 6-OHDA lesioned rats. These findings suggest that FLU improves impaired cognition by tuning oscillatory activities in the hippocampus of 6-OHDA lesioned rats.
Collapse
Affiliation(s)
- Weitang Liu
- School of Life Science, Shanghai University, Shanghai, China
| | - Renxing Zhang
- School of Life Science, Shanghai University, Shanghai, China
| | - Hu Feng
- School of Life Science, Shanghai University, Shanghai, China
| | - Hongyan Zhu
- School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
95
|
Liang LP, Fulton R, Bradshaw-Pierce EL, Pearson-Smith J, Day BJ, Patel M. Optimization of Lipophilic Metalloporphyrins Modifies Disease Outcomes in a Rat Model of Parkinsonism. J Pharmacol Exp Ther 2021; 377:1-10. [PMID: 33500265 DOI: 10.1124/jpet.120.000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress plays a crucial role in the pathogenesis of Parkinson disease (PD), and one strategy for neuroprotective therapy for PD is to scavenge reactive species using a catalytic antioxidant. Previous studies in our laboratory revealed that pretreatment of lipophilic metalloporphyrins showed protective effects in a mouse PD model. In this study, we optimized the formulations of these metalloporphyrins to deliver them orally and tested their efficacy on disease outcomes in a second species after initiation of an insult (i.e., disease modification). In this study, a pharmaceutical formulation of two metalloporphyrin catalytic antioxidants, AEOL11207 and AEOL11114, was tested for oral drug delivery. Both compounds showed gastrointestinal absorption, achieved high plasma concentrations, and readily penetrated the blood-brain barrier after intravenous or oral delivery. AEOL11207 and AEOL11114 bioavailabilities were calculated to be 24% and 25%, respectively, at a dose of 10 mg/kg via the oral route. In addition, both compounds significantly attenuated 6-hydroxydopamine (6-OHDA)-induced neurotoxic damage, including dopamine depletion, cytokine production, and microglial activation in the striata; dopaminergic neuronal loss in the substantia nigra; oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain; and rotation behavioral abnormality in rats. These results indicate that AEOL11207 and AEOL11114 are orally active metalloporphyrins and protect against 6-OHDA neurotoxicity 1-3 days postlesioning, suggesting disease-modifying properties and translational potential for PD. SIGNIFICANCE STATEMENT: Two catalytic antioxidants showed gastrointestinal absorption, achieved high plasma concentrations, and readily penetrated the blood-brain barrier. Both compounds significantly attenuated dopamine depletion, cytokine production, microglial activation, dopaminergic neuronal loss, oxidative/nitrative stress indices, and behavioral abnormality in a Parkinson disease rat model. The results suggest that both metalloporphyrins possess disease-modifying properties that may be useful in treating Parkinson disease.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Ruth Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Erica L Bradshaw-Pierce
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Jennifer Pearson-Smith
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| |
Collapse
|
96
|
Salvi C, Leiker EK, Baricca B, Molinari MA, Eleopra R, Nichelli PF, Grafman J, Dunsmoor JE. The Effect of Dopaminergic Replacement Therapy on Creative Thinking and Insight Problem-Solving in Parkinson's Disease Patients. Front Psychol 2021; 12:646448. [PMID: 33763005 PMCID: PMC7984162 DOI: 10.3389/fpsyg.2021.646448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease (PD) patients receiving dopaminergic treatment may experience bursts of creativity. Although this phenomenon is sometimes recognized among patients and their clinicians, the association between dopamine replacement therapy (DRT) in PD patients and creativity remains underexplored. It is unclear, for instance, whether DRT affects creativity through convergent or divergent thinking, idea generation, or a general lack of inhibition. It is also unclear whether DRT only augments pre-existing creative attributes or generates creativity de novo. Here, we tested a group of PD patients when “on” and “off” dopaminergic treatment on a series of tests of creative problem-solving (Alternative Uses Task, Compound Remote Associates, Rebus Puzzles), and related their performance to a group of matched healthy controls as well as to their pre-PD creative skills and measures of inhibition/impulsivity. Results did not provide strong evidence that DRT improved creative thinking in PD patients. Rather, PD patients “on” medication showed less flexibility in divergent thinking, generated fewer ideas via insight, and showed worse performance in convergent thinking overall (by making more errors) than healthy controls. Pre-PD creative skills predicted enhanced flexibility and fluency in divergent thinking when PD patients were “on” medication. However, results on convergent thinking were mixed. Finally, PD patients who exhibited deficits in a measure of inhibitory control showed weaker convergent thinking while “on” medication, supporting previous evidence on the importance of inhibitory control in creative problem-solving. Altogether, results do not support the hypothesis that DRT promotes creative thinking in PD. We speculate that bursts of artistic production in PD are perhaps conflated with creativity due to lay conceptions of creativity (i.e., an art-bias).
Collapse
Affiliation(s)
- Carola Salvi
- Department of Psychiatry, University of Texas at Austin, Austin, TX, United States
| | - Emily K Leiker
- Department of Psychiatry, University of Texas at Austin, Austin, TX, United States
| | - Beatrix Baricca
- Neurology Clinic, Department of Neuroscience, Ospedale Civile S. Agostino Estense, Modena University Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria A Molinari
- Neurology Clinic, Department of Neuroscience, Ospedale Civile S. Agostino Estense, Modena University Hospital, University of Modena and Reggio Emilia, Modena, Italy.,Department of Psychology, University of Bologna, Bologna, Italy
| | - Roberto Eleopra
- Movement Disorders Unit at the IRCCS "Carlo Besta" Neurological Institute of Milan, Milan, Italy
| | - Paolo F Nichelli
- Neurology Clinic, Department of Neuroscience, Ospedale Civile S. Agostino Estense, Modena University Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Jordan Grafman
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Neurology, Cognitive Neurology, Alzheimer's Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph E Dunsmoor
- Department of Psychiatry, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
97
|
Li X, Si W, Li Z, Tian Y, Liu X, Ye S, Huang Z, Ji Y, Zhao C, Hao X, Chen D, Zhu M. miR‑335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson's disease. Int J Mol Med 2021; 47:61. [PMID: 33649797 PMCID: PMC7910012 DOI: 10.3892/ijmm.2021.4894] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN). In a previous study, the authors demonstrated that ferritin heavy chain 1 (FTH1) inhibited ferroptosis in a model of 6-hydroxydopamine (6-OHDA)-induced PD. However, whether and how microRNAs (miRNAs/miRs) modulate FTH1 in PD ferroptosis is not yet well understood. In the present study, in vivo and in vitro models of PD induced by 6-OHDA were established. The results in vivo and in vitro revealed that the levels of the ferroptosis marker protein, glutathione peroxidase 4 (GPX4), and the PD marker protein, tyrosine hydroxylase (TH), were decreased in the model group, associated with a decreased FTH1 expression and the upregulation of miR-335. In both the in vivo and in vitro models, miR-335 mimic led to a lower FTH1 expression, exacerbated ferroptosis and an enhanced PD pathology. The luciferase 3′-untranslated region reporter results identified FTH1 as the direct target of miR-335. The silencing of FTH1 in 6-OHDA-stimulated cells enhanced the effects of miR-335 on ferroptosis and promoted PD pathology. Mechanistically, miR-335 enhanced ferroptosis through the degradation of FTH1 to increase iron release, lipid peroxidation and reactive oxygen species (ROS) accumulation, and to decrease mitochondrial membrane potential (MMP). On the whole, the findings of the present study reveal that miR-335 promotes ferroptosis by targeting FTH1 in in vitro and in vivo models of PD, providing a potential therapeutic target for the treatment of PD.
Collapse
Affiliation(s)
- Xinrong Li
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Wenwen Si
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Zhan Li
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510010, P.R. China
| | - Ye Tian
- Baoan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518101, P.R. China
| | - Xuelei Liu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shanyu Ye
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Yichun Ji
- Baoan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518101, P.R. China
| | - Caiping Zhao
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| |
Collapse
|
98
|
Vecchia DD, Kanazawa LKS, Wendler E, Hocayen PDAS, Vital MABF, Takahashi RN, Da Cunha C, Miyoshi E, Andreatini R. Ketamine reversed short-term memory impairment and depressive-like behavior in animal model of Parkinson's disease. Brain Res Bull 2021; 168:63-73. [PMID: 33359641 DOI: 10.1016/j.brainresbull.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
The most common features of Parkinson's disease (PD) are motor impairments, but many patients also present depression and memory impairment. Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has been shown to be effective in patients with treatment-resistant major depression. Thus, the present study evaluated the action of ketamine on memory impairment and depressive-like behavior in an animal model of PD. Male Wistar rats received a bilateral infusion of 6 μg/side 6-hydroxydopamine (6-OHDA) into the substantia nigra pars compacta (SNc). Short-term memory was evaluated by the social recognition test, and depressive-like behaviors were evaluated by the sucrose preference and forced swimming tests (FST). Drug treatments included vehicle (i.p., once a week); ketamine (5, 10 and 15 mg/kg, i.p., once a week); and imipramine (20 mg/kg, i.p., daily). The treatments were administered 21 days after the SNc lesion and lasted for 28 days. The SNc lesion impaired short-term social memory, and all ketamine doses reversed the memory impairment and anhedonia (reduction of sucrose preference) induced by 6-OHDA. In the FST, 6-OHDA increased immobility, and all doses of ketamine and imipramine reversed this effect. The anti-immobility effect of ketamine was associated with an increase in swimming but not in climbing, suggesting a serotonergic effect. Ketamine and imipramine did not reverse the 6-OHDA-induced reduction in tyrosine hydroxylase immunohistochemistry in the SNc. In conclusion, ketamine reversed depressive-like behaviors and short-term memory impairment in rats with SNc bilateral lesions, indicating a promising profile for its use in PD patients.
Collapse
Affiliation(s)
- Débora Dalla Vecchia
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil; Uniandrade, Centro Universitário Campos de Andrade, Santa Quiteria, 80310-310, Curitiba, PR, Brazil
| | - Luiz Kae Sales Kanazawa
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Etiéli Wendler
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil; Uniandrade, Centro Universitário Campos de Andrade, Santa Quiteria, 80310-310, Curitiba, PR, Brazil
| | - Palloma de Almeida Soares Hocayen
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Maria Aparecida Barbato Frazão Vital
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Reinaldo Naoto Takahashi
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Trindade, 88049-900, Florianópolis, SC, Brazil
| | - Claudio Da Cunha
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Edmar Miyoshi
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Avenida General Carlos Cavalcanti 4748, 84030-900, Ponta Grossa, PR, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
99
|
Apetz N, Paralikar K, Neumaier B, Drzezga A, Wiedermann D, Iyer R, Munns G, Scott E, Timmermann L, Endepols H. Towards chronic deep brain stimulation in freely moving hemiparkinsonian rats: Applicability and functionality of a fully implantable stimulation system. J Neural Eng 2021; 18. [PMID: 33607640 DOI: 10.1088/1741-2552/abe806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 12/23/2022]
Abstract
Objective This study aimed at investigating a novel fully implantable deep brain stimulation system and its ability to modulate brain metabolism and behavior through subthalamic nucleus stimulation in a hemiparkinsonian rat model. Approach Twelve male rats were unilaterally lesioned with 6-hydroxydopamine in the medial forebrain bundle and received a fully implantable deep brain stimulation system aiming at the ipsilesional subthalamic nucleus. Each rat underwent three cylinder tests to analyze front paw use: A PRE test before any surgical intervention, an OFF test after surgery but before stimulation onset and an ON test under deep brain stimulation. To visualize brain glucose metabolism in the awake animal, two [18F]FDG scans were conducted in the OFF and ON condition. At least four weeks after surgery, an [18F]FDOPA scan was used to check for dopaminergic integrity. Main results In general, STN DBS increased [18F]FDG uptake ipsilesionally and decreased it contralesionally. More specifically, bilateral orbitofrontal cortex, ipsilateral caudate putamen, sensorimotor cortex and nucleus accumbens showed significantly higher tracer uptake in ON compared to OFF condition. Contralateral cingulate and secondary motor cortex, caudate putamen, amygdala, hippocampus, retrosplenial granular cortex, superior colliculus, and parts of the cerebellum exhibited significantly higher [18F]FDG uptake in the OFF condition. On the behavioral level, stimulation was able improve use of the contralesional affected front paw suggesting an effective stimulation produced by the implanted system. Significance The fully implantable stimulation system developed by us and presented here offers the output of arbitrary user-defined waveforms, patterns and stimulation settings and allows tracer accumulation in freely moving animals. It is therefore a suitable device for implementing behavioral PET studies. It contributes immensely to the possibilities to characterize and unveil the effects and mechanisms of deep brain stimulation offering valuable clues for future improvements of this therapy.
Collapse
Affiliation(s)
- Nadine Apetz
- Institute of Radiochemistry and Experimental Molegular Imaging, University Hospital Cologne, Kerpener Str. 62, Koln, Nordrhein-Westfalen, 50937, GERMANY
| | - Kunal Paralikar
- Medtronic Inc, 7000 Central Avenue NE Friedley, Minneapolis, Minnesota, 55432-5604, UNITED STATES
| | - Bernd Neumaier
- Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, Julich, Nordrhein-Westfalen, 52428, GERMANY
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Kerpener Str. 62, Koln, Nordrhein-Westfalen, 50937, GERMANY
| | - Dirk Wiedermann
- Multimodal Imaging Group, Max Planck Institute for Metabolism Research, Gleueler Str. 50, Köln, 50931, GERMANY
| | - Rajesh Iyer
- Medtronic Inc, 7000 Central Avenue NE Fridley, Minneapolis, Minnesota, 55432-5604, UNITED STATES
| | - Gordon Munns
- Medtronic Inc, 7000 Central Avenue NE Friedley, Minneapolis, Minnesota, 55432-5604, UNITED STATES
| | - Erik Scott
- Medtronic Inc, 7000 Central Avenue NE Friedley, Minneapolis, Minnesota, 55432-5604, UNITED STATES
| | - Lars Timmermann
- Department of Neurology, University Hospital Marburg Center of Neurology, Baldingerstraße, Marburg, Hessen, 35039, GERMANY
| | - Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital Cologne, Kerpener Str. 62, Koln, Nordrhein-Westfalen, 50937, GERMANY
| |
Collapse
|
100
|
Pantic I, Cumic J, Skodric SR, Dugalic S, Brodski C. Oxidopamine and oxidative stress: Recent advances in experimental physiology and pharmacology. Chem Biol Interact 2021; 336:109380. [PMID: 33450287 DOI: 10.1016/j.cbi.2021.109380] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/01/2021] [Accepted: 01/10/2021] [Indexed: 12/20/2022]
Abstract
Oxidopamine (6-hydroxydopamine, 6-OHDA) is a toxin commonly used for the creation of experimental animal models of Parkinson's disease, attention-deficit hyperactivity disorder, and Lesch-Nyhan syndrome. Its exact mechanism of action is not completely understood, although there are many indications that it is related to the generation of reactive oxygen species (ROS), primarily in dopaminergic neurons. In certain experimental conditions, oxidopamine may also cause programmed cell death via various signaling pathways. Oxidopamine may also have a significant impact on chromatin structure and nuclear structural organization in some cells. Today, many researchers use oxidopamine-associated oxidative damage to evaluate different antioxidant-based pharmacologically active compounds as drug candidates for various neurological and non-neurological diseases. Additional research is needed to clarify the exact biochemical pathways associated with oxidopamine toxicity, related ROS generation and apoptosis. In this short review, we focus on the recent research in experimental physiology and pharmacology, related to the cellular and animal experimental models of oxidopamine - mediated toxicity.
Collapse
Affiliation(s)
- Igor Pantic
- University of Belgrade, Faculty of Medicine, Dr Subotica 8, RS-11129, Belgrade, Serbia; University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa, IL-3498838, Israel; Institute of medical physiology, Visegradska 26/II, RS-11129, Belgrade, Serbia.
| | - Jelena Cumic
- University of Belgrade, Faculty of Medicine, Dr Subotica 8, RS-11129, Belgrade, Serbia; Clinical Center of Serbia, Dr. KosteTodorovića 8, RS-11129, Belgrade, Serbia
| | | | - Stefan Dugalic
- Clinical Center of Serbia, Dr. KosteTodorovića 8, RS-11129, Belgrade, Serbia
| | - Claude Brodski
- Ben-Gurion University of the Negev, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Department of Physiology and Cell Biology, P.O.B. 653, Beersheba, Israel
| |
Collapse
|