51
|
Fukuhara S, Zhang J, Yuge S, Ando K, Wakayama Y, Sakaue-Sawano A, Miyawaki A, Mochizuki N. Visualizing the cell-cycle progression of endothelial cells in zebrafish. Dev Biol 2014; 393:10-23. [PMID: 24975012 DOI: 10.1016/j.ydbio.2014.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
The formation of vascular structures requires precisely controlled proliferation of endothelial cells (ECs), which occurs through strict regulation of the cell cycle. However, the mechanism by which EC proliferation is coordinated during vascular formation remains largely unknown, since a method of analyzing cell-cycle progression of ECs in living animals has been lacking. Thus, we devised a novel system allowing the cell-cycle progression of ECs to be visualized in vivo. To achieve this aim, we generated a transgenic zebrafish line that expresses zFucci (zebrafish fluorescent ubiquitination-based cell cycle indicator) specifically in ECs (an EC-zFucci Tg line). We first assessed whether this system works by labeling the S phase ECs with EdU, then performing time-lapse imaging analyses and, finally, examining the effects of cell-cycle inhibitors. Employing the EC-zFucci Tg line, we analyzed the cell-cycle progression of ECs during vascular development in different regions and at different time points and found that ECs proliferate actively in the developing vasculature. The proliferation of ECs also contributes to the elongation of newly formed blood vessels. While ECs divide during elongation in intersegmental vessels, ECs proliferate in the primordial hindbrain channel to serve as an EC reservoir and migrate into basilar and central arteries, thereby contributing to new blood vessel formation. Furthermore, while EC proliferation is not essential for the formation of the basic framework structures of intersegmental and caudal vessels, it appears to be required for full maturation of these vessels. In addition, venous ECs mainly proliferate in the late stage of vascular development, whereas arterial ECs become quiescent at this stage. Thus, we anticipate that the EC-zFucci Tg line can serve as a tool for detailed studies of the proliferation of ECs in various forms of vascular development in vivo.
Collapse
Affiliation(s)
- Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan.
| | - Jianghui Zhang
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Shinya Yuge
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Koji Ando
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Yuki Wakayama
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan; Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan; Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan; JST-CREST, Tokyo, Japan.
| |
Collapse
|
52
|
Alam S, Bowser BS, Israr M, Conway MJ, Meyers C. Adeno-associated virus type 2 infection of nude mouse human breast cancer xenograft induces necrotic death and inhibits tumor growth. Cancer Biol Ther 2014; 15:1013-28. [PMID: 24834917 DOI: 10.4161/cbt.29172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have previously reported that infection with the non-pathogenic, tumor suppressive, wild-type adeno-associated virus type 2 (AAV2) inhibited proliferation of breast cancer-derived lines representing both weakly invasive (MCF-7 and MDA-MB-468), as well as aggressive (MDA-MB-231) cancer types. AAV2-induced death occurred via targeting pathways of apoptosis and necrosis. In contrast, normal human mammary epithelial cells were unaffected upon AAV2 infection. The current study characterizes AAV2 infection and subsequent death of the highly aggressive, triple-negative (ER(-)/PR(-)/HER2(-)) MDA-MB-435 cell line derived from metastatic human breast carcinoma. Monolayer MDA-MB-435 cultures infected with AAV2 underwent complete apoptotic cell death characterized by activation of caspases -7, -8, and -9 and PARP cleavage. Death was further correlated with active AAV2 genome replication and differential expression of viral non-structural proteins Rep78 and Rep52. Cell death coincided with increased entry into S and G 2 phases, upregulated expression of the proliferation markers Ki-67 and the monomeric form of c-Myc. Expression of the p16(INK4), p27(KIP1), p21(WAF1), and p53 tumor suppressors was downregulated, indicating marked S phase progression, but sharply contrasted with hypo-phosphorylated pRb. In parallel, MDA-MB-435 breast tumor xenografts which received intratumoral injections of AAV2 were growth retarded, displayed extensive areas of necrosis, and stained positively for c-Myc as well as cleaved caspase-8. Therefore, AAV2 induced death of MDA-MB-435 xenografts was modulated through activation of caspase-regulated death pathways in relation to signals for cell cycle controls. Our findings provide foundational studies for development of novel AAV2 based therapeutics for treating aggressive, triple-negative breast cancer types.
Collapse
Affiliation(s)
- Samina Alam
- Department of Microbiology and Immunology; The Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Brian S Bowser
- Department of Microbiology and Immunology; The Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Mohd Israr
- Department of Microbiology and Immunology; The Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Michael J Conway
- Department of Microbiology and Immunology; The Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Craig Meyers
- Department of Microbiology and Immunology; The Pennsylvania State University College of Medicine; Hershey, PA USA
| |
Collapse
|
53
|
Li L, Wang ZV, Hill JA, Lin F. New autophagy reporter mice reveal dynamics of proximal tubular autophagy. J Am Soc Nephrol 2014; 25:305-15. [PMID: 24179166 PMCID: PMC3904563 DOI: 10.1681/asn.2013040374] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/06/2013] [Indexed: 11/03/2022] Open
Abstract
The accumulation of autophagosomes in postischemic kidneys may be renoprotective, but whether this accumulation results from the induction of autophagy or from obstruction within the autophagic process is unknown. Utilizing the differential pH sensitivities of red fluorescent protein (RFP; pKa 4.5) and enhanced green fluorescent protein (EGFP; pKa 5.9), we generated CAG-RFP-EGFP-LC3 mice to distinguish early autophagic vacuoles from autolysosomes. In vitro and in vivo studies confirmed that in response to nutrient deprivation, renal epithelial cells in CAG-RFP-EGFP-LC3 mice produce autophagic vacuoles expressing RFP and EGFP puncta. EGFP fluorescence diminished substantially in the acidic environment of the autolysosomes, whereas bright RFP signals remained. Under normal conditions, nephrons expressed few EGFP and RFP puncta, but ischemia-reperfusion injury (IRI) led to dynamic changes in the proximal tubules, with increased numbers of RFP and EGFP puncta that peaked at 1 day after IRI. The number of EGFP puncta returned to control levels at 3 days after IRI, whereas the high levels of RFP puncta persisted, indicating autophagy initiation at day 1 and autophagosome clearance during renal recovery at day 3. Notably, proliferation decreased in cells containing RFP puncta, suggesting that autophagic cells are less likely to divide for tubular repair. Furthermore, 87% of proximal tubular cells with activated mechanistic target of rapamycin (mTOR), which prevents autophagy, contained no RFP puncta. Conversely, inhibition of mTOR complex 1 induced RFP and EGFP expression and decreased cell proliferation. In summary, our results highlight the dynamic regulation of autophagy in postischemic kidneys and suggest a role of mTOR in autophagy resolution during renal repair.
Collapse
Affiliation(s)
- Ling Li
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York; and
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, and
| | - Joseph A. Hill
- Division of Cardiology, Department of Internal Medicine, and
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Fangming Lin
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York; and
| |
Collapse
|
54
|
Van der Kwast TH. Prognostic prostate tissue biomarkers of potential clinical use. Virchows Arch 2014; 464:293-300. [PMID: 24487790 DOI: 10.1007/s00428-014-1540-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/02/2014] [Accepted: 01/08/2014] [Indexed: 01/02/2023]
Abstract
In prostate biopsies and in prostatectomy specimens, the Gleason score remains the strongest prognosticator of prostate cancer progression, in addition to serum PSA level and DRE findings, in spite of numerous potential biomarkers discovered during the last few decades. Inter- and intratumoural heterogeneity may have limited the employment of tissue biomarkers on prostate biopsies. Nevertheless, the monoclonality of morphologically heterogeneous (Gleason score 7) tumour foci would suggest that genetic biomarkers, arising early in prostate carcinogenesis, may overcome issues related to intratumoural heterogeneity. In spite of the above limitations, a few biomarkers including the proliferation marker Ki-67 and genetic markers such as c-MYC and PTEN have consistently shown their independent prognostic impact both for biochemical recurrence and for clinical outcome parameters such as metastatic disease or prostate-specific mortality. The routine application of biomarkers requiring immunostaining (e.g. Ki-67) has particularly been hindered by the lack of standardized protocols for processing and scoring, while the application of fluorescence in situ hybridization (FISH) technology is considered more labour intensive but better standardized. Future steps to enhance the uptake of prostate tissue biomarkers should be focused on prospective studies, particularly on prostate biopsy specimens, using protocols that are highly standardized for the processing and scoring of the biomarkers. A few recently developed RNA-based test signatures may provide an alternative to FISH or immunohistochemistry-based tests.
Collapse
Affiliation(s)
- Theodorus H Van der Kwast
- Department of Pathology, Princess Margaret Cancer Center and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,
| |
Collapse
|
55
|
Wang J, Lu Z, Yeung BZ, Wientjes MG, Cole DJ, Au JLS. Tumor priming enhances siRNA delivery and transfection in intraperitoneal tumors. J Control Release 2014; 178:79-85. [PMID: 24462901 DOI: 10.1016/j.jconrel.2014.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/22/2022]
Abstract
Cancers originating from the digestive system account for 290,000 or ~20% of all new cancer cases annually in the US. We previously developed paclitaxel-loaded tumor-penetrating microparticles (TPM) for intraperitoneal (IP) treatment of peritoneal tumors (Lu et al., 2008; Tsai et al., 2007; Tsai et al., 2013). TPM is undergoing NIH-supported IND-enabling studies for clinical evaluation. The present study evaluated the hypothesis that TPM, via inducing apoptosis and expanding the interstitial space, promotes the delivery and transfection of lipid vectors containing siRNA. The in vivo model was the metastatic human Hs766T pancreatic tumor that, upon IP injection, produced widely distributed solid tumors and ascites in the peritoneal cavity in 100% of animals. The target gene was survivin, an anti-apoptotic protein induced by chemotherapy and associated with metastases and poor prognosis of patients with gastric and colorectal cancers. The siRNA carrier was pegylated liposomes comprising cationic and neutral lipids plus a fusogenic lipid (PCat). PCat-loaded with survivin siRNA (PCat-siSurvivin) was active in cultured cells (decreased survivin mRNA and protein levels, reduced cell clonogenicity, enhanced paclitaxel activity), but lost its activity in vivo; this difference is consistent with the well-known problem of inadequate delivery and transfection of siRNA in vivo. In comparison, single agent TPM prolonged animal survival and, as expected, induced survivin expression in tumors. Addition of PCat-siSurvivin reversed the TPM-induced survivin expression and enhanced the antitumor activity of TPM. The finding that in vivo survivin knockdown by PCat-siSurvivin was successful only when it was given in combination with TPM provides the proof-of-concept that tumor priming promotes the delivery and transfection of liposomal siRNA. The data further suggest the TPM/PCat-siSurvivin combination as a potentially useful chemo-gene therapy for peritoneal cancer.
Collapse
Affiliation(s)
- Jie Wang
- Optimum Therapeutics LLC, 9363 Towne Centre Drive, Suite 110, San Diego 92121, USA
| | - Ze Lu
- Optimum Therapeutics LLC, 9363 Towne Centre Drive, Suite 110, San Diego 92121, USA
| | - Bertrand Z Yeung
- Optimum Therapeutics LLC, 9363 Towne Centre Drive, Suite 110, San Diego 92121, USA; College of Pharmacy, The Ohio State University, Columbus 43210, USA
| | - M Guillaume Wientjes
- Optimum Therapeutics LLC, 9363 Towne Centre Drive, Suite 110, San Diego 92121, USA; College of Pharmacy, The Ohio State University, Columbus 43210, USA
| | - David J Cole
- Medical University of South Carolina, Charleston 29425, USA
| | - Jessie L-S Au
- Optimum Therapeutics LLC, 9363 Towne Centre Drive, Suite 110, San Diego 92121, USA; College of Pharmacy, The Ohio State University, Columbus 43210, USA; Medical University of South Carolina, Charleston 29425, USA.
| |
Collapse
|
56
|
Novitskaya T, McDermott L, Zhang KX, Chiba T, Paueksakon P, Hukriede NA, de Caestecker MP. A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury. Am J Physiol Renal Physiol 2013; 306:F496-504. [PMID: 24370591 DOI: 10.1152/ajprenal.00534.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phenylthiobutanoic acids (PTBAs) are a new class of histone deacetylase (HDAC) inhibitors that accelerate recovery and reduce postinjury fibrosis after ischemia-reperfusion-induced acute kidney injury. However, unlike the more common scenario in which patients present with protracted and less clearly defined onset of renal injury, this model of acute kidney injury gives rise to a clearly defined injury that begins to resolve over a short period of time. In these studies, we show for the first time that treatment with the PTBA analog methyl-4-(phenylthio)butanoate (M4PTB) accelerates recovery and reduces postinjury fibrosis in a progressive model of acute kidney injury and renal fibrosis that occurs after aristolochic acid injection in mice. These effects are apparent when M4PTB treatment is delayed 4 days after the initiating injury and are associated with increased proliferation and decreased G2/M arrest of regenerating renal tubular epithelial cells. In addition, there is reduced peritubular macrophage infiltration and decreased expression of the macrophage chemokines CX3Cl1 and CCL2. Since macrophage infiltration plays a role in promoting kidney injury, and since renal tubular epithelial cells show defective repair and a marked increase in maladaptive G2/M arrest after aristolochic acid injury, these findings suggest M4PTB may be particularly beneficial in reducing injury and enhancing intrinsic cellular repair even when administered days after aristolochic acid ingestion.
Collapse
Affiliation(s)
- Tatiana Novitskaya
- Vanderbilt Univ. Medical Center, Dept. of Medicine, Div. of Nephrology, S3223 Medical Center North, 1161 21st Ave. South, Nashville, TN 37232.
| | | | | | | | | | | | | |
Collapse
|
57
|
Barrera-Chimal J, Pérez-Villalva R, Ortega JA, Uribe N, Gamba G, Cortés-González C, Bobadilla NA. Intra-renal transfection of heat shock protein 90 alpha or beta (Hsp90α or Hsp90β) protects against ischemia/reperfusion injury. Nephrol Dial Transplant 2013; 29:301-12. [PMID: 24166465 DOI: 10.1093/ndt/gft415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We previously reported that radicicol (Hsp90 inhibitor) induced a reduction in the renal blood flow and glomerular filtration rate, in part due to a reduction in urinary NO2/NO3 excretion, suggesting that Hsp90 regulates renal vascular tone in physiological conditions. However, there is a lack of information concerning Hsp90α or Hsp90β role on eNOS activity and their association with acute kidney injury (AKI) characterized by an inadequate NO production. This study evaluated the effects of Hsp90α or Hsp90β intra-renal transfection under ischemia/reperfusion (IR) injury. METHODS Uninephrectomized (Nx) rats were intra-renally transfected through injections with Hsp90α or Hsp90β cloned into pcDNA3.1(+) or empty vector (EV) at 48 h before inducing IR, as indicated in the following groups: (i) Nx+sham, (ii) Nx+IR, (iii) Nx+IR+EV, (iv) Nx+IR+Hsp90α and (v) Nx+IR+Hsp90β. After 24 h, physiological, histopathological, biochemical and molecular studies were performed. RESULTS IR-induced renal dysfunction, structural injury, tubular proliferation, the elevation of urinary Hsp72 and the reduction of urinary NO2/NO3 excretion. These alterations were associated with reduced eNOS-Hsp90 coupling and changes in the eNOS phosphorylation state mediated through a reduction in PKCα and increased Rho kinase expression. In contrast, intra-renal transfection of Hsp90α or Hsp90β prevented IR injury that was associated with the restoration of eNOS-Hsp90 coupling, eNOS activating phosphorylation and PKCα and Rho kinase levels. CONCLUSIONS Here we showed that eNOS-Hsp90 uncoupling plays a critical role in promoting NO reduction during IR. This effect was effectively reversed through Hsp90α or Hsp90β intra-renal transfection, suggesting their implication in regulating NO/eNOS pathway and the renal vascular tone.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
58
|
Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci U S A 2013; 111:1527-32. [PMID: 24127583 DOI: 10.1073/pnas.1310653110] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Whether kidney proximal tubule harbors a scattered population of epithelial stem cells is a major unsolved question. Lineage-tracing studies, histologic characterization, and ex vivo functional analysis results conflict. To address this controversy, we analyzed the lineage and clonal behavior of fully differentiated proximal tubule epithelial cells after injury. A CreER(T2) cassette was knocked into the sodium-dependent inorganic phosphate transporter SLC34a1 locus, which is expressed only in differentiated proximal tubule. Tamoxifen-dependent recombination was absolutely specific to proximal tubule. Clonal analysis after injury and repair showed that the bulk of labeled cells proliferate after injury with increased clone size after severe compared with mild injury. Injury to labeled proximal tubule epithelia induced expression of CD24, CD133, vimentin, and kidney-injury molecule-1, markers of putative epithelial stem cells in the human kidney. Similar results were observed in cultured proximal tubules, in which labeled clones proliferated and expressed dedifferentiation and injury markers. When mice with completely labeled kidneys were subject to injury and repair there was no dilution of fate marker despite substantial proliferation, indicating that unlabeled progenitors do not contribute to kidney repair. During nephrogenesis and early kidney growth, single proximal tubule clones expanded, suggesting that differentiated cells also contribute to tubule elongation. These findings provide no evidence for an intratubular stem-cell population, but rather indicate that terminally differentiated epithelia reexpress apparent stem-cell markers during injury-induced dedifferentiation and repair.
Collapse
|
59
|
WEICHERT F, GASPAR M, WAGNER M. RADIAL-BASED SIGNAL-PROCESSING COMBINED WITH METHODS OF MACHINE LEARNING. INT J PATTERN RECOGN 2013. [DOI: 10.1142/s0218001413500183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present paper describes a novel approach to performing feature extraction and classification in possibly layered circular structures, as seen in two-dimensional cutting planes of three-dimensional tube-shaped objects. The algorithm can therefore be used to analyze histological specimens of blood vessels as well as intravascular ultrasound (IVUS) datasets. The approach uses a radial signal-based extraction of textural features in combination with methods of machine learning to integrate a priori domain knowledge. The algorithm in principle solves a two-dimensional classification problem that is reduced to parallel viable time series analysis. A multiscale approach hereby determines a feature vector for each analysis using either a Wavelet-transform (WT) or a S-transform (ST). The classification is done by methods of machine learning — here support vector machines. A modified marching squares algorithm extracts the polygonal segments for the two-dimensional classification. The accuracy is above 80% even in datasets with a considerable quantity of artifacts, while the mean accuracy is above 90%. The benefit of the approach therefore mainly lies in its robustness, efficient calculation, and the integration of domain knowledge.
Collapse
Affiliation(s)
- F. WEICHERT
- Department of Computer Graphics, University of Dortmund, Germany
| | - M. GASPAR
- Department of Computer Graphics, University of Dortmund, Germany
| | - M. WAGNER
- Department of Pathology, University of Saarland, Germany
| |
Collapse
|
60
|
Mintze K, Macon N, Gould KE, Sandusky GE. Optimization of Proliferating Cell Nuclear Antigen (PCNA) Immunohistochemical Staining: A Comparison of Methods Using Three Commercial Antibodies, Various Fixation Times, and Antigen Retrieval Solution. J Histotechnol 2013. [DOI: 10.1179/his.1995.18.1.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
61
|
Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, West J, Korotchenko VN, McDermott L, Day BW, Davidson AJ, Harris RC, de Caestecker MP, Hukriede NA. Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 2013; 24:943-53. [PMID: 23620402 DOI: 10.1681/asn.2012111055] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At present, there are no effective therapies to ameliorate injury, accelerate recovery, or prevent postinjury fibrosis after AKI. Here, we sought to identify candidate compounds that accelerate recovery after AKI by screening for small molecules that increase proliferation of renal progenitor cells in zebrafish embryos. One compound identified from this screen was the histone deacetylase inhibitor methyl-4-(phenylthio)butanoate, which we subsequently administered to zebrafish larvae and mice 24-48 hours after inducing AKI. In zebrafish, treatment with the compound increased larval survival and proliferation of renal tubular epithelial cells. In mice, treatment accelerated recovery, reduced postinjury tubular atrophy and interstitial fibrosis, and increased the regenerative capacity of actively cycling renal tubular cells by decreasing the number of cells in G2/M arrest. These data suggest that accelerating recovery may be a viable approach to treating AKI and provide proof of concept that a screen in zebrafish embryos can identify therapeutic candidates for kidney injury.
Collapse
|
62
|
Herlenius E, Thonabulsombat C, Forsberg D, Jäderstad J, Jäderstad LM, Björk L, Olivius P. Functional stem cell integration assessed by organotypic slice cultures. ACTA ACUST UNITED AC 2013; Chapter 2:Unit 2D.13. [PMID: 23154935 DOI: 10.1002/9780470151808.sc02d13s23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neuronal network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue.
Collapse
Affiliation(s)
- Eric Herlenius
- Neonatal Research Unit, Department of Women's and Children's Health, Astrid Lindgren Children's Hospital, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
63
|
Hajem N, Chapelle A, Bignon J, Pinault A, Liu JM, Salah-Mohellibi N, Lati E, Wdzieczak-Bakala J. The regulatory role of the tetrapeptide AcSDKP in skin and hair physiology and the prevention of ageing effects in these tissues--a potential cosmetic role. Int J Cosmet Sci 2013; 35:286-98. [PMID: 23488645 DOI: 10.1111/ics.12046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/08/2013] [Indexed: 01/25/2023]
Abstract
The naturally occurring tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) recognized as a potent angiogenic factor was shown recently to contribute to the repair of cutaneous injuries. In the current article, we report the ability of AcSDKP to exert a beneficial effect on normal healthy skin and scalp and to compensate for the ageing process. In vitro AcSDKP at 10⁻¹¹-10⁻⁷ M significantly stimulates the growth of human keratinocytes, fibroblasts and follicle dermal papilla cells. Moreover, it enhances the growth of human epidermal keratinocyte progenitor and stem cells as shown in a clonogenic survival assay. Topical treatment of ex vivo cultured skin explants with 10⁻⁵ M AcSDKP increases the thickness of the epidermis and upregulates the synthesis of keratins 14 and 19, fibronectin, collagen III and IV as well as the glycoaminoglycans (GAGs). In the ex vivo-cultured hair follicles, AcSDKP promotes hair shaft elongation and induces morphological and molecular modifications matching the criteria of hair growth. Furthermore, AcSDKP at 10⁻¹¹-10⁻⁷ M was shown to improve epidermal barrier, stimulating expression of three protein components of tight junctions (claudin-1, occludin, ZO-1) playing an important role in connecting neighbouring cells. This tetrapeptide exercises also activation of SIRT1 implicated in the control of cell longevity. Indeed, a two-fold increase in the synthesis of SIRT1 by cultured keratinocytes was observed in the presence of 10⁻¹¹-10⁻⁷ M AcSDKP. In conclusion, these findings provide convincing evidence of the regulatory role of AcSDKP in skin and hair physiology and suggest a cosmetic use of this natural tetrapeptide to prevent skin ageing and hair loss and to promote the cutaneous regeneration and hair growth.
Collapse
Affiliation(s)
- N Hajem
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Maternal undernutrition does not alter Sertoli cell numbers or the expression of key developmental markers in the mid-gestation ovine fetal testis. J Negat Results Biomed 2013; 12:2. [PMID: 23295129 PMCID: PMC3584724 DOI: 10.1186/1477-5751-12-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022] Open
Abstract
Background The aim of this study was to determine the effects of maternal undernutrition on ovine fetal testis morphology and expression of relevant histological indicators. Maternal undernutrition, in sheep, has been reported, previously, to alter fetal ovary development, as indicated by delayed folliculogenesis and the altered expression of ovarian apoptosis-regulating gene products, at day 110 of gestation. It is not known whether or not maternal undernutrition alters the same gene products in the day 110 fetal testis. Design and methods Mature Scottish Blackface ewes were fed either 100% (Control; C) or 50% (low; L) of estimated metabolisable energy requirements of a pregnant ewe, from mating to day 110 of gestation. All pregnant ewes were euthanized at day 110 and a sub-set of male fetuses was randomly selected (6 C and 9 L) for histology studies designed to address the effect of nutritional state on several indices of testis development. Sertoli cell numbers were measured using a stereological method and Ki67 (cell proliferation index), Bax (pro-apoptosis), Mcl-1 (anti-apoptosis), SCF and c-kit ligand (development and apoptosis) gene expression was measured in Bouins-fixed fetal testis using immunohistochemistry. Results No significant differences were observed in numbers of Sertoli cells or testicular Ki67 positive cells. The latter were localised to the testicular cords and interstitium. Bax and Mcl-1 were localised specifically to the germ cells whereas c-kit was localised to both the cords and interstitium. SCF staining was very sparse. No treatment effects were observed for any of the markers examined. Conclusions These data suggest that, unlike in the fetal ovary, maternal undernutrition for the first 110 days of gestation affects neither the morphology of the fetal testis nor the expression of gene products which regulate apoptosis. It is postulated that the effects of fetal undernutrition on testis function may be expressed through hypothalamic-pituitary changes.
Collapse
|
65
|
Hirth DA, Singer AJ, Clark RAF, McClain SA. Histopathologic staining of low temperature cutaneous burns: Comparing biomarkers of epithelial and vascular injury reveals utility of HMGB1 and hematoxylin phloxine saffron. Wound Repair Regen 2012; 20:918-27. [DOI: 10.1111/j.1524-475x.2012.00847.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Douglas A. Hirth
- School of Medicine; Stony Brook University; Stony Brook; New York
| | - Adam J. Singer
- Department of Emergency Medicine; Stony Brook University Medical Center; Stony Brook; New York
| | | | | |
Collapse
|
66
|
Jin G, Yoo IH, Pack SP, Yang JW, Ha UH, Paek SH, Seo S. Lens-free shadow image based high-throughput continuous cell monitoring technique. Biosens Bioelectron 2012; 38:126-31. [DOI: 10.1016/j.bios.2012.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/29/2012] [Accepted: 05/09/2012] [Indexed: 01/01/2023]
|
67
|
Klimowicz AC, Bose P, Nakoneshny SC, Dean M, Huang L, Chandarana S, Magliocco AM, Wayne Matthews T, Brockton NT, Dort JC. Basal Ki67 expression measured by digital image analysis is optimal for prognostication in oral squamous cell carcinoma. Eur J Cancer 2012; 48:2166-74. [DOI: 10.1016/j.ejca.2012.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/10/2012] [Accepted: 04/17/2012] [Indexed: 11/16/2022]
|
68
|
Mammary gland proliferation in female rats: Effects of the estrous cycle, pseudo-pregnancy and age. ACTA ACUST UNITED AC 2012; 64:321-32. [DOI: 10.1016/j.etp.2010.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/17/2010] [Indexed: 11/19/2022]
|
69
|
F3/Contactin acts as a modulator of neurogenesis during cerebral cortex development. Dev Biol 2012; 365:133-51. [PMID: 22360968 DOI: 10.1016/j.ydbio.2012.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/13/2012] [Accepted: 02/10/2012] [Indexed: 12/18/2022]
Abstract
The expression of the cell recognition molecule F3/Contactin (CNTN1) is generally associated with the functions of post-mitotic neurons. In the embryonic cortex, however, we find it expressed by proliferating ventricular zone (VZ) precursors. In contrast to previous findings in the developing cerebellum, F3/Contactin transgenic overexpression in the early cortical VZ promotes proliferation and expands the precursor pool at the expense of neurogenesis. At later stages, when F3/Contactin levels subside, however, neurogenesis resumes, suggesting that F3/Contactin expression in the VZ is inversely related to neurogenesis and plays a role in a feedback control mechanism, regulating the orderly progression of cortical development. The modified F3/Contactin profile therefore results in delayed corticogenesis, as judged by downregulation in upper and lower layer marker expression and by BrdU birth dating, indicating that, in this transgenic model, increased F3/Contactin levels counteract neuronal precursor commitment. These effects also occur in primary cultures and are reproduced by addition of an F3/Fc fusion protein to wild type cultures. Together, these data indicate a completely novel function for F3/Contactin. Parallel changes in the generation of the Notch Intracellular Domain and in the expression of the Hes-1 transcription factor indicate that activation of the Notch pathway plays a role in this phenotype, consistent with previous in vitro reports that F3/Contactin is a Notch1 ligand.
Collapse
|
70
|
Shoham N, Gefen A. The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures. Biomech Model Mechanobiol 2012; 11:1029-45. [DOI: 10.1007/s10237-011-0371-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 12/30/2011] [Indexed: 12/14/2022]
|
71
|
Hinitt CAM, Benn TM, Threadgold S, Wood J, Williams AC, Hague A. BAG-1L promotes keratinocyte differentiation in organotypic culture models and changes in relative BAG-1 isoform abundance may lead to defective stratification. Exp Cell Res 2011; 317:2159-70. [PMID: 21723279 DOI: 10.1016/j.yexcr.2011.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/31/2011] [Accepted: 06/16/2011] [Indexed: 01/23/2023]
Abstract
In keratinocytes the human Bag-1 gene produces three different protein isoforms from a single messenger RNA, BAG-1L, BAG-1M and BAG-1S. In this study we questioned whether BAG-1L or the shorter isoforms would promote keratinocyte differentiation in organotypic cultures of HaCaT. HaCaT parental and vector cells showed stratification, but terminal differentiation was not complete. Cultures overexpressing BAG-1L isoform-specifically were of increased thickness, demonstrated pronounced expression of basal cytokeratin 5 and β1-integrin, suprabasal involucrin, cytokeratin 1 and plasma membrane-localised filaggrin, and a marked keratinized layer of cells at the surface. We were unable to overexpress BAG-1S and BAG-1M isoform-specifically. Overexpression of BAG-1M gave rise to organotypic cultures intermediate in differentiation to controls and those overexpressing BAG-1L. Cells overexpressing BAG-1S also exhibited elevated endogenous BAG-1. These produced slow growing cultures with high levels of basal cytokeratin 5, but little involucrin or cytokeratin 1. Suprabasal β1-integrin and Ki67 positive cells indicated defective stratification. The results suggest that BAG-1L potentiates epidermal differentiation, but disruption in the relative balance of isoforms towards overexpression of BAG-1S can lead to defective tissue patterning. Hence, a delicate balance of BAG-1 isoforms may be required to regulate normal epidermal stratification and differentiation, with important implications for aberrant differentiation in cancer.
Collapse
Affiliation(s)
- C A M Hinitt
- University of Bristol, School of Oral and Dental Sciences, Lower Maudlin Street, Bristol, UK
| | | | | | | | | | | |
Collapse
|
72
|
Alam S, Bowser BS, Conway MJ, Israr M, Tandon A, Meyers C. Adeno-associated virus type 2 infection activates caspase dependent and independent apoptosis in multiple breast cancer lines but not in normal mammary epithelial cells. Mol Cancer 2011; 10:97. [PMID: 21827643 PMCID: PMC3199901 DOI: 10.1186/1476-4598-10-97] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/09/2011] [Indexed: 01/28/2023] Open
Abstract
Background In normal cells proliferation and apoptosis are tightly regulated, whereas in tumor cells the balance is shifted in favor of increased proliferation and reduced apoptosis. Anticancer agents mediate tumor cell death via targeting multiple pathways of programmed cell death. We have reported that the non-pathogenic, tumor suppressive Adeno-Associated Virus Type 2 (AAV2) induces apoptosis in Human Papillomavirus (HPV) positive cervical cancer cells, but not in normal keratinocytes. In the current study, we examined the potential of AAV2 to inhibit proliferation of MCF-7 and MDA-MB-468 (both weakly invasive), as well as MDA-MB-231 (highly invasive) human breast cancer derived cell lines. As controls, we used normal human mammary epithelial cells (nHMECs) isolated from tissue biopsies of patients undergoing breast reduction surgery. Results AAV2 infected MCF-7 line underwent caspase-independent, and MDA-MB-468 and MDA-MB-231 cell lines underwent caspase-dependent apoptosis. Death of MDA-MB-468 cells was marked by caspase-9 activation, whereas death of MDA-MB-231 cells was marked by activation of both caspase-8 and caspase-9, and resembled a mixture of apoptotic and necrotic cell death. Cellular demise was correlated with the ability of AAV2 to productively infect and differentially express AAV2 non-structural proteins: Rep78, Rep68 and Rep40, dependent on the cell line. Cell death in the MCF-7 and MDA-MB-231 lines coincided with increased S phase entry, whereas the MDA-MB-468 cells increasingly entered into G2. AAV2 infection led to decreased cell viability which correlated with increased expression of proliferation markers c-Myc and Ki-67. In contrast, nHMECs that were infected with AAV2 failed to establish productive infection or undergo apoptosis. Conclusion AAV2 regulated enrichment of cell cycle check-point functions in G1/S, S and G2 phases could create a favorable environment for Rep protein expression. Inherent Rep associated endonuclease activity and AAV2 genomic hair-pin ends have the potential to induce a cellular DNA damage response, which could act in tandem with c-Myc regulated/sensitized apoptosis induction. In contrast, failure of AAV2 to productively infect nHMECs could be clinically advantageous. Identifying the molecular mechanisms of AAV2 targeted cell cycle regulation of death inducing signals could be harnessed for developing novel therapeutics for weakly invasive as well as aggressive breast cancer types.
Collapse
Affiliation(s)
- Samina Alam
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
73
|
Welkoborsky HJ, Xiao Y, Mann WJ, Amedee RG, Dienes HP, Volk B. Studies for estimating the biologic behavior and prognosis of paragangliomas in the head and neck. Skull Base Surg 2011; 5:149-56. [PMID: 17170941 PMCID: PMC1656495 DOI: 10.1055/s-2008-1058929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Despite a large number of histopathologic and immunohistochemical studies, the biologic behavior and prognosis of paragangliomas (glomus tumors) of the head and neck still remain uncertain. In the present study 36 specimens from 32 patients who underwent surgery for a paraganglioma were examined. The examinations included routine histology, quantitative DNA analysis based on image cytometry, immunohistochemical detection of the proliferating cell nuclear antigen (PCNA) along with visualization of nucleolar organizer regions (AgNOR). According to LeCompte, the paragangliomas were histologically divided into three subcategories: 16 patients had a paragangliomatous tumor. 14 patients had an adenomatous tumor, and 6 patients had an angiomatous tumor. Quantitative DNA analysis revealed three categories of tumors with characteristical DNA pattern; DNA type I tumors were pure diploid, DNA type II tumors had stemlines at 2c and 4c and were therefore recognized as diploid-tetraploid. Aneuploid cells were not apparent in these two groups. DNA type III tumors had stemline ploidies exceeding 2c and 4c. Aneuploid cells were present in all of these tumors. The biologic behavior of these lesions therefore must be recognized as suspicious. DNA type III tumors and adenomatous tumors showed the highest values for the PCNA scores, indicating a higher proliferation rate and a more rapid growth pattern in these lesions. Twenty patients could be followed over a period of up to 110 months. Five of these patients developed a recurrent tumor. All of them had DNA type III tumors. The DNA indices showed significantly higher values in the recurrent tumor group. The 2c deviation index (DI) and the entropy value had the highest prognostic significance. No correlation to clinical follow-up was found for the AgNOR score. Based on these results, prognostic indices for paragangliomas were developed: patients with a tumor having a 2c DI exceeding 2.0, entropy value of more than 4.0. 5c exceeding rate more than 8.0, and a PCNA score more than 20.0% can be recognized as being at high-risk for developing recurrent disease.
Collapse
|
74
|
Johansen IB, Lunde IG, Røsjø H, Christensen G, Nilsson GE, Bakken M, Overli O. Cortisol response to stress is associated with myocardial remodeling in salmonid fishes. ACTA ACUST UNITED AC 2011; 214:1313-21. [PMID: 21430209 DOI: 10.1242/jeb.053058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac disease is frequently reported in farmed animals, and stress has been implicated as a factor for myocardial dysfunction in commercial fish rearing. Cortisol is a major stress hormone in teleosts, and this hormone has adverse effects on the myocardium. Strains of rainbow trout (Oncorhynchus mykiss) selected for divergent post-stress cortisol levels [high responsive (HR) and low responsive (LR)] have been established as a comparative model to examine how fish with contrasting stress-coping styles differ in their physiological and behavioral profiles. We show that the mean cardiosomatic index (CSI) of adult HR fish was 34% higher than in LR fish, mainly because of hypertrophy of the compact myocardium. To characterize the hypertrophy as physiological or pathological, we investigated specific cardiac markers at the transcriptional level. HR hearts had higher mRNA levels of cortisol receptors (MR, GR1 and GR2), increased RCAN1 levels [suggesting enhanced pro-hypertrophic nuclear factor of activated T-cell (NFAT) signaling] and increased VEGF gene expression (reflecting increased angiogenesis). Elevated collagen (Col1a2) expression and deposition in HR hearts supported enhanced fibrosis, whereas the heart failure markers ANP and BNP were not upregulated in HR hearts. To confirm our results outside the selection model, we investigated the effect of acute confinement stress in wild-type European brown trout, Salmo trutta. A positive correlation between post-stress cortisol levels and CSI was observed, supporting an association between enhanced cortisol response and myocardial remodeling. In conclusion, post-stress cortisol production correlates with myocardial remodeling, and coincides with several indicators of heart pathology, well-known from mammalian cardiology.
Collapse
Affiliation(s)
- Ida B Johansen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (UMB), 0476 Ås, Norway.
| | | | | | | | | | | | | |
Collapse
|
75
|
Kim MH, Tsubakino N, Kagita S, Taya M, Kino-oka M. Characterization of spatial cell distribution in multilayer sheet of human keratinocytes through a stereoscopic cell imaging system. J Biosci Bioeng 2011; 112:289-91. [PMID: 21741304 DOI: 10.1016/j.jbiosc.2011.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/16/2011] [Accepted: 05/30/2011] [Indexed: 11/25/2022]
Abstract
A novel system was developed to characterize the spatial distribution of human keratinocytes in cultured epithelial sheet, based on stereoscopic observation of nuclei using a confocal laser microscope in combination with image processing. The presented technique allowed understanding of the proliferative and growth-arrested states of cells in multilayered sheet.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
76
|
Breheny D, Oke O, Faux SP. The use of in vitro systems to assess cancer mechanisms and the carcinogenic potential of chemicals. Altern Lab Anim 2011; 39:233-55. [PMID: 21777038 DOI: 10.1177/026119291103900301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Carcinogenesis is a highly complex, multi-stage process that can occur over a relatively long period before its clinical manifestation. While the sequence in which a cancer cell acquires the necessary traits for tumour formation can vary, there are a number of mechanisms that are common to most, if not all, cancers across the spectrum of possible causes. Many aspects of carcinogenesis can be modelled in vitro. This has led to the development of a number of mechanistically driven, cell-based assays to assess the pro-carcinogenic and anti-carcinogenic potential of chemicals. A review is presented of the current in vitro models that can be used to study carcinogenesis, with examples of cigarette smoke testing in some of these models, in order to illustrate their potential applications. We present an overview of the assays used in regulatory genotoxicity testing, as well as those designed to model other aspects that are considered to be hallmarks of cancer. The latter assays are described with a view to demonstrating the recent advances in these areas, to a point where they should now be considered for inclusion in an overall testing strategy for chemical carcinogens.
Collapse
|
77
|
Pathophysiological features of intimal hyperplasia of the arterially implanted autovein graft and its anastomosis in dogs. Int J Angiol 2011. [DOI: 10.1007/bf01618389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
78
|
Kimura F, Bonomi LM, Schneyer AL. Follistatin regulates germ cell nest breakdown and primordial follicle formation. Endocrinology 2011; 152:697-706. [PMID: 21106872 PMCID: PMC3037165 DOI: 10.1210/en.2010-0950] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Follistatin (FST) is an antagonist of activin and related TGFβ superfamily members that has important reproductive actions as well as critical regulatory functions in other tissues and systems. FST is produced as three protein isoforms that differ in their biochemical properties and in their localization within the body. We created FST288-only mice that only express the short FST288 isoform and previously reported that females are subfertile, but have an excess of primordial follicles on postnatal day (PND) 8.5 that undergo accelerated demise in adults. We have now examined germ cell nest breakdown and primordial follicle formation in the critical PND 0.5-8.5 period to test the hypothesis that the excess primordial follicles derive from increased proliferation and decreased apoptosis during germ cell nest breakdown. Using double immunofluorescence microscopy we found that there is virtually no germ cell proliferation after birth in wild-type or FST288-only females. However, the entire process of germ cell nest breakdown was extended in time (through at least PND 8.5) and apoptosis was significantly reduced in FST288-only females. In addition, FST288-only females are born with more germ cells within the nests. Thus, the excess primordial follicles in FST288-only mice derive from a greater number of germ cells at birth as well as a reduced rate of apoptosis during nest breakdown. These results also demonstrate that FST is critical for normal regulation of germ cell nest breakdown and that loss of the FST303 and/or FST315 isoforms leads to excess primordial follicles with accelerated demise, resulting in premature cessation of ovarian function.
Collapse
Affiliation(s)
- Fuminori Kimura
- Pioneer Valley Life Science Institute, University of Massachusetts, Amherst, Springfield Massachusetts 01199, USA
| | | | | |
Collapse
|
79
|
Hanto DW, Maki T, Yoon MH, Csizmadia E, Chin BY, Gallo D, Konduru B, Kuramitsu K, Smith NR, Berssenbrugge A, Attanasio C, Thomas M, Wegiel B, Otterbein LE. Intraoperative administration of inhaled carbon monoxide reduces delayed graft function in kidney allografts in Swine. Am J Transplant 2010; 10:2421-30. [PMID: 20977633 DOI: 10.1111/j.1600-6143.2010.03289.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ischemia/reperfusion injury and delayed graft function (DGF) following organ transplantation adversely affect graft function and survival. A large animal model has not been characterized. We developed a pig kidney allograft model of DGF and evaluated the cytoprotective effects of inhaled carbon monoxide (CO). We demonstrate that donor warm ischemia time is a critical determinant of DGF as evidenced by a transient (4-6 days) increase in serum creatinine and blood urea nitrogen following transplantation before returning to baseline. CO administered to recipients intraoperatively for 1 h restored kidney function more rapidly versus air-treated controls. CO reduced acute tubular necrosis, apoptosis, tissue factor expression and P-selectin expression and enhanced proliferative repair as measured by phosphorylation of retinol binding protein and histone H3. Gene microarray analyses with confirmatory PCR of biopsy specimens showed that CO blocked proinflammatory gene expression of MCP-1 and heat shock proteins. In vitro in pig renal epithelial cells, CO blocks anoxia-reoxygenation-induced cell death while promoting proliferation. This large animal model of DGF can be utilized for testing therapeutic strategies to reduce or prevent DGF in humans. The efficacy of CO on improving graft function posttransplant validates the model and offers a potentially important therapeutic strategy to improve transplant outcomes.
Collapse
Affiliation(s)
- D W Hanto
- Harvard Medical School, the Transplant Institute and the Department of Surgery, Division of Transplantation at Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Aita M, Benedetti F, Carafelli E, Caccia E, Romano N. Effects of hypophyseal or thymic allograft on thymus development in partially decerebrate chicken embryos: expression of PCNA and CD3 markers. Eur J Histochem 2010; 54:e37. [PMID: 20819775 PMCID: PMC3167313 DOI: 10.4081/ejh.2010.e37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022] Open
Abstract
Changes in chicken embryo thymus after partial decerebration (including the hypophysis) and after hypophyseal or thymic allograft were investigated. Chicken embryos were partially decerebrated at 36–40 h of incubation and on day 12 received a hypophysis or a thymus allograft from 18-day-old donor embryos. The thymuses of normal, sham-operated and partially decerebrate embryos were collected on day 12 and 18. The thymuses of the grafted embryos were collected on day 18. The samples were examined with histological method and tested for the anti-PCNA and anti-CD3 immune-reactions. After partial decerebration, the thymic cortical and medullary compartments diminished markedly in size. Anti-PCNA and anti-CD3 revealed a reduced immunereaction, verified also by statistical analysis. In hypophyseal or grafted embryos, the thymic morphological compartments improved, the anti-PCNA and anti-CD3 immune-reactions recovered much better after the thymic graft, probably due to the thymic growth factors and also by an emigration of thymocytes from the same grafted thymus.
Collapse
Affiliation(s)
- M Aita
- Department of Physiology and Pharmacology Vittorio Erspamer, Faculty of Medicine, University La Sapienza, Piazzale A. Moro 5, Rome, Italy.
| | | | | | | | | |
Collapse
|
81
|
Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 2010; 16:535-43, 1p following 143. [PMID: 20436483 DOI: 10.1038/nm.2144] [Citation(s) in RCA: 1044] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/05/2010] [Indexed: 02/06/2023]
Abstract
Fibrosis is responsible for chronic progressive kidney failure, which is present in a large number of adults in the developed world. It is increasingly appreciated that acute kidney injury (AKI), resulting in aberrant incomplete repair, is a major contributor to chronic fibrotic kidney disease. The mechanism that triggers the fibrogenic response after injury is not well understood. In ischemic, toxic and obstructive models of AKI, we demonstrate a causal association between epithelial cell cycle G2/M arrest and a fibrotic outcome. G2/M-arrested proximal tubular cells activate c-jun NH(2)-terminal kinase (JNK) signaling, which acts to upregulate profibrotic cytokine production. Treatment with a JNK inhibitor, or bypassing the G2/M arrest by administration of a p53 inhibitor or the removal of the contralateral kidney, rescues fibrosis in the unilateral ischemic injured kidney. Hence, epithelial cell cycle arrest at G2/M and its subsequent downstream signaling are hitherto unrecognized therapeutic targets for the prevention of fibrosis and interruption of the accelerated progression of kidney disease.
Collapse
Affiliation(s)
- Li Yang
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
82
|
Zheng Y, Wang L, Zhang JP, Yang JY, Zhao ZM, Zhang XY. Expression of p53, c-erbB-2 and Ki67 in intestinal metaplasia and gastric carcinoma. World J Gastroenterol 2010; 16:339-44. [PMID: 20082479 PMCID: PMC2807954 DOI: 10.3748/wjg.v16.i3.339] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare two types of classification of intestinal metaplasia (IM) of the stomach and to explore their relationship to gastric carcinoma.
METHODS: Forty-seven cases of gastric IM were classified into type I, type II or type III according to mucin histochemical staining and compared with a novel classification in which the specimens were classified into simple IM (SIM) or atypical IM according to polymorphism in terms of atypical changes of the metaplastic epithelium. Forty-seven IM and thirty-seven gastric carcinoma samples were stained for p53, c-erbB-2 and Ki67 proteins by Envision immunohistochemical technique.
RESULTS: There were no significant differences in the expression of p53 and c-erbB-2 among type I, type II, type III IM and gastric carcinomas. The positive expression rate of Ki67 was significantly higher in gastric carcinomas than in type I IM while no significant Ki67 expression differences were observed among type II, type III IM and gastric carcinomas. The expression of p53, c-erbB-2 and Ki67 proteins in 20 SIM, 27 Atypical IM and 37 gastric carcinomas showed significant differences between SIM and gastric carcinomas while no significant differences were observed between Atypical IM and gastric carcinomas.
CONCLUSION: Atypical IM may better reveal the precancerous nature of IM and could be a helpful indicator in the clinical follow up of patients.
Collapse
|
83
|
Park JH, Enikolopov G. Transient elevation of adult hippocampal neurogenesis after dopamine depletion. Exp Neurol 2010; 222:267-76. [PMID: 20079351 DOI: 10.1016/j.expneurol.2010.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 01/01/2010] [Accepted: 01/06/2010] [Indexed: 12/14/2022]
Abstract
Degeneration of the midbrain dopaminergic neurons during Parkinson's disease (PD) may affect remote regions of the brain that are innervated by the projections of these neurons. The dentate gyrus (DG), a site of continuous production of new neurons in the adult hippocampus, receives dopaminergic inputs from the neurons of the substantia nigra (SN). Thus, depletion of the SN neurons during disease or in experimental settings may directly affect adult hippocampal neurogenesis. We show that experimental ablation of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydopyridine (MPTP) mouse model of PD results in a transient increase in cell division in the subgranular zone (SGZ) of the DG. This increase is evident for the amplifying neural progenitors and for their postmitotic progeny; our results also indicate that MPTP treatment affects division of the normally quiescent stem cells in the SGZ. We also show that l-DOPA, used in the clinical treatment of PD, while attenuating the MPTP-induced death of dopaminergic neurons, does not alter the effect of MPTP on cell division in the DG. Our results suggest that a decrease in dopaminergic signaling in the hippocampus leads to a transient activation of stem and progenitor cells in the DG.
Collapse
Affiliation(s)
- June-Hee Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
84
|
Hristova M, Cuthill D, Zbarsky V, Acosta-Saltos A, Wallace A, Blight K, Buckley SMK, Peebles D, Heuer H, Waddington SN, Raivich G. Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia 2010; 58:11-28. [PMID: 19544386 DOI: 10.1002/glia.20896] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain microglia are related to peripheral macrophages but undergo a highly specific process of regional maturation and differentiation inside the brain. Here, we examined this deactivation and morphological differentiation in cerebral cortex and periventricular subcortical white matter, the main "fountain of microglia" site, during postnatal mouse development, 0-28 days after birth (P0-P28). Only macrophages in subcortical white matter but not cortical microglia exhibited strong expression of typical activation markers alpha5, alpha6, alphaM, alphaX, and beta2 integrin subunits and B7.2 at any postnatal time point studied. White matter phagocyte activation was maximal at P0, decreased linearly over P3 and P7 and disappeared at P10. P7 white matter phagocytes also expressed high levels of IGF1 and MCSF, but not TNFalpha mRNA; this expression disappeared at P14. This process of deactivation followed the presence of ingested phagocytic material but correlated only moderately with ramification, and not with the extent of TUNEL+ death in neighboring cells, their ingestion or microglial proliferation. Intravenous fluosphere labeling revealed postnatal recruitment and transformation of circulating leukocytes into meningeal and perivascular macrophages as well as into ramified cortical microglia, but bypassing the white matter areas. In conclusion, this study describes strong and selective activation of postnatally resident phagocytes in the P0-P7 subcortical white matter, roughly equivalent to mid 3rd trimester human fetal development. This presence of highly active and IGF1- and MCSF-expressing phagocytes in the neighborhood of vulnerable white matter could play an important role in the genesis of or protection against axonal damage in the fetus and premature neonate.
Collapse
Affiliation(s)
- Mariya Hristova
- Department of Obstetrics and Gynecology, EGA Institute of Women's Health, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Jiang P, Rushing SN, Kong CW, Fu J, Lieu DKT, Chan CW, Deng W, Li RA. Electrophysiological properties of human induced pluripotent stem cells. Am J Physiol Cell Physiol 2009; 298:C486-95. [PMID: 19955484 DOI: 10.1152/ajpcell.00251.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human embryonic stem cells (hESCs) can self-renew while maintaining their pluripotency. Direct reprogramming of adult somatic cells to induced pluripotent stem cells (iPSCs) has been reported. Although hESCs and human iPSCs have been shown to share a number of similarities, such basic properties as the electrophysiology of iPSCs have not been explored. Previously, we reported that several specialized ion channels are functionally expressed in hESCs. Using transcriptomic analyses as a guide, we observed tetraethylammonium (TEA)-sensitive (IC(50) = 3.3 +/- 2.7 mM) delayed rectifier K(+) currents (I(KDR)) in 105 of 110 single iPSCs (15.4 +/- 0.9 pF). I(KDR) in iPSCs displayed a current density of 7.6 +/- 3.8 pA/pF at +40 mV. The voltage for 50% activation (V(1/2)) was -7.9 +/- 2.0 mV, slope factor k = 9.1 +/- 1.5. However, Ca(2+)-activated K(+) current (I(KCa)), hyperpolarization-activated pacemaker current (I(f)), and voltage-gated sodium channel (Na(V)) and voltage-gated calcium channel (Ca(V)) currents could not be measured. TEA inhibited iPSC proliferation (EC(50) = 7.8 +/- 1.2 mM) and viability (EC(50) = 5.5 +/- 1.0 mM). By contrast, 4-aminopyridine (4-AP) inhibited viability (EC(50) = 4.5 +/- 0.5 mM) but had less effect on proliferation (EC(50) = 0.9 +/- 0.5 mM). Cell cycle analysis further revealed that K(+) channel blockers inhibited proliferation primarily by arresting the mitotic phase. TEA and 4-AP had no effect on iPSC differentiation as gauged by ability to form embryoid bodies and expression of germ layer markers after induction of differentiation. Neither iberiotoxin nor apamin had any function effects, consistent with the lack of I(KCa) in iPSCs. Our results reveal further differences and similarities between human iPSCs and hESCs. A better understanding of the basic biology of iPSCs may facilitate their ultimate clinical application.
Collapse
Affiliation(s)
- Peng Jiang
- Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children of North America, Sacramento, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Marella NV, Seifert B, Nagarajan P, Sinha S, Berezney R. Chromosomal rearrangements during human epidermal keratinocyte differentiation. J Cell Physiol 2009; 221:139-46. [PMID: 19626667 DOI: 10.1002/jcp.21855] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Undifferentiated human epidermal keratinocytes are self-renewing stem cells that can be induced to undergo a program of differentiation by varying the calcium chloride concentration in the culture media. We utilize this model of cell differentiation and a 3D chromosome painting technique to document significant changes in the radial arrangement, morphology, and interchromosomal associations between the gene poor chromosome 18 and the gene rich chromosome 19 territories at discrete stages during keratinocyte differentiation. We suggest that changes observed in chromosomal territorial organization provides an architectural basis for genomic function during cell differentiation and provide further support for a chromosome territory code that contributes to gene expression at the global level.
Collapse
Affiliation(s)
- Narasimharao V Marella
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
87
|
Katsumata O, Sato YI, Sakai Y, Yamashina S. Intercalated duct cells in the rat parotid gland may behave as tissue stem cells. Anat Sci Int 2009; 84:148-54. [DOI: 10.1007/s12565-009-0019-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 08/04/2008] [Indexed: 10/20/2022]
|
88
|
Barreiro-Iglesias A, Villar-Cerviño V, Villar-Cheda B, Anadón R, Rodicio MC. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates. J Comp Neurol 2008; 511:438-53. [PMID: 18831528 DOI: 10.1002/cne.21844] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys.
Collapse
Affiliation(s)
- Antón Barreiro-Iglesias
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
89
|
|
90
|
|
91
|
Bertolini V, Chiaravalli AM, Klersy C, Placidi C, Marchet S, Boni L, Capella C. Gastrointestinal stromal tumors—frequency, malignancy, and new prognostic factors: The experience of a single institution. Pathol Res Pract 2008; 204:219-33. [DOI: 10.1016/j.prp.2007.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/29/2007] [Accepted: 12/05/2007] [Indexed: 11/27/2022]
|
92
|
Dimas K, Hatziantoniou S, Tseleni S, Khan H, Georgopoulos A, Alevizopoulos K, Wyche JH, Pantazis P, Demetzos C. Sclareol induces apoptosis in human HCT116 colon cancer cells in vitro and suppression of HCT116 tumor growth in immunodeficient mice. Apoptosis 2008; 12:685-94. [PMID: 17260186 DOI: 10.1007/s10495-006-0026-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Labd-14-ene-8, 13-diol (sclareol) is a labdane-type diterpene, which has demonstrated significant cytotoxic activity against human leukemic cell lines, but its effect on solid tumor-derived cells is uknown. Here, we demonstrate that addition of sclareol to cultures of human colon cancer HCT116 cells results in inhibition of DNA synthesis, arrest of cells at the G(1) phase of the cell cycle, activation of caspases-8, -9, PARP degradation, and DNA fragmentation, events characteristic of induction of apoptosis. Intraperitoneal (ip) administration of sclareol alone, at the maximum tolerated dose, was unable to induce suppression of growth of HCT116 tumors established as xenografts in immunodeficient SCID mice. In contrast, ip administration of liposome-encapsulated sclareol, following a specific schedule, induced suppression of tumor growth by arresting tumor cell proliferation as assessed by detecting the presence of the cell proliferation-associated nuclear protein, Ki67, in thin tumor sections. These findings suggest that sclareol incorporated into liposomes may possess chemotherapeutic potential for the treatment of colorectal and other types of human cancer.
Collapse
Affiliation(s)
- Konstantinos Dimas
- Laboratory of Pharmacology-Pharmacotechnology, Foundation for Biomedical Research of the Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Reno PL, Horton WE, Elsey RM, Lovejoy CO. Growth plate formation and development in alligator and mouse metapodials: evolutionary and functional implications. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 308:283-96. [PMID: 17285637 DOI: 10.1002/jez.b.21148] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian metapodials (metacarpals and metatarsals), unlike most long bones, form a single growth plate, and undergo longitudinal growth at only one end. The growth dynamics of non-mammalian tetrapod metapodials have not been systematically examined in order to determine if unidirectional growth is unique to mammals. Here we compare murine metapodial ossification in growth stages that parallel those of embryonic, juvenile and subadult American alligators (Alligator mississippiensis). Safranin O staining was used for qualitative histology, and chondrocyte differentiation and proliferation were assessed via immunohistochemistry for type X collagen and proliferative cell nuclear antigen (PCNA). We establish that growth plates form at both ends of alligator metapodials and are maintained in the subadult. PCNA results show that alligators and mice share common patterns of chondrocyte proliferation during growth plate formation. In addition, while alligators and mice differ initially in the degree of organization and pace of chondrocyte differentiation, these parameters are largely similar in established growth plates. However, the replacement of cartilage by bone is highly irregular throughout growth in the alligator, in contrast to the more uniform process in the mouse. These results indicate that while alligators and mammals share common mechanisms of chondrocyte regulation, they differ substantially in their processes of ossification. Phylogenetic analysis indicates that the direct ossification of one epiphysis and reliance on a single growth plate is a derived character (synapomorphy) in therian mammals and likely indicates an adaptation for erect quadrupedal gait.
Collapse
Affiliation(s)
- Philip L Reno
- School of Biomedical Sciences, Kent State University, Kent, OH 44242-0001, USA.
| | | | | | | |
Collapse
|
94
|
Abstract
Angiogenesis is required for the growth and expansion of both healthy and pathological tissues. The plasticity of the adipose tissue is reflected by its remarkable ability to expand or to reduce in size throughout the adult lifespan. We, and others, have recently shown that expansion of fat mass is dependent on angiogenesis, and suppression of angiogenesis might provide a novel therapeutic approach for prevention and treatment of obesity. Here, we outline two technical procedures for assessment of angiogenesis in adipose tissues.
Collapse
|
95
|
Holick KA, Lee DC, Hen R, Dulawa SC. Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 2008; 33:406-17. [PMID: 17429410 DOI: 10.1038/sj.npp.1301399] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously reported that chronic, but not subchronic, treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine altered behavior in the forced swimming test (FST) in BALB/cJ mice. We now use this model to investigate mechanisms underlying the delayed onset of the behavioral response to antidepressants, specifically (1) adult hippocampal neurogenesis and (2) expression of the 5-HT1A receptor. Here, we show data validating this model of chronic antidepressant action. We found the FST to be selectively responsive to chronic administration of the SSRI fluoxetine (18 mg/kg/day) and the tricyclic antidepressant desipramine (20 mg/kg/day), but not to the antipsychotic haloperidol (1 mg/kg/day) in BALB/cJ mice. The behavioral effects of fluoxetine emerged by 12 days of treatment, and were affected neither by ablation of progenitor cells of the hippocampus nor by genetic deletion of the 5-HT1A receptor. The effect of fluoxetine in the BALB/cJ mice was also neurogenesis-independent in the novelty-induced hypophagia test. We also found that chronic fluoxetine does not induce an increase in cell proliferation or the number of young neurons as measured by BrdU and doublecortin immunolabeling, respectively, in BALB/cJ mice. These data are in contrast to our previous report using a different strain of mice (129SvEvTac). In conclusion, we find that BALB/cJ mice show a robust response to chronic SSRI treatment in the FST, which is not mediated by an increase in new neurons in the hippocampus, and does not require the 5-HT1A receptor. These findings suggest that SSRIs can produce antidepressant-like effects via distinct mechanisms in different mouse strains.
Collapse
Affiliation(s)
- Kerri A Holick
- Department of Pharmacology, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
96
|
Perera TD, Coplan JD, Lisanby SH, Lipira CM, Arif M, Carpio C, Spitzer G, Santarelli L, Scharf B, Hen R, Rosoklija G, Sackeim HA, Dwork AJ. Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci 2007; 27:4894-901. [PMID: 17475797 PMCID: PMC6672102 DOI: 10.1523/jneurosci.0237-07.2007] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New neurons are generated in the adult hippocampus of many species including rodents, monkeys, and humans. Conditions associated with major depression, such as social stress, suppress hippocampal neurogenesis in rodents and primates. In contrast, all classes of antidepressants stimulate neuronal generation, and the behavioral effects of these medications are abolished when neurogenesis is blocked. These findings generated the hypothesis that induction of neurogenesis is a necessary component in the mechanism of action of antidepressant treatments. To date, the effects of antidepressants on newborn neurons have been reported only in rodents and tree shrews. This study examines whether neurogenesis is increased in nonhuman primates after antidepressant treatment. Adult monkeys received repeated electroconvulsive shock (ECS), which is the animal analog of electroconvulsive therapy (ECT), the most effective short-term antidepressant. Compared with control conditions, ECS robustly increased precursor cell proliferation in the subgranular zone (SGZ) of the dentate gyrus in the monkey hippocampus. A majority of these precursors differentiated into neurons or endothelial cells, while a few matured into glial cells. The ECS-mediated induction of cell proliferation and neurogenesis was accompanied by increased immunoreactivity for the neuroprotective gene product BCL2 (B cell chronic lymphocytic lymphoma 2) in the SGZ. The ECS interventions were not accompanied by increased hippocampal cell death or injury. This study demonstrates that ECS is capable of inducing neurogenesis in the nonhuman primate hippocampus and supports the possibility that antidepressant interventions produce similar alterations in the human brain.
Collapse
Affiliation(s)
- Tarique D Perera
- Department of Biological Psychiatry, New York State Psychiatric Institute New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Vesely BA, Eichelbaum EJ, Alli AA, Sun Y, Gower WR, Vesely DL. Four cardiac hormones eliminate 4-fold more human glioblastoma cells than the green mamba snake peptide. Cancer Lett 2007; 254:94-101. [PMID: 17399891 DOI: 10.1016/j.canlet.2007.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/16/2007] [Accepted: 02/19/2007] [Indexed: 12/31/2022]
Abstract
UNLABELLED Within 24h four cardiac hormones, i.e., vessel dilator, kaliuretic peptide, atrial natriuretic peptide, and long acting natriuretic peptide decrease the number of human glioblastoma cells 75%, 68%, 67%, and 65% while Dendroaspis (green mamba) peptide caused a 17% decrease when each were utilized at 100 microM. The four cardiac hormones decreased DNA synthesis 65-87% and increased cyclic GMP 1.3- to 3.8-fold in the glioblastoma cells. Natriuretic peptide receptors (NPR)-A and -C were present. CONCLUSION four cardiac hormones eliminate up to 75% of glioblastoma cells via cyclic GMP-mediated up to 87% decrease in DNA synthesis.
Collapse
Affiliation(s)
- Brian A Vesely
- Department of Internal Medicine, James A Haley Veterans Medical Center, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
98
|
Dvorak K, Ramsey L, Payne CM, Sampliner R, Fass R, Bernstein H, Prasad A, Garewal H. Abnormal expression of biomarkers in incompletely ablated Barrett's esophagus. Ann Surg 2007; 244:1031-6. [PMID: 17122630 PMCID: PMC1856620 DOI: 10.1097/01.sla.0000224913.19922.7e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate expression of cancer risk-associated biomarkers in columnar epithelium at squamocolumnar junctions produced by an ablation procedure and proton pump inhibitors in incompletely ablated Barrett's esophagus (BE) patients that were nondysplastic prior to ablation. SUMMARY BACKGROUND DATA Ablation of BE to squamous epithelium is achievable by combining a re-injury method with acid suppression. We previously reported that, when there is complete ablation, the neo-squamous epithelium is normal histologically and in biomarker expression. However, squamous islands observed after prolonged use of PPIs were associated with abnormalities in p53 expression and Ki-67 labeling. METHODS Twenty-one nondysplastic BE cases with incomplete ablation were evaluated for the expression of Ki-67 (proliferation), cyclooxygenase-2 (COX-2), and p53 by immunohistochemistry. RESULTS Pre-ablation biopsies showed the normal staining patterns in columnar epithelium, ie, normal Ki-67 labeling, rare positive COX-2 staining of interstitial cells, and negative or mild staining for p53 in the majority of patients' biopsies. However, post-ablation biopsies demonstrated abnormal staining patterns in the glandular area at the new squamocolumnar junctions. In 13 of 21 post-ablation cases (62%), increased Ki-67 staining was seen in BE glands. In 8 of 21 patients (38%), increased COX-2 expression was seen in columnar epithelium. Similarly, in 8 of 21 post-ablation junctions (38%), there was increased p53 staining. CONCLUSIONS Our findings of increased expression of cancer-associated biomarkers in incompletely ablated BE patients raise a cautionary note regarding this procedure. We hypothesize that newly formed junctions contain cells undergoing replication, differentiation, etc, and are thus more susceptible to genomic damage.
Collapse
Affiliation(s)
- Katerina Dvorak
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Zekarias B, Stockhofe-Zurwieden N, Post J, Balk F, van Reenen C, Gruys E, Rebel JMJ. The pathogenesis of and susceptibility to malabsorption syndrome in broilers is associated with heterophil influx into the intestinal mucosa and epithelial apoptosis. Avian Pathol 2007; 34:402-7. [PMID: 16236573 DOI: 10.1080/03079450500268328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Malabsorption syndrome (MAS) in broilers is characterized by enteritis and reduced body weight gain. The pathogenesis of the intestinal lesions and the reasons for susceptibility differences between broiler lines are not clear. We studied the development of enteric lesions, epithelial apoptosis, and cell proliferation in relation to susceptibility. One-day-old chickens from two broiler lines were orally inoculated with intestinal homogenate derived from MAS-affected chickens. Vacuolar degeneration and apoptosis of the villous epithelium and infiltration of heterophils into the lamina propria occurred from day 1 post-inoculation. Following heterophil accumulation, at day 4 to 6 post-inoculation, there was severe apoptosis of the crypt epithelium and villous atrophy. The susceptible broilers had a significantly greater influx of heterophils and, subsequently, severe epithelial apoptosis and cystic damage to the crypts. There appeared to be a causal relationship between heterophil influx and the onset of apoptosis. Coincident with the epithelial apoptosis, MAS-affected chickens had crypt hyperproliferation and faster epithelial turnover. Heterophil infiltration and epithelial apoptosis appear to be critical in the pathogenesis of MAS. Heterophil recruitment may be a major factor in differences in susceptibility to MAS.
Collapse
Affiliation(s)
- Bereket Zekarias
- Animal Sciences Group, Wageningen UR, Division of Animal Resources Development, P.O. Box 65, 8200, AB Lelystad, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
100
|
Yoon BS, Kim YT, Kim S, Lee CS, Kim JW, Kim JH, Kim SW, Cho NH. Prognostic value of nuclear DNA quantification and cyclin A expression in epithelial ovarian carcinoma. Eur J Obstet Gynecol Reprod Biol 2006; 136:110-5. [PMID: 17157431 DOI: 10.1016/j.ejogrb.2006.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/04/2006] [Accepted: 10/15/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the correlation of DNA ploidy, S-phase fraction (SPF) and the expression of cyclin A to the clinical prognostic factors in patients with epithelial ovarian cancer. STUDY DESIGN A prospective analysis was performed on 46 ovarian tumor patients. The DNA ploidy and SPF were determined by flow cytometry and the expression of cyclin A was measured by immunohistochemical staining. RESULTS Compared with benign and borderline tumors, the malignant tumors expressed higher levels of cyclin A (P=0.007), more aneuploid cells (P=0.018) and higher SPF (P=0.015). With regard to DNA ploidy and the clinical prognostic factors, aneuploid cells increased with tumor grade (P=0.011), the disease stage (P=0.009) and residual volume (P=0.001). When residual tumor was more than 2 cm, the expression of cyclin A was increased (P=0.043). Three-year survival was low for patients with tumors expressing cyclin A in over 10% of cells (P=0.003). CONCLUSIONS The data suggest that the assessment of the DNA ploidy, SPF and the expression of cyclin A may provide important information for predicting the prognosis of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Bo Sung Yoon
- Department of Obstetrics and Gynecology, Women's Cancer Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|