51
|
Cai Z, Jia P, Zhang J, Gan P, Shao Q, Jin G, Wang L, Jin J, Yang J, Luo J. Genetic analysis and fine mapping of a qualitative trait locus wpb1 for albino panicle branches in rice. PLoS One 2019; 14:e0223228. [PMID: 31557269 PMCID: PMC6763196 DOI: 10.1371/journal.pone.0223228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/15/2019] [Indexed: 12/30/2022] Open
Abstract
Chloroplast plays an important role in the plant life cycle. However, the details of its development remain elusive in rice. In this study, we report the fine-mapping of a novel rice gene wpb1 (white panicle branch 1), which affects chloroplast biogenesis, from a tropical japonica variety that results in an albino panicle branches at and after the heading stage. The wpb1 variety was crossed with Nipponbare to generate the F2 and BC1F2 populations. Green and white panicle branch phenotypes with a 3:1 segregation ratio was observed in the F2 population. Bulked segregant analysis (BSA) based on whole genome resequencing was conducted to determine the wpb1 locus. A candidate interval spanning from 11.35 to 23.79M (physical position) on chromosome 1 was identified. The results of BSA analysis were verified by a 40K rice SNP-array using the BC1F2 population. A large-scale F2 population was used to pinpoint wpb1, and the locus was further narrowed down to a 95-kb interval. Furthermore, our results showed that the expression levels of the majority of the genes involved in Chl biosynthesis, photosynthesis and chloroplast development were remarkably affected in wpb1 variety and in F2 plants with a white panicle branch phenotype. In line with the results mentioned above, anatomical structural examination and chlorophyll (Chl) content measurement suggested that wpb1 might play an important role in the regulation of chloroplast development. Further cloning and functional characterization of the wpb1 gene will shed light on the molecular mechanism underlying chloroplast development in rice.
Collapse
Affiliation(s)
- Zhongquan Cai
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Institute for New Rural Development, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Peilong Jia
- Institute for New Rural Development, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Jiaqiang Zhang
- Research and Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ping Gan
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Qi Shao
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Liping Wang
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Jian Jin
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- * E-mail: (JL); (JY); (JJ)
| | - Jiangyi Yang
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- * E-mail: (JL); (JY); (JJ)
| | - Jijing Luo
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- * E-mail: (JL); (JY); (JJ)
| |
Collapse
|
52
|
Cheng L, Nam J, Chu SH, Rungnapa P, Min MH, Cao Y, Yoo JM, Kang JS, Kim KW, Park YJ. Signatures of differential selection in chloroplast genome between japonica and indica. RICE (NEW YORK, N.Y.) 2019; 12:65. [PMID: 31414311 PMCID: PMC6692809 DOI: 10.1186/s12284-019-0322-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/02/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND The domestication process of Asian rice (Oryza sativa L.) is complicated. It's well established that Oryza rufipogon is the ancestor of Asian rice, although the number of domestication events still controversial. Recently, numerous types of studies based on rice nuclear genome have been conducted, but the results are quite different. Chloroplasts (cp) are also part of the rice genome and have a conserved cyclic structure that is valuable for plant genetics and evolutionary studies. Therefore, we conducted chloroplast-based studies, aiming to provide more evidence for the domestication of Asian rice. RESULTS A total of 1389 variants were detected from the chloroplast genomes of 412 accessions obtained through the world. Oryza sativa L. ssp. japonica exhibited slightly less diversity (π) than Oryza sativa L. indica and wild rice. The fixation index values (FST) revealed that indica and japonica exhibited farther genetic distances compared with wild rice. Across cp genome, Tajima's D test demonstrated that different selection sites occurred in Asian rice. Principal component analyses (PCA) and multidimensional scaling (MDS) clearly classify the Asian rice into different groups. Furthermore, introgression patterns identified that indica and japonica shared no introgression events in cp level, and phylogenetic studies showed cultivated rice were well separated from different type of wild rice. CONCLUSIONS Here, we focus on the domestication of Asian rice (indica and japonica). Diversity and phylogenetic analyses revealed some selection characteristics in the chloroplast genome that potentially occurred in different Asian rice during the domestication. The results shown that Asian rice had been domesticated at least twice. In additional, japonica may experience a strong positive selection or bottleneck event during the domestication.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Jungrye Nam
- Center for Crop Breeding on Omics and Artifical Intelligence, Kongju National University, Yesan, 32439, Republic of Korea
| | - Sang-Ho Chu
- Center for Crop Breeding on Omics and Artifical Intelligence, Kongju National University, Yesan, 32439, Republic of Korea
| | - Phitaktansakul Rungnapa
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Myeong-Hyeon Min
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Yuan Cao
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Ji-Min Yoo
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Jee-Su Kang
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Kyu-Won Kim
- Center for Crop Breeding on Omics and Artifical Intelligence, Kongju National University, Yesan, 32439, Republic of Korea.
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea.
- Center for Crop Breeding on Omics and Artifical Intelligence, Kongju National University, Yesan, 32439, Republic of Korea.
| |
Collapse
|
53
|
Gao LZ, Liu YL, Zhang D, Li W, Gao J, Liu Y, Li K, Shi C, Zhao Y, Zhao YJ, Jiao JY, Mao SY, Gao CW, Eichler EE. Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Commun Biol 2019; 2:278. [PMID: 31372517 PMCID: PMC6659635 DOI: 10.1038/s42003-019-0531-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
The course, tempo and mode of chloroplast genome evolution remain largely unknown, resulting in limited knowledge about how plant plastome gene and genome evolve during the process of recent plant speciation. Here, we report the complete plastomes of 22 closely related Oryza species in chronologically ordered stages and generate the first precise map of genomic structural variation, to our knowledge. The occurrence rapidity was estimated on average to be ~7 insertions and ~15 deletions per Myr. Relatively fewer deletions than insertions result in an increased repeat density that causes the observed growth of Oryza chloroplast genome sizes. Genome-wide scanning identified 14 positively selected genes that are relevant to photosynthesis system, eight of which were found independently in shade-tolerant or sun-loving rice species. psaA seemed positively selected in both shade-tolerant and sun-loving rice species. The results show that adaptive evolution of chloroplast genes makes rice species adapt to diverse ecological habitats related to sunlight preferences.
Collapse
Affiliation(s)
- Li-Zhi Gao
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
- Institution of Genomics and Bioinformatics, South China Agricultural University, 510642 Guangzhou, China
| | - Yun-Long Liu
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Dan Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, 510642 Guangzhou, China
| | - Wei Li
- Institution of Genomics and Bioinformatics, South China Agricultural University, 510642 Guangzhou, China
| | - Ju Gao
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Yuan Liu
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Kui Li
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Chao Shi
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Yuan Zhao
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Faculty of Plant Protection, Yunnan Agricultural University, 650204 Kunming, China
| | - You-Jie Zhao
- Southwest China Forestry University, 650224 Kunming, China
| | - Jun-Ying Jiao
- Southwest China Forestry University, 650224 Kunming, China
| | - Shu-Yan Mao
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Cheng-Wen Gao
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Evan E. Eichler
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
54
|
Mohanta TK, Khan AL, Hashem A, Allah EFA, Yadav D, Al-Harrasi A. Genomic and evolutionary aspects of chloroplast tRNA in monocot plants. BMC PLANT BIOLOGY 2019; 19:39. [PMID: 30669974 PMCID: PMC6341768 DOI: 10.1186/s12870-018-1625-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/28/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Chloroplasts are one of the most indispensable organelles that make life forms on the earth possible by their capacity to photosynthesize. These organelles possess a circular genome with a number of coding genes responsible for self-regulation. tRNAs are an important evolutionary-conserved gene family that are responsible for protein translation. However, within the chloroplast genome, tRNA machinery are poorly understood. RESULTS In the present study, the chloroplast genome of six monocot plants, Oryza nivara (NC_005973), Oryza sativa (NC_001320), Sachharum officinarum (NC_006084), Sorghum bicolor (NC_008602), Triticum aestivum (NC_002762), and Zea mays (NC_001666) were downloaded and analyzed to identify tRNA sequences. Further analysis of the tRNA sequences in the chloroplast genomes of the monocot plants resulted in the identification of several novel features. The length of tRNAs in the chloroplast genome of the monocot plants ranged from 59 to 155 nucleotides. Pair-wise sequence alignment revealed the presence of a conserved A-C-x-U-A-x-U-A-x-U-x5-U-A-A nucleotide consensus sequence. In addition, the tRNAs in chloroplast genomes of the monocot plants also contain 21-28 anti-codons against 61 sense codons in the genome. They also contain a group I intron and a C-A-U anti-codon for tRNAIle, which is a common anti-codon of tRNAMet. Evolutionary analysis indicates that tRNAs in the chloroplast genome have evolved from multiple common ancestors, and tRNAMet appears to be the ancestral tRNA that underwent duplication and diversification to give rise to other tRNAs. CONCLUSION The results obtained from the study of chloroplast tRNA will greatly help to increase our understanding of tRNA biology at a new level. Functional studies of the reported novel aspects of the chloroplast tRNA of the monocot plants will greatly help to decipher their roles in diverse cellular processes.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt
| | - Elsayed Fathi Abd_ Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541 Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| |
Collapse
|
55
|
Srilatha P, Yousuf F, Methre R, Vishnukiran T, Agarwal S, Poli Y, Raghurami Reddy M, Vidyasagar B, Shanker C, Krishnaveni D, Triveni S, Brajendra, Praveen S, Balachandran S, Subrahmanyam D, Mangrauthia SK. Physical interaction of RTBV ORFI with D1 protein of Oryza sativa and Fe/Zn homeostasis play a key role in symptoms development during rice tungro disease to facilitate the insect mediated virus transmission. Virology 2019; 526:117-124. [DOI: 10.1016/j.virol.2018.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
|
56
|
Park S, An B, Park S. Reconfiguration of the plastid genome in Lamprocapnos spectabilis: IR boundary shifting, inversion, and intraspecific variation. Sci Rep 2018; 8:13568. [PMID: 30206286 PMCID: PMC6134119 DOI: 10.1038/s41598-018-31938-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022] Open
Abstract
We generated a complete plastid genome (plastome) sequence for Lamprocapnos spectabilis, providing the first complete plastome from the subfamily Fumarioideae (Papaveraceae). The Lamprocapnos plastome shows large differences in size, structure, gene content, and substitution rates compared with two sequenced Papaveraceae plastomes. We propose a model that explains the major rearrangements observed, involving at least six inverted repeat (IR) boundary shifts and five inversions, generating a number of gene duplications and relocations, as well as a two-fold expansion of the IR and miniaturized small single-copy region. A reduction in the substitution rates for genes transferred from the single-copy regions to the IR was observed. Accelerated substitution rates of plastid accD and clpP were detected in the Lamprocapnos plastome. The accelerated substitution rate for the accD gene was correlated with a large insertion of amino acid repeat (AAR) motifs in the middle region, but the forces driving the higher substitution rate of the clpP gene are unclear. We found a variable number of AARs in Lamprocapnos accD and ycf1 genes within individuals, and the repeats were associated with coiled-coil regions. In addition, comparative analysis of three Papaveraceae plastomes revealed loss of rps15 in Papaver, and functional replacement to the nucleus was identified.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
57
|
Zhang Y, Chen C. The complete chloroplast genome sequence of the medicinal plant Fagopyrum dibotrys (Polygonaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:1087-1089. [PMID: 33474426 PMCID: PMC7799473 DOI: 10.1080/23802359.2018.1483761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chloroplast (cp) genome sequences become a useful popular tool for population and phylogeny in recent reports. Here, the complete chloroplast genome of the Fagopyrum dibotrys has been reconstructed from the whole-genome Illumina sequencing data. The circular genome is 159,325 bp in size, and comprises a pair of inverted repeat (IR) regions of 67,788 bp each, a large single-copy (LSC) region of 84,593 bp, and a small single-copy (SSC) region of 6,944 bp. The total Guanine and Cytosine (GC) content is 38.0%, while the corresponding values of the LSC, SSC, and IR region are 36.3%, 34.5%, and 40.2%, respectively. The chloroplast genome contains 131 genes, including 94 protein-coding genes, eight ribosomal RNA genes, and 29 transfer RNA genes. The Maximum-Likelihood Phylogenetic analysis showed a strong sister relationship with F. tataricum in Polygonaceae. Our findings provide a foundation for further investigation of cp genome evolution in F. dibotrys and other higher plants.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Botany of Shaanxi Province, Xi'an Botanical Garden of Shaanxi Province, Xi'an, Shaanxi Province, China
| | - Chen Chen
- Institute of Botany of Shaanxi Province, Xi'an Botanical Garden of Shaanxi Province, Xi'an, Shaanxi Province, China
| |
Collapse
|
58
|
Complete Chloroplast Genome Sequence of Broomcorn Millet (Panicum miliaceum L.) and Comparative Analysis with Other Panicoideae Species. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8090159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Broomcorn millet (Panicum miliaceum L.) is one of the earliest domesticated cereals worldwide, holding significant agricultural, historical, and evolutionary importance. However, our genomic knowledge of it is rather limited at present, hampering further genetic and evolutionary studies. Here, we sequenced and assembled the chloroplast genome (cp) of broomcorn millet and compared it with five other Panicoideae species. Results showed that the cp genome of broomcorn millet was 139,826 bp in size, with a typical quadripartite structure. In total, 108 genes were annotated and 18 genes were duplicated in the IR (inverted region) region, which was similar to other Panicoideae species. Comparative analysis showed a rather conserved genome structure between them, with three common regions. Furthermore, RNA editing, codon usage, and expansion of the IR, as well as simple sequence repeat (SSR) elements, were systematically investigated and 13 potential DNA markers were developed for Panicoideae species identification. Finally, phylogenetic analysis implied that broomcorn millet was a sister species to Panicum virgatum within the tribe Paniceae, and supported a monophyly of the Panicoideae. This study has reported for the first time the genome organization, gene content, and structural features of the chloroplast genome of broomcorn millet, which provides valuable information for genetic and evolutionary studies in the genus Panicum and beyond.
Collapse
|
59
|
Liu H, He J, Ding C, Lyu R, Pei L, Cheng J, Xie L. Comparative Analysis of Complete Chloroplast Genomes of Anemoclema, Anemone, Pulsatilla, and Hepatica Revealing Structural Variations Among Genera in Tribe Anemoneae (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2018; 9:1097. [PMID: 30100915 PMCID: PMC6073577 DOI: 10.3389/fpls.2018.01097] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/09/2018] [Indexed: 05/20/2023]
Abstract
Structural rearrangements of Anemone species' chloroplast genome has been reported based on genetic mapping of restriction sites but has never been confirmed by genomic studies. We used a next-generation sequencing method to characterize the complete chloroplast genomes of five species in the tribe Anemoneae. Plastid genomes were assembled using de novo assembling methods combined with conventional Sanger sequencing to fill the gaps. The gene order of the chloroplast genomes of tribe Anemoneae was compared with that of other Ranunculaceae species. Multiple inversions and transpositions were detected in tribe Anemoneae. Anemoclema, Anemone, Hepatica, and Pulsatilla shared the same gene order, which contained three inversions in the large single copy region (LSC) compared to other Ranunculaceae genera. Archiclematis, Clematis, and Naravelia shared the same gene order containing two inversions and one transposition in LSC. A roughly 4.4 kb expansion region in inverted repeat (IR) regions was detected in tribe Anemoneae, suggesting that this expansion event may be a synapomorphy for this group. Plastome phylogenomic analyses using parsimony and a Bayesian method with implementation of partitioned models generated a well resolved phylogeny of Ranunculaceae. These results suggest that evaluation of chloroplast genomes may result in improved resolution of family phylogenies. Samples of Anemone, Hepatica, and Pulsatilla were tested to form paraphyletic grades within tribe Anemoneae. Anemoclema was a sister clade to Clematis. Structual variation of the plastid genome within tribe Anemoneae provided strong phylogenetic information for Ranunculaceae.
Collapse
Affiliation(s)
- Huijie Liu
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jian He
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Chuanhua Ding
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Rudan Lyu
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Linying Pei
- Beijing Forestry University Forest Science Co. Ltd., Beijing, China
| | - Jin Cheng
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Lei Xie
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
60
|
Shin HW, Lee NS. Understanding plastome evolution in Hemiparasitic Santalales: Complete chloroplast genomes of three species, Dendrotrophe varians, Helixanthera parasitica, and Macrosolen cochinchinensis. PLoS One 2018; 13:e0200293. [PMID: 29975758 PMCID: PMC6033455 DOI: 10.1371/journal.pone.0200293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/22/2018] [Indexed: 01/31/2023] Open
Abstract
Santalales is a large order, with over 2200 species, most of which are root or aerial (stem) hemiparasites. In this study, we report the newly assembled chloroplast genome of Dendrotrophe varians (140,666 bp) in the family Amphorogynaceae and the cp genomes of Helixanthera parasitica (124,881 bp) and Macrosolen cochinchinensis (122,986 bp), both in the family Loranthaceae. We compared the cp genomes of 11 Santalales including eight currently available cp genomes. Santalales cp genomes are slightly or not reduced in size (119-147 kb), similar to other hemiparasitic species, when compared with typical angiosperm cp genomes (120-170 kb). In a phylogeny examining gene content, the NADH dehydrogenase gene group is the only one among eight functional gene groups that lost complete functionally in all examined Santalales. This supports the idea that the functional loss of ndh genes is the initial stage in the evolution of the plastome of parasitic plants, but the loss has occurred independently multiple times in angiosperms, while they are not found in some parasites. This suggests that the functional loss of ndh genes is not essential for the transition from autotroph to parasite. We additionally examined the correlation between gene content and type of parasitism (obligate/facultative and stem/root parasites) of all hemiparasitic species in which cp genomes have been reported to date. Correlation was not found in any types of parasitism.
Collapse
Affiliation(s)
- Hye Woo Shin
- Interdisciplinary Program of EcoCreative, The Graduate School, Ewha Womans University, Seoul, Korea
| | - Nam Sook Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
61
|
Lin D, Zheng K, Liu Z, Li Z, Teng S, Xu J, Dong Y. Rice TCM1 Encoding a Component of the TAC Complex is Required for Chloroplast Development under Cold Stress. THE PLANT GENOME 2018; 11:160065. [PMID: 29505628 DOI: 10.3835/plantgenome2016.07.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transcriptionally active chromosome (TAC) is a component of protein-DNA complexes with RNA polymerase activity, expressed in the plastid. However, the function of rice TAC proteins is still poorly understood. In this paper, we first report the identification of a new rice ( L.) mutant () in the gene encoding TAC. The mutant displayed an albino phenotype and malformed chloroplasts before the three-leaf stage when grown at low temperatures (20°C) and a normal phenotype at higher temperatures (>28°C). Map-based cloning revealed that encodes a novel chloroplast-targeted TAC protein in rice. In addition, the transcript levels of all examined plastid-encoded polymerase (PEP)-dependent genes were clearly downregulated in mutants at low temperatures, although partially recovering levels were obtained at high temperatures, comparable to wild-type plants. Furthermore, the transcripts were ubiquitously expressed in all examined tissues, with high expression levels in green tissues. The data suggest that the rice nuclear-encoded TAC protein TCM1 is essential for proper chloroplast development and maintaining PEP activity under cold stress.
Collapse
|
62
|
Plastid phylogenomics resolves infrafamilial relationships of the Styracaceae and sheds light on the backbone relationships of the Ericales. Mol Phylogenet Evol 2018; 121:198-211. [PMID: 29360618 DOI: 10.1016/j.ympev.2018.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/05/2023]
Abstract
Relationships among the genera of the small, woody family Styracaceae and among families of the large, diverse order Ericales have resisted complete resolution with sequences from one or a few genes. We used plastome sequencing to attempt to resolve the backbone relationships of Styracaceae and Ericales and to explore plastome structural evolution. Complete plastomes for 23 species are newly reported here, including 18 taxa of Styracaceae and five of Ericales (including species of Sapotaceae, Clethraceae, Symplocaceae, and Diapensiaceae). Combined with publicly available complete plastome data, this resulted in a data set of 60 plastomes, including 11 of the 12 genera of Styracaceae and 12 of 22 families of Ericales. Styracaceae plastomes were found to possess the quadripartite structure typical of angiosperms, with sizes ranging from 155 to 159 kb. Most of the plastomes were found to possess the full complement of typical angiosperm plastome genes. Unusual structural features were detected in plastomes of Alniphyllum and Bruinsmia, including the presence of a large 20-kb inversion (14 genes) in the Large Single-Copy region, the loss or pseudogenization of the clpP and accD genes in Bruinsmia, and the loss of the first exon of rps16 in B. styracoides. Likewise, the second intron from clpP was found to be lost in Alniphyllum and Huodendron. Phylogenomic analyses including all 79 plastid protein-coding genes provided improved resolution for relationships among the genera of Styracaceae and families of Ericales. Styracaceae was strongly supported as monophyletic, with Styrax, Huodendron, and a clade of Alniphyllum + Bruinsmia successively sister to the remainder of the family, all with strong support. All genera of Styracaceae were recovered as monophyletic, except for Halesia and Pterostyrax, which were each recovered as polyphyletic with strong support. Within Ericales, all families were recovered as monophyletic with strong support, with Balsaminaceae sister to remaining Ericales. Most relationships recovered in plastome analyses are congruent with previous analyses based on smaller data sets. Our results demonstrate the power of plastid phylogenomics to improve phylogenetic hypotheses among genera and families, and provide new insight into plastome evolution across Ericales.
Collapse
|
63
|
Rice TSV3 Encoding Obg-Like GTPase Protein Is Essential for Chloroplast Development During the Early Leaf Stage Under Cold Stress. G3-GENES GENOMES GENETICS 2018; 8:253-263. [PMID: 29162684 PMCID: PMC5765353 DOI: 10.1534/g3.117.300249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Spo0B-associated GTP-binding (Obg) proteins are essential for the viability of nearly all bacteria. However, the detailed roles of Obg proteins in higher plants have not yet been elucidated. In this study, we identified a novel rice (Oryza sativa L.) thermo-sensitive virescent mutant (tsv3) that displayed an albino phenotype at 20° before the three-leaf stage while being a normal green at 32° or even at 20° after the four-leaf stage. The mutant phenotype was consistent with altered chlorophyll content and chloroplast structure in leaves. Map-based cloning and complementation experiments showed that TSV3 encoded a small GTP-binding protein. Subcellular localization studies revealed that TSV3 was localized to the chloroplasts. Expression of TSV3 was high in leaves and weak or undetectable in other tissues, suggesting a tissue-specific expression of TSV3 In the tsv3 mutant, expression levels of genes associated with the biogenesis of the chloroplast ribosome 50S subunit were severely decreased at the three-leaf stage under cold stress (20°), but could be recovered to normal levels at a higher temperature (32°). These observations suggest that the rice nuclear-encoded TSV3 plays important roles in chloroplast development at the early leaf stage under cold stress.
Collapse
|
64
|
Takamatsu T, Baslam M, Inomata T, Oikawa K, Itoh K, Ohnishi T, Kinoshita T, Mitsui T. Optimized Method of Extracting Rice Chloroplast DNA for High-Quality Plastome Resequencing and de Novo Assembly. FRONTIERS IN PLANT SCIENCE 2018; 9:266. [PMID: 29541088 PMCID: PMC5835797 DOI: 10.3389/fpls.2018.00266] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chloroplasts, which perform photosynthesis, are one of the most important organelles in green plants and algae. Chloroplasts maintain an independent genome that includes important genes encoding their photosynthetic machinery and various housekeeping functions. Owing to its non-recombinant nature, low mutation rates, and uniparental inheritance, the chloroplast genome (plastome) can give insights into plant evolution and ecology and in the development of biotechnological and breeding applications. However, efficient methods to obtain high-quality chloroplast DNA (cpDNA) are currently not available, impeding powerful sequencing and further functional genomics research. To investigate effects on rice chloroplast genome quality, we compared cpDNA extraction by three extraction protocols: liquid nitrogen coupled with sucrose density gradient centrifugation, high-salt buffer, and Percoll gradient centrifugation. The liquid nitrogen-sucrose gradient method gave a high yield of high-quality cpDNA with reliable purity. The cpDNA isolated by this technique was evaluated, resequenced, and assembled de novo to build a robust framework for genomic and genetic studies. Comparison of this high-purity cpDNA with total DNAs revealed the read coverage of the sequenced regions; next-generation sequencing data showed that the high-quality cpDNA eliminated noise derived from contamination by nuclear and mitochondrial DNA, which frequently occurs in total DNA. The assembly process produced highly accurate, long contigs. We summarize the extent to which this improved method of isolating cpDNA from rice can provide practical progress in overcoming challenges related to chloroplast genomes and in further exploring the development of new sequencing technologies.
Collapse
Affiliation(s)
- Takeshi Takamatsu
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Takuya Inomata
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kazusato Oikawa
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Kimiko Itoh
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Takayuki Ohnishi
- Center for Education and Research of Community Collaboration, Utsunomiya University, Utsunomiya, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- *Correspondence: Toshiaki Mitsui,
| |
Collapse
|
65
|
Choi KS, Park KT, Park S. The Chloroplast Genome of Symplocarpus renifolius: A Comparison of Chloroplast Genome Structure in Araceae. Genes (Basel) 2017; 8:E324. [PMID: 29144427 PMCID: PMC5704237 DOI: 10.3390/genes8110324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022] Open
Abstract
Symplocarpus renifolius is a member of Araceae family that is extraordinarily diverse in appearance. Previous studies on chloroplast genomes in Araceae were focused on duckweeds (Lemnoideae) and root crops (Colocasia, commonly known as taro). Here, we determined the chloroplast genome of Symplocarpus renifolius and compared the factors, such as genes and inverted repeat (IR) junctions and performed phylogenetic analysis using other Araceae species. The chloroplast genome of S. renifolius is 158,521 bp and includes 113 genes. A comparison among the Araceae chloroplast genomes showed that infA in Lemna, Spirodela, Wolffiella, Wolffia, Dieffenbachia and Colocasia has been lost or has become a pseudogene and has only been retained in Symplocarpus. In the Araceae chloroplast DNA (cpDNA), psbZ is retained. However, psbZ duplication occurred in Wolffia species and tandem repeats were noted around the duplication regions. A comparison of the IR junction in Araceae species revealed the presence of ycf1 and rps15 in the small single copy region, whereas duckweed species contained ycf1 and rps15 in the IR region. The phylogenetic analyses of the chloroplast genomes revealed that Symplocarpus are a basal group and are sister to the other Araceae species. Consequently, infA deletion or pseudogene events in Araceae occurred after the divergence of Symplocarpus and aquatic plants (duckweeds) in Araceae and duplication events of rps15 and ycf1 occurred in the IR region.
Collapse
Affiliation(s)
- Kyoung Su Choi
- Department of Life Sciences, Yeungnam University, Gyeongsan 712-749, Gyeongsangbuk-do, Korea.
| | - Kyu Tae Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 712-749, Gyeongsangbuk-do, Korea.
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 712-749, Gyeongsangbuk-do, Korea.
| |
Collapse
|
66
|
Chloroplast Genome Sequence of Clusterbean (Cyamopsis tetragonoloba L.): Genome Structure and Comparative Analysis. Genes (Basel) 2017; 8:genes8090212. [PMID: 28925932 PMCID: PMC5615346 DOI: 10.3390/genes8090212] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
Clusterbean (Cyamopsis tetragonoloba L.), also known as guar, belongs to the family Leguminosae, and is an annual herbaceous legume. Guar is the main source of galactomannan for gas mining industries. In the present study, the draft chloroplast genome of clusterbean was generated and compared to some of the previously reported legume chloroplast genomes. The chloroplast genome of clusterbean is 152,530 bp in length, with a quadripartite structure consisting of large single copy (LSC) and small single copy (SSC) of 83,025 bp and 17,879 bp in size, respectively, and a pair of inverted repeats (IRs) of 25,790 bp in size. The chloroplast genome contains 114 unique genes, which includes 78 protein coding genes, 30 tRNAs, 4 rRNAs genes, and 2 pseudogenes. It also harbors a 50 kb inversion, typical of the Leguminosae family. The IR region of the clusterbean chloroplast genome has undergone an expansion, and hence, the whole rps19 gene is included in the IR, as compared to other legume plastid genomes. A total of 220 simple sequence repeats (SSRs) were detected in the clusterbean plastid genome. The analysis of the clusterbean plastid genome will provide useful insights for evolutionary, molecular and genetic engineering studies.
Collapse
|
67
|
Raman G, Park V, Kwak M, Lee B, Park S. Characterization of the complete chloroplast genome of Arabis stellari and comparisons with related species. PLoS One 2017; 12:e0183197. [PMID: 28809950 PMCID: PMC5557495 DOI: 10.1371/journal.pone.0183197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/31/2017] [Indexed: 01/25/2023] Open
Abstract
Arabis stellari var. japonica is an ornamental plant of the Brassicaceae family, and is widely distributed in South Korea. However, no information is available about its molecular biology and no genomic study has been performed on A. stellari. In this paper, the authors report the complete chloroplast genome sequence of A. stellari. The plastome of A. stellari was 153,683 bp in length with 36.4% GC and included a pair of inverted repeats (IRs) of 26,423 bp that separated a large single-copy (LSC) region of 82,807 bp and a small single-copy (SSC) region of 18,030 bp. It was also found to contain 113 unique genes, of which 79 were protein-coding genes, 30 were transfer RNAs, and four were ribosomal RNAs. The gene content and organization of the A. stellari chloroplast genome were similar to those of other Brassicaceae genomes except for the absence of the rps16 protein-coding gene. A total of 991 SSRs were identified in the genome. The chloroplast genome of A. stellari was compared with closely related species of the Brassicaceae family. Comparative analysis showed a minor divergence occurred in the protein-coding matK, ycf1, ccsA, accD and rpl22 genes and that the KA/KS nucleotide substitution ratio of the ndhA genes of A. stellari and A. hirsuta was 1.35135. The genes infA and rps16 were absent in the Arabis genus and phylogenetic evolutionary studies revealed that these genes evolved independently. However, phylogenetic analysis showed that the positions of Brassicaceae species are highly conserved. The present study provides A. stellari genomic information that may be found useful in conservation and molecular phylogenetic studies on Brassicaceae.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Veronica Park
- Mcneil high school, Austin, Texas, United States of America
| | - Myounghai Kwak
- Plant Resources Division, National Institute of Biological Resources of Korea, Incheon, Republic of Korea
| | - Byoungyoon Lee
- Plant Resources Division, National Institute of Biological Resources of Korea, Incheon, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- * E-mail:
| |
Collapse
|
68
|
Hong CP, Park J, Lee Y, Lee M, Park SG, Uhm Y, Lee J, Kim CK. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae. BMC Genomics 2017; 18:607. [PMID: 28800729 PMCID: PMC5553655 DOI: 10.1186/s12864-017-4014-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campanulaceae species are known to have highly rearranged plastid genomes lacking the acetyl-CoA carboxylase (ACC) subunit D gene (accD), and instead have a nuclear (nr)-accD. Plastid genome information has been thought to depend on studies concerning Trachelium caeruleum and genome announcements for Adenophora remotiflora, Campanula takesimana, and Hanabusaya asiatica. RNA editing information for plastid genes is currently unavailable for Campanulaceae. To understand plastid genome evolution in Campanulaceae, we have sequenced and characterized the chloroplast (cp) genome and nr-accD of Platycodon grandiflorum, a basal member of Campanulaceae. RESULTS We sequenced the 171,818 bp cp genome containing a 79,061 bp large single-copy (LSC) region, a 42,433 bp inverted repeat (IR) and a 7840 bp small single-copy (SSC) region, which represents the cp genome with the largest IR among species of Campanulaceae. The genome contains 110 genes and 18 introns, comprising 77 protein-coding genes, four RNA genes, 29 tRNA genes, 17 group II introns, and one group I intron. RNA editing of genes was detected in 18 sites of 14 protein-coding genes. Platycodon has an IR containing a 3' rps12 operon, which occurs in the middle of the LSC region in four other species of Campanulaceae (T. caeruleum, A. remotiflora, C. takesimana, and H. asiatica), but lacks accD, clpP, infA, and rpl23, as has been found in these four species. Platycodon nr-accD contains about 3.2 kb intron between nr-accD.e1 and nr-accD.e2 at the same insertion point as in other Campanulaceae. The phylogenies of the plastid genomes and accD show that Platycodon is basal in the Campanulaceae clade, indicating that IR disruption in Campanulaceae occurred after the loss of accD, clpP, infA, and rpl23 in the cp genome, which occurred during plastid evolution in Campanulaceae. CONCLUSIONS The plastid genome of P. grandiflorum lacks the rearrangement of the IR found in T. caeruleum, A. remotiflora, C. takesimana, and H. asiatica. The absence of accD, clpP, infA, and rpl23 in the plastid genome is a synapomorphic characteristic of Campanulaceae. The chloroplast genome phylogeny supports the hypothesis that chloroplast genomic arrangement occurred after accD nuclear transfer and loss of the four genes in the plastid of early Campanulaceae as a lineage of asterids.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Bioinformatics Team, Theragen Etex Bio Institute, Suwon, 443-270, South Korea
| | - Jihye Park
- Green Plant Institute, B-301, Heungdeok IT Valley, Giheung-gu, Yongin, 446-908, South Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, 362-763, South Korea
| | - Minjee Lee
- Green Plant Institute, B-301, Heungdeok IT Valley, Giheung-gu, Yongin, 446-908, South Korea
| | - Sin Gi Park
- Bioinformatics Team, Theragen Etex Bio Institute, Suwon, 443-270, South Korea
| | - Yurry Uhm
- Herbal Crop Research Division, National Institute of Horticultural and Herbal Science (NIHH), RDA, Eumseong, 369-873, South Korea
| | - Jungho Lee
- Green Plant Institute, B-301, Heungdeok IT Valley, Giheung-gu, Yongin, 446-908, South Korea.
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Science (NAS), RDA, Jeonju, 560-500, South Korea.
| |
Collapse
|
69
|
Abstract
One of the major mechanisms driving the evolution of all organisms is genomic rearrangement. In hyperthermophilic Archaea of the order Thermococcales, large chromosomal inversions occur so frequently that even closely related genomes are difficult to align. Clearly not resulting from the native homologous recombination machinery, the causative agent of these inversions has remained elusive. We present a model in which genomic inversions are catalyzed by the integrase enzyme encoded by a family of mobile genetic elements. We characterized the integrase from Thermococcus nautili plasmid pTN3 and showed that besides canonical site-specific reactions, it catalyzes low sequence specificity recombination reactions with the same outcome as homologous recombination events on DNA segments as short as 104bp both in vitro and in vivo, in contrast to other known tyrosine recombinases. Through serial culturing, we showed that the integrase-mediated divergence of T. nautili strains occurs at an astonishing rate, with at least four large-scale genomic inversions appearing within 60 generations. Our results and the ubiquitous distribution of pTN3-like integrated elements suggest that a major mechanism of evolution of an entire order of Archaea results from the activity of a selfish mobile genetic element. Mobile elements (MEs) such as viruses, plasmids and transposons infect most living organisms and often encode recombinases promoting their insertion into cellular genomes. These insertions alter the genome of their host according to two main mechanisms. First, MEs provide new functions to the cell by integrating their own genetic information into the DNA of the host, at one or more locations. Secondly, cellular homologous recombination will act upon multiple integrated copies and produce a variety of large-scale chromosomal rearrangements. If such modifications are advantageous, they will spread into the population by natural selection. Typically, enzymes involved in cellular homologous recombination and the integration of MEs are distinct. We describe here a novel plasmid-encoded archaeal integrase which in addition to site-specific recombination can catalyze low sequence specificity recombination reactions akin to homologous recombination.
Collapse
|
70
|
Huang YY, Cho ST, Haryono M, Kuo CH. Complete chloroplast genome sequence of common bermudagrass (Cynodon dactylon (L.) Pers.) and comparative analysis within the family Poaceae. PLoS One 2017; 12:e0179055. [PMID: 28617867 PMCID: PMC5472289 DOI: 10.1371/journal.pone.0179055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/23/2017] [Indexed: 02/02/2023] Open
Abstract
Common bermudagrass (Cynodon dactylon (L.) Pers.) belongs to the subfamily Chloridoideae of the Poaceae family, one of the most important plant families ecologically and economically. This grass has a long connection with human culture but its systematics is relatively understudied. In this study, we sequenced and investigated the chloroplast genome of common bermudagrass, which is 134,297 bp in length with two single copy regions (LSC: 79,732 bp; SSC: 12,521 bp) and a pair of inverted repeat (IR) regions (21,022 bp). The annotation contains a total of 128 predicted genes, including 82 protein-coding, 38 tRNA, and 8 rRNA genes. Additionally, our in silico analyses identified 10 sets of repeats longer than 20 bp and predicted the presence of 36 RNA editing sites. Overall, the chloroplast genome of common bermudagrass resembles those from other Poaceae lineages. Compared to most angiosperms, the accD gene and the introns of both clpP and rpoC1 genes are missing. Additionally, the ycf1, ycf2, ycf15, and ycf68 genes are pseudogenized and two genome rearrangements exist. Our phylogenetic analysis based on 47 chloroplast protein-coding genes supported the placement of common bermudagrass within Chloridoideae. Our phylogenetic character mapping based on the parsimony principle further indicated that the loss of the accD gene and clpP introns, the pseudogenization of four ycf genes, and the two rearrangements occurred only once after the most recent common ancestor of the Poaceae diverged from other monocots, which could explain the unusual long branch leading to the Poaceae when phylogeny is inferred based on chloroplast sequences.
Collapse
Affiliation(s)
- Ya-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
71
|
Wang WJ, Zheng KL, Gong XD, Xu JL, Huang JR, Lin DZ, Dong YJ. The rice TCD11 encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:1-11. [PMID: 28483049 DOI: 10.1016/j.plantsci.2017.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 05/20/2023]
Abstract
Plastid ribosome proteins (PRPs) are important components for chloroplast biogenesis and early chloroplast development. Although it has been known that chloroplast ribosomes are similar to bacterial ones, the precise molecular function of ribosomal proteins remains to be elucidated in rice. Here, we identified a novel rice mutant, designated tcd11 (thermo-sensitive chlorophyll-deficient mutant 11), characterized by the albino phenotype until it died at 20°C, while displaying normal phenotype at 32°C. The alteration of leaf color in tcd11 mutants was aligned with chlorophyll (Chl) content and chloroplast development. The map-based cloning and molecular complementation showed that TCD11 encodes the ribosomal small subunit protein S6 in chloroplasts (RPS6). TCD11 was abundantly expressed in leaves, suggesting its different expressions in tissues. In addition, the disruption of TCD11 greatly reduced the transcript levels of certain chloroplasts-associated genes and prevented the assembly of ribosome in chloroplasts at low temperature (20°C), whereas they recovered to nearly normal levels at high temperature (32°C). Thus, our data indicate that TCD11 plays an important role in chloroplast development at low temperature. Upon our knowledge, the observations from this study provide a first glimpse into the importance of RPS6 function in rice chloroplast development.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Kai-Lun Zheng
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-Di Gong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China; Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 10010, China
| | - Jian-Long Xu
- The Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan Cun Street, Beijing 100081, China; Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ji-Rong Huang
- Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong-Zhi Lin
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Yan-Jun Dong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
72
|
Downie SR, Olmstead RG, Zurawski G, Soltis DE, Soltis PS, Watson JC, Palmer JD. SIX INDEPENDENT LOSSES OF THE CHLOROPLAST DNA rpl2 INTRON IN DICOTYLEDONS: MOLECULAR AND PHYLOGENETIC IMPLICATIONS. Evolution 2017; 45:1245-1259. [PMID: 28564183 DOI: 10.1111/j.1558-5646.1991.tb04390.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1990] [Accepted: 12/20/1990] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that in several angiosperms and the liverwort Marchantia the chloroplast gene rpl2, encoding ribosomal protein L2, is interrupted by an intron, but that in spinach (Spinacia oleracea, Caryophyllales) this intron has been lost. We have determined the distribution of the rpl2 intron for 390 species representing 116 angiosperm families. Filter hybridizations reveal that the intron is absent from the chloroplast genomes of all examined families of the Caryophyllales, suggesting that the intron was lost in the common ancestor of the order. Sequencing of the rpl2 gene in five genera of the Caryophyllales and in Rumex (Polygonales) not only confirms the filter hybridization results, but also shows that for all taxa lacking the intron, the rpl2 gene has undergone a precise deletion of the intron. In all cases, it is the original rpl2 gene that has sustained loss of its intron. This implies that in chloroplast DNA, integration of exogenous genes (e.g., a reverse transcript of a spliced mRNA) occurs mainly by homologous, replacement recombination, rather than by illegitimate recombination elsewhere in the genome. Filter hybridizations also reveal that the rpl2 intron was lost independently in the common ancestors of at least five other lineages of dicotyledons: Saxifragaceae (s.s.), Convolvulaceae (including Cuscuta), Menyanthaceae, two genera of Geraniaceae, and one genus of Droseraceae. The molecular and phylogenetic implications of these independent intron losses are discussed.
Collapse
Affiliation(s)
- Stephen R Downie
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | - Gerard Zurawski
- Department of Molecular Biology, DNAX Research Institute, 901 California Avenue, Palo Alto, CA, 94304, USA
| | - Douglas E Soltis
- Department of Botany, Washington State University, Pullman, WA, 99164, USA
| | - Pamela S Soltis
- Department of Botany, Washington State University, Pullman, WA, 99164, USA
| | - John C Watson
- Department of Botany, University of Maryland, College Park, MD, 20742, USA
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
73
|
Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice. Sci Rep 2017; 7:43327. [PMID: 28256554 PMCID: PMC5335689 DOI: 10.1038/srep43327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/24/2017] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucleotide diversity than landrace and/or weedy, and landrace rice has higher diversity than weedy rice. Genetic distance was suggestive of a high level of breeding between landrace and weedy rice, and the landrace showing a closer association with wild rice than weedy rice. Population structure and principal component analyses showed no obvious difference in the genetic backgrounds of landrace and weedy rice in mitochondrial genome level. Phylogenetic, population split, and haplotype network evaluations were suggestive of independent origins of the indica and japonica varieties. The origin of weedy rice is supposed to be more likely from cultivated rice rather than from wild rice in mitochondrial genome level.
Collapse
|
74
|
Wang Y, Ren Y, Zhou K, Liu L, Wang J, Xu Y, Zhang H, Zhang L, Feng Z, Wang L, Ma W, Wang Y, Guo X, Zhang X, Lei C, Cheng Z, Wan J. WHITE STRIPE LEAF4 Encodes a Novel P-Type PPR Protein Required for Chloroplast Biogenesis during Early Leaf Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1116. [PMID: 28694820 PMCID: PMC5483476 DOI: 10.3389/fpls.2017.01116] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and perform diverse functions in organellar RNA metabolism. Despite the rice genome encodes 477 PRR proteins, the regulatory effects of PRR proteins on chloroplast development remains unknown. In this study, we report the functional characterization of the rice white stripe leaf4 (wsl4) mutant. The wsl4 mutant develops white-striped leaves during early leaf development, characterized by decreased chlorophyll content and malformed chloroplasts. Positional cloning of the WSL4 gene, together with complementation and RNA-interference tests, reveal that it encodes a novel P-family PPR protein with 12 PPR motifs, and is localized to chloroplast nucleoids. Quantitative RT-PCR analyses demonstrate that WSL4 is a low temperature response gene abundantly expressed in young leaves. Further expression analyses show that many nuclear- and plastid-encoded genes in the wsl4 mutant are significantly affected at the RNA and protein levels. Notably, the wsl4 mutant causes defects in the splicing of atpF, ndhA, rpl2, and rps12. Our findings identify WSL4 as a novel P-family PPR protein essential for chloroplast RNA group II intron splicing during early leaf development in rice.
Collapse
Affiliation(s)
- Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Long Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhiming Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Liwei Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yunlong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Jianmin Wan, ;,
| |
Collapse
|
75
|
Dong W, Xu C, Li W, Xie X, Lu Y, Liu Y, Jin X, Suo Z. Phylogenetic Resolution in Juglans Based on Complete Chloroplast Genomes and Nuclear DNA Sequences. FRONTIERS IN PLANT SCIENCE 2017; 8:1148. [PMID: 28713409 PMCID: PMC5492656 DOI: 10.3389/fpls.2017.01148] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/15/2017] [Indexed: 05/19/2023]
Abstract
Walnuts (Juglans of the Juglandaceae) are well-known economically important resource plants for the edible nuts, high-quality wood, and medicinal use, with a distribution from tropical to temperate zones and from Asia to Europe and Americas. There are about 21 species in Juglans. Classification of Juglans at section level is problematic, because the phylogenetic position of Juglans cinerea is disputable. Lacking morphological and DNA markers severely inhibited the development of related researches. In this study, the complete chloroplast genomes and two nuclear DNA regions (the internal transcribed spacer and ubiquitin ligase gene) of 10 representative taxa of Juglans were used for comparative genomic analyses in order to deepen the understanding on the application value of genetic information for inferring the phylogenetic relationship of the genus. The Juglans chloroplast genomes possessed the typical quadripartite structure of angiosperms, consisting of a pair of inverted repeat regions separated by a large single-copy region and a small single-copy region. All the 10 chloroplast genomes possessed 112 unique genes arranged in the same order, including 78 protein-coding, 30 tRNA, and 4 rRNA genes. A combined sequence data set from two nuclear DNA regions revealed that Juglans plants could be classified into three branches: (1) section Juglans, (2) section Cardiocaryon including J. cinerea which is closer to J. mandshurica, and (3) section Rhysocaryon. However, three branches with a different phylogenetic topology were recognized in Juglans using the complete chloroplast genome sequences: (1) section Juglans, (2) section Cardiocaryon, and (3) section Rhysocaryon plus J. cinerea. The molecular taxonomy of Juglans is almost compatible to the morphological taxonomy except J. cinerea (section Trachycaryon). Based on the complete chloroplast genome sequence data, the divergence time between section Juglans and section Cardiocaryon was 44.77 Mya, while section Rhysocaryon diverged from other sections in the genus Juglans was 47.61 Mya. Eleven of the 12 small inversions in the chloroplast genomes provided valuable phylogenetic information for classification of walnut plants at section and species levels. Our results are valuable for future studies on Juglans genetic diversity and will enhance the understanding on the phylogenetic evolution of Juglandaceae.
Collapse
Affiliation(s)
- Wenpan Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Wenqing Li
- Shandong Provincial Center of Forest Tree Germplasm ResourcesJinan, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest Tree Germplasm ResourcesJinan, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest Tree Germplasm ResourcesJinan, China
| | - Yanlei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xiaobai Jin
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Zhili Suo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Zhili Suo,
| |
Collapse
|
76
|
Zhou K, Ren Y, Zhou F, Wang Y, Zhang L, Lyu J, Wang Y, Zhao S, Ma W, Zhang H, Wang L, Wang C, Wu F, Zhang X, Guo X, Cheng Z, Wang J, Lei C, Jiang L, Li Z, Wan J. Young Seedling Stripe1 encodes a chloroplast nucleoid-associated protein required for chloroplast development in rice seedlings. PLANTA 2017; 245:45-60. [PMID: 27578095 DOI: 10.1007/s00425-016-2590-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Young Seedling Stripe1 (YSS1) was characterized as an important regulator of plastid-encoded plastid RNA polymerase (PEP) activity essential for chloroplast development at rice seedling stage. Chloroplast development is coordinately regulated by plastid- and nuclear-encoding genes. Although a few regulators have been reported to be involved in chloroplast development, new factors remain to be identified, given the complexity of this process. Here, we report the characterization of a temperature-sensitive young seedling stripe1 (yss1) rice mutant, which develops striated leaves at the seedling stage, particularly in leaf 3, but produces wild-type leaves in leaf 5 and onwards. The chlorotic leaves have decreased chlorophyll (Chls) accumulation and impaired chloroplast structure. Positional cloning combined with sequencing demonstrated that aberrant splicing of the 8th intron in YSS1 gene, due to a single nucleotide deletion around splicing donor site, leads to decreased expression of YSS1 and accumulation of an 8th intron-retained yss1 transcript. Furthermore, complementation test revealed that downregulation of YSS1 but not accumulation of yss1 transcript confers yss1 mutant phenotype. YSS1 encodes a chloroplast nucleoid-localized protein belonging to the DUF3727 superfamily. Expression analysis showed that YSS1 gene is more expressed in newly expanded leaves, and distinctly up-regulated as temperatures increase and by light stimulus. PEP- and nuclear-encoded phage-type RNA polymerase (NEP)-dependent genes are separately down-regulated and up-regulated in yss1 mutant, indicating that PEP activity may be impaired. Furthermore, levels of chloroplast proteins are mostly reduced in yss1 seedlings. Together, our findings identify YSS1 as a novel regulator of PEP activity essential for chloroplast development at rice seedling stage.
Collapse
Affiliation(s)
- Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Feng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Long Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jia Lyu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yihua Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shaolu Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liwei Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiupin Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zefu Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
77
|
Zheng K, Zhao J, Lin D, Chen J, Xu J, Zhou H, Teng S, Dong Y. The Rice TCM5 Gene Encoding a Novel Deg Protease Protein is Essential for Chloroplast Development under High Temperatures. RICE (NEW YORK, N.Y.) 2016; 9:13. [PMID: 27000876 PMCID: PMC4801845 DOI: 10.1186/s12284-016-0086-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/08/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND High temperature affects a broad spectrum of cellular components and metabolism in plants. The Deg/HtrA family of ATP-independent serine endopeptidases is present in nearly all organisms. Deg proteases are required for the survival of Escherichia coli at high temperatures. However, it is still unclear whether rice Deg proteases are required for chloroplast development under high temperatures. RESULTS In this study, we reported the first rice deg mutant tcm5 (thermo-sensitive chlorophyll-deficient mutant 5) that has an albino phenotype, defective chloroplasts and could not survive after the 4-5 leaf seedling stage when grown at high temperature (32 °C). However, when grown at low temperatures (20 °C), tcm5 has a normal phenotype. Map-based cloning showed that TCM5 encoding a chloroplast-targeted Deg protease protein. The TCM5 transcripts were highly expressed in all green tissues and undetectable in other tissues, showing the tissue-specific expression. In tcm5 mutants grown at high temperatures, the transcript levels of certain genes associated with chloroplast development especially PSII-associated genes were severely affected, but recovered to normal levels at low temperatures. These results showed important role of TCM5 for chloroplast development under high temperatures. CONCLUSIONS The TCM5 encodes chloroplast-targeted Deg protease protein which is important for chloroplast development and the maintenance of PSII function and its disruption would lead to a defective chloroplast and affected expression levels of genes associated with chloroplast development and photosynthesis at early rice seedling stage under high temperatures.
Collapse
Affiliation(s)
- Kailun Zheng
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Jian Zhao
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
- />Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Dongzhi Lin
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Jiaying Chen
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
- />Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jianlong Xu
- />Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan Cun Street, Beijing, 100081 China
| | - Hua Zhou
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
- />Present address: Agricultural Faculty, Hokkaido University, Sappro, 060-0817 Japan
| | - Sheng Teng
- />Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yanjun Dong
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| |
Collapse
|
78
|
Wu L, Wu J, Liu Y, Gong X, Xu J, Lin D, Dong Y. The Rice Pentatricopeptide Repeat Gene TCD10 is Needed for Chloroplast Development under Cold Stress. RICE (NEW YORK, N.Y.) 2016; 9:67. [PMID: 27910002 PMCID: PMC5133210 DOI: 10.1186/s12284-016-0134-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/15/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chloroplast plays a vital role in plant development and growth. The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in plants. In addition, cold stress affects a broad spectrum of cellular components, e.g. chloroplast, and metabolism in plants. However, the regulatory mechanism for rice PPR genes on chloroplast development still remains elusive under cold stress. RESULT In this paper, we characterized a new rice PPR gene mutant tcd10 (thermo-sensitive chlorophyll-deficient mutant 10) that exhibits the albino phenotype, malformed chloroplast and could not survive after the 5-leaf stage when grown at 20 °C, but does the normal phenotype at 32 °C. Map-based cloning, followed by RNA interference and CRISPR/Cas9 genome editing techniques, revealed that TCD10 encoding a novel PPR protein, mainly localized to the chloroplasts, with 27 PPR motifs, is responsible for the mutant phenotype. In addition, TCD10 is specific expression in tissues. The disruption of TCD10 resulted in an evidently reduced expression of chloroplast-associated genes under cold stress (20 °C), whereas they did recovered to normal levels at high temperature (32 °C). These results showed an important role of TCD10 for chloroplast development under cold stress. CONCLUSIONS The TCD10 encodes a novel rice PPR protein, mainly located in chloroplasts, which is important for chloroplast development, growth and the maintenance of photosynthetic electron transport and its disorder would lead to an aberrant chloroplast and abnormal expressions in these genes for chloroplast development and photosynthesis in rice under cold stress.
Collapse
Affiliation(s)
- Lanlan Wu
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Wu
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yanxia Liu
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaodi Gong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Jianlong Xu
- The Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan Cun Street, Beijing, 100081, China
| | - Dongzhi Lin
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Yanjun Dong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
79
|
Tong W, Kim TS, Park YJ. Rice Chloroplast Genome Variation Architecture and Phylogenetic Dissection in Diverse Oryza Species Assessed by Whole-Genome Resequencing. RICE (NEW YORK, N.Y.) 2016; 9:57. [PMID: 27757948 PMCID: PMC5069220 DOI: 10.1186/s12284-016-0129-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/07/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Chloroplast genome variations have been detected, despite its overall conserved structure, which has been valuable for plant population genetics and evolutionary studies. Here, we described chloroplast variation architecture of 383 rice accessions from diverse regions and different ecotypes, in order to mine the rice chloroplast genome variation architecture and phylogenetic. RESULTS A total of 3677 variations across the chloroplast genome were identified with an average density of 27.33 per kb, in which wild rice showing a higher variation density than cultivated groups. Chloroplast genome nucleotide diversity investigation indicated a high degree of diversity in wild rice than in cultivated rice. Genetic distance estimation revealed that African rice showed a low level of breeding and connectivity with the Asian rice, suggesting the big distinction of them. Population structure and principal component analysis revealed the existence of clear clustering of African and Asian rice, as well as the indica and japonica in Asian cultivated rice. Phylogenetic analysis based on maximum likelihood and Bayesian inference methods and the population splits test suggested and supported the independent origins of indica and japonica within Asian cultivated rice. In addition, the African cultivated rice was thought to be domesticated differently from Asian cultivated rice. CONCLUSIONS The chloroplast genome variation architecture in Asian and African rice are different, as well as within Asian or African rice. Wild rice and cultivated rice also have distinct nucleotide diversity or genetic distance. In chloroplast level, the independent origins of indica and japonica within Asian cultivated rice were suggested and the African cultivated rice was thought to be domesticated differently from Asian cultivated rice. These results will provide more candidate evidence for the further rice chloroplast genomic and evolution studies.
Collapse
Affiliation(s)
- Wei Tong
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, 32439 Republic of Korea
| | - Tae-Sung Kim
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, 32439 Republic of Korea
- Department of Agricultural Sciences, College of Natural Sciences, Korea National Open University, Seoul, 03087 Republic of Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, 32439 Republic of Korea
- Center for Crop Genetic Resource and Breeding (CCGRB), Kongju National University, Cheonan, 31080 Republic of Korea
| |
Collapse
|
80
|
Zhou M, An M, Xia X, Yang H, Cheng M, Wang K, Fang W. Sequencing and phylogenetic analysis of the chloroplast genome of Pseudosasa japonica f. Akebonosuji. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
81
|
Wysocki WP, Burke SV, Swingley WD, Duvall MR. The First Complete Plastid Genome from Joinvilleaceae (J. ascendens; Poales) Shows Unique and Unpredicted Rearrangements. PLoS One 2016; 11:e0163218. [PMID: 27658044 PMCID: PMC5033401 DOI: 10.1371/journal.pone.0163218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/06/2016] [Indexed: 11/19/2022] Open
Abstract
Joinvilleaceae is a family of tropical grass-like monocots that comprises only the genus Joinvillea. Previous studies have placed Joinvilleaceae in close phylogenetic proximity to the well-studied grass family. A full plastome sequence was determined and characterized for J. ascendens. The plastome was sequenced with next generation methods, fully assembled de novo and annotated. The assembly revealed two novel inversions specific to the Joinvilleaceae lineage and at least one novel plastid inversion in the Joinvilleaceae-Poaceae lineage. Two previously documented inversions in the Joinvilleaceae-Poaceae lineage and one previously documented inversion in the Poaceae lineage were also verified. Inversion events were identified visually and verified computationally by simulation mutations. Additionally, the loss and subsequent degradation of the accD gene in order Poales was explored extensively in Poaceae and J. ascendens. The two novel inversions along with changes in gene composition between families better delimited lineages in the Poales. The presence of large inversions and subsequent reversals in this small family suggested a high potential for large-scale rearrangements to occur in plastid genomes.
Collapse
Affiliation(s)
- William P. Wysocki
- Center for Data Intensive Sciences, University of Chicago, 5454 South Shore Dr., Chicago, IL 60615, United States of America
- Northern Illinois University; 1425 W. Lincoln Hwy, DeKalb, IL 60115, United States of America
- * E-mail:
| | - Sean V. Burke
- Northern Illinois University; 1425 W. Lincoln Hwy, DeKalb, IL 60115, United States of America
| | - Wesley D. Swingley
- Northern Illinois University; 1425 W. Lincoln Hwy, DeKalb, IL 60115, United States of America
| | - Melvin R. Duvall
- Northern Illinois University; 1425 W. Lincoln Hwy, DeKalb, IL 60115, United States of America
| |
Collapse
|
82
|
Nguyen Dinh S, Sai TZT, Nawaz G, Lee K, Kang H. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). JOURNAL OF PLANT PHYSIOLOGY 2016; 201:85-94. [PMID: 27448724 DOI: 10.1016/j.jplph.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes.
Collapse
Affiliation(s)
- Sy Nguyen Dinh
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea; Institute of Environment and Biotechnology, Taynguyen University, 567 Le Duan Street, Buon Ma Thuot City, Daklak Province, Viet Nam
| | - Than Zaw Tun Sai
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ghazala Nawaz
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
83
|
Zhang D, Li K, Gao J, Liu Y, Gao LZ. The Complete Plastid Genome Sequence of the Wild Rice Zizania latifolia and Comparative Chloroplast Genomics of the Rice Tribe Oryzeae, Poaceae. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
84
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 867] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
85
|
Zhu X, Guo S, Wang Z, Du Q, Xing Y, Zhang T, Shen W, Sang X, Ling Y, He G. Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC PLANT BIOLOGY 2016; 16:134. [PMID: 27297403 PMCID: PMC4907030 DOI: 10.1186/s12870-016-0821-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/25/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND As the indispensable part of plant, leaf blade mainly functions as the production workshops where organic substance is produced by photosynthesis. Leaf colour mutation is a genetic phenomenon that has a high frequency and is easily identified. The mutations always exhibit negative impact on the development of plants in any of the different stages of growth. Up to now, numerous genes involved in leaf colour mutations have been cloned. RESULTS In this study, a yellow-green leaf mutant, yellow-green leaf 8 (ygl8), with stable genetic phenotype, has been screened out in the progeny of an excellent indica restorer line Jinhui 10 with seeds treated by EMS. The levels of Chl a, Chl b and total chlorophyll were significantly lower in ygl8 than those in the WT throughout the whole growth period, while no clear change was noted in the Chl a/b ratio. Transmission electron microscopy demonstrated that the lamellae were clearly intumescent and intricately stacked in ygl8. Furthermore, compared with those of the WT, the stomatal conductance, intercellular CO2 concentration, photosynthetic rate and transpiration rate of ylg8 were all significantly lower. Map-based cloning results showed that Loc_Os01g73450, encoding a chloroplast-targeted UMP kinase, corresponded to Ygl8 and played an important role in regulating leaf colour in rice (Oryza sativa). Complementation of ygl8 with the WT DNA sequence of Loc_Os01g73450 led to restoration of the normal phenotype, and transgenic RNA interference plants showed a yellow-green colour. Analysis of the spatial and temporal expression of Ygl8 indicated that it was highly expressed in leaf blades and weakly expressed in other tissues. qRT-PCR also showed that the expression levels of the major Photosystem I core subunits plastome-encoded PsaA, PsaB and PsbC were significantly reduced in ygl8. The expression levels of nuclear-encoded gene involved in Chl biosynthesis HEMC, HEME, and PORA were also decreased when compared with the wild-type. CONCLUSIONS Independent of Chl biosynthesis and photosystem, YGL8 may affect the structure and function of chloroplasts grana lamellae by regulating plastid genome encoded thylakoid membrane constitutive gene expression and indirectly influences Chl biosynthesis.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, China
| | - Shuang Guo
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, China
- Institute of Rice, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Zhongwei Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, China
| | - Qing Du
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, China
- Forestry Bureau of Chuanshan District, Suining, Sichuan, 629000, China
| | - Yadi Xing
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, China
| | - Tianquan Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, China
| | - Wenqiang Shen
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, China
| | - Xianchun Sang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, China
| | - Yinghua Ling
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, China.
| |
Collapse
|
86
|
The Complete Chloroplast Genome of the Hare's Ear Root, Bupleurum falcatum: Its Molecular Features. Genes (Basel) 2016; 7:genes7050020. [PMID: 27187480 PMCID: PMC4880840 DOI: 10.3390/genes7050020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 11/29/2022] Open
Abstract
Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp) genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC) content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeat (IR) regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively) on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species.
Collapse
|
87
|
Givnish TJ, Zuluaga A, Marques I, Lam VKY, Gomez MS, Iles WJD, Ames M, Spalink D, Moeller JR, Briggs BG, Lyon SP, Stevenson DW, Zomlefer W, Graham SW. Phylogenomics and historical biogeography of the monocot order Liliales: out of Australia and through Antarctica. Cladistics 2016; 32:581-605. [DOI: 10.1111/cla.12153] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Thomas J. Givnish
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Alejandro Zuluaga
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
- Departamento de Biología; Universidad del Valle; Cali Colombia
| | - Isabel Marques
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
- Department of Agriculture (Botany); High Polytechnic School of Huesca; University of Zaragoza; Carretera de Cuarte Km 1 Huesca E22071 Spain
| | - Vivienne K. Y. Lam
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
| | - Marybel Soto Gomez
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
| | - William J. D. Iles
- University and Jepson Herbaria; University of California-Berkeley; Berkeley CA 94720 USA
| | - Mercedes Ames
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Daniel Spalink
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Jackson R. Moeller
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | | | - Stephanie P. Lyon
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | | | - Wendy Zomlefer
- Department of Plant Biology; University of Georgia; Athens GA 30602 USA
| | - Sean W. Graham
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
| |
Collapse
|
88
|
Kaila T, Chaduvla PK, Saxena S, Bahadur K, Gahukar SJ, Chaudhury A, Sharma TR, Singh NK, Gaikwad K. Chloroplast Genome Sequence of Pigeonpea ( Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes. FRONTIERS IN PLANT SCIENCE 2016; 7:1847. [PMID: 28018385 PMCID: PMC5145887 DOI: 10.3389/fpls.2016.01847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 05/09/2023]
Abstract
Pigeonpea (Cajanus cajan (L.) Millspaugh), a diploid (2n = 22) legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides (L.) Thouars were generated. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harboring the C. scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of C. cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of C. scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50 kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in C. scarabaeoides and C. cajan respectively. RNA editing was observed at 37 sites in both C. scarabaeoides and C. cajan, with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes.
Collapse
Affiliation(s)
- Tanvi Kaila
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & TechnologyHisar, India
| | - Pavan K. Chaduvla
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Swati Saxena
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | | | - Santosh J. Gahukar
- Biotechnology Department, Biotechnology Centre, Dr. Panjabrao Deshmukh Krishi VidyapeethAkola, India
| | - Ashok Chaudhury
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & TechnologyHisar, India
| | - T. R. Sharma
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - N. K. Singh
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- *Correspondence: Kishor Gaikwad
| |
Collapse
|
89
|
Yin H, Akimoto M, Kaewcheenchai R, Sotowa M, Ishii T, Ishikawa R. Inconsistent diversities between nuclear and plastid genomes of AA genome species in the genus Oryza. Genes Genet Syst 2015; 90:269-81. [PMID: 26687860 DOI: 10.1266/ggs.14-00063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AA genome species in the genus Oryza are valuable resources for improvement of cultivated rice. Oryza rufipogon and O. barthii were progenitors of two domesticated rice species, O. sativa and O. glaberrima, respectively. We used chloroplast single-nucleotide repeats (RCt1-10) to evaluate genetic diversity among AA genome species. Higher diversity was detected in the American species O. glumaepatula and the Asian species O. rufipogon. Other chloroplast sequences indicated that O. glumaepatula shares high similarity with O. longistaminata. Insertions of retrotransposable elements, however, showed a close relation between O. barthii and O. glumaepatula. To clarify phylogenetic relationships among AA genomes, whole-genome sequences obtained from different species were used to develop chloroplast INDEL markers. The INDEL patterns clearly showed multiple maternal origins of O. glumaepatula. The complicated origins have resulted in high genetic diversity in this species. In contrast, the Australian endemic species O. meridionalis tended to show narrower diversity than the other species. High variation in O. rufipogon, reconfirmed using the chloroplast INDELs, covered the variation in O. meridionalis and part of the variation in O. glumaepatula. Maternal lineages including O. barthii, O. longistaminata and the remainder of O. glumaepatula were phylogenetically close to each other and carried low genetic diversity. They were separated from independent lineages, suggesting that they had diverged from a single ancestral maternal lineage, but diverged later to keep gene flow within respective species, as SSR compositions suggested. Genetic relationships among AA genome species indicate how these species have evolved and become distributed across four continents.
Collapse
Affiliation(s)
- Hao Yin
- United Graduate School of Agricultural Sciences, Iwate University
| | | | | | | | | | | |
Collapse
|
90
|
Raman G, Park S. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective. PLoS One 2015; 10:e0141329. [PMID: 26513163 PMCID: PMC4626046 DOI: 10.1371/journal.pone.0141329] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- * E-mail:
| |
Collapse
|
91
|
Kurokochi H, Nurtjahjaningsih ILG, Sukartiningsih, Tan E, Asakawa S, Saito Y, Ide Y. Development of polymorphic chloroplast DNA markers for the endangered tree Eusideroxylon zwageri through chloroplast isolation and next-generation sequencing. CONSERV GENET RESOUR 2015. [DOI: 10.1007/s12686-015-0485-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
92
|
Redwan RM, Saidin A, Kumar SV. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae. BMC PLANT BIOLOGY 2015; 15:196. [PMID: 26264372 PMCID: PMC4534033 DOI: 10.1186/s12870-015-0587-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/03/2015] [Indexed: 05/13/2023]
Abstract
BACKGROUND Pineapple (Ananas comosus var. comosus) is known as the king of fruits for its crown and is the third most important tropical fruit after banana and citrus. The plant, which is indigenous to South America, is the most important species in the Bromeliaceae family and is largely traded for fresh fruit consumption. Here, we report the complete chloroplast sequence of the MD-2 pineapple that was sequenced using the PacBio sequencing technology. RESULTS In this study, the high error rate of PacBio long sequence reads of A. comosus's total genomic DNA were improved by leveraging on the high accuracy but short Illumina reads for error-correction via the latest error correction module from Novocraft. Error corrected long PacBio reads were assembled by using a single tool to produce a contig representing the pineapple chloroplast genome. The genome of 159,636 bp in length is featured with the conserved quadripartite structure of chloroplast containing a large single copy region (LSC) with a size of 87,482 bp, a small single copy region (SSC) with a size of 18,622 bp and two inverted repeat regions (IRA and IRB) each with the size of 26,766 bp. Overall, the genome contained 117 unique coding regions and 30 were repeated in the IR region with its genes contents, structure and arrangement similar to its sister taxon, Typha latifolia. A total of 35 repeats structure were detected in both the coding and non-coding regions with a majority being tandem repeats. In addition, 205 SSRs were detected in the genome with six protein-coding genes contained more than two SSRs. Comparative chloroplast genomes from the subclass Commelinidae revealed a conservative protein coding gene albeit located in a highly divergence region. Analysis of selection pressure on protein-coding genes using Ka/Ks ratio showed significant positive selection exerted on the rps7 gene of the pineapple chloroplast with P less than 0.05. Phylogenetic analysis confirmed the recent taxonomical relation among the member of commelinids which support the monophyly relationship between Arecales and Dasypogonaceae and between Zingiberales to the Poales, which includes the A. comosus. CONCLUSIONS The complete sequence of the chloroplast of pineapple provides insights to the divergence of genic chloroplast sequences from the members of the subclass Commelinidae. The complete pineapple chloroplast will serve as a reference for in-depth taxonomical studies in the Bromeliaceae family when more species under the family are sequenced in the future. The genetic sequence information will also make feasible other molecular applications of the pineapple chloroplast for plant genetic improvement.
Collapse
Affiliation(s)
- R M Redwan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - A Saidin
- Novocraft Technology Sdn. Bhd., 3 Two Square, Seksyen 19, Petaling Jaya, Selangor, Malaysia.
| | - S V Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
93
|
Salinas Castellanos LC, Chomilier J, Hernández-Torres J. Recombination of chl-fus gene (Plastid Origin) downstream of hop: a locus of chromosomal instability. BMC Genomics 2015; 16:573. [PMID: 26238241 PMCID: PMC4522979 DOI: 10.1186/s12864-015-1780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 07/14/2015] [Indexed: 11/26/2022] Open
Abstract
Background The co-chaperone Hop [heat shock protein (HSP) organizing protein] has been shown to act as an adaptor for protein folding and maturation, in concert with Hsp70 and Hsp90. The hop gene is of eukaryotic origin. Likewise, the chloroplast elongation factor G (cEF-G) catalyzes the translocation step in chloroplast protein synthesis. The chl-fus gene, which encodes the cEF-G protein, is of plastid origin. Both proteins, Hop and cEF-G, derived from domain duplications. It was demonstrated that the nuclear chl-fus gene locates in opposite orientation to a hop gene in Glycine max. We explored 53 available plant genomes from Chlorophyta to higher plants, to determine whether the chl-fus gene was transferred directly downstream of the primordial hop in the proto-eukaryote host cell. Since both genes came from exon/module duplication events, we wanted to explore the involvement of introns in the early origin and the ensuing evolutionary changes in gene structure. Results We reconstructed the evolutionary history of the two convergent plant genes, on the basis of their gene structure, microsynteny and microcolinearity, from 53 plant nuclear genomes. Despite a high degree (72 %) of microcolinearity among vascular plants, our results demonstrate that their adjacency was a product of chromosomal rearrangements. Based on predicted exon − intron structures, we inferred the molecular events giving rise to the current form of genes. Therefore, we propose a simple model of exon/module shuffling by intronic recombinations in which phase-0 introns were essential for domain duplication, and a phase-1 intron for transit peptide recruiting. Finally, we demonstrate a natural susceptibility of the intergenic region to recombine or delete, seriously threatening the integrity of the chl-fus gene for the future. Conclusions Our results are consistent with the interpretation that the chl-fus gene was transferred from the chloroplast to a chromosome different from that of hop, in the primitive photosynthetic eukaryote, and much later before the appearance of angiosperms, it was recombined downstream of hop. Exon/module shuffling mediated by symmetric intron phases (i.e., phase-0 introns) was essential for gene evolution. The intergenic region is prone to recombine, risking the integrity of both genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1780-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jacques Chomilier
- IMPMC, UPMC, CNRS UMR 7590, MNHN, IRD, Paris, France and RPBS, Paris, France.
| | - Jorge Hernández-Torres
- Laboratorio de Biología Molecular, Escuela de Biología, Universidad Industrial de Santander, Apartado Aéreo 678, Bucaramanga, Colombia.
| |
Collapse
|
94
|
Phylogenetic relationships of Echinolaena and Ichnanthus within Panicoideae (Poaceae) reveal two new genera of tropical grasses. Mol Phylogenet Evol 2015; 93:212-33. [PMID: 26231381 DOI: 10.1016/j.ympev.2015.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 11/21/2022]
Abstract
Echinolaena and Ichnanthus are two tropical grass genera distributed mostly in the Americas, characterized by the presence of rachilla appendages in the shape of convex swellings, scars or wings at the base of the upper anthecium. However, recent studies have shown that rachilla appendages arose several times independently in several groups within Paniceae and Paspaleae (Panicoideae). Thus, this study aimed to assess the monophyly of Echinolaena and Ichnanthus and their relationship to other genera of Paniceae and Paspaleae, especially those including species with rachilla appendages. Parsimony and Bayesian analyses of the cpDNA regions ndhF, rpl16, trnH-(rps19)-psbA, trnL-trnF, trnS-(psbZ)-trnG, and the rDNA ITS region included 29 of the 39 known species of Echinolaena and Ichnanthus, 23 of which were sampled for the first time. The multiple loci analyses indicated that Echinolaena and Ichnanthus are polyphyletic in their current circumscriptions, with species in four distinct lineages within subtribe Paspalinae, each one characterized by a single type of rachilla appendage. Thus, Echinolaena and Ichnanthus are each circumscribed in a narrow sense, and the other two lineages excluded from them are proposed as the new genera Hildaea and Oedochloa, resulting in 15 new combinations and the restablishment of I. oplismenoides Munro ex Döll.
Collapse
|
95
|
Turmel M, Otis C, Lemieux C. Dynamic Evolution of the Chloroplast Genome in the Green Algal Classes Pedinophyceae and Trebouxiophyceae. Genome Biol Evol 2015; 7:2062-82. [PMID: 26139832 PMCID: PMC4524492 DOI: 10.1093/gbe/evv130] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 01/21/2023] Open
Abstract
Previous studies of trebouxiophycean chloroplast genomes revealed little information regarding the evolutionary dynamics of this genome because taxon sampling was too sparse and the relationships between the sampled taxa were unknown. We recently sequenced the chloroplast genomes of 27 trebouxiophycean and 2 pedinophycean green algae to resolve the relationships among the main lineages recognized for the Trebouxiophyceae. These taxa and the previously sampled members of the Pedinophyceae and Trebouxiophyceae are included in the comparative chloroplast genome analysis we report here. The 38 genomes examined display considerable variability at all levels, except gene content. Our results highlight the high propensity of the rDNA-containing large inverted repeat (IR) to vary in size, gene content and gene order as well as the repeated losses it experienced during trebouxiophycean evolution. Of the seven predicted IR losses, one event demarcates a superclade of 11 taxa representing 5 late-diverging lineages. IR expansions/contractions account not only for changes in gene content in this region but also for changes in gene order and gene duplications. Inversions also led to gene rearrangements within the IR, including the reversal or disruption of the rDNA operon in some lineages. Most of the 20 IR-less genomes are more rearranged compared with their IR-containing homologs and tend to show an accelerated rate of sequence evolution. In the IR-less superclade, several ancestral operons were disrupted, a few genes were fragmented, and a subgroup of taxa features a G+C-biased nucleotide composition. Our analyses also unveiled putative cases of gene acquisitions through horizontal transfer.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Christian Otis
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| |
Collapse
|
96
|
Prince LM. Plastid primers for angiosperm phylogenetics and phylogeography. APPLICATIONS IN PLANT SCIENCES 2015; 3:apps1400085. [PMID: 26082876 PMCID: PMC4467757 DOI: 10.3732/apps.1400085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/24/2015] [Indexed: 05/12/2023]
Abstract
PREMISE OF THE STUDY PCR primers are available for virtually every region of the plastid genome. Selection of which primer pairs to use is second only to selection of the genic region. This is particularly true for research at the species/population interface. METHODS Primer pairs for 130 regions of the chloroplast genome were evaluated in 12 species distributed across the angiosperms. Likelihood of amplification success was inferred based upon number and location of mismatches to target sequence. Intraspecific sequence variability was evaluated under three different criteria in four species. RESULTS Many published primer pairs should work across all taxa sampled, with the exception of failure due to genomic reorganization events. Universal barcoding primers were the least likely to work (65% success). The list of most variable regions for use within species has little in common with the lists identified in prior studies. DISCUSSION Published primer sequences should amplify a diversity of flowering plant DNAs, even those designed for specific taxonomic groups. "Universal" primers may have extremely limited utility. There was little consistency in likelihood of amplification success for any given publication across lineages or within lineage across publications.
Collapse
Affiliation(s)
- Linda M. Prince
- Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605 USA
- Author for correspondence:
| |
Collapse
|
97
|
Tong W, He Q, Wang XQ, Yoon MY, Ra WH, Li F, Yu J, Oo WH, Min SK, Choi BW, Heo EB, Yun BK, Kim KW, Kim TS, Lee CY, Park YJ. A chloroplast variation map generated using whole genome re-sequencing of Korean landrace rice reveals phylogenetic relationships amongOryza sativasubspecies. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Tong
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Qiang He
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Xiao-Qiang Wang
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Min-Young Yoon
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Won-Hee Ra
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Fengpeng Li
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Jie Yu
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Win Htet Oo
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Sun-Kyung Min
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Bu-Woong Choi
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Eun-Beom Heo
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Byoung-Kook Yun
- Department of Industrial and Systems Engineering; College of Engineering; Kongju National University; Cheonan 331-717 Korea
| | - Kyu-Won Kim
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Tae-Sung Kim
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Chang-Yong Lee
- Department of Industrial and Systems Engineering; College of Engineering; Kongju National University; Cheonan 331-717 Korea
| | - Yong-Jin Park
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
- Legume Bio-Resource Center of Green Manure; Kongju National University; Yesan 340-702 Korea
| |
Collapse
|
98
|
Saarela JM, Wysocki WP, Barrett CF, Soreng RJ, Davis JI, Clark LG, Kelchner SA, Pires JC, Edger PP, Mayfield DR, Duvall MR. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes. AOB PLANTS 2015; 7:plv046. [PMID: 25940204 PMCID: PMC4480051 DOI: 10.1093/aobpla/plv046] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/21/2015] [Indexed: 05/08/2023]
Abstract
Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some 'early-diverging' tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae-Meliceae and Ampelodesmeae-Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae-Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae-Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a Dactylidinae-Loliinae clade.
Collapse
Affiliation(s)
- Jeffery M Saarela
- Botany Section, Research and Collections, Canadian Museum of Nature, PO Box 3443 Stn. D, Ottawa, ON, Canada K1P 3P4
| | - William P Wysocki
- Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Craig F Barrett
- Department of Biological Sciences, California State University, 5151 State University Dr., Los Angeles, CA 90032-8201, USA
| | - Robert J Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Jerrold I Davis
- Section of Plant Biology, Cornell University, 412 Mann Library, Ithaca, NY 14853, USA
| | - Lynn G Clark
- Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011-1020, USA
| | - Scot A Kelchner
- Biological Sciences, Idaho State University, 921 S. 8th Ave, Pocatello, ID 83209, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - Patrick P Edger
- Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| | - Dustin R Mayfield
- Division of Biological Sciences, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| |
Collapse
|
99
|
Lin D, Jiang Q, Zheng K, Chen S, Zhou H, Gong X, Xu J, Teng S, Dong Y. Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:599-607. [PMID: 25280352 DOI: 10.1111/plb.12271] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/22/2014] [Indexed: 05/19/2023]
Abstract
The plastid ribosome proteins (PRPs) play important roles in plastid protein biosynthesis, chloroplast differentiation and early chloroplast development. However, the specialised functions of individual protein components of the chloroplast ribosome in rice (Oryza sativa) remain unresolved. In this paper, we identified a novel rice PRP mutant named asl2 (Albino seedling lethality 2) exhibiting an albino, seedling death phenotype. In asl2 mutants, the alteration of leaf colour was associated with chlorophyll (Chl) content and abnormal chloroplast development. Through map-based cloning and complementation, the mutated ASL2 gene was isolated and found to encode the chloroplast 50S ribosome protein L21 (RPL21c), a component of the chloroplast ribosome large subunit, which was localised in chloroplasts. ASL2 was expressed at a higher level in the plumule and leaves, implying its tissue-specific expression. Additionally, the expression of ASL2 was regulated by light. The transcript levels of the majority of genes for Chl biosynthesis, photosynthesis and chloroplast development were strongly affected in asl2 mutants. Collectively, the absence of functional ASL2 caused chloroplast developmental defects and seedling death. This report establishes the important role of RPL21c in chloroplast development in rice.
Collapse
Affiliation(s)
- D Lin
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Miller JJ, Delwiche CF. Phylogenomic analysis of Emiliania huxleyi provides evidence for haptophyte-stramenopile association and a chimeric haptophyte nuclear genome. Mar Genomics 2015; 21:31-42. [PMID: 25746767 DOI: 10.1016/j.margen.2015.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 02/11/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
Emiliania huxleyi is a haptophyte alga of uncertain phylogenetic affinity containing a secondarily derived, chlorophyll c containing plastid. We sought to characterize its relationships with other taxa by quantifying the bipartitions in which it was included from a group of single protein phylogenetic trees in a way that allowed for variation in taxonomic content and accounted for paralogous sequences. The largest number of sequences supported a phylogenetic relationship of E. huxleyi with the stramenopiles, in particular Aureococcus anophagefferens. Far fewer nuclear sequences gave strong support to the placement of this coccolithophorid with the cryptophyte, Guillardia theta. The majority of the sequences that did support this relationship did not have plastid related functions. These results suggest that the haptophytes may be more closely allied with the heterokonts than with the cryptophytes. Another small set of genes associated E. huxleyi with the Viridiplantae with high support. While these genes could have been acquired with a plastid, the lack of plastid related functions among the proteins for which they code and the lack of other organisms with chlorophyll c containing plastids within these bipartitions suggests other explanations may be possible. This study also identified several genes that may have been transferred from the haptophyte lineage to the dinoflagellates Karenia brevis and Karlodinium veneficum as a result of their haptophyte derived plastid, including some with non-photosynthetic functions.
Collapse
Affiliation(s)
- John J Miller
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | - Charles F Delwiche
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|