51
|
Li J, Wang T, Liu P, Yang F, Wang X, Zheng W, Sun W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct 2021; 12:3898-3918. [PMID: 33977953 DOI: 10.1039/d0fo02736g] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disease. Dietary supplementation has become a promising strategy for managing NAFLD. Hesperetin, a citrus flavonoid, is mainly found in citrus fruits (oranges, grapefruit, and lemons) and possesses multiple pharmacological properties, including anti-cancer, anti-Alzheimer and anti-diabetic effects. However, the anti-NAFLD effect and mechanisms of hesperetin remain unclear. In this study, we investigated the therapeutic effect of hesperetin against NAFLD and the underlying mechanism in vitro and in vivo. In oleic acid (OA)-induced HepG2 cells, hesperetin upregulated antioxidant levels (SOD/GPx/GR/GCLC/HO-1) by triggering the PI3 K/AKT-Nrf2 pathway, alleviating OA-induced reactive oxygen species (ROS) overproduction and hepatotoxicity. Furthermore, hesperetin suppressed NF-κB activation and reduced inflammatory cytokine secretion (TNF-α and IL-6). More importantly, we revealed that this anti-inflammatory effect is attributed to reduced ROS overproduction by the Nrf2 pathway, as pre-treatment with Nrf2 siRNA or an inhibitor of superoxide dismutase (SOD) or/and glutathione peroxidase (GPx) abolished hesperetin-induced NF-κB inactivation and reductions in inflammatory cytokine secretion. In a rat model of high-fat diet (HFD)-induced NAFLD, we confirmed that hesperetin relieved hepatic steatosis, oxidative stress, inflammatory cell infiltration and fibrosis. Moreover, hesperetin activated the PI3 K/AKT-Nrf2 pathway in the liver, increasing antioxidant expression and inhibiting NF-κB activation and inflammatory cytokine secretion. In summary, our results demonstrate that hesperetin ameliorates hepatic oxidative stress through the PI3 K/AKT-Nrf2 pathway and that this antioxidative effect further suppresses NF-κB-mediated inflammation during NAFLD progression. Thus, our study suggests that hesperetin may be an effective dietary supplement for improving NAFLD by suppressing hepatic oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.
| | - Tianqi Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Panpan Liu
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| | - Fuyuan Yang
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xudong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weilong Zheng
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| |
Collapse
|
52
|
Fang Z, Dou G, Wang L. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Biol Sci 2021; 17:1851-1863. [PMID: 33994867 PMCID: PMC8120467 DOI: 10.7150/ijbs.59588] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), or, more accurately, metabolic associated fatty liver disease, accounts for a large proportion of chronic liver disorders worldwide and is closely associated with other conditions such as cardiovascular disease, obesity, and type 2 diabetes mellitus. NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis (NASH) and can progress to cirrhosis and, eventually, also hepatocellular carcinoma. The morbidity and mortality associated with NAFLD are increasing rapidly year on year. Consequently, there is an urgent need to understand the etiology and pathogenesis of NAFLD and identify effective therapeutic targets. MicroRNAs (miRNAs), important epigenetic factors, have recently been proposed to participate in NAFLD pathogenesis. Here, we review the roles of miRNAs in lipid metabolism, inflammation, apoptosis, fibrosis, hepatic stellate cell activation, insulin resistance, and oxidative stress, key factors that contribute to the occurrence and progression of NAFLD. Additionally, we summarize the role of miRNA-enriched extracellular vesicles in NAFLD. These miRNAs may comprise suitable therapeutic targets for the treatment of this condition.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guorui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
53
|
Chen S, Guo H, Xie M, Zhou C, Zheng M. Neutrophil: An emerging player in the occurrence and progression of metabolic associated fatty liver disease. Int Immunopharmacol 2021; 97:107609. [PMID: 33887577 DOI: 10.1016/j.intimp.2021.107609] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a common type of chronic liver disease characterized by excessive lipid accumulation in hepatocytes, but the pathogenesis is still unclear. Neutrophils, the most abundant immune cells in the human body, defend against pathogens and regulate the inflammatory response. Recent studies have indicated that excessive liver infiltration of neutrophils is a significant histological hallmark of MAFLD, and neutrophils and their derived granule proteins participate in different stages of MAFLD, including hepatic steatosis, inflammation, fibrosis, cirrhosis and hepatocellular carcinoma. Hence, in this review, we summarize the role of neutrophils in the occurrence and progression of MAFLD and provide a perspective for the clinical application of neutrophils in MAFLD diagnosis and treatment.
Collapse
Affiliation(s)
- Shiwei Chen
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China; National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Huiting Guo
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China; National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Mingjie Xie
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China; National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Cheng Zhou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China; National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China.
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China; National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
54
|
de Mello VD, Sehgal R, Männistö V, Klåvus A, Nilsson E, Perfilyev A, Kaminska D, Miao Z, Pajukanta P, Ling C, Hanhineva K, Pihlajamäki J. Serum aromatic and branched-chain amino acids associated with NASH demonstrate divergent associations with serum lipids. Liver Int 2021; 41:754-763. [PMID: 33219609 PMCID: PMC8048463 DOI: 10.1111/liv.14743] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/04/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) has been associated with multiple metabolic abnormalities. By applying a non-targeted metabolomics approach, we aimed at investigating whether serum metabolite profile that associates with NAFLD would differ in its association with NAFLD-related metabolic risk factors. METHODS & RESULTS A total of 233 subjects (mean ± SD: 48.3 ± 9.3 years old; BMI: 43.1 ± 5.4 kg/m2 ; 64 male) undergoing bariatric surgery were studied. Of these participants, 164 with liver histology could be classified as normal liver (n = 79), simple steatosis (SS, n = 40) or non-alcoholic steatohepatitis (NASH, n = 45). Among the identified fasting serum metabolites with higher levels in those with NASH when compared to those with normal phenotype were the aromatic amino acids (AAAs: tryptophan, tyrosine and phenylalanine), the branched-chain amino acids (BCAAs: leucine and isoleucine), a phosphatidylcholine (PC(16:0/16:1)) and uridine (all FDRp < 0.05). Only tryptophan was significantly higher in those with NASH compared to those with SS (FDRp < 0.05). Only the AAAs tryptophan and tyrosine correlated positively with serum total and LDL cholesterol (FDRp < 0.1), and accordingly, with liver LDLR at mRNA expression level. In addition, tryptophan was the single AA associated with liver DNA methylation of CpG sites known to be differentially methylated in those with NASH. CONCLUSIONS We found that serum levels of the NASH-related AAAs and BCAAs demonstrate divergent associations with serum lipids. The specific correlation of tryptophan with LDL-c may result from the molecular events affecting LDLR mRNA expression and NASH-associated methylation of genes in the liver.
Collapse
Affiliation(s)
- Vanessa D. de Mello
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Ratika Sehgal
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Ville Männistö
- Department of MedicineUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland
| | - Anton Klåvus
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Emma Nilsson
- Epigenetics and Diabetes UnitDepartment of Clinical SciencesLund University Diabetes CentreMalmöSweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes UnitDepartment of Clinical SciencesLund University Diabetes CentreMalmöSweden
| | - Dorota Kaminska
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Zong Miao
- Department of Human GeneticsDavid Geffen School of Medicine at University of California Los Angeles (UCLA)Los AngelesCAUSA
| | - Päivi Pajukanta
- Department of Human GeneticsDavid Geffen School of Medicine at University of California Los Angeles (UCLA)Los AngelesCAUSA,Institute for Precision HealthSchool of MedicineUCLALos AngelesCAUSA
| | - Charlotte Ling
- Epigenetics and Diabetes UnitDepartment of Clinical SciencesLund University Diabetes CentreMalmöSweden
| | - Kati Hanhineva
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland,Department of BiochemistryFood Chemistry and Food Development UnitUniversity of TurkuTurkuFinland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland,Department of Medicine, Endocrinology and Clinical NutritionKuopio University HospitalKuopioFinland
| |
Collapse
|
55
|
Zhou Y, Liu Z, Lynch EC, He L, Cheng H, Liu L, Li Z, Li J, Lawless L, Zhang KK, Xie L. Osr1 regulates hepatic inflammation and cell survival in the progression of non-alcoholic fatty liver disease. J Transl Med 2021; 101:477-489. [PMID: 33005011 PMCID: PMC7987871 DOI: 10.1038/s41374-020-00493-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Odd-skipped related 1 (Osr1) is a novel tumor suppressor gene in several cancer cell lines. Non-alcoholic steatohepatitis (NASH) is considered as a high-risk factor for hepatocellular carcinoma (HCC). This study is aimed to investigate the novel role of Osr1 in promoting the progression of hepatic steatosis to NASH. Following 12 weeks of diethylnitrosamine (DEN) and high-fat diet (HFD), wildtype (WT) and Osr1 heterozygous (Osr1+/-) male mice were examined for liver injuries. Osr1+/- mice displayed worsen liver injury with higher serum alanine aminotransferase levels than the WT mice. The Osr1+/- mice also revealed early signs of collagen deposition with increased hepatic Tgfb and Fn1 expression. There was overactivation of both JNK and NF-κB signaling in the Osr1+/- liver, along with accumulation of F4/80+ cells and enhanced hepatic expression of Il-1b and Il-6. Moreover, the Osr1+/- liver displayed hyperphosphorylation of AKT/mTOR signaling, associated with overexpression of Bcl-2. In addition, Osr1+/- and WT mice displayed differences in the DNA methylome of the liver cells. Specifically, Osr1-responsible CpG islands of Ccl3 and Pcgf2, genes for inflammation and macrophage infiltration, were further identified. Taken together, Osr1 plays an important role in regulating cell inflammation and survival through multiple signaling pathways and DNA methylation modification for NAFLD progression.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhimin Liu
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Gastrointestinal and Anal Hospital of Sun Yat-sen Unversity), Guangzhou, 510655, China
| | - Ernest C Lynch
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Leya He
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Henghui Cheng
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lin Liu
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Zhen Li
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Jiangyuan Li
- Department of Statistics, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren Lawless
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Ke K Zhang
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
56
|
Shimizu Y, Tamura T, Kemmochi A, Owada Y, Ozawa Y, Hisakura K, Matsuzaka T, Shimano H, Nakano N, Sakashita S, Oda T, Ohkohchi N. Oxidative stress and Liver X Receptor agonist induce hepatocellular carcinoma in Non-alcoholic steatohepatitis model. J Gastroenterol Hepatol 2021; 36:800-810. [PMID: 32870526 PMCID: PMC7983938 DOI: 10.1111/jgh.15239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM The incidence of non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) is progressively increasing. However, the pathophysiology and etiology of NASH progression to HCC are unknown. We hypothesized that steatosis was the key factor in NASH-related hepatocarcinogenesis and aimed to evaluate the effects of long-term liver X receptor (LXR) agonist stimulation on hepatic steatosis induced by a high-fat diet and oxidative stress. METHODS We used an LXR agonist (T0901317) and CCl4 to induce hepatic steatosis and oxidative stress, respectively. C57BL/6 mice fed with a high-fat diet were treated with either T0901317 + CCl4 (T09 + CCl4 group) or CCl4 alone (CCl4 group). T0901317 (2.5 mg/kg) and CCl4 (0.1 mL/kg) were intraperitoneally administered twice weekly for 24 weeks. RESULTS The liver-to-body weight ratio was significantly higher in the T09 + CCl4 group than in the CCl4 group. Mice in the T09 + CCl4 group exhibited abnormal lipid metabolism and NASH-like histopathological features. Additionally, all mice in the T09 + CCl4 group developed liver tumors diagnosed as well-differentiated HCC. The genes identified via microarray analysis were related to NASH and HCC development. CONCLUSIONS By combining long-term LXR agonist stimulation with oxidative stress and a high-fat diet, we successfully reproduced liver conditions in mice similar to those in humans with NASH and progression to HCC. Our results provide new insight into NASH-related HCC progression and therapy.
Collapse
Affiliation(s)
- Yoshio Shimizu
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Takafumi Tamura
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Akira Kemmochi
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yohei Owada
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yusuke Ozawa
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Katsuji Hisakura
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of MedicineUniversity of TsukubaTsukubaJapan
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaJapan
- AMED‐CRESTJapan Agency for Medical Research and Development (AMED)TokyoJapan
| | - Noriyuki Nakano
- Department of Diagnostic Pathology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Shingo Sakashita
- Department of Diagnostic Pathology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| |
Collapse
|
57
|
Yang W, Liu L, Wei Y, Fang C, Liu S, Zhou F, Li Y, Zhao G, Guo Z, Luo Y, Li L. Exercise suppresses NLRP3 inflammasome activation in mice with diet-induced NASH: a plausible role of adropin. J Transl Med 2021; 101:369-380. [PMID: 33268842 DOI: 10.1038/s41374-020-00508-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
NLRP3 inflammasome activation, which can be triggered by reactive oxygen species (ROS), contributes to nonalcoholic steatohepatitis (NASH) progression. Exercise is an effective therapeutic strategy for NASH. However, whether exercise prevents NLRP3 activation in NASH has not been investigated. Here, we investigated the effect of exercise on NLRP3 inflammasome in mice with high-fat diet (HFD)-induced or methionine and choine-deficient (MCD) diet-induced NASH and explored whether adropin, a metabolic peptide hormone shown to inhibit inflammation, mediates an exercise-induced benefit against NLRP3 inflammasome activation. Exercise alleviated diet-induced hepatic steatosis, inflammation, and fibrosis. Importantly, exercise significantly reduced the expression of NLRP3 inflammasome components, decreased Caspase-1 enzymatic activity, normalized IL-1β production, and suppressed ROS overproduction in HFD-fed and MCD diet-fed mice. The exercise-elicited NLRP3 inflammasome inhibition was accompanied by increased adropin levels. Moreover, serum adropin levels were negatively correlated with serum IL-1β levels. We further explored the effect of adropin on the NLRP3 inflammasome in palmitic acid (PA)-treated hepatocytes and Kupffer cells. Although adropin treatment did not significantly decrease the levels of all inflammasome components, it reduced the active Caspase-1 level, decreased Caspase-1 activity and downregulated IL-1β expression in hepatocytes and Kupffer cells (KCs) treated with PA. Moreover, ROS levels in PA-stimulated hepatocytes and Kupffer cells were reduced upon adropin treatment. In summary, we demonstrated that the inhibitory effect of exercise on NLRP3 inflammasome activation was associated with adropin induction, resulting in NASH improvement.
Collapse
Affiliation(s)
- Wenqi Yang
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China
- Key Laboratory of sports technique, tactics and physical function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Ling Liu
- Key Laboratory of sports technique, tactics and physical function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Yuan Wei
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China
- Key Laboratory of sports technique, tactics and physical function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Chunlu Fang
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China
- Key Laboratory of sports technique, tactics and physical function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Shujing Liu
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China
- Key Laboratory of sports technique, tactics and physical function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Fu Zhou
- Key Laboratory of sports technique, tactics and physical function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Yaping Li
- Key Laboratory of sports technique, tactics and physical function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Ge Zhao
- Key Laboratory of sports technique, tactics and physical function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Ziyi Guo
- Key Laboratory of sports technique, tactics and physical function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Yuan Luo
- Key Laboratory of sports technique, tactics and physical function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Liangming Li
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China.
- Key Laboratory of sports technique, tactics and physical function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China.
| |
Collapse
|
58
|
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18:151-166. [PMID: 33128017 DOI: 10.1038/s41575-020-00372-7] [Citation(s) in RCA: 850] [Impact Index Per Article: 283.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
Chronic liver injury leads to liver inflammation and fibrosis, through which activated myofibroblasts in the liver secrete extracellular matrix proteins that generate the fibrous scar. The primary source of these myofibroblasts are the resident hepatic stellate cells. Clinical and experimental liver fibrosis regresses when the causative agent is removed, which is associated with the elimination of these activated myofibroblasts and resorption of the fibrous scar. Understanding the mechanisms of liver fibrosis regression could identify new therapeutic targets to treat liver fibrosis. This Review summarizes studies of the molecular mechanisms underlying the reversibility of liver fibrosis, including apoptosis and the inactivation of hepatic stellate cells, the crosstalk between the liver and the systems that orchestrate the recruitment of bone marrow-derived macrophages (and other inflammatory cells) driving fibrosis resolution, and the interactions between various cell types that lead to the intracellular signalling that induces fibrosis or its regression. We also discuss strategies to target hepatic myofibroblasts (for example, via apoptosis or inactivation) and the myeloid cells that degrade the matrix (for example, via their recruitment to fibrotic liver) to facilitate fibrosis resolution and liver regeneration.
Collapse
Affiliation(s)
- Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
59
|
Ghadimi M, Mohammadi R, Daneshzad E, Moazzami B, Mohammadpour Z. Effectiveness of dietary interventions on cardio-metabolic risk factors in patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. Ann Gastroenterol 2021; 34:415-423. [PMID: 33948068 PMCID: PMC8079875 DOI: 10.20524/aog.2021.0601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/19/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Dietary modification is considered as one of the main strategies in the management of nonalcoholic fatty liver disease (NAFLD). The objective of this study was to systematically investigate the effect of dietary interventions on the cardio-metabolic risk factors, including lipid profile and insulin resistance in this population. METHODS We searched electronic databases of PubMed and Scopus until January 2020 and included randomized controlled trials that compared the effect of dietary modifications vs. control on lipid profile and insulin resistance in patients with NAFLD. The random-effect analysis was performed to calculate pooled weighted mean differences (WMD). RESULTS Our finding showed that serum triglycerides (TG) (n=5, WMD -38.50 mg/dL, 95% confidence interval [CI] -61.68 to -15.31; P=0.001) and total cholesterol (TC) (n=4, WMD -18.70 mg/dL, 95%CI -34.85 to -2.53; P=0.023) decrease following diet intervention along with marginally significant weight reduction (n=5, WMD -3.61 mg/dL, 95%CI -7.25 to 0.04; P=0.053). There was no change in the homeostatic model assessment for insulin resistance, high- and low-density lipoprotein (LDL) levels (P>0.05). Subgroup analysis revealed that Mediterranean diet reduced TG (n=2, WMD -57.52 mg/dL, 95%CI -75.73 to -39.31; P<0.001) and weight (n=2, WMD -7.59 Kg, 95%CI -13.53 to -1.66; P=0.012), and also increased LDL level (n=2, WMD 29.73 mg/dL, 95%CI 13.82-45.65; P<0.001). However, standard hypocaloric diet improved TC (n=2, WMD -23.20 mg/dL, 95%CI -36.96 to -9.44; P=0.001) and LDL (n=2, WMD -16.82 mg/dL, 95%CI -29.44 to -4.19; P=0.009). CONCLUSION Dietary modifications may improve serum TG, TC, and obesity in NAFLD.
Collapse
Affiliation(s)
- Maryam Ghadimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran (Maryam Ghadimi)
- Liver Transplantation Research Center, Imam Khomeini Hospital complex, Tehran University of Medical Sciences, Tehran, Iran (Maryam Ghadimi, Reihaneh Mohammadi, Bobak Moazzami, Zinat Mohammadpour)
| | - Reihaneh Mohammadi
- Liver Transplantation Research Center, Imam Khomeini Hospital complex, Tehran University of Medical Sciences, Tehran, Iran (Maryam Ghadimi, Reihaneh Mohammadi, Bobak Moazzami, Zinat Mohammadpour)
| | - Elnaz Daneshzad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran (Elnaz Daneshzad)
| | - Bobak Moazzami
- Liver Transplantation Research Center, Imam Khomeini Hospital complex, Tehran University of Medical Sciences, Tehran, Iran (Maryam Ghadimi, Reihaneh Mohammadi, Bobak Moazzami, Zinat Mohammadpour)
| | - Zinat Mohammadpour
- Liver Transplantation Research Center, Imam Khomeini Hospital complex, Tehran University of Medical Sciences, Tehran, Iran (Maryam Ghadimi, Reihaneh Mohammadi, Bobak Moazzami, Zinat Mohammadpour)
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia (Zinat Mohammadpour)
| |
Collapse
|
60
|
Romano C, Esposito S, Ferrara R, Cuomo G. Tailoring biologic therapy for real-world rheumatoid arthritis patients. Expert Opin Biol Ther 2020; 21:661-674. [PMID: 33147106 DOI: 10.1080/14712598.2021.1847268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: The cornerstone of rheumatoid arthritis (RA) therapy relies on the treat-to-target strategy, which aims at dampening inflammation as soon as possible in order to achieve persistent low disease activity or, ideally, remission, according to validated disease activity measures. Traditional disease-modifying antirheumatic drugs (DMARDs) may be chosen in monotherapy or in combination as first-line therapy; in case of an unsatisfactory response after a 3-6-month trial, biologic therapy may be commenced.Areas covered: Real-life RA patients may present with concomitant comorbidities/complications or be in peculiar physiological states which raise more than one question as to which biotherapy may be more well suited considering the whole clinical picture. Therefore, a thorough literature search was performed to identify the most appropriate biologic therapy in each setting considered in this review.Expert opinion: Here we provide suggestions for the use of biologic drugs having a predictable better outcome in specific real-world conditions, so as to ideally profile the patient to the best of the current knowledge.
Collapse
Affiliation(s)
- Ciro Romano
- Department of Medicine, Clinical Immunology Outpatient Clinic, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Sergio Esposito
- Department of Medicine, Clinical Immunology Outpatient Clinic, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Roberta Ferrara
- Department of Medicine, Clinical Immunology Outpatient Clinic, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Giovanna Cuomo
- Department of Medicine, Clinical Immunology Outpatient Clinic, "Luigi Vanvitelli" University of Campania, Naples, Italy
| |
Collapse
|
61
|
Schultz Moreira AR, Rüschenbaum S, Schefczyk S, Hendgen-Cotta U, Rassaf T, Broering R, Hardtke-Wolenski M, Buitrago-Molina LE. 9-PAHSA Prevents Mitochondrial Dysfunction and Increases the Viability of Steatotic Hepatocytes. Int J Mol Sci 2020; 21:ijms21218279. [PMID: 33167328 PMCID: PMC7663845 DOI: 10.3390/ijms21218279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is quickly becoming the most common liver disease worldwide. Within the NAFLD spectrum, patients with nonalcoholic steatohepatitis (NASH) are at the highest risk of developing cirrhosis and disease progression to hepatocellular carcinoma. To date, therapeutic options for NASH patients have been ineffective, and therefore, new options are urgently needed. Hence, a model system to develop new therapeutic interventions is needed. Here, we introduce two new in vitro models of steatosis induction in HepG2 cells and primary murine hepatocytes. We used a recently discovered novel class of bioactive anti-inflammatory lipids called branched fatty acid esters of hydroxyl fatty acids. Among these bioactive lipids, palmitic-acid-9-hydroxy-stearic-acid (9-PAHSA) is the most promising as a representative nondrug therapy based on dietary supplements or nutritional modifications. In this study, we show a therapeutic effect of 9-PAHSA on lipotoxicity in steatotic primary hepatocytes and HepG2 cells. This could be shown be increased viability and decreased steatosis. Furthermore, we could demonstrate a preventive effect in HepG2 cells. The outcome of 9-PAHSA administration is both preventative and therapeutically effective for hepatocytes with limited damage. In conclusion, bioactive lipids like 9-PAHSA offer new hope for prevention or treatment in patients with fatty liver and steatosis.
Collapse
Affiliation(s)
- Adriana R. Schultz Moreira
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (A.R.S.M.); (S.R.); (S.S.); (R.B.); (M.H.-W.)
| | - Sabrina Rüschenbaum
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (A.R.S.M.); (S.R.); (S.S.); (R.B.); (M.H.-W.)
| | - Stefan Schefczyk
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (A.R.S.M.); (S.R.); (S.S.); (R.B.); (M.H.-W.)
| | - Ulrike Hendgen-Cotta
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (U.H.-C.); (T.R.)
| | - Tienush Rassaf
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (U.H.-C.); (T.R.)
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (A.R.S.M.); (S.R.); (S.S.); (R.B.); (M.H.-W.)
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (A.R.S.M.); (S.R.); (S.S.); (R.B.); (M.H.-W.)
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Laura Elisa Buitrago-Molina
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (A.R.S.M.); (S.R.); (S.S.); (R.B.); (M.H.-W.)
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
62
|
Chen X, Zhang Z, Li H, Zhao J, Wei X, Lin W, Zhao X, Jiang A, Yuan J. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2020; 35:2009-2019. [PMID: 32150306 DOI: 10.1111/jgh.15027] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM A causal relationship between changes of the gut microbiome and non-alcoholic fatty liver disease (NAFLD) remains unclear. We demonstrated that endogenous ethanol (EnEth) produced by intestinal microbiota is likely a causative agent of NAFLD. METHODS Two mutants with different alcohol-producing abilities, namely, W14-adh and W14Δadh, were constructed using the clinical high alcohol-producing (HiAlc) Klebsiella pneumoniae strain W14 as a parent. Damage to hepatocytes caused by bacteria with different alcohol-producing capacities was evaluated (EtOH group as positive control). The ultrastructural changes of mitochondria were assessed via transmission electron microscopy (TEM). Hepatic levels of mitochondrial reactive oxygen species (ROS), DNA damage, and adenosine triphosphate were examined. RESULTS The results illustrated that steatosis was most severe in the W14-adh group, followed by the W14 group, whereas the W14Δadh group had few fatty droplets. TEM and examination of related protein expression revealed that the mitochondrial integrity of HepG2 hepatocytes was considerably damaged in the EtOH and bacteria treatment groups. The impaired mitochondrial function in HepG2 hepatocytes was evidenced by reduced adenosine triphosphate content and increased mitochondrial ROS accumulation and DNA damage in the EtOH and bacteria treatment groups, especially the W14-adh group. Meanwhile, liver injury and mitochondrial damage were observed in the hepatocytes of mice. The livers of mice in the W14-adh group, which had the highest ethanol production, exhibited the most serious damage, similar to that in the EtOH group. CONCLUSIONS EnEth produced by HiAlc bacteria induces mitochondrial dysfunction in NAFLD.
Collapse
Affiliation(s)
- Xiao Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, China
| | - Huan Li
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Jiangtao Zhao
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Xiao Wei
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Weishi Lin
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Xiangna Zhao
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Aimin Jiang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
63
|
Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cell Mol Immunol 2020; 18:57-72. [PMID: 33041339 DOI: 10.1038/s41423-020-00561-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a lymphoid organ with unique immunological properties, particularly, its predominant innate immune system. The balance between immune tolerance and immune activity is critical to liver physiological functions and is responsible for the sensitivity of this organ to numerous diseases, including hepatotropic virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, autoimmune liver disease, and liver cancer, which are major health problems globally. In the past decade, with the discovery of liver-resident natural killer cells, the importance of innate lymphocytes with tissue residency has gradually become the focus of research. In this review, we address the current knowledge regarding hepatic innate lymphocytes with unique characteristics, including NK cells, ILC1/2/3s, NKT cells, γδ T cells, and MAIT cells, and their potential roles in liver homeostasis maintenance and the progression of liver diseases and cancer. A better understanding of the immunopathogenesis of hepatic innate lymphocytes will be helpful for proposing effective treatments for liver diseases and cancer.
Collapse
|
64
|
Maximus PS, Al Achkar Z, Hamid PF, Hasnain SS, Peralta CA. Adipocytokines: Are they the Theory of Everything? Cytokine 2020; 133:155144. [PMID: 32559663 PMCID: PMC7297161 DOI: 10.1016/j.cyto.2020.155144] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Adipose tissue secretes various bioactive peptides/proteins, immune molecules and inflammatory mediators which are known as adipokines or adipocytokines. Adipokines play important roles in the maintenance of energy homeostasis, appetite, glucose and lipid metabolism, insulin sensitivity, angiogenesis, immunity and inflammation. Enormous number of studies from all over the world proved that adipocytokines are involved in the pathogenesis of diseases affecting nearly all body systems, which raises the question whether we can always blame adipocytokines as the triggering factor of every disease that may hit the body. OBJECTIVE Our review targeted the role played by adipocytokines in the pathogenesis of different diseases affecting different body systems including diabetes mellitus, kidney diseases, gynecological diseases, rheumatologic disorders, cancers, Alzheimer's, depression, muscle disorders, liver diseases, cardiovascular and lung diseases. METHODOLOGY We cited more than 33 recent literature reviews that discussed the role played by adipocytokines in the pathogenesis of different diseases affecting different body systems. CONCLUSION More evidence is being discovered to date about the role played by adipocytokines in more diseases and extra research is needed to explore hidden roles played by adipokine imbalance on disease pathogenesis.
Collapse
Affiliation(s)
- Pierre S Maximus
- California Institute of Behavioral Neurosciences and Psychology, United States.
| | - Zeina Al Achkar
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Pousette F Hamid
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Syeda S Hasnain
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Cesar A Peralta
- California Institute of Behavioral Neurosciences and Psychology, United States
| |
Collapse
|
65
|
Klaebel JH, Rakipovski G, Andersen B, Lykkesfeldt J, Tveden-Nyborg P. Dietary Intervention Accelerates NASH Resolution Depending on Inflammatory Status with Minor Additive Effects on Hepatic Injury by Vitamin E Supplementation. Antioxidants (Basel) 2020; 9:antiox9090808. [PMID: 32882802 PMCID: PMC7555643 DOI: 10.3390/antiox9090808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the lack of effective pharmacotherapy against nonalcoholic steatohepatitis (NASH) and liver fibrosis, vitamin E (vitE) supplementation and lifestyle modifications are recommended for the management of NASH due to promising clinical results. We recently reported a positive effect of supplementation with 800 IU vitE and atorvastatin on NASH resolution in guinea pigs. In the present study, we investigated the effect of high-dose vitE therapy combined with dietary intervention against progressive NASH and advanced fibrosis in the guinea pig model. Sixty-six guinea pigs received either high-fat (HF) or standard guinea pig chow diet (Control) for 25 weeks. Prior to eight weeks of intervention, HF animals were allocated into groups; dietary intervention (Chow) or dietary intervention with 2000 IU/d vitE supplementation (CvitE). Both Chow and CvitE reduced dyslipidemia, hepatic lipid accumulation and liver weight (p < 0.05), while CvitE further decreased hepatocellular ballooning (p < 0.05). Subanalyses of individual responses within intervention groups showed significant correlation between the hepatic hallmarks of NASH and lipid accumulation vs. inflammatory state (p < 0.05). Collectively, our results indicate that individual differences in sensitivity towards intervention and inflammatory status determine the potential beneficial effect of dietary intervention and high-dose vitE supplementation. Moreover, the study suggests that inflammation is a primary target in NASH treatment.
Collapse
Affiliation(s)
- Julie Hviid Klaebel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (J.H.K.); (J.L.)
| | - Günaj Rakipovski
- CV Research, Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2670 Måløv, Denmark;
| | - Birgitte Andersen
- Liver Disease Research, Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2670 Måløv, Denmark;
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (J.H.K.); (J.L.)
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (J.H.K.); (J.L.)
- Correspondence: ; Tel.: +45-353-331-67
| |
Collapse
|
66
|
Eshraghian A, Nikeghbalian S, Geramizadeh B, Kazemi K, Shamsaeefar A, Malek-Hosseini SA. Characterization of biopsy proven non-alcoholic fatty liver disease in healthy non-obese and lean population of living liver donors: The impact of uric acid. Clin Res Hepatol Gastroenterol 2020; 44:572-578. [PMID: 31611031 DOI: 10.1016/j.clinre.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is frequently seen among non-obese overweight individuals and lean subjects (those with normal body mass index). This study aimed to investigate prevalence and risk factors of biopsy proven NAFLD in a cluster of healthy non-obese and lean individuals. METHODS AND MATERIALS In a retrospective study, adult (>18 years) apparently healthy individuals who had donated liver to pediatric patients between July 2012 and October 2018 were included. Non-obese and lean individuals were defined as BMI<30kg/m2 and BMI<25kg/m2, respectively. RESULTS Totally 310 patients were included. Seventy-six individuals (24.5%) had NAFL and 30 patients (9.67%) had non-alcoholic steatohepatitis (NASH) among non-obese population. In multivariate regression analysis, only higher BMI was marginally associated with NASH in non-obese compared to those without NASH (Odds ratio: 2.52, 95% CI: 0.097-6.54; P=0.05). Totally, 246 individuals were lean. 55 individuals (22.3%) had NAFL and 20 individuals (8.2%) had NASH in their liver biopsies. In univariate analysis, serum triglyceride, cholesterol, LDL, ALT, alkaline phosphatase and uric acid were associated with NAFL among lean individuals (P<0.05). In regression analysis, serum uric acid was associated with NAFL (Odds ratio: 1.70, 95% CI: 1.18-2.45; P=0.004) and NASH in lean individuals (Odds ratio: 1.98, 95% CI: 1.27-3.10; P=0.003). CONCLUSION NAFLD/NASH is prevalent even in a healthy lean population when evaluated by liver biopsy. Higher BMI and serum uric acid were two major risks of NAFLD/NASH in non-obese and lean individuals.
Collapse
Affiliation(s)
- Ahad Eshraghian
- Avicenna Center for Medicine and Organ Transplant, Avicenna Transplant Hospital, PO Box: 71994-67985, Shiraz, Iran.
| | - Saman Nikeghbalian
- Avicenna Center for Medicine and Organ Transplant, Avicenna Transplant Hospital, PO Box: 71994-67985, Shiraz, Iran
| | - Bita Geramizadeh
- Avicenna Center for Medicine and Organ Transplant, Avicenna Transplant Hospital, PO Box: 71994-67985, Shiraz, Iran
| | - Kourosh Kazemi
- Avicenna Center for Medicine and Organ Transplant, Avicenna Transplant Hospital, PO Box: 71994-67985, Shiraz, Iran
| | - Alireza Shamsaeefar
- Avicenna Center for Medicine and Organ Transplant, Avicenna Transplant Hospital, PO Box: 71994-67985, Shiraz, Iran
| | - Seyed Ali Malek-Hosseini
- Avicenna Center for Medicine and Organ Transplant, Avicenna Transplant Hospital, PO Box: 71994-67985, Shiraz, Iran
| |
Collapse
|
67
|
Orrù C, Perra A, Kowalik MA, Rizzolio S, Puliga E, Cabras L, Giordano S, Columbano A. Distinct Mechanisms Are Responsible for Nrf2-Keap1 Pathway Activation at Different Stages of Rat Hepatocarcinogenesis. Cancers (Basel) 2020; 12:cancers12082305. [PMID: 32824383 PMCID: PMC7463589 DOI: 10.3390/cancers12082305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
Activation of the Nrf2-Keap1 pathway, the main intracellular defense against environmental stress, has been observed in several human cancers, including hepatocellular carcinoma (HCC). Here, we assessed whether distinct mechanisms of activation may be involved at different stages of hepatocarcinogenesis. We adopted an experimental model consisting of treatment with diethylnitrosamine (DENA) followed by a choline-devoid methionine-deficient (CMD) diet for 4 months. The CMD diet was then replaced with a basal diet, and the animals were killed at 6, 10 or 13 months after DENA injection. Nrf2 activation occurred at early steps of hepatocarcinogenesis and persisted throughout the tumorigenic process. While Nrf2 mutations were extremely frequent at early steps (90%), their incidence diminished with the progression to malignancy (25%). Conversely, while p62 was almost undetectable in early nodules, its accumulation occurred in HCCs, suggesting that Nrf2 pathway activation at late stages is mainly due to Keap1 sequestration by p62. We demonstrate that, in a model of hepatocarcinogenesis resembling human non-alcoholic fatty liver disease, Nrf2 mutations are the earliest molecular changes responsible for the activation of the Nrf2-Keap1 pathway. The progressive loss of mutations associated with a concomitant p62 accumulation implies that distinct mechanisms are responsible for Nrf2-Keap1 pathway activation at different stages of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Claudia Orrù
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, 09042 Cagliari, Italy; (C.O.); (M.A.K.); (L.C.)
- Department of Oncology, University of Torino, 10124 Torino, Italy; (S.R.); (E.P.)
- Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, 09042 Cagliari, Italy; (C.O.); (M.A.K.); (L.C.)
- Correspondence: (A.P.); (S.G.); (A.C.); Tel.: +39-070-6758292 (A.P.); +39-011-9933233 (S.G.); +39-070-6758345 (A.C.); Fax: +39-011-9933225 (S.G.)
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, 09042 Cagliari, Italy; (C.O.); (M.A.K.); (L.C.)
| | - Sabrina Rizzolio
- Department of Oncology, University of Torino, 10124 Torino, Italy; (S.R.); (E.P.)
- Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Elisabetta Puliga
- Department of Oncology, University of Torino, 10124 Torino, Italy; (S.R.); (E.P.)
- Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Lavinia Cabras
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, 09042 Cagliari, Italy; (C.O.); (M.A.K.); (L.C.)
| | - Silvia Giordano
- Department of Oncology, University of Torino, 10124 Torino, Italy; (S.R.); (E.P.)
- Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
- Correspondence: (A.P.); (S.G.); (A.C.); Tel.: +39-070-6758292 (A.P.); +39-011-9933233 (S.G.); +39-070-6758345 (A.C.); Fax: +39-011-9933225 (S.G.)
| | - Amedeo Columbano
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, 09042 Cagliari, Italy; (C.O.); (M.A.K.); (L.C.)
- Correspondence: (A.P.); (S.G.); (A.C.); Tel.: +39-070-6758292 (A.P.); +39-011-9933233 (S.G.); +39-070-6758345 (A.C.); Fax: +39-011-9933225 (S.G.)
| |
Collapse
|
68
|
Laura AP, Múzquiz de la Garza AR, Elena PM, Gutiérrez-Uribe JA, Armando TC, Cruz-Suárez LE, Serna-Saldívar SO. Effects of Ecklonia arborea or Silvetia compressa algae intake on serum lipids and hepatic fat accumulation in Wistar rats fed hyperlipidic diets. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
69
|
Chen Y, Tian Z. Roles of Hepatic Innate and Innate-Like Lymphocytes in Nonalcoholic Steatohepatitis. Front Immunol 2020; 11:1500. [PMID: 32765518 PMCID: PMC7378363 DOI: 10.3389/fimmu.2020.01500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH), a progressive form of nonalcoholic fatty liver disease (NAFLD), is accompanied by steatosis, hepatocyte injury and liver inflammation, which has been a health problem in the world as one of the major high risk factors of cirrhosis and hepatocellular carcinoma (HCC). Complex immune responses involving T cells, B cells, Kupffer cells, monocytes, neutrophils, DCs and other innate lymphocytes account for the pathogenesis of NASH; however, the underlying mechanisms have not been clearly elucidated in detail. In the liver, innate and innate-like lymphocytes account for more than two-thirds of total lymphocytes and play an important role in maintaining the immune homeostasis. Therefore, their roles in the progression of NASH deserves investigation. In this review, we summarized murine NASH models for immunological studies, including the diet-induced NASH, chemical-induced NASH and genetic-induced NASH. The role of innate and innate-like lymphocytes including NK cells, ILCs, NKT, γδT and MAIT cells in the progression of NASH were elucidated. Further, the metabolic regulation of the innate immune response was addressed in consideration to explain the molecular mechanisms. Based on the findings of the reviewed studies, strategies of immune intervention are proposed to control the progression of NASH.
Collapse
Affiliation(s)
- Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
70
|
Gerhard GS, Davis B, Wu X, Hanson A, Wilhelmsen D, Piras IS, Still CD, Chu X, Petrick AT, DiStefano JK. Differentially expressed mRNAs and lncRNAs shared between activated human hepatic stellate cells and nash fibrosis. Biochem Biophys Rep 2020; 22:100753. [PMID: 32258441 PMCID: PMC7109412 DOI: 10.1016/j.bbrep.2020.100753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
We previously reported dysregulated expression of liver-derived messenger RNA (mRNA) and long noncoding RNA (lncRNA) in patients with advanced fibrosis resulting from nonalcoholic fatty liver disease (NAFLD). Here we sought to identify changes in mRNA and lncRNA levels associated with activation of hepatic stellate cells (HSCs), the predominant source of extracellular matrix production in the liver and key to NAFLD-related fibrogenesis. We performed expression profiling of mRNA and lncRNA from LX-2 cells, an immortalized human HSC cell line, treated to induce phenotypes resembling quiescent and myofibroblastic states. We identified 1964 mRNAs (1377 upregulated and 587 downregulated) and 1460 lncRNAs (665 upregulated and 795 downregulated) showing statistically significant evidence (FDR ≤0.05) for differential expression (fold change ≥|2|) between quiescent and activated states. Pathway analysis of differentially expressed genes showed enrichment for hepatic fibrosis (FDR = 1.35E-16), osteoarthritis (FDR = 1.47E-14), and axonal guidance signaling (FDR = 1.09E-09). We observed 127 lncRNAs/nearby mRNA pairs showing differential expression, the majority of which were dysregulated in the same direction. A comparison of differentially expressed transcripts in LX-2 cells with RNA-sequencing results from NAFLD patients with or without liver fibrosis revealed 1047 mRNAs and 91 lncRNAs shared between the two datasets, suggesting that some of the expression changes occurring during HSC activation can be observed in biopsied human tissue. These results identify lncRNA and mRNA expression patterns associated with activated human HSCs that appear to recapitulate human NAFLD fibrosis.
Collapse
Affiliation(s)
- Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Bethany Davis
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Xiumei Wu
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Amanda Hanson
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Danielle Wilhelmsen
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Ignazio S. Piras
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | | | - Xin Chu
- Geisinger Obesity Institute, Danville, PA, 17822, USA
| | | | - Johanna K. DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| |
Collapse
|
71
|
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest 2020; 129:3990-4000. [PMID: 31573548 DOI: 10.1172/jci129187] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis.
Collapse
Affiliation(s)
- C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
72
|
Processes exacerbating apoptosis in non-alcoholic steatohepatitis. Clin Sci (Lond) 2020; 133:2245-2264. [PMID: 31742325 DOI: 10.1042/cs20190068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant public health concern, owing to its high prevalence, progressive nature and lack of effective medical therapies. NAFLD is a complex and multifactorial disease involving the progressive and concerted action of factors that contribute to the development of liver inflammation and eventually fibrosis. Here, we summarize fundamental molecular mechanisms underlying the pathogenesis of non-alcoholic steatohepatitis (NASH), how they are interrelated and possible translation to clinical applications. We focus on processes triggering and exacerbating apoptotic signalling in the liver of NAFLD patients and their metabolic and pathological implications. Indeed, liver injury and inflammation are cardinal histopathological features of NASH, a duo in which derailment of apoptosis is of paramount importance. In turn, the liver houses a very high number of mitochondria, crucial metabolic unifiers of both extrinsic and intrinsic signals that converge in apoptosis activation. The role of lifestyle options is also dissected, highlighting the management of modifiable risk factors, such as obesity and harmful alcohol consumption, influencing apoptosis signalling in the liver and ultimately NAFLD progression. Integrating NAFLD-associated pathologic mechanisms in the cell death context could provide clues for a more profound understating of the disease and pave the way for novel rational therapies.
Collapse
|
73
|
Wang J, He W, Tsai PJ, Chen PH, Ye M, Guo J, Su Z. Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease. Lipids Health Dis 2020; 19:72. [PMID: 32284046 PMCID: PMC7155254 DOI: 10.1186/s12944-020-01210-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic syndrome. Imbalances between liver lipid output and input are the direct causes of NAFLD, and hepatic steatosis is the pathological premise and basis for NAFLD progression. Mutual interaction between endoplasmic reticulum stress (ERS) and oxidative stress play important roles in NAFLD pathogenesis. Notably, mitochondria-associated membranes (MAMs) act as a structural bridges for functional clustering of molecules, particularly for Ca2+, lipids, and reactive oxygen species (ROS) exchange. Previous studies have examined the crucial roles of ERS and ROS in NAFLD and have shown that MAM structural and functional integrity determines normal ER- mitochondria communication. Upon disruption of MAM integrity, miscommunication directly or indirectly causes imbalances in Ca2+ homeostasis and increases ERS and oxidative stress. Here, we emphasize the involvement of MAMs in glucose and lipid metabolism, chronic inflammation and insulin resistance in NAFLD and summarize MAM-targeting drugs and compounds, most of which achieve their therapeutic or ameliorative effects on NAFLD by improving MAM integrity. Therefore, targeting MAMs may be a viable strategy for NAFLD treatment. This review provides new ideas and key points for basic NAFLD research and drug development centred on mitochondria and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Jin Wang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanping He
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ping-Ju Tsai
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Pei-Hsuan Chen
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Manxiang Ye
- New Francisco (Yunfu City) Biotechnology Co, Ltd Swan-kan-chiau Ind. Dist., Kaofong Village, Yunfu City, Guangdong, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
74
|
Tao HC, Chen KX, Wang X, Chen B, Zhao WO, Zheng Y, Yang YG. CD47 Deficiency in Mice Exacerbates Chronic Fatty Diet-Induced Steatohepatitis Through Its Role in Regulating Hepatic Inflammation and Lipid Metabolism. Front Immunol 2020; 11:148. [PMID: 32158445 PMCID: PMC7052326 DOI: 10.3389/fimmu.2020.00148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation is one of the hallmarks of non-alcoholic steatohepatitis. CD47 is a widely expressed transmembrane protein that signals through inhibitory receptor signal regulatory protein α (SIRPα) to inhibit macrophage activation and phagocytosis. In this study, we sought to investigate the role of CD47 in hepatosteatosis and fibrosis induced by a chronic high-fat diet (HFD), by comparing disease development in wild-type (WT) and CD47KO mice fed HFD for 40 weeks. The HFD induced remarkably more severe hepatic steatosis and fibrosis but less body weight gain and less subcutaneous fat accumulation in CD47KO mice compared to WT mice. Liver tissues from HFD-fed CD47KO mice exhibited enhanced inflammation characterized by increased proinflammatory cytokine production and increased nuclear factor-κB (NF-κB) activation compared to similarly fed WT mice. Although higher expression of apolipoproteins was observed in CD47KO mice compared to WT mice under a low-fat diet (LFD), HFD-fed WT and CD47KO mice showed comparably prominent downregulation of these apolipoprotein genes, suggesting that the marked difference observed in lipid accumulation and hepatosteatosis between these mice cannot be explained by changes in apolipoproteins. Like apolipoproteins, sirtuin 1 (SIRT1) and peroxisome proliferator activated receptor alpha (PPARα), which are involved in regulation of both lipid metabolism and inflammation, were more highly expressed in CD47KO than WT mice under LFD but more severely suppressed in CD47KO than in WT mice under HFD. Taken together, our results indicate that CD47 plays a significant role in the pathogenesis of HFD-induced hepatosteatosis and fibrosis through its role in regulation of inflammation and lipid metabolism.
Collapse
Affiliation(s)
- Hui-Chao Tao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,Cardiovascular Center, The First Hospital, Jilin University, Changchun, China
| | - Ke-Xin Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,Cardiovascular Center, The First Hospital, Jilin University, Changchun, China
| | - Xue Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Bo Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Wai-Ou Zhao
- Cardiovascular Center, The First Hospital, Jilin University, Changchun, China
| | - Yang Zheng
- Cardiovascular Center, The First Hospital, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
75
|
Ju L, Sun Y, Xue H, Chen L, Gu C, Shao J, Lu R, Luo X, Wei J, Ma X, Bian Z. CCN1 promotes hepatic steatosis and inflammation in non-alcoholic steatohepatitis. Sci Rep 2020; 10:3201. [PMID: 32081971 PMCID: PMC7035350 DOI: 10.1038/s41598-020-60138-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by increased uptake and accumulation of lipids in hepatocytes. Simple steatosis may progress to non-alcoholic steatohepatitis (NASH) with inflammation, hepatocellular injury and fibrosis. CCN1 is an important matrix protein that regulates cell death and promotes immune cell adhesion and may potentially control this process. The role of CCN1 in NASH remains unclear. We investigated the role of CCN1 in the pathogenesis of steatohepatitis. CCN1 upregulation was found to be closely related with steatosis in patients with NASH, obese mice and a FFA-treated hepatocyte model. Controlling the expression of CCN1 in murine NASH models demonstrated that CCN1 increased the severity of steatosis and inflammation. From the sequence results, we found that fatty acid metabolism genes were primarily involved in the MCD mice overexpressing CCN1 compared to the control. Then, the expression of fatty acid metabolism genes was determined using a custom-designed pathway-focused qPCR-based gene expression array. Expression analysis showed that CCN1 overexpression significantly upregulated the expression of fatty acid metabolism-associated genes. In vitro analysis revealed that CCN1 increased the intracellular TG content, the pro-inflammatory cytokines and the expression level of apoptosis-associated proteins in a steatosis model using murine primary hepatocytes. We identified CCN1 as an important positive regulator in NASH.
Collapse
Affiliation(s)
- Linling Ju
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Yan Sun
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hong Xue
- Liver Diseases Infectious Diseases, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Lin Chen
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Chunyan Gu
- Department of Pathology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Jianguo Shao
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Rujian Lu
- Department of Cardiothoracic Surgery, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Xi Luo
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Jue Wei
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiong Ma
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhaolian Bian
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
76
|
Baker SS, Baker RD. Gut Microbiota and Liver Injury (II): Chronic Liver Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:39-54. [PMID: 32323179 DOI: 10.1007/978-981-15-2385-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic liver injury mainly comprises viral hepatitis, fatty liver disease, autoimmune hepatitis, cirrhosis and liver cancer. It is well established that gut microbiota serves as the key upstream modulator for chronic liver injury progression. Indeed, the term "gut-liver axis" was mostly applied for chronic liver injury. In the current chapter, we will summarize the relationship between gut microbiota and chronic liver injury, including the interaction between them based on latest clinic and basic research.
Collapse
Affiliation(s)
- Susan S Baker
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, USA. .,39 Irving Place, Buffalo, NY, 14201, USA.
| | - Robert D Baker
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, USA
| |
Collapse
|
77
|
Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA, Ouatu A, Floria M. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J Diabetes Res 2020; 2020:3920196. [PMID: 32832560 PMCID: PMC7424491 DOI: 10.1155/2020/3920196] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) remain as one of the most global problematic metabolic diseases with rapidly increasing prevalence and incidence. Epidemiological studies noted that T2DM patients have by two-fold increase to develop NAFLD, and vice versa. This complex and intricate association is supported and mediated by insulin resistance (IR). In this review, we discuss the NAFLD immunopathogenesis, connection with IR and T2DM, the role of screening and noninvasive tools, and mostly the impact of the current antidiabetic drugs on steatosis liver and new potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, Romania
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Cristina Mihaela Lacatusu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Minela Aida Maranduca
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, Emergency Military Clinical Hospital, Iasi, Romania
| |
Collapse
|
78
|
Romano C, Esposito S, Ferrara R, Cuomo G. Choosing the most appropriate biologic therapy for Crohn’s disease according to concomitant extra-intestinal manifestations, comorbidities, or physiologic conditions. Expert Opin Biol Ther 2019; 20:49-62. [DOI: 10.1080/14712598.2020.1689953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ciro Romano
- Division of Internal Medicine, Department of Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sergio Esposito
- Division of Internal Medicine, Department of Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Roberta Ferrara
- Division of Internal Medicine, Department of Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanna Cuomo
- Division of Internal Medicine, Department of Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
79
|
Chen YC, Chen HJ, Huang BM, Chen YC, Chang CF. Polyphenol-Rich Extracts from Toona sinensis Bark and Fruit Ameliorate Free Fatty Acid-Induced Lipogenesis through AMPK and LC3 Pathways. J Clin Med 2019; 8:E1664. [PMID: 31614650 PMCID: PMC6832244 DOI: 10.3390/jcm8101664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 01/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease found worldwide. The present study aimed to evaluate the mechanisms of inhibiting lipid accumulation in free fatty acid (FFA)-treated HepG2 cells caused by bark and fruit extracts of Toona sinensis (TSB and TSF). FFA induced lipid and triglyceride (TG) accumulation, which was attenuated by TSB and TSF. TSB and/or TSF promoted phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-coA carboxylase and peroxisome proliferator-activated receptor alpha upregulation. Furthermore, TSB and TSF suppressed FFA-induced liver X receptor, sterol regulatory element-binding transcription protein 1, fatty acid synthase, and stearoyl-CoA desaturase 1 protein expression. Moreover, TSB and/or TSF induced phosphorylation of Unc-51 like autophagy-activating kinase and microtubule-associated protein 1A/1B-light chain 3 expressions. Therefore, TSB and TSF relieve lipid accumulation by attenuating lipogenic protein expression, activating the AMPK pathway, and upregulating the autophagic flux to enhance lipid metabolism. Moreover, TSB and TSF reduced TG contents, implying the therapeutic use of TSB and TSF in NAFLD.
Collapse
Affiliation(s)
- Yung-Chia Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsin-Ju Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Bu-Miin Huang
- Department of Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Yu-Chi Chen
- Department of Urology, E-Da Hospital, Kaohsiung 82445, Taiwan.
- Department of Urology, E-Da Cancer Hospital, Kaohsiung 40402, Taiwan.
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40401, Taiwan.
| |
Collapse
|
80
|
Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab 2019; 30:656-673. [PMID: 31447320 PMCID: PMC6774861 DOI: 10.1016/j.cmet.2019.07.011] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/25/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging, and disease. Adipose tissue is an especially important contributor to the pool of circulating exosomal miRNAs. As a result, alterations in adipose tissue mass or function, which occur in many metabolic conditions, can lead to changes in circulating miRNAs, which then function systemically. Here we review the findings that led to these conclusions and discuss how this sets the stage for new lines of investigation in which extracellular miRNAs are recognized as important mediators of intercellular communication and potential candidates for therapy of disease.
Collapse
Affiliation(s)
- Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Ruben Garcia-Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bruna B Brandão
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
81
|
Hartley A, Santos Ferreira DL, Anderson EL, Lawlor DA. Metabolic profiling of adolescent non-alcoholic fatty liver disease. Wellcome Open Res 2019; 3:166. [PMID: 30687796 PMCID: PMC6338132 DOI: 10.12688/wellcomeopenres.14974.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 02/02/2023] Open
Abstract
Background: Adolescent non-alcoholic fatty liver disease (NAFLD) is associated with cardiometabolic risk factors. The association between adolescent NAFLD and a wide range of metabolic biomarkers is unclear. We have attempted to determine the differences in metabolic profile of adolescents with and without markers of NAFLD. Methods: We performed cross-sectional analyses in a sample of 3,048 participants from the Avon Longitudinal Study of Parents and Children at age 17. We used three indicators of NAFLD: ALT >40 U/l; AST >40 U/l and ultrasound scan-assessed steatosis. Associations between each measure of NAFLD and 154 metabolic traits, assessed by Nuclear Magnetic Resonance, were analyzed by multivariable linear regression, adjusting for age, sex and BMI. Results: All three indicators of NAFLD were associated with ~0.5 standard deviation (SD) greater concentrations of all extremely large to small very low-density lipoproteins (VLDL) measures. ALT >40U/l was associated with ~0.5SD greater concentrations of very small VLDLs, intermediate-density lipoproteins and low-density lipoproteins. Concentrations of most cholesterols, including remnant cholesterol, all triglycerides and monounsaturated fatty acids, in addition to glycoprotein acetyls (inflammatory marker), were also higher in participants with NAFLD. Conclusions: We have identified differing metabolic profiles between adolescents with and without indicators of NAFLD. These results provide the foundations for future research to determine whether these differences persist and result in adverse future cardiometabolic health.
Collapse
Affiliation(s)
- April Hartley
- Musculoskeletal Research Unit, Translational Health Sciences, University of Bristol, Bristol, BS10 5NB, UK,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK,
| | - Diana L. Santos Ferreira
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Emma L. Anderson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Debbie A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
82
|
Hartley A, Santos Ferreira DL, Anderson EL, Lawlor DA. Metabolic profiling of adolescent non-alcoholic fatty liver disease. Wellcome Open Res 2019; 3:166. [PMID: 30687796 PMCID: PMC6338132 DOI: 10.12688/wellcomeopenres.14974.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 02/02/2023] Open
Abstract
Background: Adolescent non-alcoholic fatty liver disease (NAFLD) is associated with cardiometabolic risk factors. The association between adolescent NAFLD and a wide range of metabolic biomarkers is unclear. We have attempted to determine the differences in metabolic profile of adolescents with and without markers of NAFLD. Methods: We performed cross-sectional analyses in a sample of 3,048 participants from the Avon Longitudinal Study of Parents and Children at age 17. We used three indicators of NAFLD: ALT >40 U/l; AST >40 U/l and ultrasound scan-assessed steatosis. Associations between each measure of NAFLD and 154 metabolic traits, assessed by Nuclear Magnetic Resonance, were analyzed by multivariable linear regression, adjusting for age, sex and BMI. Results: All three indicators of NAFLD were associated with ~0.5 standard deviation (SD) greater concentrations of all extremely large to small very low-density lipoproteins (VLDL) measures. ALT >40U/l was associated with ~0.5SD greater concentrations of very small VLDLs, intermediate-density lipoproteins and low-density lipoproteins. Concentrations of most cholesterols, including remnant cholesterol, all triglycerides and monounsaturated fatty acids, in addition to glycoprotein acetyls (inflammatory marker), were also higher in participants with NAFLD. Conclusions: We have identified differing metabolic profiles between adolescents with and without indicators of NAFLD. These results provide the foundations for future research to determine whether these differences persist and result in adverse future cardiometabolic health.
Collapse
Affiliation(s)
- April Hartley
- Musculoskeletal Research Unit, Translational Health Sciences, University of Bristol, Bristol, BS10 5NB, UK,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK,
| | - Diana L. Santos Ferreira
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Emma L. Anderson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Debbie A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
83
|
Kontana A, Tziomalos K. Role of sodium-glucose co-transporter-2 inhibitors in the management of nonalcoholic fatty liver disease. World J Gastroenterol 2019; 25:3664-3668. [PMID: 31391764 PMCID: PMC6676552 DOI: 10.3748/wjg.v25.i28.3664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/20/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic liver disease worldwide. NAFLD is considerably more frequent in patients with type 2 diabetes mellitus (T2DM) than in the general population and is also more severe histologically in this group. Sodium-glucose co-transporter-2 (SGLT2) inhibitors, the newest class of antidiabetic agents, appear to represent a promising option for the management of NAFLD in patients with T2DM. In a number of studies, treatment with SGLT2 inhibitors resulted in a reduction in hepatic steatosis and in transaminase levels. However, existing studies are small, their follow-up period was short and none evaluated the effects of SGLT2 inhibitors on liver histology. Accordingly, larger studies are needed to verify these preliminary results and define the role of SGLT2 inhibitors in the treatment of NAFLD in patients with T2DM.
Collapse
Affiliation(s)
- Anastasia Kontana
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki 54636, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki 54636, Greece
| |
Collapse
|
84
|
Gerhard GS, Hanson A, Wilhelmsen D, Piras IS, Still CD, Chu X, Petrick AT, DiStefano JK. AEBP1 expression increases with severity of fibrosis in NASH and is regulated by glucose, palmitate, and miR-372-3p. PLoS One 2019; 14:e0219764. [PMID: 31299062 PMCID: PMC6625715 DOI: 10.1371/journal.pone.0219764] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Factors governing the development of liver fibrosis in nonalcoholic steatohepatitis (NASH) are only partially understood. We recently identified adipocyte enhancer binding protein 1 (AEBP1) as a member of a core set of dysregulated fibrosis-specific genes in human NASH. Here we sought to investigate the relationship between AEBP1 and hepatic fibrosis. We confirmed that hepatic AEBP1 expression is elevated in fibrosis compared to lobular inflammation, steatosis, and normal liver, and increases with worsening fibrosis in NASH patients. AEBP1 expression was upregulated 5.8-fold in activated hepatic stellate cells and downregulated during chemical and contact induction of biological quiescence. In LX-2 and HepG2 cells treated with high glucose (25 mM), AEBP1 expression increased over 7-fold compared to normal glucose conditions. In response to treatment with either fructose or palmitate, AEBP1 expression in primary human hepatocytes increased 2.4-fold or 9.6-fold, but was upregulated 55.8-fold in the presence of fructose and palmitate together. AEBP1 knockdown resulted in decreased expression of nine genes previously identified to be part of a predicted AEBP1-associated NASH co-regulatory network and confirmed to be upregulated in fibrotic tissue. We identified binding sites for two miRNAs known to be downregulated in NASH fibrosis, miR-372-3p and miR-373-3p in the AEBP1 3' untranslated region. Both miRNAs functionally interacted with AEBP1 to regulate its expression. These findings indicate a novel AEBP1-mediated pathway in the pathogenesis of hepatic fibrosis in NASH.
Collapse
Affiliation(s)
- Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Amanda Hanson
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Danielle Wilhelmsen
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Ignazio S. Piras
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | | | - Xin Chu
- Geisinger Obesity Institute, Danville, PA, United States of America
| | | | - Johanna K. DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| |
Collapse
|
85
|
Zheng J, Zhu L, Hu B, Zou X, Hu H, Zhang Z, Jiang N, Ma J, Yang H, Liu H. 1-Deoxynojirimycin improves high fat diet-induced nonalcoholic steatohepatitis by restoring gut dysbiosis. J Nutr Biochem 2019; 71:16-26. [PMID: 31272028 DOI: 10.1016/j.jnutbio.2019.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with chronic inflammation and gut bacterial dysbiosis. Studies show that 1-deoxynojirimycin (DNJ) may improve NASH, yet the role of gut microbiota in protective effect of DNJ on NASH remains to be known. In present study, we aimed to examine how DNJ ameliorated high-fat diet (HFD)-induced mouse NASH through the regulation of gut microbiota dysbiosis. C57BL/6 J mice fed with HFD were treated with DNJ (0.1 mg/mL, in drinking water) for 4 months. The results by using histochemical staining and qPCR confirmed that DNJ remarkably modulated glucose intolerance and hyperlipidemia, attenuated hepatic steatosis and systemic chronic inflammation in HFD-induced mice. Moreover, DNJ greatly reshaped the structure of disbalanced intestinal flora, as indicated by the enhanced bacterial richness and diversity, the decreased Firmicutes-to-Bacteroidetess ratio and the increased Akkermansia level. The prediction algorithm suggests that DNJ may extensively dampen the bacterial motility and bacterial energy metabolism. Consistently, the altered gut microbiota was closely correlated with metabolic biomarkers of mice with NASH. Based on our studies, DNJ could alleviate the progress of HFD-induced NASH by rebuilding the gut microbial community structure, suggesting that DNJ may serve as a functional food to prevent or treat NASH clinically.
Collapse
Affiliation(s)
- Junping Zheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Lin Zhu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Baifei Hu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xiaojuan Zou
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Haiming Hu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zhigang Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Huabing Yang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| |
Collapse
|
86
|
Yang SS, Yu CB, Luo Z, Luo WL, Zhang J, Xu JX, Xu WN. Berberine attenuates sodium palmitate-induced lipid accumulation, oxidative stress and apoptosis in grass carp(Ctenopharyngodon idella)hepatocyte in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 88:518-527. [PMID: 30880233 DOI: 10.1016/j.fsi.2019.02.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The objective of this work was to investigate the effect of berberine (BBR) on the Cell viability, lipid accumulation, apoptosis, cytochrome c, caspase-9 and caspase-3 in lipid accumulation-hepatocytes induced by sodium palmitate in vitro. The lipid accumulation-hepatocytes (induced by 0.5 mM sodium palmitate for 24 h) were treated with 5 μM berberine for 12 h. Then, the Cell viability, intracellular triglyceride (TG) content, lipid peroxide (LPO), malonaldehyde (MDA) content, cytochrome c, caspase-9, caspase-3 and apoptosis were detected. Sodium palmitate decreased Cell viability and increased intracellular TG content, lipid droplet accumulation, LPO and MDA concentrations, caused caspase-3 and caspase-9 activation, then led to apoptosis accompanied by cytochrome c release from mitochondria into the cytoplasm. Beberine could improve intracellular lipid droplet accumulation and oxidative stress, while reduce apoptosis induced by sodium palmitate.
Collapse
Affiliation(s)
- Shuo-Shuo Yang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Cheng-Bing Yu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Zhen Luo
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Wen-Li Luo
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jing Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jian-Xiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Wei-Na Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
87
|
Developmental programming: Changes in mediators of insulin sensitivity in prenatal bisphenol A-treated female sheep. Reprod Toxicol 2019; 85:110-122. [PMID: 30853570 DOI: 10.1016/j.reprotox.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Developmental exposure to endocrine disruptor bisphenol A (BPA) is associated with metabolic defects during adulthood. In sheep, prenatal BPA treatment causes insulin resistance (IR) and adipocyte hypertrophy in the female offspring. To determine if changes in insulin sensitivity mediators (increase in inflammation, oxidative stress, and lipotoxicity and/or decrease in adiponectin) and the intracrine steroidal milieu contributes to these metabolic perturbations, metabolic tissues collected from 21-month-old female offspring born to mothers treated with 0, 0.05, 0.5, or 5 mg/kg/day of BPA were studied. Findings showed prenatal BPA in non-monotonic manner (1) increased oxidative stress; (2) induced lipotoxicity in liver and muscle; and (3) increased aromatase and estrogen receptor expression in visceral adipose tissues. These changes are generally associated with the development of peripheral and tissue level IR and may explain the IR status and adipocyte hypertrophy observed in prenatal BPA-treated female sheep.
Collapse
|
88
|
Kefala G, Tziomalos K. Apoptosis signal-regulating kinase-1 as a therapeutic target in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2019; 13:189-191. [PMID: 30791762 DOI: 10.1080/17474124.2019.1570136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Georgia Kefala
- a First Propedeutic Department of Internal Medicine , Medical School, Aristotle University of Thessaloniki, AHEPA Hospital , Thessaloniki , Greece
| | - Konstantinos Tziomalos
- a First Propedeutic Department of Internal Medicine , Medical School, Aristotle University of Thessaloniki, AHEPA Hospital , Thessaloniki , Greece
| |
Collapse
|
89
|
Dornas W, Lagente V. Intestinally derived bacterial products stimulate development of nonalcoholic steatohepatitis. Pharmacol Res 2019; 141:418-428. [PMID: 30658094 DOI: 10.1016/j.phrs.2019.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Fatty livers are susceptible to factors that cause inflammation and fibrosis, but fat deposition and the inflammatory response can be dissociated. While nonalcoholic fatty liver disease (NAFLD), caused by pathologic fat accumulation inside the liver, can remain stable for several years, in other cases NAFLD progresses to nonalcoholic steatohepatitis (NASH), which is characterized by fat accumulation and inflammation and is not a benign condition. In this review, we discuss the NASH host cells and microbial mechanisms that stimulate inflammation and predispose the liver to hepatocyte injury and fibrotic stages via increased lipid deposition. We highlight the interactions between intestine-derived bacterial products, such as lipopolysaccharide, and nutritional models of NAFLD and/or obese individuals. The results of modulating enteric microbiota suggest that gut-derived endotoxins may be essential determinants of fibrotic progression and regression in NASH.
Collapse
Affiliation(s)
- Waleska Dornas
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| |
Collapse
|
90
|
The Crosstalk between Fat Homeostasis and Liver Regional Immunity in NAFLD. J Immunol Res 2019; 2019:3954890. [PMID: 30719457 PMCID: PMC6335683 DOI: 10.1155/2019/3954890] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/11/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
The liver is well known as the center of glucose and lipid metabolism in the human body. It also functions as an immune organ. Previous studies have suggested that liver nonparenchymal cells are crucial in the progression of NAFLD. In recent years, NAFLD's threat to human health has been becoming a global issue. And by far, there is no effective treatment for NAFLD. Liver nonparenchymal cells are stimulated by lipid antigens, adipokines, or other factors, and secreted immune factors can alter the expression of key proteins such as SREBP-1c, ChREBP, and PPARγ to regulate lipid metabolism, thus affecting the pathological process of NAFLD. Interestingly, some ncRNAs (including miRNAs and lncRNAs) participate in the pathological process of NAFLD by changing body fat homeostasis. And even some ncRNAs could regulate the activity of HSCs, thereby affecting the progression of inflammation and fibrosis in the course of NAFLD. In conclusion, immunotherapy could be an effective way to treat NAFLD.
Collapse
|
91
|
Yu HH, Hsieh MC, Wu SY, Sy ED, Shan YS. Effects of duodenal-jejunal bypass surgery in ameliorating nonalcoholic steatohepatitis in diet-induced obese rats. Diabetes Metab Syndr Obes 2019; 12:149-159. [PMID: 30705600 PMCID: PMC6342211 DOI: 10.2147/dmso.s190631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Duodenal-jejunal bypass (DJB) is an important component of many types of current bariatric surgery including Roux-en-Y gastric bypass, mini-gastric bypass, biliopancreatic diversion, duodenal switch, and DJB plus sleeve gastrectomy. Surgery is often observed to ameliorate nonalcoholic steatohepatitis (NASH), but without a clearly delineated mechanism. In this study, we investigated the effects of DJB in diet-induced obese rats with NASH. MATERIALS AND METHODS Male Wistar rats were divided into four groups and fed the following diets over 6 months: A) normal chow (NC group, n=6); B) methionine-choline-deficient (MCD)-high-fat (HF) diet (HF group, n=6); C) MCD-HF diet for 3 months followed by DJB and MCD-HF diet for subsequent 3 months (DJB group, n=6); and D) MCD-HF diet for 3 months followed by treatment with pioglitazone (PGZ) with MCD-HF diet for subsequent 3 months (PGZ group, n=6). Body weight, glucose tolerance, the homeostatic model assessment-insulin resistance index, and lipid profiles were compared. Liver and visceral adipose tissue histology, inflammatory marker and hepatic stellate cell (HSC) activity, and hepatocyte autophagy were assessed. RESULTS Compared with the HF group, the DJB group showed improved body weight, insulin sensitivity, lipid metabolism, and steatosis severity. The DJB group exhibited a significantly lower nonalcoholic fatty liver disease activity score than the HF and PGZ group (P<0.001 and P=0.003, respectively). Furthermore, DJB significantly reduced fat mass and adipocyte size. These effects were also observed in the PGZ group. Therefore, we speculated that the improvements induced by DJB are closely related to an alteration in insulin sensitivity. Moreover, DJB reduced HSC activity and TNF-α expression and enhanced hepatocyte autophagy. CONCLUSION DJB improves NASH through several mechanisms, particularly by altering insulin sensitivity, inflammatory responses, HSC activity, and hepatocyte autophagy.
Collapse
Affiliation(s)
- Hsin-Hsien Yu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan,
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mao-Chih Hsieh
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Edgar D Sy
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan,
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan,
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan,
| |
Collapse
|
92
|
The role of hepatic macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Lab Anim Res 2018; 34:133-139. [PMID: 30671098 PMCID: PMC6333604 DOI: 10.5625/lar.2018.34.4.133] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is becoming common chronic liver disease because of the increasing global prevalence of obesity and consequently Nonalcoholic fatty liver disease (NAFLD). However, the mechanism for progression of NAFLD to NASH and then cirrhosis is not completely understood, yet. The triggering of these hepatic diseases is thought from hepatocyte injury caused by over-accumulated lipid toxicity. Injured hepatocytes release damage-associated molecular patterns (DAMPs), which can stimulate the Kupffer cells (KCs), liver-resident macrophages, to release pro-inflammatory cytokines and chemokines, and recruit monocyte-derived macrophages (MDMs). The increased activation of KCs and recruitment of MDMs accelerate the progression of NAFLD to NASH and cirrhosis. Therefore, characterization for activation of hepatic macrophages, both KCs and MDMs, is a baseline to figure out the progression of hepatic diseases. The purpose of this review is to discuss the current understanding of mechanisms of NAFLD and NASH, mainly focusing on characterization and function of hepatic macrophages and suggests the regulators of hepatic macrophages as the therapeutic target in hepatic diseases.
Collapse
|
93
|
Extracellular Vesicles from Amnion-Derived Mesenchymal Stem Cells Ameliorate Hepatic Inflammation and Fibrosis in Rats. Stem Cells Int 2018; 2018:3212643. [PMID: 30675167 PMCID: PMC6323530 DOI: 10.1155/2018/3212643] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/29/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background There are no approved drug treatments for liver fibrosis and nonalcoholic steatohepatitis (NASH), an advanced stage of fibrosis which has rapidly become a major cause of cirrhosis. Therefore, development of anti-inflammatory and antifibrotic therapies is desired. Mesenchymal stem cell- (MSC-) based therapy, which has been extensively investigated in regenerative medicine for various organs, can reportedly achieve therapeutic effect in NASH via paracrine action. Extracellular vesicles (EVs) encompass a variety of vesicles released by cells that fulfill functions similar to those of MSCs. We herein investigated the therapeutic effects of EVs from amnion-derived MSCs (AMSCs) in rats with NASH and liver fibrosis. Methods NASH was induced by a 4-week high-fat diet (HFD), and liver fibrosis was induced by intraperitoneal injection of 2 mL/kg 50% carbon tetrachloride (CCl4) twice a week for six weeks. AMSC-EVs were intravenously injected at weeks 3 and 4 in rats with NASH (15 μg/kg) and at week 3 in rats with liver fibrosis (20 μg/kg). The extent of inflammation and fibrosis was evaluated with quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The effect of AMSC-EVs on inflammatory and fibrogenic response was investigated in vitro. Results AMSC-EVs significantly decreased the number of Kupffer cells (KCs) in the liver of rats with NASH and the mRNA expression levels of inflammatory cytokines such as tumor necrosis factor- (Tnf-) α, interleukin- (Il-) 1β and Il-6, and transforming growth factor- (Tgf-) β. Furthermore, AMSC-EVs significantly decreased fiber accumulation, KC number, and hepatic stellate cell (HSC) activation in rats with liver fibrosis. In vitro, AMSC-EVs significantly inhibited KC and HSC activation and suppressed the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway. Conclusions AMSC-EVs ameliorated inflammation and fibrogenesis in a rat model of NASH and liver fibrosis, potentially by attenuating HSC and KC activation. AMSC-EV administration should be considered as a new therapeutic strategy for chronic liver disease.
Collapse
|
94
|
Protective effects of Kangxian ruangan capsule against nonalcoholic fatty liver disease fibrosis in rats induced by MCD diet. Biomed Pharmacother 2018; 108:424-434. [DOI: 10.1016/j.biopha.2018.06.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
|
95
|
Wu J, Zhang R, Shen F, Yang R, Zhou D, Cao H, Chen G, Pan Q, Fan J. Altered DNA Methylation Sites in Peripheral Blood Leukocytes from Patients with Simple Steatosis and Nonalcoholic Steatohepatitis (NASH). Med Sci Monit 2018; 24:6946-6967. [PMID: 30270343 PMCID: PMC6180948 DOI: 10.12659/msm.909747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The aim of this study was to identify DNA methylation sites in peripheral blood leukocytes from patients with histologically confirmed nonalcoholic fatty liver disease (NAFLD) that included simple hepatic steatosis and nonalcoholic steatohepatitis (NASH). Material/Methods DNA was isolated from peripheral blood leukocytes from patients with histologically diagnosed NAFLD (n=35), including simple hepatic steatosis (n=18) and NASH (n=17). Healthy controls included individuals without liver disease (n=30). DNA was hybridized, and DNA methylation was interrogated in an epigenome-wide association study (EWAS). DNA methylation levels (β-values) were correlated with serum lipid profiles, liver enzymes, and liver histology. Results Circulating blood leukocytes from 35 patients with NAFLD (simple steatosis and NASH) contained 65 CpG sites, which represented 60 genes that were differentially methylated when compared with healthy controls. In the simple hepatic steatosis group (n=18), 42 methylated CpG sites were found to be associated with increased levels of serum alanine aminotransferase (ALT), and 32 methylated CpG sites were associated with increased serum lipid profiles. In the NASH group (n=17), when compared with the simple hepatic steatosis group, methylated CpG sites showed significant correlations with the presence of lobular inflammation compared with hepatic steatosis and fibrosis. Six differentially methylated CpG sites were identified in the ACSL4, CRLS1, CTP1A, SIGIRR, SSBP1 and ZNF622 genes, which were associated with histologically confirmed simple hepatic steatosis and NASH. Conclusions The study identified some key methylated CpG sites from peripheral blood leukocytes, which might be used as serum biomarkers to stratify NAFLD patients into simple hepatic steatosis and NASH.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Ruinan Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Feng Shen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Ruixu Yang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Da Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Haixia Cao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Guangyu Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland).,Shanghai Key Laboratory of Children's Digestion and Nutrition, Shanghai, China (mainland).,Shanghai Institute of Pediatrics, Shanghai, China (mainland)
| |
Collapse
|
96
|
Dornas W, Glaise D, Bodin A, Sharanek A, Burban A, Le Guillou D, Robert S, Dutertre S, Aninat C, Corlu A, Lagente V. Endotoxin regulates matrix genes increasing reactive oxygen species generation by intercellular communication between palmitate-treated hepatocyte and stellate cell. J Cell Physiol 2018; 234:122-133. [PMID: 30191979 DOI: 10.1002/jcp.27175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that gut-derived bacterial endotoxins contribute in the progression of simple steatosis to steatohepatitis, although the mechanism(s) remains inaccurate to date. As hepatic stellate cells (HSC) play a pivotal role in the accumulation of excessive extracellular matrix (ECM), leading to collagen deposition, fibrosis, and perpetuation of inflammatory response, an in vitro model was developed to investigate the crosstalk between HSC and hepatocytes (human hepatoma cell) pretreated with palmitate. Bacterial lipopolysaccharide (LPS) stimulated HSC with phosphorylation of the p38 mitogen-activated protein kinase/NF-κB pathway, while several important pro-inflammatory cytokines were upregulated in the presence of hepatocyte-HSC. Concurrently, fibrosis-related genes were regulated by palmitate and the inflammatory effect of endotoxin where cells were more exposed or sensitive to reactive oxygen species (ROS). This interaction was accompanied by increased expression of the mitochondrial master regulator, proliferator-activated receptor gamma coactivator alpha, and a cytoprotective effect of the agent N-acetylcysteine suppressing ROS production, transforming growth factor-β1, and tissue inhibitor of metalloproteinase-1. In summary, our results demonstrate that pro-inflammatory mediators LPS-induced promote ECM rearrangement in hepatic cells transcriptionally committed to the regulation of genes encoding enzymes for fatty acid metabolism in light of differences that might require an alternative therapeutic approach targeting ROS regulation.
Collapse
Affiliation(s)
- Waleska Dornas
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Denise Glaise
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Aude Bodin
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Ahmad Sharanek
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Audrey Burban
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Dounia Le Guillou
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Sacha Robert
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Stephanie Dutertre
- Microscopy Rennes Imaging Center UMS CNRS 3480/US INSERM 018, Biosit, Université de Rennes 1, Rennes, France
| | - Caroline Aninat
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Anne Corlu
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Vincent Lagente
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| |
Collapse
|
97
|
Han R, Ma J, Li H. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota. Front Med 2018; 12:645-657. [PMID: 30178233 DOI: 10.1007/s11684-018-0645-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases currently in the context of obesity worldwide, which contains a spectrum of chronic liver diseases, including hepatic steatosis, non-alcoholic steatohepatitis and hepatic carcinoma. In addition to the classical "Two-hit" theory, NAFLD has been recognized as a typical gut microbiota-related disease because of the intricate role of gut microbiota in maintaining human health and disease formation. Moreover, gut microbiota is even regarded as a "metabolic organ" that play complementary roles to that of liver in many aspects. The mechanisms underlying gut microbiota-mediated development of NAFLD include modulation of host energy metabolism, insulin sensitivity, and bile acid and choline metabolism. As a result, gut microbiota have been emerging as a novel therapeutic target for NAFLD by manipulating it in various ways, including probiotics, prebiotics, synbiotics, antibiotics, fecal microbiota transplantation, and herbal components. In this review, we summarized the most recent advances in gut microbiota-mediated mechanisms, as well as gut microbiota-targeted therapies on NAFLD.
Collapse
Affiliation(s)
- Ruiting Han
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junli Ma
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
98
|
Genetic inactivation of Nrf2 prevents clonal expansion of initiated cells in a nutritional model of rat hepatocarcinogenesis. J Hepatol 2018; 69:635-643. [PMID: 29758334 DOI: 10.1016/j.jhep.2018.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/10/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Dysregulation of the Keap1-Nrf2 pathway has been observed in experimental and human tumors, suggesting possible roles of the pathway in cancer development. Herein, we examined whether Nrf2 (Nfe2l2) activation occurs at early steps of rat hepatocarcinogenesis, to assess critical contributions of Nrf2 to the onset of hepatocellular carcinoma (HCC). METHODS We used wild-type (WT) and Nrf2 knockout (Nrf2KO) rats treated with a single injection of diethylnitrosamine (DENA) followed by choline-devoid methionine-deficient (CMD) diet. This experimental model causes massive fatty liver and steatohepatitis with fibrosis and enables identification of early stages of hepatocarcinogenesis. RESULTS We found that Nrf2 activation takes place in early preneoplastic lesions identified by the marker glutathione S-transferase placental form (GSTP). Nrf2 missense mutations, known to disrupt the Keap1-Nrf2 binding, were present in 65.7% of GSTP-positive foci. Nrf2KO rats were used to directly investigate whether Nrf2 is critical for initiation and/or clonal expansion of DENA-damaged hepatocytes. While Nrf2 genetic inactivation did not alter DENA-induced initiation, it led to increased liver injury and chronic compensatory hepatocyte regeneration when rats were fed a CMD diet. However, in spite of such a permissive environment, the livers of Nrf2KO rats did not display any preneoplastic lesion unlike those of WT rats. CONCLUSIONS These results demonstrate that, in a model of hepatocarcinogenesis resembling human non-alcoholic fatty liver disease: i) Nrf2 is activated at early steps of the tumorigenic process and ii) Nrf2 is mandatory for the clonal expansion of initiated cells, indicating that Nrf2 is critical in the onset of HCC. LAY SUMMARY Dysregulation of the Keap1-Nrf2 molecular pathway has been observed in human tumors. In a nutritional model of hepatocarcinogenesis, the protein Nrf2 is frequently mutated/activated at early steps of the tumorigenic process. Herein, we show that Nrf2 is mandatory for the development of preneoplastic lesions. These results suggest that Nrf2 has a critical role in the onset of hepatocellular carcinoma.
Collapse
|
99
|
The Role of Long Non-Coding RNAs (lncRNAs) in the Development and Progression of Fibrosis Associated with Nonalcoholic Fatty Liver Disease (NAFLD). Noncoding RNA 2018; 4:ncrna4030018. [PMID: 30134610 PMCID: PMC6162709 DOI: 10.3390/ncrna4030018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of conditions ranging from hepatic steatosis to inflammation (nonalcoholic steatohepatitis or NASH) with or without fibrosis, in the absence of significant alcohol consumption. The presence of fibrosis in NASH patients is associated with greater liver-related morbidity and mortality; however, the molecular mechanisms underlying the development of fibrosis and cirrhosis in NAFLD patients remain poorly understood. Long non-coding RNAs (lncRNAs) are emerging as key contributors to biological processes that are underpinning the initiation and progression of NAFLD fibrosis. This review summarizes the experimental findings that have been obtained to date in animal models of liver fibrosis and NAFLD patients with fibrosis. We also discuss the potential applicability of circulating lncRNAs to serve as biomarkers for the diagnosis and prognosis of NAFLD fibrosis. A better understanding of the role played by lncRNAs in NAFLD fibrosis is critical for the identification of novel therapeutic targets for drug development and improved, noninvasive methods for disease diagnosis.
Collapse
|
100
|
Baba Y, Hayashi S, Nagasato K, Higashi M, Tosuji N, Sonoda S, Yoshiura T. Oxidative stress induced by portal vein embolization in fatty liver: Experimental study of a nonalcoholic steatohepatitis model. Biomed Rep 2018; 9:357-363. [PMID: 30233790 DOI: 10.3892/br.2018.1141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate whether excessive oxidative stress production or reduction of antioxidative stress potential may occur following portal vein embolization (PVE) in an experimental animal nonalcoholic steatohepatitis (NASH) model. A NASH rabbit model (n=11) was established by feeding of a fat diet for 4 weeks, and a normal diet rabbit model (n=11) was prepared as a control. The oxidative status of NASH was examined by measuring derivatives of reactive oxygen metabolites (d-ROM) for oxidative stress and biological antioxidative potential (BAP) for antioxidative potential in the NASH model and normal group. Additionally, oxidative status of PVE after 2 weeks was assessed by measuring d-ROM and BAP in the NASH and normal liver models. Oxidative status in a PVE+NASH model was also detected. In the process of NASH creation (fat diet for 4 weeks), total cholesterol was increased in the NASH group (P<0.0001). In the NASH group, PVE induced an increase in serum aspartate transaminase (P=0.0318). At 4 weeks after initiation of the fat diet, a decrease in BAP was determined as statistically significant (P<0.0001). In normal liver, d-ROM production was stimulated in the Sham group after 2 weeks (P=0.0152), but BAP was not altered (P=0.6119). In NASH liver, d-ROM production was stimulated in PVE and Sham groups (P<0.0001 and P=0.0189, respectively), but BAP did not change (P>0.05). In conclusion, decrease of antioxidant potential may promote NASH progression. Additionally, PVE appeared to cause a surge in oxidative stress in NASH liver.
Collapse
Affiliation(s)
- Yasutaka Baba
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.,Department of Diagnostic Radiology, Hiroshima University, Minami-ku, Hiroshima 734-8551, Japan
| | - Sadao Hayashi
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Kohei Nagasato
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Michiyo Higashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Nanako Tosuji
- Department of International Island and Community Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shunro Sonoda
- Department of International Island and Community Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|