51
|
Rouibi K, Contarino A. The corticotropin-releasing factor receptor-2 mediates the motivational effect of opiate withdrawal. Neuropharmacology 2013; 73:41-7. [PMID: 23707482 DOI: 10.1016/j.neuropharm.2013.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/22/2013] [Accepted: 05/09/2013] [Indexed: 12/25/2022]
Abstract
Altered motivational processes are key features of drug dependence and withdrawal, yet their neural mechanisms remain largely unknown. The present study shows that genetic disruption of the corticotropin-releasing factor receptor-2 (CRF₂-/-) does not impair motivation for palatable food in drug-naïve mice. However, CRF₂ receptor-deficiency effectively reduces the increase in palatable food-driven motivation induced by opiate withdrawal. Indeed, both in male and female wild-type mice, withdrawal from escalating morphine doses (20-100 mg/kg) induces a dramatic and relatively long-lasting (6 days) increase in palatable food-driven operant behavior under a progressive ratio (PR) schedule of reinforcement. In contrast, either male or female morphine-withdrawn CRF₂-/- mice show smaller and shorter (2 days) increases in motivation than wild-type mice. Nevertheless, CRF₂ receptor-deficiency does not impair the ability to discriminate reinforced behavior prior to, during the partial opiate withdrawal periods occurring between morphine injections and following drug discontinuation, indicating preserved cognitive function. Moreover, CRF₂ receptor-deficiency does not affect the ambulatory or body weight effects of intermittent morphine injections and withdrawal. These results provide initial evidence of a gender-independent and specific role for the CRF₂ receptor in the motivational effects of opiate withdrawal.
Collapse
Affiliation(s)
- Khalil Rouibi
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France
| | | |
Collapse
|
52
|
Kerstetter KA, Su ZI, Ettenberg A, Kippin TE. Sex and estrous cycle differences in cocaine-induced approach-avoidance conflict. Addict Biol 2013; 18:222-9. [PMID: 21309954 DOI: 10.1111/j.1369-1600.2010.00292.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human and animal research indicates that females may have a higher biological propensity for cocaine abuse than do males. Furthermore, reproductive status modulates the subjective effects of cocaine in women and self-administration rates in rats. Despite the attention that has been given to the modulation of appetitive responses by reproductive status and the well-known mixed positive and negative subjective effects of cocaine, it is unknown if similar effects are observed on aversive responses to cocaine. The present study examines the impact of sex and estrous cycle on approach-avoidance behavior for cocaine as measured in the runway self-administration model. Male and freely cycling female Sprague Dawley rats were trained to traverse a straight alley for single daily injections of 1.0 mg/kg intravenous cocaine over 21 trials. Relative to males, females had significantly longer start latencies but significantly faster approach and shorter run times during the first week of training. Further, estrus females displayed significantly fewer approach-avoidance retreats across all sessions relative to non-estrus females. These results suggest that females initially exhibit greater motivation for cocaine (faster approach) than do males and that the drug's anxiogenic properties have a reduced impact on the motivation to seek cocaine (fewer retreats) in females during the estrus phase relative to other reproductive phases. These findings indicate that both sex and reproductive status contribute to the motivation for cocaine and that sex differences in addiction vulnerability may be attributable in part to differences in the motivational impact of both the appetitive and aversive properties of cocaine.
Collapse
|
53
|
Buffalari DM, Baldwin CK, See RE. Treatment of cocaine withdrawal anxiety with guanfacine: relationships to cocaine intake and reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2012; 223:179-90. [PMID: 22526535 DOI: 10.1007/s00213-012-2705-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 03/26/2012] [Indexed: 01/01/2023]
Abstract
RATIONALE Successful treatment of cocaine addiction is severely impeded by the propensity of users to relapse. Withdrawal severity may serve as a key predictor of susceptibility to relapse. Therefore, the identification and treatment of cocaine withdrawal symptoms such as anxiety may improve addiction treatment outcome. OBJECTIVES The current study examined the role of anxiety-like behavior during cocaine withdrawal and anxiolytic treatment in reinstatement of cocaine seeking in an animal model of relapse. METHODS Male rats experienced daily IV cocaine self-administration. One group of animals received the norepinephrine α-2 agonist, guanfacine, or vehicle prior to anxiety testing 48 h after the last self-administration session. In the second group of rats, relationships between cocaine intake, anxiety-like behavior after withdrawal of cocaine, and reinstatement responding were investigated. The third and fourth groups of animals received guanfacine, yohimbine (norepinephrine α-2 antagonist), or vehicle once per day for 3 days 48 h after cessation of cocaine self-administration, followed by extinction and subsequent reinstatement induced by cocaine injections, cocaine-paired cues, and yohimbine administration. RESULTS Cocaine-withdrawn rats at 48 h demonstrated higher levels of anxiety-like behavior as measured on a defensive burying task when compared to yoked saline controls, an effect reversed by guanfacine treatment. Cocaine intake was positively correlated with measures of anxiety-like behavior during early withdrawal, and this anxiety-like behavior was significantly correlated with subsequent cocaine-primed reinstatement. Yohimbine treatment during early withdrawal increased reinstatement to conditioned cues, while guanfacine treatment reduced reinstatement to yohimbine. CONCLUSIONS These studies suggest an important role for noradrenergic mediation of anxiety-like behavior that emerges after withdrawal of cocaine and potential risk of relapse as modeled by reinstatement, and suggest that treatment of anxiety symptoms during early abstinence may reduce the risk of relapse.
Collapse
Affiliation(s)
- Deanne M Buffalari
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
54
|
El Hage C, Rappeneau V, Etievant A, Morel AL, Scarna H, Zimmer L, Bérod A. Enhanced anxiety observed in cocaine withdrawn rats is associated with altered reactivity of the dorsomedial prefrontal cortex. PLoS One 2012; 7:e43535. [PMID: 22916276 PMCID: PMC3420872 DOI: 10.1371/journal.pone.0043535] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/23/2012] [Indexed: 01/16/2023] Open
Abstract
Discontinuation of drug intake in cocaine abusers commonly produces a variety of adverse withdrawal symptoms among which anxiety and depression-related behavior are prevailing during the initial period of abstinence. The aim of this study was to provide further insight into the neurobiological dysregulations that might contribute to these pathological states. Rats were treated with cocaine or saline for 14 days (20 mg/kg; i.p) and anxiety-related behavior was assessed in different paradigms (elevated plus-maze (EPM), confinement to an open arm of the EPM and shock-probe burying tests) for up to 4 weeks after withdrawal. Depression-like behavior was assessed by the forced swim test and sucrose preference test. Altogether our results demonstrated that cocaine withdrawal induced persistent heightened levels of anxiety that last for at least 28 days but did not affect depression-like behavior. We then used Fos immunohistochemistry to map neuronal activation patterns in withdrawn rats confined to one open arm of an EPM, and a double labeling procedure using Fos immunohistochemistry and in situ hybridization of glutamic acid decarboxylase or vesicular glutamate transporter mRNAs to identify the phenotype of the activated neurons. Our data showed that the exacerbated anxiety observed in cocaine withdrawn rats exposed to an elevated open arm was accompanied by an altered reactivity of the dorsal part of the medial prefrontal cortex (anterior cingulate and dorsal prelimbic cortices), the paraventricular thalamic nucleus and the lateral and anterior areas of the hypothalamus. In the medial prefrontal cortex, we evidenced a negative correlation between Fos expression in its dorsal part and open arm-induced freezing in NaCl-treated rats but not in cocaine withdrawn rats. We also found that more than 65% of activated neurons were glutamatergic projection neurons. The present study provides new insights into the neuroanatomical regions and neuronal cell types that may underlie pathological anxiety during cocaine withdrawal.
Collapse
Affiliation(s)
- Cynthia El Hage
- INSERM, U1028, Lyon Neuroscience Research Center, Physiopathology of the neuronal network responsible for the sleep-waking cycle Team, Lyon, France
- CNRS, UMR5292, Lyon Neuroscience Research Center, Physiopathology of the neuronal network responsible for the sleep-waking cycle Team, Lyon, France
- University Lyon 1, Lyon, France
| | - Virginie Rappeneau
- INSERM, U1028, Lyon Neuroscience Research Center, Physiopathology of the neuronal network responsible for the sleep-waking cycle Team, Lyon, France
- CNRS, UMR5292, Lyon Neuroscience Research Center, Physiopathology of the neuronal network responsible for the sleep-waking cycle Team, Lyon, France
- University Lyon 1, Lyon, France
| | | | - Anne-Laure Morel
- INSERM, U1028, Lyon Neuroscience Research Center, Physiopathology of the neuronal network responsible for the sleep-waking cycle Team, Lyon, France
- CNRS, UMR5292, Lyon Neuroscience Research Center, Physiopathology of the neuronal network responsible for the sleep-waking cycle Team, Lyon, France
- University Lyon 1, Lyon, France
| | | | - Luc Zimmer
- INSERM, U1028, Lyon Neuroscience Research Center, BioRan-Pharmaceutical and neurochemical biomarkers Team, Lyon, France
- CNRS, UMR5292, Lyon Neuroscience Research Center, BioRan-Pharmaceutical and neurochemical biomarkers Team, Lyon, France
- University Lyon 1, Lyon, France
| | - Anne Bérod
- INSERM, U1028, Lyon Neuroscience Research Center, Physiopathology of the neuronal network responsible for the sleep-waking cycle Team, Lyon, France
- CNRS, UMR5292, Lyon Neuroscience Research Center, Physiopathology of the neuronal network responsible for the sleep-waking cycle Team, Lyon, France
- University Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
55
|
George O, Le Moal M, Koob GF. Allostasis and addiction: role of the dopamine and corticotropin-releasing factor systems. Physiol Behav 2012; 106:58-64. [PMID: 22108506 PMCID: PMC3288230 DOI: 10.1016/j.physbeh.2011.11.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 11/16/2022]
Abstract
Allostasis, originally conceptualized to explain persistent morbidity of arousal and autonomic function, is defined as the process of achieving stability through physiological or behavioral change. Two types of biological processes have been proposed to describe the mechanisms underlying allostasis in drug addiction, a within-system adaptation and a between-system adaptation. In the within-system process, the drug elicits an opposing, neutralizing reaction within the same system in which the drug elicits its primary and unconditioned reinforcing actions, while in the between-system process, different neurobiological systems that the one initially activated by the drug are recruited. In this review, we will focus our interest on alterations in the dopaminergic and corticotropin releasing factor systems as within-system and between-system neuroadaptations respectively, that underlie the opponent process to drugs of abuse. We hypothesize that repeated compromised activity in the dopaminergic system and sustained activation of the CRF-CRF1R system with withdrawal episodes may lead to an allostatic load contributing significantly to the transition to drug addiction.
Collapse
Affiliation(s)
- Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
56
|
Kupferschmidt D, Newman A, Boonstra R, Erb S. Antagonism of cannabinoid 1 receptors reverses the anxiety-like behavior induced by central injections of corticotropin-releasing factor and cocaine withdrawal. Neuroscience 2012; 204:125-33. [DOI: 10.1016/j.neuroscience.2011.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 01/19/2023]
|
57
|
Zorrilla EP, Wee S, Zhao Y, Specio S, Boutrel B, Koob GF, Weiss F. Extended access cocaine self-administration differentially activates dorsal raphe and amygdala corticotropin-releasing factor systems in rats. Addict Biol 2012; 17:300-8. [PMID: 21762287 DOI: 10.1111/j.1369-1600.2011.00329.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cocaine-induced neuroadaptation of stress-related circuitry and increased access to cocaine each putatively contribute to the transition from cocaine use to cocaine dependence. The present study tested the hypothesis that rats receiving extended versus brief daily access to cocaine would exhibit regional differences in levels of the stress-regulatory neuropeptide corticotropin-releasing factor (CRF). A secondary goal was to explore how CRF levels change in relation to the time since cocaine self-administration. Male Wistar rats acquired operant self-administration of cocaine and were assigned to receive daily long access (6 hours/day, LgA, n=20) or short access (1 hour/day, ShA, n=18) to intravenous cocaine self-administration (fixed ratio 1, ~0.50 mg/kg/infusion). After at least 3 weeks, tissue CRF immunoreactivity was measured at one of three timepoints: pre-session, post-session or 3 hours post-session. LgA, but not ShA, rats showed increased total session and first-hour cocaine intake. CRF immunoreactivity increased within the dorsal raphe (DR) and basolateral, but not central, nucleus of the amygdala (BLA, CeA) of ShA rats from pre-session to 3 hours post-session. In LgA rats, CRF immunoreactivity increased from pre-session to 3 hours post-session within the CeA and DR but tended to decrease in the BLA. LgA rats showed higher CRF levels than ShA rats in the DR and, pre-session, in the BLA. Thus, voluntary cocaine intake engages stress-regulatory CRF systems of the DR and amygdala. Increased availability of cocaine promotes greater tissue CRF levels in these extrahypothalamic brain regions, changes associated here with a model of cocaine dependence.
Collapse
Affiliation(s)
- Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
de la Mora MP, Gallegos-Cari A, Crespo-Ramirez M, Marcellino D, Hansson A, Fuxe K. Distribution of dopamine D2-like receptors in the rat amygdala and their role in the modulation of unconditioned fear and anxiety. Neuroscience 2012; 201:252-66. [DOI: 10.1016/j.neuroscience.2011.10.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/12/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022]
|
59
|
Yang L, Wellman LL, Tang X, Sanford LD. Effects of corticotropin releasing factor (CRF) on sleep and body temperature following controllable footshock stress in mice. Physiol Behav 2011; 104:886-92. [PMID: 21651923 DOI: 10.1016/j.physbeh.2011.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 01/10/2023]
Abstract
Rapid eye movement sleep (REM) is increased after controllable stress (modeled by escapable footshock, ES) and decreased after uncontrollable stress (modeled by inescapable footshock, IS). Decreases in REM after IS are exacerbated by corticotropin releasing factor (CRF) and attenuated by a CRF antagonist. In this study, we trained mice with ES following injections of CRF, astressin (AST), or saline (SAL) to determine whether CRF would alter REM after ES. Male BALB/cJ mice (n=7) were implanted for recording sleep, activity and body temperature via telemetry and with a guide cannula aimed into a lateral ventricle. After recovery from surgery, sleep following exposure to a novel chamber was recorded as a handling control (HC). The mice received one day of training with ES without injection followed by weekly training sessions in which they received counterbalanced intracerebroventricular (ICV) microinjections of either SAL or CRF (days 7 & 14) or SAL or AST (days 21 & 28) prior to ES. On each experimental day, sleep was recorded for 20 h. Compared to HC, the mice showed significantly increased REM when receiving either SAL or AST prior to ES whereas CRF prior to ES significantly reduced REM. Stress-induced hyperthermia had longer duration after ES compared to HC, and was not significantly altered by CRF or AST compared to SAL. The current results demonstrate that activity in the central CRF system is an important regulator of stress-induced alterations in REM.
Collapse
Affiliation(s)
- L Yang
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| | | | | | | |
Collapse
|
60
|
Parylak SL, Koob GF, Zorrilla EP. The dark side of food addiction. Physiol Behav 2011; 104:149-56. [PMID: 21557958 DOI: 10.1016/j.physbeh.2011.04.063] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 12/27/2022]
Abstract
In drug addiction, the transition from casual drug use to dependence has been linked to a shift away from positive reinforcement and toward negative reinforcement. That is, drugs ultimately are relied on to prevent or relieve negative states that otherwise result from abstinence (e.g., withdrawal) or from adverse environmental circumstances (e.g., stress). Recent work has suggested that this "dark side" shift also is a key in the development of food addiction. Initially, palatable food consumption has both positively reinforcing, pleasurable effects and negatively reinforcing, "comforting" effects that can acutely normalize organism responses to stress. Repeated, intermittent intake of palatable food may instead amplify brain stress circuitry and downregulate brain reward pathways such that continued intake becomes obligatory to prevent negative emotional states via negative reinforcement. Stress, anxiety and depressed mood have shown high comorbidity with and the potential to trigger bouts of addiction-like eating behavior in humans. Animal models indicate that repeated, intermittent access to palatable foods can lead to emotional and somatic signs of withdrawal when the food is no longer available, tolerance and dampening of brain reward circuitry, compulsive seeking of palatable food despite potentially aversive consequences, and relapse to palatable food-seeking in response to anxiogenic-like stimuli. The neurocircuitry identified to date in the "dark" side of food addiction qualitatively resembles that associated with drug and alcohol dependence. The present review summarizes Bart Hoebel's groundbreaking conceptual and empirical contributions to understanding the role of the "dark side" in food addiction along with related work of those that have followed him.
Collapse
Affiliation(s)
- Sarah L Parylak
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
61
|
Logrip ML, Koob GF, Zorrilla EP. Role of corticotropin-releasing factor in drug addiction: potential for pharmacological intervention. CNS Drugs 2011; 25:271-87. [PMID: 21425881 PMCID: PMC3273042 DOI: 10.2165/11587790-000000000-00000] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Drug dependence is a chronically relapsing disorder that places an enormous strain on healthcare systems. For treatments to have long-term clinical value, they must address the causes of relapse. Corticotropin-releasing factor (CRF), a neuropeptide central to the stress response, may be one key to solving the relapse cycle. CRF is hypothesized to mediate the elevated anxiety and negative emotional states experienced during the development of dependence. This review summarizes existing data on changes in the CRF system produced by drugs of abuse and the function of CRF receptors in regulating behavioural responses to drugs of abuse, with an emphasis on drug dependence. Drug-induced changes in neuronal excitability throughout the limbic system, as well as the reversal of these neuroadaptations by CRF receptor antagonists, are also addressed. CRF receptor antagonists, by reducing the motivational effects of drug withdrawal and protracted abstinence, are proposed to be novel therapeutic targets for drug abuse and addiction.
Collapse
Affiliation(s)
- Marian L Logrip
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
62
|
Mattioli L, Perfumi M. Effects of a Rhodiola rosea L. extract on acquisition and expression of morphine tolerance and dependence in mice. J Psychopharmacol 2011; 25:411-20. [PMID: 20142299 DOI: 10.1177/0269881109359096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study investigated the effect of Rhodiola rosea L. extract on acquisition and expression of morphine tolerance and dependence in mice. Therefore animals were injected with repeated administration of morphine (10 mg/kg, subcutaneous) twice daily for five or six days, in order to make them tolerant or dependent. Rhodiola rosea L. extract (0, 10, 15 and 20 mg/kg) was administered by the intragastric route 60 min prior to each morphine injection (for acquisition) or prior the last injection of morphine or naloxone on test day (for tolerance or dependence expression, respectively). Morphine tolerance was evaluated by testing its analgesic effect in the tail flick test at the 1st and 5th days. Morphine dependence was evaluated by counting the number of withdrawal signs (jumping, rearing, forepaw tremor, teeth chatter) after naloxone injection (5 mg/kg; intraperitoneal) on the test day (day 6). Results showed that Rhodiola rosea L. extract significantly reduced the expression of morphine tolerance, while it was ineffective in modulating its acquisition. Conversely, Rhodiola rosea L. extract significantly and dose-dependently attenuated both development and expression of morphine dependence after chronic or acute administration. These data suggest that Rhodiola rosea L. may have human therapeutic potential for treatment of opioid addiction.
Collapse
Affiliation(s)
- Laura Mattioli
- Department of Experimental Medicine and Public Health, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Italy
| | | |
Collapse
|
63
|
Zhou Y, Maiya R, Norris EH, Kreek MJ, Strickland S. Involvement of tissue plasminogen activator in stress responsivity during acute cocaine withdrawal in mice. Stress 2010; 13:481-90. [PMID: 20666641 PMCID: PMC3832196 DOI: 10.3109/10253891003786415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is evidence that increased release of corticotropin-releasing factor (CRF) in the central nucleus of the amygdala (CeA) contributes to stress responsivity during cocaine withdrawal (WD). Recent studies suggest that tissue plasminogen activator (tPA) in the CeA is a downstream effector protein for CRF after acute "binge" cocaine administration. The purpose of this study was to determine if tPA modulates cocaine WD-induced stress responsivity. Wild-type (WT) and tPA-deficient (tPA - / - ) mice were subjected to chronic (14 days) "binge" cocaine (45 mg/kg per day) or its acute (1 day) WD. Extracellular tPA activity, CRF mRNA levels, and plasma corticosterone (CORT) levels were measured in tPA - / - and WT mice. Extracellular tPA activity was reduced by 50% in the CeA and medial amygdala of WT mice after chronic cocaine and returned to basal levels after acute WD. Unlike WT mice, tPA - / - mice did not display elevated amygdalar CRF mRNA levels during cocaine WD. In comparison to WT mice, tPA - / - mice showed a blunted plasma CORT response during acute WD. These results demonstrate that tPA activity in the amygdala (Amy) is altered by chronic cocaine exposure, and further suggest an involvement of tPA in modulating amygdalar CRF stress responsive system and hypothalamic-pituitary-adrenal axis in response to acute cocaine WD.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA.
| | | | | | | | | |
Collapse
|
64
|
Chronic amphetamine treatment enhances corticotropin-releasing factor-induced serotonin release in the amygdala. Eur J Pharmacol 2010; 644:80-7. [PMID: 20655906 DOI: 10.1016/j.ejphar.2010.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/02/2010] [Accepted: 07/11/2010] [Indexed: 11/23/2022]
Abstract
Amphetamine use is associated with dysphoric states, including heightened anxiety, that emerge within 24h of withdrawal from the drug. Corticotropin-releasing factor increases serotonin release in the central nucleus of the amygdala, and this neurochemical circuitry may play a role in mediating fear and anxiety states. We have previously shown that chronic amphetamine treatment increases corticotropin-releasing factor receptor type-2 levels in the serotonergic dorsal raphe nucleus of the rat. Therefore, we hypothesized that chronic amphetamine treatment would enhance the amygdalar serotonergic response to corticotropin-releasing factor infused into the dorsal raphe nucleus. Male rats were injected once-daily with d-amphetamine (2.5mg/kg i.p., or saline) for two weeks. Serotonin release within the central nucleus of the amygdala in response to intra-raphe infusion of corticotropin-releasing factor (100 ng) was measured 24h after the last treatment in urethane-anesthetized (1.8 mg/kg, i.p.) rats using in vivo microdialysis. Rats pretreated with amphetamine showed significantly enhanced serotonin release in the central nucleus of the amygdala in response to corticotropin-releasing factor infusion when compared to saline pretreated rats. Furthermore, this enhanced response was blocked by the corticotropin-releasing factor type-2 receptor antagonist antisauvagine-30 (2 microg) infused into the dorsal raphe nucleus. These results suggest increased sensitivity to corticotropin-releasing factor as mediated by type-2 receptors following chronic amphetamine treatment, which may underlie dysphoric states observed during amphetamine withdrawal.
Collapse
|
65
|
Erb S. Evaluation of the relationship between anxiety during withdrawal and stress-induced reinstatement of cocaine seeking. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:798-807. [PMID: 19969038 DOI: 10.1016/j.pnpbp.2009.11.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/13/2009] [Accepted: 11/30/2009] [Indexed: 01/30/2023]
Abstract
The initial termination of cocaine consumption in human addicts is associated with heightened anxiety states and low levels of craving. Craving, however, tends to increase progressively over time, remains high for extended periods of time, and can be exacerbated by stressors, leading to relapse. Laboratory rats, likewise, exhibit heightened states of anxiety after withdrawal from drug, and follow a time course of cocaine seeking that parallels the time course of craving reported in humans. In addition, laboratory rats show heightened susceptibility to relapse when exposed to stressors after extended periods of withdrawal, and exhibit persistent and heightened expressions of stress-induced anxiety. The general objective of this paper is to consider the relationship between anxiety states after withdrawal from cocaine and stress-induced reinstatement of cocaine seeking in laboratory rats, and to identify the neural substrates involved. The focus of the review is on studies addressing the roles of corticotropin-releasing factor (CRF) and noradrenaline pathways of the extended amygdala circuitry, and their direct or indirect interactions with the mesocorticolimbic dopamine system, in anxiety after withdrawal from cocaine and stress-induced reinstatement of cocaine seeking. Furthermore, the effects of time after withdrawal from cocaine and amount of cocaine exposure during self-administration on the activity of CRF, noradrenaline, and dopamine pathways of the extended amygdala and mesocorticolimbic systems will be considered. The review will highlight how changing levels of activity within these systems may serve to alter the nature of the relationship between anxiety and stress-induced reinstatement of cocaine seeking at different times after withdrawal from cocaine.
Collapse
Affiliation(s)
- Suzanne Erb
- Center for Neurobiology of Stress, Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada M1C 1A4.
| |
Collapse
|
66
|
Hudson A, Stamp JA. Ovarian hormones and propensity to drug relapse: a review. Neurosci Biobehav Rev 2010; 35:427-36. [PMID: 20488201 DOI: 10.1016/j.neubiorev.2010.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/16/2022]
Abstract
Sex differences have been reported in various phases of substance abuse, including relapse. In general, women show greater propensity to drug relapse than men, owing perhaps to divergent withdrawal experiences and increased reactivity to internal (emotional) and external (drug-associated) cues. Animal research tends to parallel human findings, revealing enhanced reinstatement of drug administration in females than males. Moreover, differences in vulnerability to relapse/reinstatement have been documented in women and female rodents across the ovarian cycles. Thus ovarian hormones seem to play an important role in determining susceptibility to relapse. Indeed, ovarian hormones interact with many of the neural circuits implicated in drug-primed, cue-instigated, and stress-induced relapse. By understanding the effects of ovarian hormones on the neural and behavioral mechanisms of drug relapse, sex differences and cyclical variations in relapse susceptibility can be elucidated and more effective treatment strategies can be explored.
Collapse
Affiliation(s)
- Amanda Hudson
- Psychology Department, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
67
|
Edwards S, Koob GF. Neurobiology of dysregulated motivational systems in drug addiction. FUTURE NEUROLOGY 2010; 5:393-401. [PMID: 20563312 PMCID: PMC2886284 DOI: 10.2217/fnl.10.14] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The progression from recreational drug use to drug addiction impacts multiple neurobiological processes and can be conceptualized as a transition from positive to negative reinforcement mechanisms driving both drug-taking and drug-seeking behaviors. Neurobiological mechanisms for negative reinforcement, defined as drug taking that alleviates a negative emotional state, involve changes in the brain reward system and recruitment of brain stress (or antireward) systems within forebrain structures, including the extended amygdala. These systems are hypothesized to be dysregulated by excessive drug intake and to contribute to allostatic changes in reinforcement mechanisms associated with addiction. Points of intersection between positive and negative motivational circuitry may further drive the compulsivity of drug addiction but also provide a rich neurobiological substrate for therapeutic intervention.
Collapse
Affiliation(s)
- Scott Edwards
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30–2400, La Jolla, CA 92037, USA
| | - George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30–2400, La Jolla, CA 92037, USA
| |
Collapse
|
68
|
Ambrose-Lanci LM, Sterling RC, Van Bockstaele EJ. Cocaine withdrawal-induced anxiety in females: impact of circulating estrogen and potential use of delta-opioid receptor agonists for treatment. J Neurosci Res 2010; 88:816-24. [PMID: 19830839 DOI: 10.1002/jnr.22259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sex differences in cocaine addiction warrants further research focused on examining the growing population of female cocaine addicts. As demonstrated in both clinical and preclinical research, females are more susceptible to drug relapse with anxiety being a contributing factor. In support of this, a recent clinical study from our laboratory highlights the importance of menstrual cycle phase and anxiety at treatment admission for cocaine addiction on treatment retention. In support of these trends in the clinical population, the purpose of the present study was to design an animal model to directly test the role of circulating hormone levels during cocaine withdrawal. To directly measure the influence of estrogen on anxiety-like behavior during early stages of withdrawal, both ovariectomized and intact female rodent models were employed. The elevated-plus maze and elevated-zero maze were used to assess anxiety-like behavior. Recent evidence in male rodents highlights a potential role for the delta opioid-receptor (DOR) system in the modulation of cocaine withdrawal-induced anxiety. In addition to the evaluation of hormonal effects, a potential anxiolytic specific for DOR was tested for its efficacy in females withdrawn from cocaine. Our results support the use of DOR agonists as a potential anxiolytic in females and highlight the importance of estrogen and other circulating hormones during all phases of cocaine addiction.
Collapse
Affiliation(s)
- Lisa M Ambrose-Lanci
- Thomas Jefferson University, Department of Neurosurgery, Farber Institute for Neurosciences, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
69
|
Koob GF. The role of CRF and CRF-related peptides in the dark side of addiction. Brain Res 2010; 1314:3-14. [PMID: 19912996 PMCID: PMC2819562 DOI: 10.1016/j.brainres.2009.11.008] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 12/13/2022]
Abstract
Drug addiction is a chronically relapsing disorder characterized by a compulsion to seek and take drugs, the development of dependence, and the manifestation of a negative emotional state when the drug is removed. Activation of brain stress systems is hypothesized to be a key element of the negative emotional state produced by dependence that drives drug-seeking through negative reinforcement mechanisms, defined as the "dark side" of addiction. The focus of the present review is on the role of corticotropin-releasing factor (CRF) and CRF-related peptides in the dark side of addiction. CRF is a key mediator of the hormonal, autonomic, and behavior responses to stressors. Emphasis is placed on the role of CRF in extrahypothalamic systems in the extended amygdala, including the central nucleus of the amygdala, bed nucleus of the stria terminalis, and a transition area in the shell of the nucleus accumbens, in the dark side of addiction. The urocortin/CRF(2) systems have been less explored, but results suggest their role in the neuroadaptation associated with chronic drug use, sometimes in opposition to the effects produced by the CRF(1) receptor. Compelling evidence argues that the CRF stress system, including its activation of the hypothalamic-pituitary-adrenal axis, plays a key role in engaging the transition to dependence and maintaining dependence once it is initiated. Understanding the role of the CRF systems in addiction not only provides insight into the neurobiology of the dark side of addiction, but also provides novel targets for identifying vulnerability to addiction and the treatment of addiction.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400 La Jolla, CA 92037, USA.
| |
Collapse
|
70
|
Martin-Fardon R, Zorrilla EP, Ciccocioppo R, Weiss F. Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin. Brain Res 2010; 1314:145-61. [PMID: 20026088 PMCID: PMC2819635 DOI: 10.1016/j.brainres.2009.12.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 11/25/2022]
Abstract
Stress-like symptoms are an integral part of acute and protracted drug withdrawal, and several lines of evidence have shown that dysregulation of brain stress systems, including the extrahypothalamic corticotropin-releasing factor (CRF) system, following long-term drug use is of major importance in maintaining drug and alcohol addiction. Recently, two other neuropeptide systems have attracted interest, the nociceptin/orphanin FQ (N/OFQ) and orexin/hypocretin (Orx/Hcrt) systems. N/OFQ participates in a wide range of physiological responses, and the hypothalamic Orx/Hcrt system helps regulate several physiological processes, including feeding, energy metabolism, and arousal. Moreover, these two systems have been suggested to participate in psychiatric disorders, including anxiety and drug addiction. Dysregulation of these systems by chronic drug exposure has been hypothesized to play a role in the maintenance of addiction and dependence. Recent evidence demonstrated that interactions between CRF-N/OFQ and CRF-Orx/Hcrt systems may be functionally relevant for the control of stress-related addictive behavior. The present review discusses recent findings that support the hypotheses of the participation and dysregulation of these systems in drug addiction and evaluates the current understanding of interactions among these stress-regulatory peptides.
Collapse
Affiliation(s)
- Rémi Martin-Fardon
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, SP30-2120, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
71
|
Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: Structural and functional analysis. Prog Neurobiol 2010; 90:198-216. [DOI: 10.1016/j.pneurobio.2009.10.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 06/05/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022]
|
72
|
D'Souza MS, Markou A. Neural substrates of psychostimulant withdrawal-induced anhedonia. Curr Top Behav Neurosci 2010; 3:119-178. [PMID: 21161752 DOI: 10.1007/7854_2009_20] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Psychostimulant drugs have powerful reinforcing and hedonic properties and are frequently abused. Cessation of psychostimulant administration results in a withdrawal syndrome characterized by anhedonia (i.e., an inability to experience pleasure). In humans, psychostimulant withdrawal-induced anhedonia can be debilitating and has been hypothesized to play an important role in relapse to drug use. Hence, understanding the neural substrates involved in psychostimulant withdrawal-induced anhedonia is essential. In this review, we first summarize the theoretical perspectives of psychostimulant withdrawal-induced anhedonia. Experimental procedures and measures used to assess anhedonia in experimental animals are also discussed. The review then focuses on neural substrates hypothesized to play an important role in anhedonia experienced after termination of psychostimulant administration, such as with cocaine, amphetamine-like drugs, and nicotine. Both neural substrates that have been extensively investigated and some that need further evaluation with respect to psychostimulant withdrawal-induced anhedonia are reviewed. In the context of reviewing the various neurosubstrates of psychostimulant withdrawal, we also discuss pharmacological medications that have been used to treat psychostimulant withdrawal in humans. This literature review indicates that great progress has been made in understanding the neural substrates of anhedonia associated with psychostimulant withdrawal. These advances in our understanding of the neurobiology of anhedonia may also shed light on the neurobiology of nondrug-induced anhedonia, such as that seen as a core symptom of depression and a negative symptom of schizophrenia.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
73
|
Banks ML, Negus SS. Effects of extended cocaine access and cocaine withdrawal on choice between cocaine and food in rhesus monkeys. Neuropsychopharmacology 2010; 35:493-504. [PMID: 19776729 PMCID: PMC2913442 DOI: 10.1038/npp.2009.154] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 11/09/2022]
Abstract
Chronic drug use may lead to sufficient drug intake to produce dependence and the emergence of abstinence signs during withdrawal. Although withdrawal can increase the reinforcing effects of some drugs (eg opioids), the impact of withdrawal on the reinforcing effects of stimulants like cocaine is less clear. This study used a novel cocaine vs food choice procedure to examine the relative reinforcing strength of cocaine before, during, and after exposure to graded levels of extended cocaine access. Responding in four rhesus monkeys was maintained by cocaine (0-0.1 mg/kg/injection) and food delivery under a concurrent-choice schedule during daily 2-h sessions. Under baseline conditions, cocaine maintained a dose-dependent increase in cocaine choice. Subsequently, subjects were exposed to and withdrawn from periods of extended cocaine access, which was accomplished by implementing daily 21-h supplemental sessions of cocaine self-administration in addition to daily choice sessions. During supplemental sessions, cocaine (0.1 mg/kg/injection) was available under a fixed-ratio 10/time-out X schedule, and the duration of the time-out was varied from 30 to 7.5 min. Cocaine intake increased 10-fold to >11 mg/kg/day during exposure to supplemental sessions with the shortest post-injection time-out. However, parameters of cocaine choice were not significantly affected either during or after extended cocaine access. These results do not support the hypothesis that cocaine withdrawal increases the reinforcing strength of cocaine. This differs from results with the opioid agonist heroin and suggests that withdrawal may have different functions in the maintenance of opioid and stimulant abuse.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Alcohol and Drug Abuse Research Center, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
74
|
Vuong SM, Oliver HA, Scholl JL, Oliver KM, Forster GL. Increased anxiety-like behavior of rats during amphetamine withdrawal is reversed by CRF2 receptor antagonism. Behav Brain Res 2009; 208:278-81. [PMID: 19958793 DOI: 10.1016/j.bbr.2009.11.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 11/17/2009] [Accepted: 11/22/2009] [Indexed: 12/26/2022]
Abstract
Withdrawal from psychostimulants increases anxiety states, and amphetamine-treated rats show increased CRF(2) receptors in the serotonergic cell body region, the dorsal raphe nucleus (dRN). In the current study, amphetamine (2.5 mg/kg, i.p., 14 days) pre-treated rats spent less time in open arms of the elevated plus maze compared saline pre-treated rats at both 24h or 2 weeks of withdrawal, and CRF(2) receptor antagonism (ASV-30; 2 microg/0.5 microl) within the dRN reversed the effects of amphetamine withdrawal on anxiety-like behavior. Overall, results suggest that CRF(2) receptor antagonism may be a novel pharmacological target for anxiety states during drug withdrawal.
Collapse
Affiliation(s)
- Shawn M Vuong
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St, Vermillion, SD 57069-2390, USA
| | | | | | | | | |
Collapse
|
75
|
Corticotropin releasing factor and neuroplasticity in cocaine addiction. Life Sci 2009; 86:1-9. [PMID: 19914260 DOI: 10.1016/j.lfs.2009.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 11/20/2022]
Abstract
Corticotropin releasing factor (CRF), one of the major effectors of stress, plays a major role in the natural course of drug addiction by accelerating the acquisition of psychostimulant self-administration and increasing incentive motivation for the drug itself and for drug-associated stimuli. Stress-induced CRF is also considered a predictor of relapse and is responsible for feelings of anxiety and distress during cocaine withdrawal. Despite this knowledge, the role of CRF has not been explored in the context of recent research on reward-related learning, built on the hypothesis that neuroplastic changes in the mesocorticolimbic circuitry underlie addiction. The present review explores the effects of stress on the pattern of interaction between CRF, dopamine and glutamate in distinct structures of the mesocorticolimbic circuitry, including the ventral tegmental area (VTA), amygdala, bed nucleus of stria terminalis (BNST) and the prefrontal cortex (PFC), after acute and chronic cocaine consumption as well as in early withdrawal and protracted abstinence. A better knowledge of the neurochemical and cellular mechanisms involved in these interactions would be useful to elucidate the role of CRF in cocaine-induced neuronal plasticity, which could be useful in developing new pharmacological strategies for the treatment of cocaine addiction.
Collapse
|
76
|
Abstract
Dysregulation of the brain emotional systems that mediate arousal and stress is a key component of the pathophysiology of drug addiction. Drug addiction is a chronically relapsing disorder characterized by a compulsion to seek and take drugs and the development of dependence and manifestation of a negative emotional state when the drug is removed. Activation of brain stress systems is hypothesized to be a key element of the negative emotional state produced by dependence that drives drug-seeking through negative reinforcement mechanisms. The focus of the present review is on the role of two key brain arousal/stress systems in the development of dependence. Emphasis is placed on the neuropharmacological actions of corticotropin-releasing factor (CRF) and norepinephrine in extrahypothalamic systems in the extended amygdala, including the central nucleus of the amygdala, bed nucleus of the stria terminalis, and a transition area in the shell of the nucleus accumbens. Compelling evidence argues that these brain stress systems, a heretofore largely neglected component of dependence and addiction, play a key role in engaging the transition to dependence and maintaining dependence once it is initiated. Understanding the role of the brain stress and anti-stress systems in addiction not only provides insight into the neurobiology of the "dark side" of addiction but also provides insight into the organization and function of basic brain emotional circuitry that guides motivated behavior.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| |
Collapse
|
77
|
Pickens CL, Adams-Deutsch T, Nair SG, Navarre BM, Heilig M, Shaham Y. Effect of pharmacological manipulations of neuropeptide Y and corticotropin-releasing factor neurotransmission on incubation of conditioned fear. Neuroscience 2009; 164:1398-406. [PMID: 19800945 DOI: 10.1016/j.neuroscience.2009.09.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 09/28/2009] [Indexed: 01/12/2023]
Abstract
We recently developed a procedure to study fear incubation in which rats given 100 tone-shock pairings over 10 days show low fear 2 days after conditioned fear training and high fear after 30 or 60 days. Here, we studied the role of the stress-related peptides, neuropeptide Y (NPY) and corticotropin-releasing factor (CRF), in fear incubation. We gave rats either 10 or 100 30-s tone-0.5-s footshock pairings over 1 day (short training) or 10 days (long training) and then assessed tone-cue-induced conditioned suppression of lever responding 2 days after short training or 2 days and 1 month after long training. Prior to testing, we injected NPY (5-10 microg, i.c.v.), the NPY Y1 receptor antagonist BIBO3304 (20-40 microg, i.c.v.), the NPY Y2 receptor antagonist BIIE0246 (2.5-5 mg/kg s.c.), the non-selective CRF receptor antagonist D-Phe CRF(12-41) (10 microg, i.c.v.), or the CRF1 receptor antagonist MTIP (10-20 mg/kg s.c.). Conditioned suppression after long training was higher after 1 month than after 2 days (fear incubation); conditioned suppression was robustly expressed 2 days after short training (non-incubated fear). Both incubated and non-incubated fear responses were attenuated by NPY. In contrast, D-Phe CRF(12-41), MTIP, BIBO3304, or BIIE0246 had no effect on conditioned fear at the different time points. Results confirm previous work on the potent effect of exogenous NPY administration on conditioned fear, but the negative results with BIBO3304 and BIIE0246 question whether endogenous NPY contributes to incubated (or non-incubated) fear. Results also suggest that CRF receptors are not involved in cue-induced fear in the conditioned suppression procedure.
Collapse
Affiliation(s)
- C L Pickens
- Department of Health and Human Services, Behavioral Neuroscience Branch, Intramural Research Program-National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
78
|
Beckstead MJ, Gantz SC, Ford CP, Stenzel-Poore MP, Phillips PEM, Mark GP, Williams JT. CRF enhancement of GIRK channel-mediated transmission in dopamine neurons. Neuropsychopharmacology 2009; 34:1926-35. [PMID: 19279570 PMCID: PMC3640552 DOI: 10.1038/npp.2009.25] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dopamine neurons in the ventral midbrain contribute to learning and memory of natural and drug-related rewards. Corticotropin-releasing factor (CRF), a stress-related peptide, is thought to be involved in aspects of relapse following drug withdrawal, but the cellular actions are poorly understood. This study investigates the action of CRF on G-protein-linked inhibitory postsynaptic currents (IPSCs) mediated by GIRK (Kir3) channels in dopamine neurons. CRF enhanced the amplitude and slowed the kinetics of IPSCs following activation of D2-dopamine and GABA(B) receptors. This action was postsynaptic and dependent on the CRF(1) receptor. The enhancement induced by CRF was attenuated by repeated in vivo exposures to psychostimulants or restraint stress. The results indicate that CRF influences dopamine- and GABA-mediated inhibition in the midbrain, suggesting implications for the chronic actions of psychostimulants and stress on dopamine-mediated behaviors.
Collapse
Affiliation(s)
- Michael J Beckstead
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA;
,Vollum Institute, Oregon Health and Science University, Portland, OR, USA;
| | - Stephanie C Gantz
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA;
| | - Christopher P Ford
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA;
| | - Mary P Stenzel-Poore
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA;
| | - Paul EM Phillips
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA;
,Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Gregory P Mark
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA;
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA;
,
Correspondence: Vollum Institute, L474, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA, Tel: + 503 494 5465, Fax + 503 494 6972,
| |
Collapse
|
79
|
Koob GF, Kenneth Lloyd G, Mason BJ. Development of pharmacotherapies for drug addiction: a Rosetta stone approach. Nat Rev Drug Discov 2009; 8:500-15. [PMID: 19483710 DOI: 10.1038/nrd2828] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current pharmacotherapies for addiction represent opportunities for facilitating treatment and are forming a foundation for evaluating new medications. Furthermore, validated animal models of addiction and a surge in understanding of neurocircuitry and neuropharmacological mechanisms involved in the development and maintenance of addiction - such as the neuroadaptive changes that account for the transition to dependence and the vulnerability to relapse - have provided numerous potential therapeutic targets. Here, we emphasize a 'Rosetta Stone approach', whereby existing pharmacotherapies for addiction are used to validate and improve animal and human laboratory models to identify viable new treatment candidates. This approach will promote translational research and provide a heuristic framework for developing efficient and effective pharmacotherapies for addiction.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400 La Jolla, California 92037, USA.
| | | | | |
Collapse
|
80
|
Marcinkiewcz CA, Prado MM, Isaac SK, Marshall A, Rylkova D, Bruijnzeel AW. Corticotropin-releasing factor within the central nucleus of the amygdala and the nucleus accumbens shell mediates the negative affective state of nicotine withdrawal in rats. Neuropsychopharmacology 2009; 34:1743-52. [PMID: 19145226 PMCID: PMC2680924 DOI: 10.1038/npp.2008.231] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tobacco addiction is a chronic disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that an increased central release of corticotropin-releasing factor (CRF) at least partly mediates the deficit in brain reward function associated with nicotine withdrawal in rats. The aim of these studies was to investigate the role of CRF in the central nucleus of the amygdala (CeA), the lateral bed nucleus of the stria terminalis (BNST), and the nucleus accumbens shell (Nacc shell) in the deficit in brain reward function associated with precipitated nicotine withdrawal. The intracranial self-stimulation procedure was used to assess the negative affective aspects of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. In all experiments, the nicotinic receptor antagonist mecamylamine (3 mg/kg) elevated the brain reward thresholds of the nicotine-dependent rats (9 mg/kg per day of nicotine salt) and did not affect the brain reward thresholds of the saline-treated control rats. The administration of the nonspecific CRF1/2 receptor antagonist D-Phe CRF((12-41)) into the CeA and the Nacc shell prevented the mecamylamine-induced elevations in brain reward thresholds in the nicotine-dependent rats. Blockade of CRF1/2 receptors in the lateral BNST did not prevent the mecamylamine-induced elevations in brain reward thresholds in the nicotine-dependent rats. These studies indicate that the negative emotional state associated with precipitated nicotine withdrawal is at least partly mediated by an increased release of CRF in the CeA and the Nacc shell.
Collapse
Affiliation(s)
- Catherine A Marcinkiewcz
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610 , USA
| | | | | | | | | | | |
Collapse
|
81
|
Yang L, Tang X, Wellman LL, Liu X, Sanford LD. Corticotropin releasing factor (CRF) modulates fear-induced alterations in sleep in mice. Brain Res 2009; 1276:112-22. [PMID: 19376095 DOI: 10.1016/j.brainres.2009.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 04/06/2009] [Accepted: 04/10/2009] [Indexed: 12/30/2022]
Abstract
Contextual fear significantly reduces rapid eye movement sleep (REM) during post-exposure sleep in mice and rats. Corticotropin releasing factor (CRF) plays a major role in CNS responses to stressors. We examined the influence of CRF and astressin (AST), a non-specific CRF antagonist, on sleep after contextual fear in BALB/c mice. Male mice were implanted with transmitters for recording sleep via telemetry and with a guide cannula aimed into the lateral ventricle. Recordings for vehicle and handling control were obtained after ICV microinjection of saline (SAL) followed by exposure to a novel chamber. Afterwards, the mice were subjected to shock training (20 trials, 0.5 mA, 0.5 s duration) for 2 sessions. After training, separate groups of mice received ICV microinjections of SAL (0.2 microl, n=9), CRF (0.4 microg, n=8), or AST (1.0 microg, n=8) prior to exposure to the shock context alone. Sleep was then recorded for 20 h (8-hour light and 12-hour dark period). Compared to handling control, contextual fear significantly decreased REM during the 8-h light period in mice receiving SAL and in mice receiving CRF, but not in the mice receiving AST. Mice receiving CRF exhibited reductions in REM during the 12-h dark period after contextual fear, whereas mice receiving SAL or AST did not. CRF also reduced non-REM (NREM) delta (slow wave) amplitude in the EEG. Only mice receiving SAL prior to contextual fear exhibited significant reductions in NREM and total sleep. These findings demonstrate a role for the central CRF system in regulating alterations in sleep induced by contextual fear.
Collapse
Affiliation(s)
- Linghui Yang
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23501, USA
| | | | | | | | | |
Collapse
|
82
|
Cleck JN, Ecke LE, Blendy JA. Endocrine and gene expression changes following forced swim stress exposure during cocaine abstinence in mice. Psychopharmacology (Berl) 2008; 201:15-28. [PMID: 18677617 PMCID: PMC4010951 DOI: 10.1007/s00213-008-1243-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 06/13/2008] [Indexed: 11/28/2022]
Abstract
RATIONALE Stress can reinstate previous cocaine-seeking long after drug is no longer present. However, little is known regarding the effect of chronic drug exposure and subsequent drug abstinence on responsivity to stress. OBJECTIVE To determine the effect of acute (24-h) and prolonged (14-day) drug-free periods in cocaine-experienced mice on behavioral, endocrine, and molecular outputs following stress exposure. MATERIALS AND METHODS Mice were administered a cocaine binge (15 mg/kg, every hour for 3h) for 2 weeks. Following a 24-h or 14-day drug-free period, stress responsivity, along with levels of anxiety, were measured using the forced swim test and elevated zero maze, respectively. In addition, alterations in the levels of plasma corticosterone, corticotrophin-releasing factor (CRF) mRNA, brain-derived neurotrophic factor (BDNF) mRNA, and histone acetylation at their respective promoters were examined following stress exposure. RESULTS At both acute and prolonged abstinence time points, behavioral measures were essentially unaltered; however, cocaine-experienced mice exhibited an augmented corticosterone response to the forced swim stress compared to saline-treated mice. Stress exposure increased BDNF mRNA levels in the ventral tegmental area (VTA) and nucleus accumbens (NAc) only in cocaine-experienced mice following a prolonged, but not acute, drug-free period. Increased BDNF mRNA in the NAc was associated with an increase in acetylated histone 3 (AcH3) at the BDNF I promoter. CRF mRNA levels were increased in the amygdala (AMYG); however, this was not associated with alterations in histone acetylation at the promoter. CONCLUSION These results demonstrate that drug history and prolonged abstinence can alter the endocrine and molecular responses to stress, which may facilitate the reinstatement of drug-seeking behaviors.
Collapse
Affiliation(s)
- Jessica N Cleck
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
83
|
Lapiz-Bluhm MDS, Bondi CO, Doyen J, Rodriguez GA, Bédard-Arana T, Morilak DA. Behavioural assays to model cognitive and affective dimensions of depression and anxiety in rats. J Neuroendocrinol 2008; 20:1115-37. [PMID: 18673411 PMCID: PMC2603578 DOI: 10.1111/j.1365-2826.2008.01772.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animal models have been used extensively to investigate neuropsychiatric disorders, such as depression, and their treatment. However, the aetiology and pathophysiology of many such disorders are largely unknown, which makes validation of animal models particularly challenging. Furthermore, many diagnostic symptoms are difficult to define, operationalize and quantify, especially in experimental animals such as rats. Thus, rather than attempting to model complex human syndromes such as depression in their entirety, it can be more productive to define and model components of the illness that may account for clusters of co-varying symptoms, and that may share common underlying neurobiological mechanisms. In preclinical investigations of the neural regulatory mechanisms linking stress to depression and anxiety disorders, as well as the mechanisms by which chronic treatment with antidepressant drugs may exert their beneficial effects in these conditions, we have employed a number of behavioural tests in rats to model specific cognitive and anxiety-like components of depression and anxiety disorders. In the present study, we review the procedures for conducting four such behavioural assays: the attentional set-shifting test, the elevated-plus maze, the social interaction test and the shock-probe defensive burying test. The purpose is to serve as a guide to the utility and limitations of these tools, and as an aid in optimising their use and productivity.
Collapse
Affiliation(s)
- M D S Lapiz-Bluhm
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
84
|
Differential blockade of CRF-evoked behaviors by depletion of norepinephrine and serotonin in rats. Psychopharmacology (Berl) 2008; 199:569-82. [PMID: 18516596 PMCID: PMC2744742 DOI: 10.1007/s00213-008-1179-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE Central administration of corticotropin-releasing factor (CRF) elicits a specific pattern of behavioral responses resembling a stress-like state and is anxiogenic in rodent models of anxiety. OBJECTIVES Specific behaviors evoked by the administration of CRF were measured. The roles of CRF receptor subtypes and that of serotonergic and noradrenergic systems in mediating these responses were studied. MATERIALS AND METHODS Burying, grooming, and head shakes were quantified in rats following intracerebroventricular administration of CRF and urocortin II and after pretreatment with antagonists. The role of forebrain norepinephrine in the behavioral responses to CRF (0.3 microg) was examined following pretreatment with the neurotoxin DSP-4 and that of serotonin after depletion using systemic administration of para-chlorophenylalanine (p-CPA). RESULTS CRF at 0.3 and 3.0 microg caused robust increases in burying, grooming, and head shakes, but urocortin II was ineffective. Pretreatment with either antalarmin or propranolol significantly attenuated the CRF-evoked behaviors. Destruction of forebrain norepinephrine pathways blocked spontaneous burying behavior elicited by CRF and conditioned burying directed towards an electrified shock probe. In contrast, depletion of 5-HT selectively attenuated CRF-evoked grooming. CONCLUSIONS Overt behavioral responses produced by CRF, burying, grooming, and head shakes appeared to be mediated through the CRF(1) receptor. Spontaneous burying behavior evoked by CRF or conditioned burying directed towards a shock probe was disrupted by lesion of the dorsal noradrenergic bundle and may represent anxiety-like behavior caused by CRF activation of the locus ceruleus. In contrast, CRF-evoked increases in grooming were dependent on serotonin.
Collapse
|
85
|
Koob GF. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology 2008; 56 Suppl 1:18-31. [PMID: 18725236 PMCID: PMC2637927 DOI: 10.1016/j.neuropharm.2008.07.043] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/27/2022]
Abstract
Drug addiction can be defined by a compulsion to seek and take drug, loss of control in limiting intake, and the emergence of a negative emotional state when access to the drug is prevented. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in reward and stress within the basal forebrain structures involving the ventral striatum and extended amygdala. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission, such as decreases in dopamine and opioid peptide function in the ventral striatum, but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Acute withdrawal from all major drugs of abuse produces increases in reward thresholds, increases in anxiety-like responses, and increases in extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists also block excessive drug intake produced by dependence. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of addiction. Other components of brain stress systems in the extended amygdala that interact with CRF and may contribute to the negative motivational state of withdrawal include norepinephrine, dynorphin, and neuropeptide Y. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement driving, at least in part, the compulsivity of addiction.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| |
Collapse
|
86
|
Smith RJ, Aston-Jones G. Noradrenergic transmission in the extended amygdala: role in increased drug-seeking and relapse during protracted drug abstinence. Brain Struct Funct 2008; 213:43-61. [PMID: 18651175 DOI: 10.1007/s00429-008-0191-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 07/02/2008] [Indexed: 12/19/2022]
Abstract
Studies reviewed here implicate the extended amygdala in the negative affective states and increased drug-seeking that occur during protracted abstinence from chronic drug exposure. Norepinephrine (NE) and corticotropin-releasing factor (CRF) signaling in the extended amygdala, including the bed nucleus of the stria terminalis, shell of the nucleus accumbens, and central nucleus of the amygdala, are generally involved in behavioral responses to environmental and internal stressors. Hyperactivity of stress response systems during addiction drives many negative components of drug abstinence. In particular, NE signaling from the nucleus tractus solitarius (NTS) to the extended amygdala, along with increased CRF transmission within the extended amygdala, are critical for the aversiveness of acute opiate withdrawal as well as stress-induced relapse of drug-seeking for opiates, cocaine, ethanol, and nicotine. NE and CRF transmission in the extended amygdala are also implicated in the increased anxiety that occurs during prolonged abstinence from chronic opiates, cocaine, ethanol, and cannabinoids. Many of these stress-associated behaviors are reversed by NE or CRF antagonists given systemically or locally within the extended amygdala. Finally, increased Fos activation in the extended amygdala and NTS is associated with the enhanced preference for drugs and decreased preference for natural rewards observed during protracted abstinence from opiates and cocaine, indicating that these areas are involved in the altered reward processing associated with addiction. Together, these findings suggest that involvement of the extended amygdala and its noradrenergic afferents in anxiety, stress-induced relapse, and altered reward processing reflects a common function for these circuits in stress modulation of drug-seeking.
Collapse
Affiliation(s)
- Rachel J Smith
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Ave., Suite 403 BSB, MSC 510, Charleston, SC 29425-5100, USA
| | | |
Collapse
|
87
|
Lu L, Liu D, Ceng X, Ma L. Differential roles of corticotropin-releasing factor receptor subtypes 1 and 2 in opiate withdrawal and in relapse to opiate dependence. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2000.01310.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
88
|
Koob GF. A role for brain stress systems in addiction. Neuron 2008; 59:11-34. [PMID: 18614026 PMCID: PMC2748830 DOI: 10.1016/j.neuron.2008.06.012] [Citation(s) in RCA: 736] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/27/2008] [Accepted: 06/20/2008] [Indexed: 12/21/2022]
Abstract
Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
89
|
Aujla H, Martin-Fardon R, Weiss F. Rats with extended access to cocaine exhibit increased stress reactivity and sensitivity to the anxiolytic-like effects of the mGluR 2/3 agonist LY379268 during abstinence. Neuropsychopharmacology 2008; 33:1818-26. [PMID: 17895914 DOI: 10.1038/sj.npp.1301588] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate 2/3 receptors (mGluR2/3) are emerging targets for the reduction of stress that contributes to drug relapse. The effect of a history of cocaine escalation on stress reactivity during abstinence and the role of mGlu2/3 receptors in stress in these animals were tested. Experiment 1-Rats trained to self-administer cocaine, under short (ShA, 1-h) or long (LgA, 6-h) access conditions, or noncaloric food pellets (Ctrl, 1-h), were tested for stress reactivity in the shock-probe defensive burying test following 1, 14, 42, or 84 days of abstinence. Experiment 2-Experimentally naive rats receiving the mGlu2/3 receptor agonist LY379268 (0, 0.3, 1.0, or 3.0 mg/kg) were tested in the defensive burying test to establish the anxiolytic efficacy of this compound in this model. Experiment 3-Rats with a history of ShA vs LgA cocaine self-administration, or a history of operant responding reinforced by noncaloric food pellets, were tested in the defensive burying test, following administration of LY379268 (0.3, 1.0, or 3.0 mg/kg) at 14 days of abstinence. LgA rats exhibited a two- to threefold increase in defensive burying at 1, 14, and 42 days of abstinence compared to ShA or control animals. LY379268 (3.0 mg/kg) reduced burying in all groups, whereas the 1.0-mg/kg dose reduced burying only in the LgA group. A robust and enduring increase in stress reactivity developed in rats with a history of daily 6-h access to cocaine. The anxiolytic-like effects of LY379268 identify mGlu2/3 receptors as targets for ameliorating stress-associated relapse risk, and point toward the possibility that a history of cocaine escalation in rats may modify glutamatergic function.
Collapse
Affiliation(s)
- Harinder Aujla
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
90
|
Featherby T, van den Buuse M, Lubman DI, Lawrence AJ. Persistent downregulation of hippocampal CREB mRNA parallels a Y-maze deficit in adolescent rats following semi-chronic amphetamine administration. Br J Pharmacol 2008; 154:417-28. [PMID: 18475255 DOI: 10.1038/bjp.2008.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated possible differences in the impact of chronic amphetamine administration during adolescence and adulthood on aspects of behaviour and brain chemistry. EXPERIMENTAL APPROACH Adult (n=32) and adolescent (n=32) male Sprague-Dawley rats were given either D-amphetamine sulphate (10 mg kg(-1) daily, i.p.) or saline (1 mL kg(-1), i.p.) for 10 days. Rats were subsequently tested for anxiety-like behaviour, learning and memory, and sensorimotor gating. Nine weeks later, rats received saline (1 mL kg(-1)) or acute amphetamine challenge (1.5 mg kg(-1)) and the expression levels of mRNA for tyrosine kinase B (TrkB) or cAMP response element-binding protein (CREB) were measured in the hippocampus. KEY RESULTS The adolescent amphetamine pretreated group revealed a deficit in exploration on the Y-maze during a 6 h retention test. The frequency of visits to the novel arm was 35% lower for the amphetamine group compared with controls. In parallel, a 43% decrease in hippocampal CREB mRNA, but not TrkB mRNA, was observed in periadolescent rats treated chronically with amphetamine 9 weeks earlier. None of the effects were detected in the adult treated cohort. CONCLUSIONS AND IMPLICATIONS Chronic amphetamine treatment during periadolescence resulted in altered behaviour on the Y-maze and persistent downregulation of hippocampal CREB mRNA expression. Given that this group had intact spatial learning and reference memory, it would appear that the deficits observed on the Y-maze reflect a dysfunction in response to novelty. Because no effects of amphetamine treatment were observed in the adult cohort, these data suggest idiosyncratic sensitivity of periadolescence to the long-term effects of psychostimulants.
Collapse
Affiliation(s)
- T Featherby
- Brain Injury and Repair Group, Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
91
|
Boutrel B. A neuropeptide-centric view of psychostimulant addiction. Br J Pharmacol 2008; 154:343-57. [PMID: 18414383 PMCID: PMC2442449 DOI: 10.1038/bjp.2008.133] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 11/08/2022] Open
Abstract
Drugs of abuse all share common properties classically observed in human beings and laboratory animals. They enhance neural firing and dopamine tone within the nucleus accumbens and produce progressively greater drug-induced motor responses defined as behavioural sensitization. They produce conditioned place preference, a behavioural model of incentive motivation, which highlights the role of environmental cues in drug addiction. They increase brain reward function as seen by a lowering of intracranial self-stimulation thresholds. And last but not least, they are self-administered, and sometimes even abused, and can trigger reinstatement of drug-seeking behaviour in animals extinguished from drug self-administration. It has long been considered that the reinforcing properties of virtually all drugs of abuse, more specifically psychostimulants, are primarily dependent on activation of the mesolimbic dopamine system. However, recent evidence raises the importance of dopamine-independent mechanisms in reward-related behaviours. The overwhelming body of evidence that indicates a critical role for the mesolimbic dopamine system in the reinforcing effect of psychostimulants should not mask the key contribution of other modulatory systems in the brain. This review summarizes the complex and subtle role of several neuropeptidergic systems in various aspects of addictive behaviours observed in laboratory animals exposed to psychostimulants. A special emphasis is given to the cannabinoid, opioid, nociceptin/orphanin FQ, corticotropin-releasing factor and hypocretin/orexin systems. The relevance of these systems viewed as potential therapeutic targets for drug addiction is discussed in the light of their narrow pharmacological profile and their effectiveness in preventing drug addiction at doses usually not accompanied by severe side effects.
Collapse
Affiliation(s)
- B Boutrel
- Center for Psychiatric Neuroscience and Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Site de Cery, Prilly, Switzerland.
| |
Collapse
|
92
|
Müller C, Carey R, Wilkisz M, Schwenzner S, Jocham G, Huston J, De Souza Silva M. Acute anxiolytic effects of cocaine: The role of test latency and activity phase. Pharmacol Biochem Behav 2008; 89:218-26. [DOI: 10.1016/j.pbb.2007.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/26/2007] [Accepted: 12/11/2007] [Indexed: 11/29/2022]
|
93
|
Pérez de la Mora M, Hernández-Gómez AM, Arizmendi-García Y, Jacobsen KX, Lara-García D, Flores-Gracia C, Crespo-Ramírez M, Gallegos-Cari A, Nuche-Bricaire A, Fuxe K. Role of the amygdaloid cholecystokinin (CCK)/gastrin-2 receptors and terminal networks in the modulation of anxiety in the rat. Effects of CCK-4 and CCK-8S on anxiety-like behaviour and [3H]GABA release. Eur J Neurosci 2008; 26:3614-30. [PMID: 18088282 DOI: 10.1111/j.1460-9568.2007.05963.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The amygdala plays a key role in fear and anxiety. The intercalated islands are clusters of glutamate-responsive GABAergic neurons rich in cholecystokinin (CCK)-2 receptors which control the trafficking of nerve impulses from the cerebral cortex to the central nucleus of amygdala. In this study, the nature of the CCK-glutamate-GABA interactions within the rat rostral amygdala, and their relevance for anxiety, were studied. CCK/gastrin-like immunoreactive nerve terminals were found to be mainly restricted to the paracapsular intercalated islands and the rostrolateral part of the main intercalated island. Behaviourally, the bilateral microinjection of CCK-4 (0.043-4.3 pmol/side) or CCK-8S (4.3 pmol/side) into the rostrolateral amygdala reduced the open-arm exploration in the elevated plus-maze without affecting locomotion. In contrast, neither CCK-4 nor CCK-8S (0.043-4.3 pmol/side) had any effects in the shock-probe burying test as compared with their saline-treated controls. Biochemically, CCK-4 (0.3 and 1.5 microm), unlike CCK-8S, enhanced significantly the K(+)-stimulated release of [(3)H]GABA from amygdala slices. These effects were fully prevented by prior superfusion of the slices with either the selective CCK-2 receptor antagonist CR2945 (3 microm), or 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), 10 microm, a glutamatergic (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptor antagonist. It is suggested that CCK modulates glutamate-GABA mechanisms by acting on CCK-2 receptors via volume transmission occurring at the level of the basolateral amygdaloid nucleus and/or by synaptic or perisynaptic volume transmission in the region of the rostrolateral main and paracapsular intercalated islands, resulting in subsequent disinhibition of the central amygdaloid nucleus and anxiety or panic-like behaviour.
Collapse
Affiliation(s)
- Miguel Pérez de la Mora
- Department of Biophysics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, México 04510 DF, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Specio SE, Wee S, O’Dell LE, Boutrel B, Zorrilla EP, Koob GF. CRF(1) receptor antagonists attenuate escalated cocaine self-administration in rats. Psychopharmacology (Berl) 2008; 196:473-82. [PMID: 17965976 PMCID: PMC2769571 DOI: 10.1007/s00213-007-0983-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 10/09/2007] [Indexed: 11/25/2022]
Abstract
RATIONALE Previous work suggests a role for stress-related corticotropin-releasing factor (CRF) systems in cocaine dependence. However, the involvement of activation of CRF(1) receptors in rats self-administering cocaine with extended access is unknown. OBJECTIVE The current study examined whether CRF(1) receptor antagonist administration alters cocaine self-administration in animals given extended access. MATERIALS AND METHODS Wistar rats (n = 32) acquired cocaine self-administration (0.66 mg/kg per infusion) in 1 h sessions for up to 11 days. Rats then were assigned to receive either daily short (1 h, ShA) or long (6 h, LgA) access to cocaine self-administration (n = 7-9 per group). Following escalation of intake, animals received one of two selective CRF(1) antagonists: antalarmin (6.3-25 mg/kg, i.p.) or N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo[1,5a]pyrimidin-7-amine (MPZP; 3.6-27.5 mg/kg, s.c.). RESULTS By day 11 of the escalation period, LgA rats increased their cocaine intake, reaching an intake level of 15.1 mg/kg, compared to 11.1 mg/kg in ShA rats, during the first hour of sessions. Antalarmin reduced cocaine self-administration at the highest dose selectively in the LgA group but not the ShA group. MPZP reduced cocaine intake both in LgA and ShA rats. However, MPZP did so at a lower dose in LgA rats than in ShA rats. Within the LgA group, MPZP decreased cocaine intake in the first 10 min (loading phase) as well as in the latter session intake (maintenance phase). CONCLUSION The data suggest that hypersensitivity of the CRF system occurs with extended access to cocaine self-administration and that this altered CRF system may contribute to the increased motivation to self-administer cocaine that develops during psychostimulant dependence.
Collapse
Affiliation(s)
- Sheila E. Specio
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sunmee Wee
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, e-mail:
| | - Laura E. O’Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Benjamin Boutrel
- Center for Psychiatric Neuroscience, Department of Psychiatry, University of Lausanne, Site de Cery, CH-1008 Prilly, Switzerland
| | - Eric P. Zorrilla
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - George F. Koob
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
95
|
Richardson HN, Zhao Y, Fekete ÉM, Funk CK, Wirsching P, Janda K, Zorrilla EP, Koob GF. MPZP: a novel small molecule corticotropin-releasing factor type 1 receptor (CRF1) antagonist. Pharmacol Biochem Behav 2008; 88:497-510. [PMID: 18031798 PMCID: PMC3319109 DOI: 10.1016/j.pbb.2007.10.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 10/13/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
The extrahypothalamic stress peptide corticotropin-releasing factor (CRF) system is an important regulator of behavioral responses to stress. Dysregulation of CRF and the CRF type 1 receptor (CRF(1)) system is hypothesized to underlie many stress-related disorders. Modulation of the CRF(1) system by non-peptide antagonists currently is being explored as a therapeutic approach for anxiety disorders and alcohol dependence. Here, we describe a new, less hydrophilic (cLogP approximately 2.95), small molecule, non-peptide CRF(1) antagonist with high affinity (K(i)=4.9 nM) and specificity for CRF(1) receptors: N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo[1,5-a] pyrimidin-7-amine (MPZP). The compound was systemically administered to adult male rats in two behavioral models dependent on the CRF(1) system: defensive burying (0, 5, 20 mg/kg, n=6-11 for each dose) and alcohol dependence (0, 5, 10, 20 mg/kg, n=8 for each self-administration group). Acute administration of MPZP reduced burying behavior in the defensive burying model of active anxiety-like behavior. MPZP also attenuated withdrawal-induced excessive drinking in the self-administration model of alcohol dependence without affecting nondependent alcohol drinking or water consumption. The present findings support the proposed significance of the CRF(1) system in anxiety and alcohol dependence and introduce a promising new compound for further development in the treatment of alcohol dependence and stress-related disorders.
Collapse
Affiliation(s)
- Heather N. Richardson
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, 92037 California, USA
| | - Yu Zhao
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, 92037 California, USA
| | - Éva M. Fekete
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, 92037 California, USA
- Institute of Physiology, Pécs University Medical School, 7602 Pécs, Hungary
| | - Cindy K. Funk
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, 92037 California, USA
- Institut National de la Sante et de la Recherche Medicale, France
| | - Peter Wirsching
- Department of Chemistry, The Scripps Research Institute, La Jolla, 92037 California, USA
| | - Kim Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, 92037 California, USA
| | - Eric P. Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, 92037 California, USA
- Harold L. Dorris Neurological Research Institute, The Scripps Research Institute, La Jolla, 92037 California, USA
| | - George F. Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, 92037 California, USA
| |
Collapse
|
96
|
Mantsch JR, Baker DA, Francis DM, Katz ES, Hoks MA, Serge JP. Stressor- and corticotropin releasing factor-induced reinstatement and active stress-related behavioral responses are augmented following long-access cocaine self-administration by rats. Psychopharmacology (Berl) 2008; 195:591-603. [PMID: 17899015 PMCID: PMC3888801 DOI: 10.1007/s00213-007-0950-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Stressful events during periods of drug abstinence likely contribute to relapse in cocaine-dependent individuals. Excessive cocaine use may increase susceptibility to stressor-induced relapse through alterations in brain corticotropin-releasing factor (CRF) responsiveness. OBJECTIVES This study examined stressor- and CRF-induced cocaine seeking and other stress-related behaviors in rats with different histories of cocaine self-administration (SA). MATERIALS AND METHODS Rats self-administered cocaine under short-access (ShA; 2 h daily) or long-access (LgA; 6 h daily) conditions for 14 days or were provided access to saline and were tested for reinstatement by a stressor (electric footshock), cocaine or an icv injection of CRF and for behavioral responsiveness on the elevated plus maze, in a novel environment and in the light-dark box after a 14- to 17-day extinction/withdrawal period. RESULTS LgA rats showed escalating patterns of cocaine SA and were more susceptible to reinstatement by cocaine, EFS, or icv CRF than ShA rats. Overall, cocaine SA increased activity in the center field of a novel environment, on the open arms of the elevated plus maze, and in the light compartment of a light-dark box. In most cases, the effects of cocaine SA were dependent on the pattern/amount of cocaine intake with statistically significant differences from saline self-administering controls only observed in LgA rats. CONCLUSIONS When examined after several weeks of extinction/withdrawal, cocaine SA promotes a more active pattern of behavior during times of stress that is associated with a heightened susceptibility to stressor-induced cocaine-seeking behavior and may be the consequence of augmented CRF regulation of addiction-related neurocircuitry.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Biomedical Sciences, Marquette University, Schroeder Health Complex, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Koob GF. Hedonic Homeostatic Dysregulation as a Driver of Drug-Seeking Behavior. DRUG DISCOVERY TODAY. DISEASE MODELS 2008; 5:207-215. [PMID: 20054425 PMCID: PMC2801885 DOI: 10.1016/j.ddmod.2009.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Drug addiction can be defined by a compulsion to seek and take drug and loss of control in limiting intake, and the excessive drug taking derives from multiple motivational mechanisms. One such mechanism is the emergence of a negative emotional state when access to the drug is prevented, reflecting hedonic homeostatic dysregulation. Excessive drug taking then results in part via the construct of negative reinforcement. The negative emotional state that drives such negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in reward and stress within basal forebrain structures, including the ventral striatum and extended amygdala. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission, such as decreases in dopamine and opioid peptide function in the ventral striatum, but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Chronic exposure or extended access to self-administration of all major drugs of abuse produces during abstinence increases in reward thresholds, increases in aversive anxiety-like responses, increases in extracellular levels of CRF in the central nucleus of the amygdala, and increases in drug self-administration. CRF receptor antagonists block excessive drug intake produced by dependence. A combination of decreased reward system function and increased brain stress response system function is hypothesized to be responsible for hedonic homeostatic dysregulation that drives drug seeking behavior in dependence. Such hedonic dysregulation is hypothesized to extend into protracted abstinence to provide a residual negative emotional state that enhances the salience of cues eliciting drug seeking and relapse.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla California, USA
| |
Collapse
|
98
|
Perrine SA, Sheikh IS, Nwaneshiudu CA, Schroeder JA, Unterwald EM. Withdrawal from chronic administration of cocaine decreases delta opioid receptor signaling and increases anxiety- and depression-like behaviors in the rat. Neuropharmacology 2007; 54:355-64. [PMID: 18045627 DOI: 10.1016/j.neuropharm.2007.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 10/22/2022]
Abstract
Chronic administration of cocaine has been shown to attenuate the functional capacity of delta opioid receptors to inhibit adenylyl cyclase activity. Abuse and withdrawal from cocaine in humans is associated with increases in anxiety and depression. Since recent research supports the role of delta opioid receptors in anxiety- and depression-like behaviors in rodents, we hypothesized that functional desensitization of delta opioid receptors contributes to anxiety- and depression-like behavioral phenotypes following short-term withdrawal from chronic administration of cocaine. To test this hypothesis, delta opioid receptor signaling and behaviors were evaluated 24h after 14days of binge-pattern cocaine administration (15mg/kg three times daily at 1h intervals) in male Sprague-Dawley rats. Results showed that the inhibition of adenylyl cyclase by delta opioid receptor agonists was attenuated in the frontal cortex, nucleus accumbens and caudate putamen 24h after cessation of cocaine administration. One day withdrawal from chronic administration of cocaine resulted in increased anxiety- and depression-like behaviors as measured by the elevated plus maze and the forced swim test respectively, and no change in locomotor activity. The anxiety- and depression-like behaviors were dose-dependently reduced by acute administration of the selective delta opioid receptor agonist, SNC80. These results demonstrate that early withdrawal from cocaine resulted in increased anxiety and depression, which accompanies the desensitization of delta opioid receptor function. Furthermore, cocaine-induced anxiety- and depression-like behaviors were reversible by the delta opioid receptor agonist SNC80.
Collapse
Affiliation(s)
- Shane A Perrine
- Temple University School of Medicine, Department of Pharmacology, Center for Substance Abuse Research, 3420 N. Broad St., Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
99
|
CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proc Natl Acad Sci U S A 2007; 104:17198-203. [PMID: 17921249 DOI: 10.1073/pnas.0707585104] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nicotine, the main psychoactive ingredient of tobacco, induces negative emotional symptoms during abstinence that contribute to a profound craving for nicotine. However, the neurobiological mechanisms underlying how nicotine produces dependence remains poorly understood. We demonstrate one mechanism for both the anxiety-like symptoms of withdrawal and excessive nicotine intake observed after abstinence, through recruitment of the extrahypothalamic stress peptide corticotropin-releasing factor (CRF) system and activation of CRF(1) receptors. Overactivation of the CRF-CRF(1) system may contribute to nicotine dependence and may represent a prominent target for investigating the vulnerability to tobacco addiction.
Collapse
|
100
|
Zhang Z, Morse AC, Koob GF, Schulteis G. Dose- and time-dependent expression of anxiety-like behavior in the elevated plus-maze during withdrawal from acute and repeated intermittent ethanol intoxication in rats. Alcohol Clin Exp Res 2007; 31:1811-9. [PMID: 17877783 PMCID: PMC2367334 DOI: 10.1111/j.1530-0277.2007.00483.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Withdrawal from acute bolus intraperitoneal (IP) injection of high doses of ethanol elicits anxiety-like behavior (e.g. Doremus et al., 2003; Gauvin et al., 1989, 1992) and conditioned place aversion (Morse et al., 2000). More recently we demonstrated that withdrawal from a single moderate dose of ethanol (2.0 g/kg) is accompanied by elevations in brain reward thresholds, and that repeated intermittent treatment with this dose results in a significant potentiation of reward deficit (Schulteis and Liu, 2006). METHODS In the current study, the time- and dose-dependent emergence of anxiety-like behavior was measured in the elevated plus-maze at various times (3 to 24 hours) after acute or 3 daily IP injections of ethanol (1.0, 2.0, or 3.0 g/kg). Rats receiving daily handling for 2 days, and a single anxiety opportunity to explore the maze on a third day were divided into 1 of several treatment protocols: (1) NAIVE conditions: vehicle IP on all 3 days; (2) ACUTE conditions: vehicle on the first 2 days, ethanol on the third day; or (3) REPEAT conditions: ethanol on all 3 days. RESULTS ACUTE ethanol elicited reduced exploration of the open arms of the elevated plus-maze in a dose- and time-dependent fashion: 1.0 g/kg failed to elicit any significant effects, whereas 2.0 and 3.0 g/kg ethanol elicited a significant anxiety-like response at 6 hours and 9 to 12 hours postinjection, respectively. REPEAT treatment was still without effect at any time point tested following 1.0 g/kg ethanol, but extended the time course of anxiety-like behavior after treatment with either 2.0 or 3.0 g/kg doses. REPEAT treatment with 2.0 and 3.0 g/kg ethanol also produced significant hypoactivity in the maze at some time points postinjection. CONCLUSIONS Withdrawal from a single exposure to ethanol produces transient but significant anxiety-like behavior, and repeated intermittent bouts of intoxication result in a significant extension of the duration of effect. The rapid emergence and progression of negative emotional signs of withdrawal may be a significant factor in determining susceptibility to transition from casual drinking to loss of control and escalating patterns of consumption that result in alcoholism.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Department of Anesthesiology, UC San Diego School of Medicine and VA San Diego Healthcare System, San Diego, California 92161-5008, USA
| | | | | | | |
Collapse
|