51
|
Newton DP, Ho PY, Huang KC. Modulation of antibiotic effects on microbial communities by resource competition. Nat Commun 2023; 14:2398. [PMID: 37100773 PMCID: PMC10133249 DOI: 10.1038/s41467-023-37895-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Antibiotic treatment significantly impacts the human gut microbiota, but quantitative understanding of how antibiotics affect community diversity is lacking. Here, we build on classical ecological models of resource competition to investigate community responses to species-specific death rates, as induced by antibiotic activity or other growth-inhibiting factors such as bacteriophages. Our analyses highlight the complex dependence of species coexistence that can arise from the interplay of resource competition and antibiotic activity, independent of other biological mechanisms. In particular, we identify resource competition structures that cause richness to depend on the order of sequential application of antibiotics (non-transitivity), and the emergence of synergistic and antagonistic effects under simultaneous application of multiple antibiotics (non-additivity). These complex behaviors can be prevalent, especially when generalist consumers are targeted. Communities can be prone to either synergism or antagonism, but typically not both, and antagonism is more common. Furthermore, we identify a striking overlap in competition structures that lead to non-transitivity during antibiotic sequences and those that lead to non-additivity during antibiotic combination. In sum, our results establish a broadly applicable framework for predicting microbial community dynamics under deleterious perturbations.
Collapse
Affiliation(s)
- Daniel P Newton
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Po-Yi Ho
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
52
|
Zheng Y, Wang J, Zhang X, Lei L, Yu R, Yao M, Han D, Zeng Q, Li X. Core root-associated prokaryotic community and its relationship to host traits across wheat varieties. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2740-2753. [PMID: 36807675 DOI: 10.1093/jxb/erad066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/17/2023] [Indexed: 06/06/2023]
Abstract
The root-associated microbiomes play important roles in plant growth. However, it is largely unknown how wheat variety evolutionary relatedness shapes each subcommunity in the root microbiome and, in turn, how these microbes affect wheat yield and quality. Here we studied the prokaryotic communities associated with the rhizosphere and root endosphere in 95 wheat varieties at regreening and heading stages. The results indicated that the less diverse but abundant core prokaryotic taxa occurred among all varieties. Among these core taxa, we identified 49 and 108 heritable amplicon sequence variants, whose variations in relative abundances across the root endosphere and rhizosphere samples were significantly affected by wheat variety. The significant correlations between phylogenetic distance of wheat varieties and prokaryotic community dissimilarity were only observed in non-core and abundant subcommunities in the endosphere samples. Again, wheat yield was only significantly associated with root endosphere microbiota at the heading stage. Additionally, wheat yield could be predicted using the total abundance of 94 prokaryotic taxa as an indicator. Our results demonstrated that the prokaryotic communities in the root endosphere had higher correlations with wheat yield and quality than those in the rhizosphere; thus, managing root endosphere microbiota, especially core taxa, through agronomic practices and crop breeding, is important for promoting wheat yield and quality.
Collapse
Affiliation(s)
- Yuyin Zheng
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jialong Wang
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue Zhang
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Lei
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minjie Yao
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
53
|
Fenta L, Mekonnen H, Kabtimer N. The Exploitation of Microbial Antagonists against Postharvest Plant Pathogens. Microorganisms 2023; 11:microorganisms11041044. [PMID: 37110467 PMCID: PMC10143894 DOI: 10.3390/microorganisms11041044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Postharvest disease management is vital to increase the quality and productivity of crops. As part of crop disease protection, people used different agrochemicals and agricultural practices to manage postharvest diseases. However, the widespread use of agrochemicals in pest and disease control has detrimental effects on consumer health, the environment, and fruit quality. To date, different approaches are being used to manage postharvest diseases. The use of microorganisms to control postharvest disease is becoming an eco-friendly and environmentally sounds approach. There are many known and reported biocontrol agents, including bacteria, fungi, and actinomycetes. Nevertheless, despite the abundance of publications on biocontrol agents, the use of biocontrol in sustainable agriculture requires substantial research, effective adoption, and comprehension of the interactions between plants, pathogens, and the environment. To accomplish this, this review made an effort to locate and summarize earlier publications on the function of microbial biocontrol agents against postharvest crop diseases. Additionally, this review aims to investigate biocontrol mechanisms, their modes of operation, potential future applications for bioagents, as well as difficulties encountered during the commercialization process.
Collapse
Affiliation(s)
- Lamenew Fenta
- Department of Biology, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Habtamu Mekonnen
- Department of Biology, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia
| | - Negash Kabtimer
- Department of Biology, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia
| |
Collapse
|
54
|
Boykova I, Yuzikhin O, Novikova I, Ulianich P, Eliseev I, Shaposhnikov A, Yakimov A, Belimov A. Strain Streptomyces sp. P-56 Produces Nonactin and Possesses Insecticidal, Acaricidal, Antimicrobial and Plant Growth-Promoting Traits. Microorganisms 2023; 11:microorganisms11030764. [PMID: 36985337 PMCID: PMC10053667 DOI: 10.3390/microorganisms11030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Streptomycetes produce a huge variety of bioactive metabolites, including antibiotics, enzyme inhibitors, pesticides and herbicides, which offer promise for applications in agriculture as plant protection and plant growth-promoting products. The aim of this report was to characterize the biological activities of strain Streptomyces sp. P-56, previously isolated from soil as an insecticidal bacterium. The metabolic complex was obtained from liquid culture of Streptomyces sp. P-56 as dried ethanol extract (DEE) and possessed insecticidal activity against vetch aphid (Medoura viciae Buckt.), cotton aphid (Aphis gossypii Glov.), green peach aphid (Myzus persicae Sulz.), pea aphid (Acyrthosiphon pisum Harr.) and crescent-marked lily aphid (Neomyzus circumflexus Buckt.), as well as two-spotted spider mite (Tetranychus urticae). Insecticidal activity was associated with production of nonactin, which was purified and identified using HPLC-MS and crystallographic techniques. Strain Streptomyces sp. P-56 also showed antibacterial and antifungal activity against various phytopathogenic bacteria and fungi (mostly for Clavibacfer michiganense, Alternaria solani and Sclerotinia libertiana), and possessed a set of plant growth-promoting traits, such as auxin production, ACC deaminase and phosphate solubilization. The possibilities for using this strain as a biopesticide producer and/or biocontrol and a plant growth-promoting microorganism are discussed.
Collapse
Affiliation(s)
- Irina Boykova
- All-Russia Institute of Plant Protection, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia; (I.B.)
| | - Oleg Yuzikhin
- All-Russia Institute of Plant Protection, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia; (I.B.)
| | - Irina Novikova
- All-Russia Institute of Plant Protection, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia; (I.B.)
| | - Pavel Ulianich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia
| | - Igor Eliseev
- Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopin Str., 8/3-A, Saint-Petersburg 194021, Russia
| | - Alexander Shaposhnikov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia
| | - Alexander Yakimov
- Research Center of Nanobiotechnologies, Peter the Great St Petersburg Polytechnic University, Polytechnicheskaya, 29, Saint-Petersburg 195251, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia
- Correspondence:
| |
Collapse
|
55
|
Wang M, Qi X, Shi Y, Zhao J, Ahmad S, Akhtar K, Chen B, Lian T, He B, Wen R. Sugarcane straw returning is an approaching technique for the improvement of rhizosphere soil functionality, microbial community, and yield of different sugarcane cultivars. Front Microbiol 2023; 14:1133973. [PMID: 36998394 PMCID: PMC10043380 DOI: 10.3389/fmicb.2023.1133973] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Sugarcane straw returned to the field has rapidly increased due to the bane on straw burning in China. Straw returning of new sugarcane cultivars has been practiced in the fields. Still, its response has not been explored on soil functionality, microbial community and yield of different sugarcane cultivars. Therefore, a comparison was made between an old sugarcane cultivar ROC22 and a new sugarcane cultivar Zhongzhe9 (Z9). The experimental treatments were: without (R, Z), with straw of the same cultivar (RR, ZZ), and with straw of different cultivars (RZ, ZR). Straw returning improved the contents of soil total nitrogen (TN by 73.21%), nitrate nitrogen (NO3—N by 119.61%), soil organic carbon (SOC by 20.16%), and available potassium (AK by 90.65%) at the jointing stage and were not significant at the seedling stage. The contents of NO3—N was 31.94 and 29.58%, available phosphorus (AP 53.21 and 27.19%), and available potassium (AK 42.43 and 11.92%) in RR and ZZ were more than in RZ and ZR. Straw returning with the same cultivar (RR, ZZ) significantly increased the richness and diversity of the rhizosphere microbial community. The microbial diversity of cultivar Z9 (treatment Z) was greater than that of cultivar ROC22 (Treatment R). In the rhizosphere, the relative abundance of beneficial microorganisms Gemmatimonadaceae, Trechispora, Streptomyces, Chaetomium, etc., increased after the straw returned. Sugarcane straw enhanced the activity of Pseudomonas and Aspergillus and thus increased the yield of sugarcane., The richness and diversity of the rhizosphere microbial community of Z9 increased at maturity. In ROC22, bacterial diversity increased, and fungal diversity decreased. These findings collectively suggested that the impact of Z9 straw returning was more beneficial than ROC22 on the activity of rhizosphere microorganism’s soil functionality and sugarcane production.
Collapse
Affiliation(s)
- Mengrong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Xiaohang Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yujie Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Junyang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Tengxiang Lian
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- *Correspondence: Bing He,
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
- Ronghui Wen,
| |
Collapse
|
56
|
Ren X, Whitton MM, Yu SJ, Trotter T, Bajagai YS, Stanley D. Application of Phytogenic Liquid Supplementation in Soil Microbiome Restoration in Queensland Pasture Dieback. Microorganisms 2023; 11:microorganisms11030561. [PMID: 36985135 PMCID: PMC10054416 DOI: 10.3390/microorganisms11030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Pasture production is vital in cattle farming as it provides animals with food and nutrients. Australia, as a significant global beef producer, has been experiencing pasture dieback, a syndrome of deteriorating grassland that results in the loss of grass and the expansion of weeds. Despite two decades of research and many remediation attempts, there has yet to be a breakthrough in understanding the causes or mechanisms involved. Suggested causes of this phenomenon include soil and plant microbial pathogens, insect infestation, extreme heat stress, radiation, and others. Plants produce a range of phytomolecules with antifungal, antibacterial, antiviral, growth-promoting, and immunostimulant effects to protect themselves from a range of environmental stresses. These products are currently used more in human and veterinary health than in agronomy. In this study, we applied a phytogenic product containing citric acid, carvacrol, and cinnamaldehyde, to investigate its ability to alleviate pasture dieback. The phytogenic liquid-based solution was sprayed twice, one week apart, at 5.4 L per hectare. The soil microbial community was investigated longitudinally to determine long-term effects, and pasture productivity and plant morphometric improvements were explored. The phytogenic liquid significantly improved post-drought recovery of alpha diversity and altered temporal and spatial change in the community. The phytogenic liquid reduced biomarker genera associated with poor and polluted soils and significantly promoted plant and soil beneficial bacteria associated with plant rhizosphere and a range of soil benefits. Phytogenic liquid application produced plant morphology improvements and a consistent enhancement of pasture productivity extending beyond 18 months post-application. Our data show that phytogenic products used in the livestock market as an alternative to antibiotics may also have a beneficial role in agriculture, especially in the light of climate change-related soil maintenance and remediation.
Collapse
|
57
|
Genome-Based Analysis of the Potential Bioactivity of the Terrestrial Streptomyces vinaceusdrappus Strain AC-40. BIOLOGY 2023; 12:biology12030345. [PMID: 36979037 PMCID: PMC10044865 DOI: 10.3390/biology12030345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Streptomyces are factories of antimicrobial secondary metabolites. We isolated a Streptomyces species associated with the Pelargonium graveolens rhizosphere. Its total metabolic extract exhibited potent antibacterial and antifungal properties against all the tested pathogenic microbes. Whole genome sequencing and genome analyses were performed to take a look at its main characteristics and to reconstruct the metabolic pathways that can be associated with biotechnologically useful traits. AntiSMASH was used to identify the secondary metabolite gene clusters. In addition, we searched for known genes associated with plant growth-promoting characteristics. Finally, a comparative and pan-genome analysis with three closely related genomes was conducted. It was identified as Streptomyces vinaceusdrappus strain AC-40. Genome mining indicated the presence of several secondary metabolite gene clusters. Some of them are identical or homologs to gene clusters of known metabolites with antimicrobial, antioxidant, and other bioactivities. It also showed the presence of several genes related to plant growth promotion traits. The comparative genome analysis indicated that at least five of these gene clusters are highly conserved through rochei group genomes. The genotypic and phenotypic characteristics of S. vinaceusdrappus strain AC-40 indicate that it is a promising source of beneficial secondary metabolites with pharmaceutical and biotechnological applications.
Collapse
|
58
|
Alwali AY, Parkinson EI. Small molecule inducers of actinobacteria natural product biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad019. [PMID: 37587009 PMCID: PMC10549211 DOI: 10.1093/jimb/kuad019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Actinobacteria are a large and diverse group of bacteria that are known to produce a wide range of secondary metabolites, many of which have important biological activities, including antibiotics, anti-cancer agents, and immunosuppressants. The biosynthesis of these compounds is often highly regulated with many natural products (NPs) being produced at very low levels in laboratory settings. Environmental factors, such as small molecule elicitors, can induce the production of secondary metabolites. Specifically, they can increase titers of known NPs as well as enabling discovery of novel NPs typically produced at undetectable levels. These elicitors can be NPs, including antibiotics or hormones, or synthetic compounds. In recent years, there has been a growing interest in the use of small molecule elicitors to induce the production of secondary metabolites from actinobacteria, especially for the discovery of NPs from "silent" biosynthetic gene clusters. This review aims to highlight classes of molecules that induce secondary metabolite production in actinobacteria and to describe the potential mechanisms of induction. ONE-SENTENCE SUMMARY This review describes chemical elicitors of actinobacteria natural products described to date and the proposed mechanisms of induction.
Collapse
Affiliation(s)
- Amir Y Alwali
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Elizabeth I Parkinson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
59
|
Exploring the Potentiality of Native Actinobacteria to Combat the Chilli Fruit Rot Pathogens under Post-Harvest Pathosystem. Life (Basel) 2023; 13:life13020426. [PMID: 36836783 PMCID: PMC9959883 DOI: 10.3390/life13020426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Chilli is an universal spice cum solanaceous vegetable crop rich in vitamin A, vitamin C, capsaicin and capsanthin. Its cultivation is highly threatened by fruit rot disease which cause yield loss as high as 80-100% under congenial environment conditions. Currently actinobacteria are considered as eco-friendly alternatives to synthetic fungicides at pre and post-harvest pathosystems. Hence, this research work focuses on the exploitation of rhizospheric, phyllospheric and endophytic actinobacteria associated with chilli plants for their antagonistic activity against fruit rot pathogens viz., Colletotrichum scovillei, Colletotrichum truncatum and Fusarium oxysporum. In vitro bioassays revealed that the actinobacterial isolate AR26 was found to be the most potent antagonist with multifarious biocontrol mechanisms such as production of volatile, non-volatile, thermostable compounds, siderophores, extracellular lytic enzymes. 16S rRNA gene sequence confirmed that the isolate AR26 belongs to Streptomyces tuirus. The results of detached fruit assay revealed that application of liquid bio-formulation of Stretomyces tuirus @ 10 mL/L concentration completely inhibited the development of fruit rot symptoms in pepper fruits compared to methanol extracts. Hence, the present research work have a great scope for evaluating the biocontrol potential of native S. tuirus AR26 against chilli fruit rot disease under field condition as well against a broad spectrum of post-harvest plant pathogens.
Collapse
|
60
|
Vasilchenko AV, Poshvina DV, Semenov MV, Timofeev VN, Iashnikov AV, Stepanov AA, Pervushina AN, Vasilchenko AS. Triazoles and Strobilurin Mixture Affects Soil Microbial Community and Incidences of Wheat Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:660. [PMID: 36771744 PMCID: PMC9919142 DOI: 10.3390/plants12030660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are widely used in agriculture as a pest control strategy. Despite the benefits of pesticides on crop yields, the persistence of chemical residues in soil has an unintended impact on non-targeted microorganisms. In the present study, we evaluated the potential adverse effects of a mixture of fungicides (difenoconazole, epoxiconazole, and kresoxim-methyl) on soil fungal and bacterial communities, as well as the manifestation of wheat diseases. In the fungicide-treated soil, the Shannon indices of both fungal and bacterial communities decreased, whereas the Chao1 indices did not differ compared to the control soil. Among bacterial taxa, the relative abundances of Arthrobacter and Sphingomonas increased in fungicide-treated soil due to their ability to utilize fungicides and other toxic compounds. Rhizopus and plant-beneficial Chaetomium were the dominant fungal genera, with their prevalence increasing by 2-4 times in the fungicide-treated soil. The genus Fusarium, which includes phytopathogenic species, which are notably responsible for root rot, was the most abundant taxon in each of the two conditions but its relative abundance was two times lower in fungicide-treated soils, consistent with a lower level of disease incidence in plants. The prediction of metabolic pathways revealed that the soil bacterial community had a high potential for degrading various pollutants, and the soil fungal community was in a state of recovery after the application of quinone outside inhibitor (QoI) fungicides. Fungicide-treated soil was characterized by an increase in soil microbial carbon, compared with the control soil. Collectively, the obtained results suggest that the application of difenoconazole, epoxiconazole, and kresoxim-methyl is an effective approach for pest control that does not pose a hazard for the soil ecosystem in the short term. However, it is necessary to carry out additional sampling to take into account the spatio-temporal impact of this fungicide mixture on the functional properties of the soil.
Collapse
Affiliation(s)
- Anastasia V. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Darya V. Poshvina
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Mikhail V. Semenov
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
- Laboratory of Soil Carbon and Microbial Ecology, Dokuchaev Soil Science Institute, 119017 Moscow, Russia
| | - Vyacheslav N. Timofeev
- Scientific Research Institute of Agriculture for Northern Trans-Ural Region—Branch of Tyumen Scientific Centre SB RAS, 625003 Tyumen, Russia
| | - Alexandr V. Iashnikov
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Artyom A. Stepanov
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Arina N. Pervushina
- International Integrated Research Laboratory for the Study of Climate Change, Land Use and Biodiversity, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Alexey S. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| |
Collapse
|
61
|
Spatiotemporal biocontrol and rhizosphere microbiome analysis of Fusarium wilt of banana. Commun Biol 2023; 6:27. [PMID: 36631600 PMCID: PMC9834294 DOI: 10.1038/s42003-023-04417-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
The soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) causes Fusarium wilt of banana (FWB), which devastates banana production worldwide. Biocontrol is considered to be the most efficient approach to reducing FWB. Here we introduce an approach that spatiotemporally applies Piriformospore indica and Streptomyces morookaensis strains according to their respective strength to increase biocontrol efficacy of FWB. P. indica successfully colonizes banana roots, promotes lateral root formation, inhibits Foc TR4 growth inside the banana plants and reduces FWB. S. morookaensis strain Sm4-1986 secretes different secondary compounds, of which xerucitrinin A (XcA) and 6-pentyl-α-pyrone (6-PP) show the strongest anti-Foc TR4 activity. XcA chelates iron, an essential nutrient in pathogen-plant interaction that determines the output of FWB. 6-PP, a volatile organic compound, inhibits Foc TR4 germination and promotes banana growth. Biocontrol trials in the field demonstrated that application of S. morookaensis lead to improvement of soil properties and increase of rhizosphere-associated microbes that are beneficial to banana growth, which significantly reduces disease incidence of FWB. Our study suggests that optimal utilization of the two biocontrol strains increases efficacy of biocontrol and that regulating iron accessibility in the rhizosphere is a promising strategy to control FWB.
Collapse
|
62
|
Hossain MS, DeLaune PB, Gentry TJ. Microbiome analysis revealed distinct microbial communities occupying different sized nodules in field-grown peanut. Front Microbiol 2023; 14:1075575. [PMID: 36937276 PMCID: PMC10017544 DOI: 10.3389/fmicb.2023.1075575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Legume nodulation is the powerhouse of biological nitrogen fixation (BNF) where host-specific rhizobia dominate the nodule microbiome. However, other rhizobial or non-rhizobial inhabitants can also colonize legume nodules, and it is unclear how these bacteria interact, compete, or combinedly function in the nodule microbiome. Under such context, to test this hypothesis, we conducted 16S-rRNA based nodule microbiome sequencing to characterize microbial communities in two distinct sized nodules from field-grown peanuts inoculated with a commercial inoculum. We found that microbial communities diverged drastically in the two types of peanut nodules (big and small). Core microbial analysis revealed that the big nodules were inhabited by Bradyrhizobium, which dominated composition (>99%) throughout the plant life cycle. Surprisingly, we observed that in addition to Bradyrhizobium, the small nodules harbored a diverse set of bacteria (~31%) that were not present in big nodules. Notably, these initially less dominant bacteria gradually dominated in small nodules during the later plant growth phases, which suggested that native microbial communities competed with the commercial inoculum in the small nodules only. Conversely, negligible or no competition was observed in the big nodules. Based on the prediction of KEGG pathway analysis for N and P cycling genes and the presence of diverse genera in the small nodules, we foresee great potential of future studies of these microbial communities which may be crucial for peanut growth and development and/or protecting host plants from various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
| | | | - Terry J Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
| |
Collapse
|
63
|
Mancera-López ME, Barrera-Cortés J, Mendoza-Serna R, Ariza-Castolo A, Santillan R. Polymeric Encapsulate of Streptomyces Mycelium Resistant to Dehydration with Air Flow at Room Temperature. Polymers (Basel) 2022; 15:polym15010207. [PMID: 36616556 PMCID: PMC9823993 DOI: 10.3390/polym15010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Encapsulation is one of the technologies applied for the formulation of biological control agents. The function of the encapsulating matrix is to protect the biological material from environmental factors, while dehydration allows for its viability to be prolonged. An advantage of dehydrated encapsulation formulations is that they can be stored for long periods. However, vegetative cells require low-stress dehydration processes to prevent their loss of viability. Herein we describe the fabrication of a dehydrated encapsulate of the Streptomyces CDBB1232 mycelium using sodium alginate with a high concentration of mannuronic acid; sodium alginate was added with YGM medium for mycelium protection purposes. The encapsulation was carried out by extrusion, and its dehydration was carried out in a rotating drum fed with air at room temperature (2-10 L min-1). The drying of the capsules under air flows higher than 4 L min-1 led to viability loss of the mycelium. The viability loss can be decreased up to 13% by covering the alginate capsules with gum arabic. Compared to conventional dehydration processes, air moisture removal can be lengthy, but it is a low-cost method with the potential to be scaled.
Collapse
Affiliation(s)
- María Elena Mancera-López
- Biotechnology and Bioengineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City 07360, Mexico
| | - Josefina Barrera-Cortés
- Biotechnology and Bioengineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City 07360, Mexico
- Correspondence: ; Tel.: +52-5557473800 (ext. 4380)
| | - Roberto Mendoza-Serna
- Career of Chemical Engineering, Multidisciplinary Experimental Research Unit (UMIEZ), Faculty of Higher Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Armando Ariza-Castolo
- Chemistry Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City 07360, Mexico
| | - Rosa Santillan
- Chemistry Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City 07360, Mexico
| |
Collapse
|
64
|
Chouyia FE, Ventorino V, Pepe O. Diversity, mechanisms and beneficial features of phosphate-solubilizing Streptomyces in sustainable agriculture: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:1035358. [PMID: 36561447 PMCID: PMC9763937 DOI: 10.3389/fpls.2022.1035358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Currently, the use of phosphate (P) biofertilizers among many bioformulations has attracted a large amount of interest for sustainable agriculture. By acting as growth promoters, members of the Streptomyces genus can positively interact with plants. Several studies have shown the great potential of this bacterial group in supplementing P in a soluble, plant-available form by several mechanisms. Furthermore, some P-solubilizing Streptomyces (PSS) species are known as plant growth-promoting rhizobacteria that are able to promote plant growth through other means, such as increasing the availability of soil nutrients and producing a wide range of antibiotics, phytohormones, bioactive compounds, and secondary metabolites other than antimicrobial compounds. Therefore, the use of PSS with multiple plant growth-promoting activities as an alternative strategy appears to limit the negative impacts of chemical fertilizers in agricultural practices on environmental and human health, and the potential effects of these PSS on enhancing plant fitness and crop yields have been explored. However, compared with studies on the use of other gram-positive bacteria, studies on the use of Streptomyces as P solubilizers are still lacking, and their results are unclear. Although PSS have been reported as potential bioinoculants in both greenhouse and field experiments, no PSS-based biofertilizers have been commercialized to date. In this regard, this review provides an overview mainly of the P solubilization activity of Streptomyces species, including their use as P biofertilizers in competitive agronomic practices and the mechanisms through which they release P by solubilization/mineralization, for both increasing P use efficiency in the soil and plant growth. This review further highlights and discusses the beneficial association of PSS with plants in detail with the latest developments and research to expand the knowledge concerning the use of PSS as P biofertilizers for field applications by exploiting their numerous advantages in improving crop production to meet global food demands.
Collapse
Affiliation(s)
- Fatima Ezzahra Chouyia
- Department of Biology, Faculty of Sciences and Techniques, Hassan II University, Casablanca, Morocco
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
65
|
Chen S, Yao F, Mi G, Wang L, Wu H, Wang Y. Crop rotation increases root biomass and promotes the correlation of soil dissolved carbon with the microbial community in the rhizosphere. Front Bioeng Biotechnol 2022; 10:1081647. [PMID: 36561045 PMCID: PMC9763999 DOI: 10.3389/fbioe.2022.1081647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
As essential approaches for conservation agricultural practices, straw residue retention and crop rotation have been widely used in the Mollisols of Northeast China. Soil organic carbon, root development and microbial community are important indicators representing soil, crop and microbiota, respectively, and these factors work together to influence soil fertility and crop productivity. Studying their changes and interactions under different conservation practices is crucial to provide a theoretical basis for developing rational agricultural practices. The experiment in this study was conducted using the conventional practice (continuous maize without straw retention, C) and three conservation practices, namely, continuous maize with straw mulching (CS), maize-peanut rotation (R), and maize-peanut rotation with straw mulching (RS). Straw mulching (CS) significantly increased soil total organic carbon (TOC), active organic carbon (AOC), and microbial biomass carbon (MBC), but did not promote maize yield. Maize-peanut rotation (R and RS) significantly increased dissolved organic carbon (DOC) in the rhizosphere by promoting root growth, and maize yield (increased by 10.2%). For the microbial community structure, PERMANOVA and PCoA indicated that the bacterial community differed significantly between rhizosphere soil and bulk soil, but the fungal community shifted more under different agricultural practices. The correlation analysis indicated that the rotation system promoted the association between the soil DOC and the microbial community (especially the bacterial community), and straw mulching enhanced the connection between the soil TOC and the fungal community. Some plant growth-promoting rhizobacteria (including Bacillus, Streptomyces, Rhizobium, and Pseudomonas) were enriched in the rhizosphere soil and were increased in the rotation system (R and RS), which might be due to an increase in the soil rhizosphere DOC level. These beneficial microbes had significantly negative correlations with several fungal groups (such as Mycosphaerella, Penicillium, Paraphoma and Torula) that were classified as plant pathotrophs by FUNGuild. These results indicated that ensuring plant root development and improving root-bacteria interactions are of great importance to guarantee crop yield when implementing conservation tillage practices.
Collapse
Affiliation(s)
- Shuaimin Chen
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Fanyun Yao
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guohua Mi
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Lichun Wang
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Haiyan Wu
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yongjun Wang
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, Changchun, China,*Correspondence: Yongjun Wang,
| |
Collapse
|
66
|
Klaysubun C, Srisuk N, Duangmal K. Streptomyces humicola sp. nov., a novel actinobacterium isolated from peat swamp forest soil in Thailand. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748553 DOI: 10.1099/ijsem.0.005665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A polyphasic approach was used to describe strain RB6PN25T, an actinobacterium isolated from peat swamp forest soil in Rayong Province, Thailand. The strain was a Gram-stain-positive and filamentous bacterium that contained ll-diaminopimelic acid, mannose and ribose in whole-cell hydrolysates. MK-9(H8) was the major menaquinone. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and iso-C15 : 0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, two unidentified glycophospholipids, two unidentified aminolipids and an unidentified phospholipid. The 16S rRNA gene sequences analysis indicated that it was most closely related to Streptomyces rubrisoli DSM 42083T (97.6 %) and Streptomyces palmae TBRC 1999T (97.4 %). Strain RB6PN25T exhibited low average nucleotide identity and digital DNA-DNA hybridization values with S. rubrisoli DSM 42083T (78.6 %, 23.2 %) and S. palmae TBRC 1999T (76.0 %, 22.6 %). The DNA G+C content of strain RB6PN25T was 69.9%. The results of phenotypic, chemotaxonomic, genotypic and phylogenetic analyses reveal that strain RB6PN25T represents a novel species of the genus Streptomyces, for which the name Streptomyces humicola sp. nov. is proposed. The type strain is RB6PN25T (=TBRC 14819T=NBRC 115204T).
Collapse
Affiliation(s)
- Chollachai Klaysubun
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Nantana Srisuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.,Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| | - Kannika Duangmal
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.,Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| |
Collapse
|
67
|
Afzal S, Singh NK. Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120224. [PMID: 36165830 DOI: 10.1016/j.envpol.2022.120224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
In this study, we assessed the impact of zinc oxide (ZnO) and iron oxide (FeO) (<36 nm) nanoparticles (NPs) as well as their sulphate salt (bulk) counterpart (0, 25, 100 mg/kg) on rice growth and seed quality as well as the microbial community in the rhizosphere environment of rice. During the rice growing season 2021-22, all experiments were conducted in a greenhouse (temperature: day 30 °C; night 20 °C; relative humidity: 70%; light period: 16 h/8 h, day/night) in rice field soil. Results showed that low concentrations of FeO and ZnO NPs (25 mg/kg) promoted rice growth (height (29%, 16%), pigment content (2%, 3%)) and grain quality parameters such as grains per spike (8%, 9%), dry weight of grains (12%, 14%) respectively. As compared to the control group, the Zn (2%) and Fe (5%) accumulations at their respective low concentrations of NP treatments showed stimulation. Interestingly, our results showed that at low concentration of both the NPs the soil microbes had more diversity and richness than those in the bulk treated and control soil group. Although a number of phyla were affected by the presence of NPs, the strongest effects were observed for change in the abundance of the three phyla for Proteobacteria, Actinobacteria, and Planctomycetes. The rhizosphere environment was notably enriched with potential streptomycin producers, carbon and nitrogen fixers, and lignin degraders with regard to functional groups of microorganisms. However, microbial communities mainly responsible for chitin degradation, ammonia oxidation, and nitrite reduction were found to be decreased. The results from this study highlight significant changes in several plant-based endpoints, as well as the rhizosphere soil microorganisms. It further adds information to our understanding of the nanoscale-specific impacts of important micronutrient oxides on both rice and its associated soil microbiome.
Collapse
Affiliation(s)
- Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, U.P., 211004, India
| | - Nand K Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, U.P., 211004, India.
| |
Collapse
|
68
|
Berckx F, Bandong CM, Wibberg D, Kalinowski J, Willemse J, Brachmann A, Simbahan J, Pawlowski K. Streptomyces coriariae sp. nov., a novel streptomycete isolated from actinorhizal nodules of Coriaria intermedia. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748598 DOI: 10.1099/ijsem.0.005603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An actinobacterial strain, CMB-FB, was isolated from surface-sterilized root nodules of a Coriaria intermedia plant growing along Halsema Highway in the province of Benguet (Luzon, Philippines). The 16S rRNA gene sequence of CMB-FB showed high sequence similarity to those of the type strains of Streptomyces rishiriensis (99.4 %), Streptomyces humidus (99.1 %), Streptomyces cacaoi subsp. asoensis (99.0 %), and Streptomyces phaeofaciens (98.6 %). The major menaquinones of CMB-FB were composed of MK-9(H4), MK-9(H6) and MK-9(H8), and there was a minor contribution of MK-9(H10). The polar lipid profile consisted of phosphatidylethanolamine, unidentified aminolipids and phospholipids, a glycophospholipid and four unidentified lipids. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The results of physiological analysis indicated that CMB-FB was mesophilic. The results of phylogenetic, genome-genome distance calculation and average nucleotide identity analysis indicated that the isolated strain represents the type strain of a novel species. On the basis of these results, strain CMB-FB (=DSM 112754T=LMG 32457T) is proposed as the type strain of the novel species Streptomyces coriariae sp. nov.
Collapse
Affiliation(s)
- Fede Berckx
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Cyndi Mae Bandong
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.,Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany.,Present address: ELIXIR-DE, Institute of Bio- and Geosciences IBG-5 - Computational Metagenomics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany
| | - Joost Willemse
- Molecular Biotechnology, Institute of Biology, Leiden University, 2300 RA Leiden, Netherlands
| | | | - Jessica Simbahan
- Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
69
|
Effects of Invasive Plant Diversity on Soil Microbial Communities. DIVERSITY 2022. [DOI: 10.3390/d14110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Native plant communities can be invaded by different numbers of alien plant species or by the same number of alien plant species with different levels of evenness. However, little is known about how alien invasive plant species richness and evenness affect soil microbial communities. We constructed native herbaceous plant communities invaded by exotic plants with different richness (1, 2, 4 and 8 species) and evenness (high and low) and analyzed soil physico-chemical properties and the diversity and composition of soil fungal and bacterial communities by high-throughput Illumina sequencing. Overall, the species richness and evenness of invasive plants had no significant effect on bacterial and fungal alpha diversity (OTUs, Shannon, Simpson, Chao1 and ACE) or the soil physico-chemical properties. However, invasive species richness had a significant impact on the relative abundance of the most dominant fungi, Ascomycota and Bipolaris, and the dominant bacteria, Actinobacteriota, which increased with increasing invasive species richness. The relative abundance of the dominant microbial groups was significantly correlated with the relative abundance of some specific invasive plants in the community. This study sheds new light on the effects of plant co-invasion on soil microbial communities, which may help us understand the underlying mechanisms of multiple alien plant invasion processes from the perspective of soil microorganisms.
Collapse
|
70
|
Ferreira-Neto JRC, de Araújo FC, de Oliveira Silva RL, de Melo NF, Pandolfi V, Frosi G, de Lima Morais DA, da Silva MD, Rivas R, Santos MG, de Tarso Aidar S, Morgante CV, Benko-Iseppon AM. Dehydration response in Stylosanthes scabra: Transcriptional, biochemical, and physiological modulations. PHYSIOLOGIA PLANTARUM 2022; 174:e13821. [PMID: 36345266 DOI: 10.1111/ppl.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Stylosanthes scabra, popularly known as stylo, is native to the Brazilian Caatinga semiarid region and stands out as a drought-tolerant shrub forage crop. This work provides information about the plant response during the first 48 h of water deficit, followed by a rehydration treatment. Besides root transcriptomics data, 13 physiological or biochemical parameters were scrutinized. Additionally, RNA-Seq annotated transcripts not associated with the "Viridiplantae" clade were taxonomically categorized. It was found that S. scabra quickly perceives and recovers from the oscillations of the imposed water regime. Physiologically, mechanisms that minimize evapotranspiration or protect the photosynthetic apparatus stood out. Biochemically, it was found that the root tissue invests in synthesizing compounds that can act as osmolytes (proline and sugars), emphasizing the importance of osmoregulation to water deficit acclimation. Consistently, transcriptome and qPCR analyses showed that a set of enriched biological processes with upregulated (UR) transcripts were involved in protective functions against reactive oxygen species or encoding enzymes of important metabolic pathways, which might contribute to S. scabra response to water deficit. Additionally, several UR kinases and transcription factors were identified. Finally, in an innovative approach, some naturally occurring microbial groups (such as Schizosaccharomyces, Bradyrhizobium, etc.) were identified in the S. scabra roots. This study reveals insights into the physiological, biochemical, and molecular mechanisms underlying the S. scabra response to water deficit and provides candidate genes that may be useful in developing drought-tolerant crop varieties through biotechnological applications.
Collapse
Affiliation(s)
- José Ribamar Costa Ferreira-Neto
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Flávia Czekalski de Araújo
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Roberta Lane de Oliveira Silva
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Valesca Pandolfi
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Gabriella Frosi
- Départament de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Manassés Daniel da Silva
- Laboratório de Genética Molecular, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Rebeca Rivas
- Laboratório de Genética Molecular, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Mauro Guida Santos
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Saulo de Tarso Aidar
- Empresa Brasileira de Pesquisa Agropecuária (SEMIÁRIDO), Petrolina, Pernambuco, Brazil
| | | | - Ana Maria Benko-Iseppon
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
71
|
The Arabidopsis thaliana–Streptomyces Interaction Is Controlled by the Metabolic Status of the Holobiont. Int J Mol Sci 2022; 23:ijms232112952. [PMID: 36361736 PMCID: PMC9655247 DOI: 10.3390/ijms232112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022] Open
Abstract
How specific interactions between plant and pathogenic, commensal, or mutualistic microorganisms are mediated and how bacteria are selected by a plant are important questions to address. Here, an Arabidopsis thaliana mutant called chs5 partially deficient in the biogenesis of isoprenoid precursors was shown to extend its metabolic remodeling to phenylpropanoids and lipids in addition to carotenoids, chlorophylls, and terpenoids. Such a metabolic profile was concomitant to increased colonization of the phyllosphere by the pathogenic strain Pseudomonas syringae pv. tomato DC3000. A thorough microbiome analysis by 16S sequencing revealed that Streptomyces had a reduced colonization potential in chs5. This study revealed that the bacteria–Arabidopsis interaction implies molecular processes impaired in the chs5 mutant. Interestingly, our results revealed that the metabolic status of A. thaliana was crucial for the specific recruitment of Streptomyces into the microbiota. More generally, this study highlights specific as well as complex molecular interactions that shape the plant microbiota.
Collapse
|
72
|
Sayed EG, Mahmoud AWM, Abdel-Wahab A, El-bahbohy RM, Azoz SN. Rootstock Priming with Shikimic Acid and Streptomyces griseus for Growth, Productivity, Physio-Biochemical, and Anatomical Characterisation of Tomato Grown under Cold Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2822. [PMID: 36365275 PMCID: PMC9658765 DOI: 10.3390/plants11212822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
With this research, we aimed to determine the impact of grafting and rootstock seed treated with Streptomyces griseus (MT210913) (S. griseus) or shikimic acid (SA) at a 60 ppm concentration on tomato (Solanum lycopersicum L.) production grown under low-temperature conditions. Two open-field trials were performed during both winter seasons of 2020 and 2021 at the Experimental Farm, Faculty of Agriculture, Cairo University, Giza, Egypt. A tomato cultivar (Peto 86) was used as a scion and two tomato phenotypes were employed as rootstocks (Solanum cheesmaniae L. (line LA 524) and GS hybrid), as well as self-grafted as a control. Effects of sub-optimal temperature on vegetative growth, yield, and fruit quality were tested. The results indicate that, under cold stress, rootstock seed priming, especially with S. griseus, enhanced plant growth, total yield, and fruit quality properties. GS hybrid rootstock was more effective than that of S. cheesmaniae rootstock in terms of mitigating the negative effect of cold stress. GS hybrid, inoculated with S. griseus, increased the total yield per plant by 10.5% and 5.7% in the first and second seasons, respectively. Higher levels of GA3 and mineral content were noticed in leaves that were grafted and treated with S. griseus compared to the control treatment. Additionally, the great enhancing effects of all anatomical features of tomato plants were recorded with GS hybrid rootstock, inoculated by S. griseus. These results prove that grafting on GS hybrid rootstock treated with S. griseus is a potential choice to alleviate the cold stress of commercial tomato varieties.
Collapse
Affiliation(s)
- Eman G. Sayed
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Abdel Wahab M. Mahmoud
- Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Ahmed Abdel-Wahab
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Reham M. El-bahbohy
- Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Samah N. Azoz
- Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
73
|
Khan AR, Wicaksono WA, Ott NJ, Poret-Peterson AT, Browne GT. Random forest analysis reveals taxa predictive of Prunus replant disease in peach root microbiomes. PLoS One 2022; 17:e0275587. [PMID: 36227955 PMCID: PMC9560047 DOI: 10.1371/journal.pone.0275587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
Successive plantings of Prunus species produce suboptimal growth and yield in many California soils due to a poorly understood soilborne disease complex, Prunus replant disease (PRD). We explored the hypothesis that PRD is mediated by microbial taxa in roots of Nemaguard peach, a rootstock for almond and other stone fruits. In a greenhouse bioassay, portions of 10 replant soils were treated with fumigation or pasteurization or left untreated as a control before being planted with peach seedlings. Ten weeks after planting, seedlings were considered PRD-affected if their top fresh weights in the control were significantly reduced, compared to the weights in pasteurization and fumigation treatments; plants with equivalent top weights in all treatments were considered to be non-affected. The roots were washed from the soil, frozen, extracted for total DNA, and used for metabarcoding of rRNA gene amplicons from bacteria, fungi, and oomycetes. High-throughput amplicon sequencing revealed that root microbial community shifts resulted from preplant treatments, and specific taxa were associated with PRD induction among controls. Random forest (RF) analysis discriminated effectively between PRD-affected and non-affected root communities. Among the 30 RF top-ranked amplicon sequence variant (ASV) predictors, 26 were bacteria, two were oomycetes, and two were fungi. Among them, only Streptomyces scabiei, Steroidobacter denitrificans, Streptomyces bobili, and Pythium mamillatum had root abundances ≥5% that were either associated positively (former two ASVs) or negatively (latter two) with PRD. Thus, our findings were consistent with microbial mediation of PRD in roots and suggested taxa that may be involved in the mediation.
Collapse
Affiliation(s)
- Abdur R. Khan
- Department of Plant Pathology, University of California, Davis, California, United States of America
| | - Wisnu A. Wicaksono
- Department of Plant Pathology, University of California, Davis, California, United States of America
| | - Natalia J. Ott
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, California, United States of America
| | - Amisha T. Poret-Peterson
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, California, United States of America
| | - Greg T. Browne
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
74
|
Adebayo AA, Faleye TOC, Adeosun OM, Alhaji IA, Egbe NE. Plant growth promoting potentials of novel phosphate-solubilizing bacteria isolated from rumen content of White Fulani cattle, indigenous to Nigeria. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
75
|
Formulation of biofungicides based on Streptomyces caeruleatus strain ZL-2 spores and efficacy against Rhizoctonia solani damping-off of tomato seedlings. Arch Microbiol 2022; 204:629. [DOI: 10.1007/s00203-022-03251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
|
76
|
Exploration of bacterial diversity in leaves and rhizosphere soil of flood affected and unaffected apricot trees. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
77
|
Chen J, Lan X, Jia R, Hu L, Wang Y. Response Surface Methodology (RSM) Mediated Optimization of Medium Components for Mycelial Growth and Metabolites Production of Streptomyces alfalfae XN-04. Microorganisms 2022; 10:microorganisms10091854. [PMID: 36144456 PMCID: PMC9501596 DOI: 10.3390/microorganisms10091854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces alfalfae XN-04 has been reported for the production of antifungal metabolites effectively to control Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum (Fov). In this study, we used integrated statistical experimental design methods to investigate the optimized liquid fermentation medium components of XN-04, which can significantly increase the antifungal activity and biomass of XN-04. Seven variables, including soluble starch, KNO3, soybean cake powder, K2HPO4, MgSO4·7H2O, CaCO3 and FeSO4·7H2O, were identified as the best ingredients based on one-factor-at-a-time (OFAT) method. The results of Plackett–Burman Design (PBD) showed that soluble starch, soybean cake powder and K2HPO4 were the most significant variables among the seven variables. The steepest climbing experiment and response surface methodology (RSM) were performed to determine the interactions among these three variables and fine-tune the concentrations. The optimal compositions of medium were as follows: soluble starch (26.26 g/L), KNO3 (1.00 g/L), soybean cake powder (23.54 g/L), K2HPO4 (0.27 g/L), MgSO4·7H2O (0.50 g/L), CaCO3 (1.00 g/L) and FeSO4·7H2O (0.10 g/L). A verification experiment was then carried out under the optimized conditions, and the results revealed the mycelial dry weight of S. alfalfae XN-04 reaching 6.61 g/L. Compared with the initial medium, a 7.47-fold increase in the biomass was achieved using the optimized medium. Moreover, the active ingredient was purified from the methanol extract of S. alfalfae XN-04 mycelium and then identified as roflamycoin (a polyene macrolide antibiotic). The results may provide new insights into the development of S. alfalfae XN-04 fermentation process and the control of the Fusarium wilt of cotton and other plant diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yang Wang
- Correspondence: ; Tel.: +86-187-9280-9011
| |
Collapse
|
78
|
Draft Genome Sequence of
Streptomyces
sp. Strain R1, Isolated from Water Canal Sediments, Possessing Antimicrobial and Plant Growth Promoting Capabilities. Microbiol Resour Announc 2022; 11:e0072522. [PMID: 35972253 PMCID: PMC9476928 DOI: 10.1128/mra.00725-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the genome sequence of Streptomyces sp. strain R1, isolated from water canal sediments and possessing genes responsible for antimicrobial metabolites and plant growth promotion. The genome assembly contains 7,936,694 bp with 72.24% of guanine-cytosine content. This genome will provide basic knowledge of the genes and pathways involved in the above mechanisms.
Collapse
|
79
|
Panis F, Rompel A. The Novel Role of Tyrosinase Enzymes in the Storage of Globally Significant Amounts of Carbon in Wetland Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11952-11968. [PMID: 35944157 PMCID: PMC9454253 DOI: 10.1021/acs.est.2c03770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
Over the last millennia, wetlands have been sequestering carbon from the atmosphere via photosynthesis at a higher rate than releasing it and, therefore, have globally accumulated 550 × 1015 g of carbon, which is equivalent to 73% of the atmospheric carbon pool. The accumulation of organic carbon in wetlands is effectuated by phenolic compounds, which suppress the degradation of soil organic matter by inhibiting the activity of organic-matter-degrading enzymes. The enzymatic removal of phenolic compounds by bacterial tyrosinases has historically been blocked by anoxic conditions in wetland soils, resulting from waterlogging. Bacterial tyrosinases are a subgroup of oxidoreductases that oxidatively remove phenolic compounds, coupled to the reduction of molecular oxygen to water. The biochemical properties of bacterial tyrosinases have been investigated thoroughly in vitro within recent decades, while investigations focused on carbon fluxes in wetlands on a macroscopic level have remained a thriving yet separated research area so far. In the wake of climate change, however, anoxic conditions in wetland soils are threatened by reduced rainfall and prolonged summer drought. This potentially allows tyrosinase enzymes to reduce the concentration of phenolic compounds, which in turn will increase the release of stored carbon back into the atmosphere. To offer compelling evidence for the novel concept that bacterial tyrosinases are among the key enzymes influencing carbon cycling in wetland ecosystems first, bacterial organisms indigenous to wetland ecosystems that harbor a TYR gene within their respective genome (tyr+) have been identified, which revealed a phylogenetically diverse community of tyr+ bacteria indigenous to wetlands based on genomic sequencing data. Bacterial TYR host organisms covering seven phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria) have been identified within various wetland ecosystems (peatlands, marshes, mangrove forests, bogs, and alkaline soda lakes) which cover a climatic continuum ranging from high arctic to tropic ecosystems. Second, it is demonstrated that (in vitro) bacterial TYR activity is commonly observed at pH values characteristic for wetland ecosystems (ranging from pH 3.5 in peatlands and freshwater swamps to pH 9.0 in soda lakes and freshwater marshes) and toward phenolic compounds naturally present within wetland environments (p-coumaric acid, gallic acid, protocatechuic acid, p-hydroxybenzoic acid, caffeic acid, catechin, and epicatechin). Third, analyzing the available data confirmed that bacterial host organisms tend to exhibit in vitro growth optima at pH values similar to their respective wetland habitats. Based on these findings, it is concluded that, following increased aeration of previously anoxic wetland soils due to climate change, TYRs are among the enzymes capable of reducing the concentration of phenolic compounds present within wetland ecosystems, which will potentially destabilize vast amounts of carbon stored in these ecosystems. Finally, promising approaches to mitigate the detrimental effects of increased TYR activity in wetland ecosystems and the requirement of future investigations of the abundance and activity of TYRs in an environmental setting are presented.
Collapse
|
80
|
Mousa S, Magdy M, Xiong D, Nyaruabaa R, Rizk SM, Yu J, Wei H. Microbial Profiling of Potato-Associated Rhizosphere Bacteria under Bacteriophage Therapy. Antibiotics (Basel) 2022; 11:antibiotics11081117. [PMID: 36009986 PMCID: PMC9405460 DOI: 10.3390/antibiotics11081117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Potato soft rot and wilt are economically problematic diseases due to the lack of effective bactericides. Bacteriophages have been studied as a novel and environment-friendly alternative to control plant diseases. However, few experiments have been conducted to study the changes in plants and soil microbiomes after bacteriophage therapy. In this study, rhizosphere microbiomes were examined after potatoes were separately infected with three bacteria (Ralstonia solanacearum, Pectobacterium carotovorum, Pectobacterium atrosepticum) and subsequently treated with a single phage or a phage cocktail consisting of three phages each. Results showed that using the phage cocktails had better efficacy in reducing the disease incidence and disease symptoms’ levels when compared to the application of a single phage under greenhouse conditions. At the same time, the rhizosphere microbiota in the soil was affected by the changes in micro-organisms’ richness and counts. In conclusion, the explicit phage mixers have the potential to control plant pathogenic bacteria and cause changes in the rhizosphere bacteria, but not affect the beneficial rhizosphere microbes.
Collapse
Affiliation(s)
- Samar Mousa
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- International College, University of Chinese Academy of Sciences, Beijing 101408, China
- Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud Magdy
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Dongyan Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Raphael Nyaruabaa
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- International College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Samah Mohamed Rizk
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence:
| |
Collapse
|
81
|
Pang F, Solanki MK, Wang Z. Streptomyces can be an excellent plant growth manager. World J Microbiol Biotechnol 2022; 38:193. [PMID: 35980475 DOI: 10.1007/s11274-022-03380-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022]
Abstract
Streptomyces, the most abundant and arguably the most important genus of actinomycetes, is an important source of biologically active compounds such as antibiotics, and extracellular hydrolytic enzymes. Since Streptomyces can have a beneficial symbiotic relationship with plants they can contribute to nutrition, health and fitness of the latter. This review article summarizes recent research contributions on the ability of Streptomyces to promote plant growth and improve plant tolerance to biotic and abiotic stress responses, as well as on the consequences, on plant health, of the enrichment of rhizospheric soils in Streptomyces species. This review summarizes the most recent reports of the contribution of Streptomyces to plant growth, health and fitness and suggests future research directions to promote the use of these bacteria for the development of a cleaner agriculture.
Collapse
Affiliation(s)
- Fei Pang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-701, Katowice, Poland.
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
82
|
Behera HT, Mojumdar A, Behera SS, Das S, Ray L. Biocontrol of Wilt disease of rice seedlings incited by Fusarium oxysporum through soil application of Streptomyces chilikensis RC1830. Lett Appl Microbiol 2022; 75:1366-1382. [PMID: 35972435 DOI: 10.1111/lam.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
The genus Streptomyces includes many antifungal metabolite producing novel strains. Fusarium oxysporum a soil-inhabiting pathogenic fungi, that affects rice to cause wilt disease. This work demonstrates the efficacy of novel Streptomyces chilikensis strain RC1830, previously isolated from estuarine habitat Chilika Lake in preventing the F. oxysporum wilting/root rot disease and promoting the growth of rice (Var. Swarna) seedlings. A total of 25 different compounds were identified from crude extracts of S. chilikensis RC1830 by GC-MS. In pot trial experiments, Streptomyces treated rice seedlings showed significantly reduced Disease severity index (DSI) by 80.51%. The seedlings growth parameters (root length, root fresh weight and root dry weight )were also increased by 53.91%, 62.5%, 73.46% respectively in Streptomyces treated groups of seedlings compared to Fusarium infected seedlings. Similarly, the shoot length, shoot dry weight and shoot fresh weight were also increased by 26%, 58% and 34.4% respectively in Streptomyces treated groups of seedlings compared to Fusarium infected seedlings. Formulations of the strain were prepared using seven organic & inorganic wastes as the carrier material and the shelf lives of the propagules were also monitored. Vermiculite and activated charcoal formulations stored at 4°C exhibited a higher viable cell count after 3 months of storage.
Collapse
Affiliation(s)
- Himadri Tanaya Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Abhik Mojumdar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Subhransu Shekhar Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Smrutiranjan Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Lopamudra Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India.,School of Law, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| |
Collapse
|
83
|
Sudha A, Durgadevi D, Archana S, Muthukumar A, Suthin Raj T, Nakkeeran S, Poczai P, Nasif O, Ansari MJ, Sayyed RZ. Unraveling the tripartite interaction of volatile compounds of Streptomyces rochei with grain mold pathogens infecting sorghum. Front Microbiol 2022; 13:923360. [PMID: 35966704 PMCID: PMC9366667 DOI: 10.3389/fmicb.2022.923360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Sorghum is a major grain crop used in traditional meals and health drinks, and as an efficient fuel. However, its productivity, value, germination, and usability are affected by grain mold, which is a severe problem in sorghum production systems, which reduces the yield of harvested grains for consumer use. The organic approach to the management of the disease is essential and will increase consumer demand. Bioactive molecules like mVOC (volatile organic compound) identification are used to unravel the molecules responsible for antifungal activity. The Streptomyces rochei strain (ASH) has been reported to be a potential antagonist to many pathogens, with high levels of VOCs. The present study aimed to study the inhibitory effect of S. rochei on sorghum grain mold pathogens using a dual culture technique and via the production of microbial volatile organic compounds (mVOCs). mVOCs inhibited the mycelial growth of Fusarium moniliforme by 63.75 and Curvularia lunata by 68.52%. mVOCs suppressed mycelial growth and inhibited the production of spores by altering the structure of mycelia in tripartite plate assay. About 45 mVOCs were profiled when Streptomyces rochei interacted with these two pathogens. In the present study, several compounds were upregulated or downregulated by S. rochei, including 2-methyl-1-butanol, methanoazulene, and cedrene. S. rochei emitted novel terpenoid compounds with peak areas, such as myrcene (1.14%), cymene (6.41%), and ç-terpinene (7.32%) upon interaction with F. moniliforme and C. lunata. The peak area of some of the compounds, including furan 2-methyl (0.70%), benzene (1.84%), 1-butanol, 2-methyl-(8.25%), and myrcene (1.12)%, was increased during tripartite interaction with F. moniliforme and C. lunata, which resulted in furan 2-methyl (6.60%), benzene (4.43%), butanol, 2-methyl (18.67%), and myrcene (1.14%). These metabolites were implicated in the sesquiterpenoid and alkane biosynthetic pathways and the oxalic acid degradation pathway. The present study shows how S. rochei exhibits hyperparasitism, competition, and antibiosis via mVOCs. In addition to their antimicrobial functions, these metabolites could also enhance plant growth.
Collapse
Affiliation(s)
- A. Sudha
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - D. Durgadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - S. Archana
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - A. Muthukumar
- Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Chidambaram, India
| | - T. Suthin Raj
- Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Chidambaram, India
| | - S. Nakkeeran
- Department of Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, (Mahatma Jyotiba Phule Rohilkhand University, Bareilly), Moradabad, India
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S. I. Patil Arts, G. B. Patel Science, and STKV Sangh Commerce College, Shahada, India
| |
Collapse
|
84
|
Production and Potential Genetic Pathways of Three Different Siderophore Types in Streptomyces tricolor Strain HM10. FERMENTATION 2022. [DOI: 10.3390/fermentation8080346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Siderophores are iron-chelating low-molecular-weight compounds that bind iron (Fe3+) with a high affinity for transport into the cell. The newly isolated strain Streptomyces tricolor HM10 secretes a pattern of secondary metabolites. Siderophore molecules are the representatives of such secondary metabolites. S. tricolor HM10 produces catechol, hydroxamate, and carboxylate types of siderophores. Under 20 μM FeCl3 conditions, S. tricolor HM10 produced up to 6.00 µg/mL of catechol siderophore equivalent of 2,3-DHBA (2,3-dihydroxybenzoic acid) after 4 days from incubation. In silico analysis of the S. tricolor HM10 genome revealed three proposed pathways for siderophore biosynthesis. The first pathway, consisting of five genes, predicted the production of catechol-type siderophore similar to petrobactin from Bacillus anthracis str. Ames. The second proposed pathway, consisting of eight genes, is expected to produce a hydroxamate-type siderophore similar to desferrioxamine B/E from Streptomyces sp. ID38640, S. griseus NBRC 13350, and/or S. coelicolor A3(2). The third pathway exhibited a pattern identical to the carboxylate xanthoferrin siderophore from Xanthomonas oryzae. Thus, Streptomyces strain HM10 could produce three different types of siderophore, which could be an incentive to use it as a new source for siderophore production in plant growth-promoting, environmental bioremediation, and drug delivery strategy.
Collapse
|
85
|
Olanrewaju OS, Babalola OO. Plant growth-promoting rhizobacteria for orphan legume production: Focus on yield and disease resistance in Bambara groundnut. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.922156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Orphan legumes are now experiencing growing demand due to the constraints on available major food crops. However, due to focus on major food crops, little research has been conducted on orphan legumes compared to major food crops, especially in microbiome application to improve growth and yield. Recent developments have demonstrated the enormous potential of beneficial microbes in growth promotion and resistance to stress and diseases. Hence, the focus of this perspective is to examine the potential of plant growth promoting rhizobacteria (PGPR) to improve Bambara groundnut yield and quality. Further insights into the potential use of PGPR as a biological control agent in the crop are discussed. Finally, three PGPR genera commonly associated with plant growth and disease resistance (Bacillus, Pseudomonas, and Streptomyces) were highlighted as case studies for the growth promotion and disease control in BGN production.
Collapse
|
86
|
Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a real consensus that new antibiotics are urgently needed and are the best chance for combating antibiotic resistance. The phylum Actinobacteria is one of the main producers of new antibiotics, with a recent paradigm shift whereby rare actinomycetes have been increasingly targeted as a source of new secondary metabolites for the discovery of new antibiotics. However, this review shows that the genus Streptomyces is still the largest current producer of new and innovative secondary metabolites. Between January 2015 and December 2020, a significantly high number of novel Streptomyces spp. have been isolated from different environments, including extreme environments, symbionts, terrestrial soils, sediments and also from marine environments, mainly from marine invertebrates and marine sediments. This review highlights 135 new species of Streptomyces during this 6-year period with 108 new species of Streptomyces from the terrestrial environment and 27 new species from marine sources. A brief summary of the different pre-treatment methods used for the successful isolation of some of the new species of Streptomyces is also discussed, as well as the biological activities of the isolated secondary metabolites. A total of 279 new secondary metabolites have been recorded from 121 species of Streptomyces which exhibit diverse biological activity. The greatest number of new secondary metabolites originated from the terrestrial-sourced Streptomyces spp.
Collapse
|
87
|
Yadav GK, Rohita DK, Mandal KC, Paudel B, Devkot AR. An accidental emamectin benzoate poisoning in child: A case report. Clin Case Rep 2022; 10:e6133. [PMID: 35898734 PMCID: PMC9309617 DOI: 10.1002/ccr3.6133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/11/2022] Open
Abstract
We report a case of accidental Emamectin Benzoate poisoning in a six-year-old child resulting in nausea, vomiting, abdominal pain, and confusion. We did vigorous gastric lavage with saline, activated charcoal, and coconut oil. The other supportive treatment improved the outcome of the patient with complete resolution of symptoms.
Collapse
Affiliation(s)
| | - Dipesh Kumar Rohita
- Department of Internal MedicineBP Koirala Institute of Health SciencesDharanNepal
| | | | - Binod Paudel
- Department of Emergency MedicineGrahun Primary HospitalSyangjaNepal
| | | |
Collapse
|
88
|
El-Sharkawy HHA, Rashad YM, Elazab NT. Synergism between Streptomyces viridosporus HH1 and Rhizophagus irregularis Effectively Induces Defense Responses to Fusarium Wilt of Pea and Improves Plant Growth and Yield. J Fungi (Basel) 2022; 8:683. [PMID: 35887440 PMCID: PMC9318455 DOI: 10.3390/jof8070683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium wilt is a detrimental disease of pea crop, resulting in severe damage and a reduction in its yield. Developing synergistically enhanced bioagents for disease management and growth promotion is pivotal for food safety, security, and sustainability. In this study, biocontrol potential of treating pea plants with Streptomycesviridosporus HH1 and/or their colonization with Rhizophagusirregularis against infection with Fusarium wilt was investigated. Impacts on the expression profiles of defense-related genes, biochemical, and ultrastructural levels, as well as the growth and yield of pea plants in response to these treatments, were also investigated. Data obtained indicated the antifungal activity of S. viridosporus HH1 against F. oxysporum f.sp. pisi in vitro. Furthermore, the GC-MS analysis revealed production of different bioactive compounds by S. viridosporus HH1, including 2,3-butanediol, thioglycolic acid, and phthalic acid. The results from the greenhouse experiment exhibited a synergistic biocontrol activity, resulting in a 77% reduction in disease severity in pea plants treated with S. viridosporus HH1 and colonized with R. irregularis. In this regard, this dual treatment overexpressed the responsive factor JERF3 (5.6-fold) and the defense-related genes β-1,3-glucanase (8.2-fold) and the pathogenesis-related protein 1 (14.5-fold), enhanced the total phenolic content (99.5%), induced the antioxidant activity of peroxidase (64.3%) and polyphenol oxidase (31.6%) enzymes in pea plants, reduced the antioxidant stress, and improved their hypersensitivity at the ultrastructural level in response to the Fusarium wilt pathogen. Moreover, a synergistic growth-promoting effect was also recorded in pea plants in response to this dual treatment. In this regard, due to this dual treatment, elevated levels of photosynthetic pigments and improved growth parameters were observed in pea leaves, leading to an increment in the yield (113%). In addition, application of S. viridosporus enhanced the colonization levels with R. irregularis in pea roots. Based on the obtained data, we can conclude that treating pea plants with S. viridosporus HH1 and colonization with R. irregularis have synergistic biocontrol activity and growth-promoting effects on pea plants against Fusarium wilt. Despite its eco-safety and effectiveness, a field evaluation of this treatment before a use recommendation is quite necessary.
Collapse
Affiliation(s)
- Hany H. A. El-Sharkawy
- Mycology Research and Plant Disease Survey Department, Agricultural Research Center, Plant Pathology Research Institute, Giza 12211, Egypt;
| | - Younes M. Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
| | - Nahla T. Elazab
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
89
|
Yang M, Han X, Xie J, Zhang S, Lv Z, Li B, Shi L, Zhang K, Ge B. Field Application of Wuyiencin Against Sclerotinia Stem Rot in Soybean. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.930079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, is a devastating disease of soybean. Biological control is a potential alternative to chemical fungicides for disease management, and provides broad benefits to the environment, farmers and consumers. Herein, we established a field application technique for biocontrol of Sclerotinia stem rot in soybean using wuyiencin, expanding on a previous study showing biocontrol potential. We used wuyiencin to reduce sclerotia in soybean seed, and disease incidence analysis by seed bioassay revealed an optimal wuyiencin seed soaking concentration of 12.5 μg/mL. We found that different application methods had different effects on soybean plant growth. Soybean pot experiments showed that 100 μg/mL wuyiencin was obtained a significant disease protection effect and promote soybean growth through root irrigation, and the optimal concentration for wuyiencin spraying was 100–200 μg/mL. We tested the efficacy of applying wuyiencin under field conditions, and the protection effect of 200 μg/mL wuyiencin sprayed three times was the best (64.0%), but this was slightly inferior to the protection effect of 200 μg/mL dimethachlon (77.6%).
Collapse
|
90
|
Zhong T, Wang C, Wang X, Freitas-de-Melo A, Zeng B, Zhao Q, Zhan S, Wang L, Cao J, Dai D, Guo J, Li L, Zhang H, Niu L. Early Weaning and Milk Substitutes Affect the Gut Microbiome, Metabolomics, and Antibody Profile in Goat Kids Suffering From Diarrhea. Front Microbiol 2022; 13:904475. [PMID: 35801115 PMCID: PMC9253616 DOI: 10.3389/fmicb.2022.904475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early weaning and milk substitutes increase the incidence of diarrhea in young ruminants, which may modify their gut microbiota, metabolism, immunity, and health. The aim of the study was to determine if early weaning and milk substitutes affect the gut microbiota, metabolism, and immunological status of goat kids suffering from diarrhea. The 16S rRNA gene and metagenomic sequencing in feces and serum metabolomics of early-weaned and artificially reared goat kids suffering from diarrhea (DK group) and healthy goat kids reared by their mothers (HK group) were analyzed. The serum biochemistry and immunoglobulin concentration were also determined. Several probiotics, such as Streptococcus and Lactobacillus, were higher in the feces of the DK group than in feces of the HK group. Ruminococcus sp. was elevated in the feces of HKs, likely being a biomarker for goat health. Taking all the carbohydrate-active enzyme (CAZyme) families into consideration, 20 CAZyme families were different between the groups. Compared with the DK group, the relative quantity of glycoside hydrolases (GH) and glycosyltransferase (GT) families in the HK group decreased. GT70 was only identified in HK kids participating in the activity of β-glucuronosyltransferase during the carbohydrate metabolism. Overall, 24 metabolites were different between the groups, which were mainly involved in protein digestion and absorption, cyanoamino acid metabolism, and cholesterol metabolism. The concentrations of immunoglobulins G and M were significantly lower in the DK than in the HK group. In conclusion, our study characterized the fecal microbiota, metabolism, and immunological status of early-weaned and artificially reared goat kids suffering from diarrhea.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Cheng Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinlu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Aline Freitas-de-Melo
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
91
|
Chai CH, Hong CF, Huang JW. Identification and Characterization of a Multifunctional Biocontrol Agent, Streptomyces griseorubiginosus LJS06, Against Cucumber Anthracnose. Front Microbiol 2022; 13:923276. [PMID: 35722317 PMCID: PMC9201727 DOI: 10.3389/fmicb.2022.923276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Twenty-eight bacterial strains isolated from Chinese herb extracts, beer fermentation waste, and raw oyster shells were evaluated for their efficacy in controlling cucumber anthracnose. Four bacterial strains, namely TG01, TG02, LJS06, and LJS08, were found to effectively reduce the mycelial growth of Colletotrichum orbiculare COC3 on PDA media. Spraying or drenching LJS06 spore suspension before inoculation significantly p < 0.05 reduced disease severity; thus, LJS06 was subject to further characterization. On the basis of the morphological, physiological, and biochemical characteristics and a multilocus sequence analysis of partial 16S rRNA, atpD, rpoB, and trpB genes, LJS06 was identified to be Streptomyces griseorubiginosus (Ryabova and Preobrazhenskaya) Pridham et al. Physiological and biochemical tests revealed that S. griseorubiginosus LJS06 can produce amylase, cellulase, chitinase, protease, siderophore, polyamines, and indole-3-acetic acid. Thus, a culture filtrate of LJS06 (specifically SL06) was formulated and evaluated for its efficacy against conidial germination, appressorium formation, and anthracnose management. Diluted SL06 was found to significantly (p < 0.05) inhibit conidial germination and appressorium formation, which can be attributed to impaired membrane integrity, accumulated reactive oxygen species (ROS), and impaired energy metabolism in the conidia. In addition, the spraying and drenching of diluted SL06 before inoculation consistently and significantly (p < 0.05) reduced anthracnose severity. These results jointly suggest that S. griseorubiginosus LJS06 can aid in the management of cucumber anthracnose by directly inhibiting conidial function and priming the plant defense system.
Collapse
Affiliation(s)
- Chien Hao Chai
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Fang Hong
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Innovative and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Cheng-Fang Hong,
| | - Jenn-Wen Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Innovative and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
- Jenn-Wen Huang,
| |
Collapse
|
92
|
Streptomycetaceae and Promicromonosporaceae: Two Actinomycetes Families from Moroccan Oat Soils Enhancing Solubilization of Natural Phosphate. Microorganisms 2022; 10:microorganisms10061116. [PMID: 35744634 PMCID: PMC9230749 DOI: 10.3390/microorganisms10061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Soil actinomycetes explorations appear to be an efficient alternative as biofertilizers to optimize the use of phosphorus (P) resources and enhance plant growth. This research aimed to explore the distribution of actinomycetes isolated from four different rhizospheric Moroccan oat soils and to investigate their potential for P solubilization. The distribution of actinomycetes was significantly more abundant in Settat (9.68%), Tangier (7.38%), and Beni Mellal (6.87%) than in the Merchouch-Rabat (4.90%) region. A total of 235 actinomycete strains were isolated from all sites and tested for their ability to grow on a synthetic minimum medium (SMM) containing insoluble natural rock phosphate (RP) or synthetic tricalcium phosphate (TCP) as the unique P source. One hundred forty-three isolates (60.8%) had the ability to grow in the SMM with RP whereas only twenty-five isolates (17%) had the most active growth using the SMM with TCP. Eight isolates with the most active growth in solid SMM were selected for their P solubilization abilities in liquid SMM cultures. The highest amount of P solubilized was 163.8 µg/mL for RP and 110.27 µg/mL for TCP after 5 days of culture. The biosolubilization process of AM2, the most efficient RP and TCP solubilizing strain, probably implied the highest excretion of siderophore substances. Eight of these strains were shown to belong to the Streptomyces genus and one to the Promicromonospora genus. These findings bolster the phosphate biosolubilization abilities of actinomycetes and may participate in increasing agricultural yields in an eco-efficient and environmentally friendly manner.
Collapse
|
93
|
He Y, Guo W, Peng J, Guo J, Ma J, Wang X, Zhang C, Jia N, Wang E, Hu D, Wang Z. Volatile Organic Compounds of Streptomyces sp. TOR3209 Stimulated Tobacco Growth by Up-Regulating the Expression of Genes Related to Plant Growth and Development. Front Microbiol 2022; 13:891245. [PMID: 35668752 PMCID: PMC9164152 DOI: 10.3389/fmicb.2022.891245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
To investigate the mechanism underlying the plant growth-promoting (PGP) effects of strain Streptomyces sp. TOR3209, PGP traits responsible for indoleacetic acid production, siderophore production, and phosphate solubilization were tested by culturing the strain TOR3209 in the corresponding media. The effects of volatile organic compounds (VOCs) produced by the strain TOR3209 on plant growth were observed by co-culturing this strain with tobacco seedlings in I-plates. Meanwhile, the effects of VOCs on tobacco gene expression were estimated by performing a transcriptome analysis, and VOCs were identified by the solid-phase micro-extraction (SPME) method. The results showed positive reactions for the three tested PGP traits in the culture of strain TOR3209, while the tobacco seedlings co-cultured with strain TOR3209 revealed an increase in the fresh weight by up to 100% when compared to that of the control plants, demonstrating that the production VOCs was also a PGP trait. In transcriptome analysis, plants co-cultured with strain TOR3209 presented the highest up-regulated expression of the genes involved in plant growth and development processes, implying that the bacterial VOCs played a role as a regulator of plant gene expression. Among the VOCs produced by the strain TOR3209, two antifungal molecules, 2,4-bis(1,1-dimethylethyl)-phenol and hexanedioic acid dibutyl ester, were found as the main compounds. Conclusively, up-regulation in the expression of growth- and development-related genes via VOCs production is an important PGP mechanism in strain TOR3209. Further efforts to explore the effective VOCs and investigate the effects of the two main VOCs in the future are recommended.
Collapse
Affiliation(s)
- Yuxi He
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Wenyu Guo
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Jieli Peng
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jinying Guo
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Jia Ma
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xu Wang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Cuimian Zhang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Nan Jia
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dong Hu
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- *Correspondence: Dong Hu
| | - Zhanwu Wang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- Zhanwu Wang
| |
Collapse
|
94
|
Pérez-Corral DA, Ornelas-Paz JDJ, Olivas GI, Acosta-Muñiz CH, Salas-Marina MÁ, Berlanga-Reyes DI, Sepulveda DR, Mares-Ponce de León Y, Rios-Velasco C. Growth Promotion of Phaseolus vulgaris and Arabidopsis thaliana Seedlings by Streptomycetes Volatile Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:875. [PMID: 35406854 PMCID: PMC9002626 DOI: 10.3390/plants11070875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Streptomyces are recognized as antipathogenic agents and plant-growth-promoting rhizobacteria. The objective of this study was to evaluate the capacities of four antifungal Streptomyces strains to: produce the substances that are involved in plant growth; solubilize phosphates; and fix nitrogen. The effects of the volatile organic compounds (VOCs) that are emitted by these strains on the growth promotion of Arabidopsis thaliana and Phaseolus vulgaris L. (var. Pinto Saltillo) seedlings were also tested. All of the Streptomyces strains produced indole-3-acetic acid (IAA) (10.0 mg/L to 77.5 mg/L) and solubilized phosphates, but they did not fix nitrogen. In vitro assays showed that the VOCs from Streptomyces increased the shoot fresh weights (89-399%) and the root fresh weights (94-300%) in A. thaliana seedlings; however, these effects were less evident in P. vulgaris. In situ experiments showed that all the Streptomyces strains increased the shoot fresh weight (11.64-43.92%), the shoot length (11.39-29.01%), the root fresh weight (80.11-140.90%), the root length (40.06-59.01%), the hypocotyl diameter (up to 6.35%), and the chlorophyll content (up to 10.0%) in P. vulgaris seedlings. 3-Methyl-2-butanol had the highest effect among the ten pure VOCs on the growth promotion of A. thaliana seedlings. The tested Streptomyces strains favored biomass accumulation in A. thaliana and P. vulgaris seedlings.
Collapse
Affiliation(s)
- Daniel Alonso Pérez-Corral
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Guadalupe Isela Olivas
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Carlos Horacio Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Miguel Ángel Salas-Marina
- División de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Carretera Villacorzo-Ejido Monterrey Km 3.0., Tuxtla Gutiérrez C.P. 30520, Chiapas, Mexico;
| | - David Ignacio Berlanga-Reyes
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - David Roberto Sepulveda
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Yericka Mares-Ponce de León
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Claudio Rios-Velasco
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| |
Collapse
|
95
|
Anti-Biofilm Activity and Biocontrol Potential of Streptomyces Cultures Against Ralstonia solanacearum on Tomato Plants. Indian J Microbiol 2022; 62:32-39. [PMID: 35068601 PMCID: PMC8758874 DOI: 10.1007/s12088-021-00963-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022] Open
Abstract
Biological control of phytopathogen is a promising approach when compared to the use of chemical agents. In the present study, seven Streptomyces cultures showing promising anti biofilm activity against Ralstonia solanacearum was mixed individually with farmyard manure. All the Streptomyces fortified farmyard manure (SFYM) were screened for plant growth promotion and control of bacterial wilt caused by R. solanacearum on tomato. Further, the ability of SFYM on stimulating the production of defense-related enzymes in R. solanacearum-inoculated tomato plants was investigated. When compared to the control tomato plants, the SFYM-treated plants had longer shoot and root length along with higher fresh and dry weight. The maximum level of chlorophyll was observed in the plants treated with strain UP1A-1 (2.21 ± 0.18 mg g-1). Strain UP1A-1 also showed maximum of 96.8 ± 1.4% biocontrol efficacy in tomato plants challenged with R. solanacearum. In addition, the UP1A-1 treated tomato plants showed maximum accumulation of total phenolics (3.02 ± 0.09 mg g-1) after 6 days of pathogen inoculation (DPI). Similarly, tomato plants treated with UP1A-1 showed highest level of peroxides, polyphenol oxidase and phenylalanine ammonia lyase during 1-9 DPI. Findings of present study revealed that the Streptomyces culture UP1A-1 fortified farm yard manure could be applied as an eco-friendly alternative to synthetic agents for controlling bacterial wilt in tomato plants.
Collapse
|
96
|
Díaz-Díaz M, Bernal-Cabrera A, Trapero A, Medina-Marrero R, Sifontes-Rodríguez S, Cupull-Santana RD, García-Bernal M, Agustí-Brisach C. Characterization of Actinobacterial Strains as Potential Biocontrol Agents against Macrophomina phaseolina and Rhizoctonia solani, the Main Soil-Borne Pathogens of Phaseolus vulgaris in Cuba. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050645. [PMID: 35270115 PMCID: PMC8912743 DOI: 10.3390/plants11050645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 06/02/2023]
Abstract
Macrophomina phaseolina and Rhizoctonia solani are considered two major soil-borne pathogens of Phaseolus vulgaris in Cuba. Their management is difficult, not only due to their intrinsic biology as soil-borne pathogens, but also because the lack of active ingredients available against these pathogens. Actinobacteria, a heterogeneous bacterial group traditionally known as actinomycetes have been reported as promising biological control agents (BCAs) in crop protection. Thus, the main objective of this study was to evaluate the effectiveness of 60 actinobacterial strains as BCAs against M. phaseolina and R. solani in vitro by dual culture assays. The most effective strains were characterized according to their cellulolytic, chitinolytic and proteolytic extracellular enzymatic activity, as well as by their morphological and biochemical characters in vitro. Forty and 25 out of the 60 actinobacteria strains inhibited the mycelial growth of M. phaseolina and R. solani, respectively, and 18 of them showed a common effect against both pathogens. Significant differences were observed on their enzymatic and biochemical activity. The morphological and biochemical characters allow us to identify all our strains as species belonging to the genus Streptomyces. Streptomyces strains CBQ-EA-2 and CBQ-B-8 showed the highest effectiveness in vitro. Finally, the effect of seed treatments by both strains was also evaluated against M. phaseolina and R. solani infections in P. vulgaris cv. Quivicán seedlings. Treatments combining the two Streptomyces strains (CBQ-EA-2 + CBQ-B-8) were able to reduce significantly the disease severity for both pathogen infections in comparison with the non-treated and inoculated control. Moreover, they showed similar effect than that observed for Trichoderma harzianum A-34 and with Celest® Top 312 FS (Syngenta®; Basilea, Switzerland) treatments, which were included for comparative purposes.
Collapse
Affiliation(s)
- Miriam Díaz-Díaz
- Centro de Bioactivos Químicos (CBQ), Universidad Central “Marta Abreu” de Las Villas (UCLV), Carretera Camajuaní km 5 ½, Santa Clara 54830, Villa Clara, Cuba; (R.M.-M.); (S.S.-R.); (R.D.C.-S.); (M.G.-B.)
- Departamento de Agronomía, Unit of Excellence María de Maeztu 2020-23, Campus de Rabanales, Universidad de Córdoba, Edif. C4, 14071 Córdoba, Spain;
| | - Alexander Bernal-Cabrera
- Departamento de Agronomía, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de las Villas (UCLV), Carretera Camajuaní km 5 ½, Santa Clara 54830, Villa Clara, Cuba;
- Centro de Investigaciones Agropecuarias (CIAP), Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas (UCLV), Carretera Camajuaní km 5 ½, Santa Clara 54830, Villa Clara, Cuba
| | - Antonio Trapero
- Departamento de Agronomía, Unit of Excellence María de Maeztu 2020-23, Campus de Rabanales, Universidad de Córdoba, Edif. C4, 14071 Córdoba, Spain;
| | - Ricardo Medina-Marrero
- Centro de Bioactivos Químicos (CBQ), Universidad Central “Marta Abreu” de Las Villas (UCLV), Carretera Camajuaní km 5 ½, Santa Clara 54830, Villa Clara, Cuba; (R.M.-M.); (S.S.-R.); (R.D.C.-S.); (M.G.-B.)
| | - Sergio Sifontes-Rodríguez
- Centro de Bioactivos Químicos (CBQ), Universidad Central “Marta Abreu” de Las Villas (UCLV), Carretera Camajuaní km 5 ½, Santa Clara 54830, Villa Clara, Cuba; (R.M.-M.); (S.S.-R.); (R.D.C.-S.); (M.G.-B.)
| | - René Dionisio Cupull-Santana
- Centro de Bioactivos Químicos (CBQ), Universidad Central “Marta Abreu” de Las Villas (UCLV), Carretera Camajuaní km 5 ½, Santa Clara 54830, Villa Clara, Cuba; (R.M.-M.); (S.S.-R.); (R.D.C.-S.); (M.G.-B.)
| | - Milagro García-Bernal
- Centro de Bioactivos Químicos (CBQ), Universidad Central “Marta Abreu” de Las Villas (UCLV), Carretera Camajuaní km 5 ½, Santa Clara 54830, Villa Clara, Cuba; (R.M.-M.); (S.S.-R.); (R.D.C.-S.); (M.G.-B.)
| | - Carlos Agustí-Brisach
- Departamento de Agronomía, Unit of Excellence María de Maeztu 2020-23, Campus de Rabanales, Universidad de Córdoba, Edif. C4, 14071 Córdoba, Spain;
| |
Collapse
|
97
|
Ajilogba CF, Olanrewaju OS, Babalola OO. Plant Growth Stage Drives the Temporal and Spatial Dynamics of the Bacterial Microbiome in the Rhizosphere of Vigna subterranea. Front Microbiol 2022; 13:825377. [PMID: 35250941 PMCID: PMC8891599 DOI: 10.3389/fmicb.2022.825377] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Bambara groundnut (BGN) is an underutilized legume commonly found in sub-Saharan Africa. It thrives in marginal soils and is resistant to drought stress. Several studies have been carried out on the nutritional properties of BGN, but very little is known about the effects of plant growth changes and development on rhizosphere bacterial dynamics and function. This study reports on the bacterial dynamics and function in the bulk and rhizosphere soils of BGN at different growth stages (vegetative, flowering, pod-filling, and maturation stages). Aside from the maturation stage that shows distinct community structure from the other growth stages, results obtained showed no significant differences in bacterial community structure among the other growth stages. At a closer level, Actinobacteria, Proteobacteria, and Acidobacteria were dominant in rhizosphere soils at all growth stages. The bulk soil had the least average phyla abundance, while the maturity stage was characterized by the highest average phyla abundance. Rubrobacter, Acidobacterium, and Skermanella were the most predominant genus. It was observed from the analysis of operational taxonomic units that there was significant change in the bacterial structure of the rhizosphere with a higher abundance of potential plant growth-promoting rhizobacteria, at the different growth stages, which include the genera Bacillus and Acidobacterium. Biomarker analysis revealed 7 and 4 highly significant bacterial biomarkers by linear discriminant analysis effect size and random forest analysis at the maturation stage, respectively. The results obtained in this study demonstrated that the bacterial communities of BGN rhizosphere microbiome dynamics and function are influenced by the plant’s growth stages.
Collapse
Affiliation(s)
- Caroline Fadeke Ajilogba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Agricultural Research Council, Natural Resources and Engineering, Division of Agrometeorology, Pretoria, South Africa
| | - Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Olubukola Oluranti Babalola,
| |
Collapse
|
98
|
Zhang L, Guan Y. Microbial investigations of new hydrogel-biochar composites as soil amendments for simultaneous nitrogen-use improvement and heavy metal immobilization. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127154. [PMID: 34600389 DOI: 10.1016/j.jhazmat.2021.127154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/08/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Agricultural sustainability is challenging because of increasingly serious and co-existing issues, e.g., poor nitrogen-fertilizer use and heavy metal pollution. Herein, we introduced a new poly(acrylic acid)-grafted chitosan and biochar composite (PAA/CTS/BC) for soil amendment, and provided a first microbial insight into how PAA/CTS/BC amendment simultaneously improved nitrogen cycling and immobilized heavy metals. Our results suggest that the PAA/CTS/BC amendment significantly promoted soil ammonium retention, and reduced nitrate accumulation, nitrous oxide emission and ammonia volatilization during the rice cultivation. The availability of various heavy metals (Fe, Mn, Cu, Zn, Ni, Pb, Cr, and As) markedly decreased in the PAA/CTS/BC amended soil, thereby reducing their accumulation in rice root. The PAA/CTS/BC amendment significantly altered the structure and function of soil microbial communities. Importantly, the co-occurrence networks of microbial communities became more complex and function-specific after PAA/CTS/BC addition. For example, the keystone species related to organic matter degradation, denitrification, and plant resistance to pathogen or stresses were enriched within the network. In addition to direct adsorption, the effects of PAA/CTS/BC on shaping microbial communities played dominant roles in the soil amendment. Our findings provide a promising strategy of simultaneous nitrogen-use improvement and heavy metal immobilization for achieving crop production improvement, pollution control, and climate change mitigation.
Collapse
Affiliation(s)
- Lixun Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Department of Civil and Environmental Engineering, University of California, Irvine, CA 92612, United States
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
99
|
Antifungal volatile organic compounds from Streptomyces setonii WY228 control black spot disease of sweet potato. Appl Environ Microbiol 2022; 88:e0231721. [PMID: 35108080 DOI: 10.1128/aem.02317-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Volatile organic compounds (VOCs) produced by microorganisms are considered as promising environmental-safety fumigants for controlling postharvest diseases. Ceratocystis fimbriata, the pathogen of black spot disease, seriously affects the quality and yield of sweet potato in the field and postharvest. This study tested the effects of VOCs produced by Streptomyces setonii WY228 on the control of C. fimbriata in vitro and in vivo. The VOCs exhibited strong antifungal activity and significantly inhibited the growth of C. fimbriata. During the 20-days storage, VOCs fumigation significantly controlled the occurrence of pathogen, increased the content of antioxidant and defense-related enzymes and flavonoids, and boosted the starch content so as to maintain the quality of sweet potato. Headspace analysis showed that volatiles 2-ethyl-5-methylpyrazine and dimethyl disulfide significantly inhibited the mycelial growth and spore germination of C. fimbriata in a dose dependent manner. Fumigation with 100 μL/L 2-ethyl-5-methylpyrazine completely controlled the pathogen in vivo after 10-days storage. Transcriptome analysis showed that volatiles mainly downregulated the ribosomal synthesis genes and activated the proteasome system of pathogen in response to VOCs stress, while the genes related to spore development, cell membrane synthesis, mitochondrial function, as well as hydrolase and toxin synthesis were also downregulated, indicating that WY228-produced VOCs act diverse modes of action for pathogen control. Our study demonstrates that fumigation of sweet potato tuberous roots with S. setonii WY228 or use of formulations based on the VOCs is a promising new strategy to control sweet potato and other food and fruit pathogens during storage and shipment. Importance Black spot disease caused by Ceratocystis fimbriata has caused huge economic losses to worldwide sweet potato production. At present, the control of C. fimbriata mainly depends on toxic fungicides, and there is a lack of effective alternative strategies. The research on biological control of sweet potato black spot disease is also very limited. The development of efficient biocontrol technique against pathogens using microbial volatile organic compounds could be an alternative method to control this disease. Our study revealed the significant biological control effect of volatile organic compounds of Streptomyces setonii WY228 on black spot disease of postharvest sweet potato and the complex antifungal mechanism against C. fimbriata. Our data demonstrated that Streptomyces setonii WY228 and its volatile 2-ethyl-5-methylpyrazine could be candidate strain and compound for the creation of fumigants, and showed the important potential of biotechnology application in the field of food and agriculture.
Collapse
|
100
|
Co-elicitation of lignocelluloytic enzymatic activities and metabolites production in an Aspergillus-Streptomyces co-culture during lignocellulose fractionation. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100108. [PMID: 35243445 PMCID: PMC8861581 DOI: 10.1016/j.crmicr.2022.100108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022] Open
Abstract
An easy set-up of the co-cultures from 2 different microorganisms (filamentous fungi and bacteria) from different microbial domains resulting into a greater and more diverse metabolic and lignocellulolytic content. An over expression of several key enzymatic lignocellulolytic activities is observed during the co-coculture due to elicitation. An elicitation of some specific biosynthetic cluster genes is observed due to the activation of those the complexity of the carbon compounds present in the lignocellulose. An elicitation of some specific biosynthetic cluster genes is observed only during the co-culture experiment. A specific microbial crosstalk and interaction exists at the species level between the 3 Streptomyces and the fungi leading to a specific of lignocellulolytic enzyme and secondary metabolite production.
Lignocellulose, the most abundant biomass on Earth, is a complex recalcitrant material mainly composed of three fractions: cellulose, hemicelluloses and lignins. In nature, lignocellulose is efficiently degraded for carbon recycling. Lignocellulose degradation involves numerous microorganisms and their secreted enzymes that act in synergy. Even they are efficient, the natural processes for lignocellulose degradation are slow (weeks to months). In this study, the objective was to study the synergism of some microorganisms to achieve efficient and rapid lignocellulose degradation. Wheat bran, an abundant co-product from milling industry, was selected as lignocellulosic biomass. Mono-cultures and co-cultures involving one A.niger strain fungi never sequenced before (DSM 1957) and either one of three different Streptomyces strains were tested in order to investigate the potentiality for efficient lignocellulose degradability. Comparative genomics of the strain Aspergillus niger DSM 1957 revealed that it harboured the maximum of AA, CBM, CE and GH among its closest relative strains. The different co-cultures set-up enriched the metabolic diversity and the lignocellulolytic CAZyme content. Depending on the co-cultures, an over-expression of some enzymatic activities (xylanase, glucosidase, arabinosidase) was observed in the co-cultures compared to the mono-cultures suggesting a specific microbial cross-talk depending on the microbial partner. Moreover, metabolomics for each mono and co-culture was performed and revealed an elicitation of the production of secondary metabolites and the activation of silent biosynthetic cluster genes depending on the microbial co-culture. This opens opportunities for the bioproduction of molecules of interest from wheat bran.
Collapse
|