51
|
Hoffman JM, Tolbert MK, Promislow DEL. Demographic factors associated with joint supplement use in dogs from the Dog Aging Project. Front Vet Sci 2022; 9:906521. [PMID: 35958315 PMCID: PMC9361857 DOI: 10.3389/fvets.2022.906521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 01/29/2023] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent age-related chronic conditions that afflict companion dogs, and multiple joint supplements are available to prevent or treat OA, though the efficacy of these treatments is controversial. While the demographic factors that are associated with OA diagnosis are well established, the factors that are associated with joint supplement use are not as well studied. Using data collected from the Dog Aging Project, we analyzed owner survey responses regarding joint supplement administration and OA diagnosis for 26,951 adult dogs. In this cross-sectional analysis, logistic regression models and odds-ratios (OR) were employed to determine demographic factors of dogs and their owners that were associated with joint supplement administration. Forty percent of adult dogs in our population were given some type of joint supplement. Perhaps not surprisingly, dogs of older age, larger size, and those that were ever overweight were more likely to receive a joint supplement. Younger owner age, urban living, owner education, and feeding commercial dry food were associated with a reduced likelihood of administration of joint supplements to dogs. Interestingly, mixed breed dogs were also less likely to be administered a joint supplement (OR: 0.73). Dogs with a clinical diagnosis of OA were more likely to receive a joint supplement than those without a reported OA diagnosis (OR: 3.82). Neutered dogs were more likely to have a diagnosis of OA, even after controlling for other demographic factors, yet their prevalence of joint supplement administration was the same as intact dogs. Overall, joint supplement use appears to be high in our large population of dogs in the United States. Prospective studies are needed to determine if joint supplements are more commonly administered as a preventative for OA or after an OA clinical diagnosis.
Collapse
Affiliation(s)
- Jessica M Hoffman
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - M Katherine Tolbert
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Daniel E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States.,Department of Biology, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
52
|
Ren XB, Zhao J, Liang XF, Guo XD, Jiang SB, Xiang YZ. Identification TRIM46 as a Potential Biomarker and Therapeutic Target for Clear Cell Renal Cell Carcinoma Through Comprehensive Bioinformatics Analyses. Front Med (Lausanne) 2021; 8:785331. [PMID: 34881275 PMCID: PMC8645697 DOI: 10.3389/fmed.2021.785331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Tripartite motif containing 46 was initially identified as the oncogene in several human tumors. However, the clinical value and potential functions of tripartite motif containing 46 (TRIM46) in clear cell renal cell carcinoma (ccRCC) remained largely unclear. Methods: The expressing patterns, clinical involvement, and prognostic values of TRIM46 were analyzed using the data obtained from TCGA and GEO databases. A nomogram was constructed to examine the outcome of patients with ccRCC. We estimated the association between TRIM46 with tumor immunity in ccRCC. Results: Tripartite motif containing 46 was highly expressed in ccRCC, and its upregulation revealed an unfavorable prognosis. A nomogram based on TRIM46 expressions and other independent prognostic factors could robustly predict the overall survival of tumor patients. TRIM46 has a strong positive correlation with NUMBL, CACNB1, THBS3, ROBO3, MAP3K12, ANKRD13D, PIF1, PRELID3A, ANKRD13B, and PCNX2. Mechanically, TRIM46 displayed regulatory functions in ccRCC progression via several tumor-associated pathways. Besides, we observed that TRIM46 was distinctly related to tumor immunity in ccRCC. Conclusions: Our findings provide a novel tumor promotive role regarding TRIM46 function in the malignant progression of ccRCC.
Collapse
Affiliation(s)
- Xiang-Bin Ren
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Zhao
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xue-Feng Liang
- Department of Blood Supply, Shandong Blood Center, Jinan, China
| | - Xu-Dong Guo
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shao-Bo Jiang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu-Zhu Xiang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
53
|
Low molecular weight chondroitin sulfate ameliorates pathological changes in 5XFAD mice by improving various functions in the brain. Neuropharmacology 2021; 199:108796. [PMID: 34543632 DOI: 10.1016/j.neuropharm.2021.108796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
Our previous study found that low molecular weight chondroitin sulfate (LMWCS) had neuroprotective effects against the toxicity of amyloid-β (Aβ) peptides both in vitro and in vivo, and we speculated that the effects might be related with its anti-oxidative activities. In this study, the anti-Alzheimer's disease (AD) activity of LMWCS was further studied in 5XFAD transgenic mice. After 4-month gavage, the levels of Aβ1-42 level, amyloid precursor protein (APP) and presenilin 1 (PS1) were significantly decreased in the brains of 5XFAD mice, indicating the alteration of APP metabolism by LMWCS. Besides, LMWCS inhibited the secretions of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6. Furthermore, the suppression of neuroinflammation by LMWCS was supported by the decreased expressions of glial fibrillary acidic protein (GFAP) and toll-like receptor 2 (TLR2) in the brains. LMWCS also reduced the production of reactive oxygen species (ROS) and the level of phospho-tau (Ser404) in the brains. Nevertheless, the changes in the behavior tests were moderate. In conclusion, LMWCS administration ameliorated APP metabolism, neuroinflammation, ROS production and tau protein abnormality in the brains of 5XFAD mice, displaying the potential to improve the pathological changes of AD mouse brain. LMWCS could be considered as a promising anti-AD drug candidate, nonetheless, the therapy regimen need to be optimized to improve its pharmacotherapy efficacy.
Collapse
|
54
|
Dunlap B, Patterson GT, Kumar S, Vyavahare S, Mishra S, Isales C, Fulzele S. Vitamin C supplementation for the treatment of osteoarthritis: perspectives on the past, present, and future. Ther Adv Chronic Dis 2021; 12:20406223211047026. [PMID: 34729150 PMCID: PMC8543556 DOI: 10.1177/20406223211047026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022] Open
Abstract
According to the US Centers for Disease Control and Prevention (CDC), an estimated 14% of adults in the United States have either been diagnosed with osteoarthritis (OA) or have symptoms suggestive of the disease. The CDC also points out that the incidence of OA has been gradually increasing over the past 30 years. What is more worrisome is that this trend is going to accelerate due to the aging demographics of the United States and the increasing prevalence of obesity seen in the country. The need for better preventive treatments and efficacious therapeutics are direly needed to combat this public health crisis. Among the possible treatments being hypothesized, antioxidant supplementation has become one of the most widely studied over the past decade due to its ability to attenuate reactive oxygen species (ROS) formation within chondrocytes, a critical step in the pathogenesis of this disease. Vitamin C has emerged as among the most promising of the antioxidant group, with many animal and human studies having been conducted in recent years. Although many of the studies have shown encouraging results in terms of preventing OA, others have reached opposite conclusions, thus making the data controversial. However, after reviewing several of these studies, we hypothesize that certain parameters may not have been properly considered during data collection. In the end, more randomized placebo-controlled trials in humans are desperately needed in order to fully understand whether vitamin C therapy is efficacious in treating and/or preventing OA.
Collapse
Affiliation(s)
- Burton Dunlap
- The University of Tennessee Health Science Center, Chattanooga, TN, USA
| | | | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Samarth Mishra
- Department of the College of Science and Mathematics, Augusta University, Augusta, GA, USA
| | - Carlos Isales
- Department of Orthopaedics, Augusta University, Augusta, GA, USA
- Department of Medicine, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA 30904, USA
- Department of Orthopaedics, Augusta University, Augusta, GA, USA
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| |
Collapse
|
55
|
Liang CF, Hahm HS, Sabbavarapu NM, Seeberger PH. Automated Synthesis of Chondroitin Sulfate Oligosaccharides. Methods Mol Biol 2021; 2303:319-327. [PMID: 34626390 DOI: 10.1007/978-1-0716-1398-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Glycosaminoglycans (GAGs) are important sulfated carbohydrates prevalently found in the extracellular matrix that serve many biological functions. The synthesis of structurally diverse but defined GAGs is extremely challenging as one has to account for the various sulfation patterns. Described is the automated synthesis of chondroitin sulfate hexasaccharides on a solid support equipped with a photolabile linker. The linker cleavage from the resin is performed in a continuous-flow photoreactor under chemically mild conditions. This approach serves as a general scheme to access oligosaccharides of all GAG families.
Collapse
Affiliation(s)
- Chien-Fu Liang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Heung Sik Hahm
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
56
|
Exploiting diol reactivity for the access to unprecedented low molecular weight curdlan sulfate polysaccharides. Carbohydr Polym 2021; 269:118324. [PMID: 34294336 DOI: 10.1016/j.carbpol.2021.118324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022]
Abstract
Curdlan is a bacterial sourced polysaccharide, consisting of a linear backbone of β-1 → 3-linked glucose (Glc) units. The high interest in pharmaceutical applications of curdlan and derivatives thereof is fueling the study of multi-step sequences for regioselective modifications of its structure. Here we have developed semi-synthetic sequences based on a regioselective protection-sulfation-deprotection approach, allowing the access to some, new, low molecular weight curdlan polysaccharide derivatives with unprecedented sulfation patterns. Three different semi-synthetic schemes were investigated, all relying upon the installation of a cyclic benzylidene protecting group on Glc O-4,6-diols, followed by either direct sulfation and deprotection, or some additional steps - including a hydrolytic or oxidative cleavage of the benzylidene rings - prior to sulfation and deprotection. The six obtained polysaccharides were subjected to a detailed structural characterization by 2D-NMR analysis, revealing that some of them showed the majority of Glc units along the polymeric backbone decorated by unprecedented sulfation motifs.
Collapse
|
57
|
Liu J, Tian Z, Liu T, Wen D, Ma Z, Liu Y, Zhu J. CHSY1 is upregulated and acts as tumor promotor in gastric cancer through regulating cell proliferation, apoptosis, and migration. Cell Cycle 2021; 20:1861-1874. [PMID: 34412565 DOI: 10.1080/15384101.2021.1963553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gastric cancer is one of the most frequently diagnosed malignant tumors, with rapid progression and poor prognosis. The role of chondroitin sulfate synthase 1 (CHSY1) in the development and progression of gastric cancer was explored and clarified in this study. The immunohistochemistry analysis of clinical tissue samples as well as data mining of public database showed that CHSY1 was significantly upregulated in gastric cancer and associated with more advanced tumor stage and poorer prognosis. In vitro loss-of-function experiments demonstrated the inhibited cell proliferation, colony formation, cell migration, as well as the promoted cell apoptosis by CHSY1 knockdown. Moreover, recovery of CHSY1 expression could attenuate the regulatory effects induced by CHSY1 knockdown. Correspondingly, gastric cancer cells with CHSY1 knockdown showed reduced tumorigenicity and slower tumor growth in vivo. In conclusion, this study identified CHSY1 as a tumor promotor in gastric cancer, which may be utilized as a novel indicator of patients' prognosis and therapeutic target for developing more effective drug for GC treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhenwei Tian
- Intensive Care Unit, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tianzhou Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dacheng Wen
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiming Ma
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaming Zhu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
58
|
Identification and Biochemical Characterization of a Surfactant-Tolerant Chondroitinase VhChlABC from Vibrio hyugaensis LWW-1. Mar Drugs 2021; 19:md19070399. [PMID: 34356824 PMCID: PMC8306027 DOI: 10.3390/md19070399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Chondroitinases, catalyzing the degradation of chondroitin sulfate (CS) into oligosaccharides, not only play a crucial role in understanding the structure and function of CS, but also have been reported as a potential candidate drug for the treatment of high CS-related diseases. Here, a marine bacterium Vibrio hyugaensis LWW-1 was isolated, and its genome was sequenced and annotated. A chondroitinase, VhChlABC, was found to belong to the second subfamily of polysaccharide lyase (PL) family 8. VhChlABC was recombinant expressed and characterized. It could specifically degrade CS-A, CS-B, and CS-C, and reached the maximum activity at pH 7.0 and 40 °C in the presence of 0.25 M NaCl. VhChlABC showed high stability within 8 h under 37 °C and within 2 h under 40 °C. VhChlABC was stable in a wide range of pH (5.0~10.6) at 4 °C. Unlike most chondroitinases, VhChlABC showed high surfactant tolerance, which might provide a good tool for removing extracellular CS proteoglycans (CSPGs) of lung cancer under the stress of pulmonary surfactant. VhChlABC completely degraded CS to disaccharide by the exolytic mode. This research expanded the research and application system of chondroitinases.
Collapse
|
59
|
Li X, Dai B, Guo J, Zheng L, Guo Q, Peng J, Xu J, Qin L. Nanoparticle-Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy. NANO-MICRO LETTERS 2021; 13:149. [PMID: 34160733 PMCID: PMC8222488 DOI: 10.1007/s40820-021-00670-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
Osteoarthritis is the most prevalent chronic and debilitating joint disease, resulting in huge medical and socioeconomic burdens. Intra-articular administration of agents is clinically used for pain management. However, the effectiveness is inapparent caused by the rapid clearance of agents. To overcome this issue, nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents. Given the therapeutic programs are inseparable from pathological progress of osteoarthritis, an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders. In this review, we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release. Then, we review the interactions of nanoparticles with cartilage microenvironment and the rational design. Furthermore, we highlight advances in the therapeutic schemes according to the pathology signals. Finally, armed with an updated understanding of the pathological mechanisms, we place an emphasis on the development of "smart" bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals. We anticipate that the exploration of nanoparticles by balancing the efficacy, safety, and complexity will lay down a solid foundation tangible for clinical translation.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Quanyi Guo
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
60
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
61
|
Stellavato A, Restaino OF, Vassallo V, Cassese E, Finamore R, Ruosi C, Schiraldi C. Chondroitin Sulfate in USA Dietary Supplements in Comparison to Pharma Grade Products: Analytical Fingerprint and Potential Anti-Inflammatory Effect on Human Osteoartritic Chondrocytes and Synoviocytes. Pharmaceutics 2021; 13:pharmaceutics13050737. [PMID: 34067775 PMCID: PMC8156081 DOI: 10.3390/pharmaceutics13050737] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
The biological activity of chondroitin sulfate (CS) and glucosamine (GlcN) food supplements (FS), sold in USA against osteoarthritis, might depend on the effective CS and GlcN contents and on the CS structural characteristics. In this paper three USA FS were compared to two pharmaceutical products (Ph). Analyses performed by HPAE-PAD, by HPCE and by SEC-TDA revealed that the CS and GlcN titers were up to −68.8% lower than the contents declared on the labels and that CS of mixed animal origin and variable molecular weights was present together with undesired keratan sulfate. Simulated gastric and intestinal digestions were performed in vitro to evaluate the real CS amount that may reach the gut as biopolymer. Chondrocytes and synoviocytes primary cells derived from human pathological joints were used to assess: cell viability, modulation of the NF-κB, quantification of cartilage oligomeric matrix protein (COMP-2), hyaluronate synthase enzyme (HAS-1), pentraxin (PTX-3) and the secreted IL-6 and IL-8 to assess inflammation. Of the three FS tested only one (US FS1) enhanced chondrocytes viability, while all of them supported synoviocytes growth. Although US FS1 proved to be less effective than Ph as it reduced NF-kB, it could not down-regulate COMP-2; HAS-1 was up-regulated but with a lower efficacy. Inflammatory cytokines were markedly reduced by Ph while a slight decrease was only found for US-FS1.
Collapse
Affiliation(s)
- Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
| | - Odile Francesca Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
| | - Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
| | - Elisabetta Cassese
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
| | - Rosario Finamore
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
| | - Carlo Ruosi
- Department of Public Health, School of Medicine and Surgery “Federico II” of Naples, A.O.U. Federico II of Naples, 80131 Naples, Italy;
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
- Correspondence: ; Tel.: +39-081-566-7546
| |
Collapse
|
62
|
KOROTKYI OH, DVORSHCHENKO KO, KOT LI, TYMOSHENKO MO, SAVCHUK OM, ABENAVOLI L, OSTAPCHENKO LI. The combination of chondroitin sulfate and probiotic prevents oxidative stress in the serum of rats with experimental osteoarthritis. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2021. [DOI: 10.23736/s2724-542x.21.02774-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
63
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
64
|
Bilal M, Nunes LV, Duarte MTS, Ferreira LFR, Soriano RN, Iqbal HMN. Exploitation of Marine-Derived Robust Biological Molecules to Manage Inflammatory Bowel Disease. Mar Drugs 2021; 19:md19040196. [PMID: 33808253 PMCID: PMC8067156 DOI: 10.3390/md19040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Naturally occurring biological entities with extractable and tunable structural and functional characteristics, along with therapeutic attributes, are of supreme interest for strengthening the twenty-first-century biomedical settings. Irrespective of ongoing technological and clinical advancement, traditional medicinal practices to address and manage inflammatory bowel disease (IBD) are inefficient and the effect of the administered therapeutic cues is limited. The reasonable immune response or invasion should also be circumvented for successful clinical translation of engineered cues as highly efficient and robust bioactive entities. In this context, research is underway worldwide, and researchers have redirected or regained their interests in valorizing the naturally occurring biological entities/resources, for example, algal biome so-called "treasure of untouched or underexploited sources". Algal biome from the marine environment is an immense source of excellence that has also been demonstrated as a source of bioactive compounds with unique chemical, structural, and functional features. Moreover, the molecular modeling and synthesis of new drugs based on marine-derived therapeutic and biological cues can show greater efficacy and specificity for the therapeutics. Herein, an effort has been made to cover the existing literature gap on the exploitation of naturally occurring biological entities/resources to address and efficiently manage IBD. Following a brief background study, a focus was given to design characteristics, performance evaluation of engineered cues, and point-of-care IBD therapeutics of diverse bioactive compounds from the algal biome. Noteworthy potentialities of marine-derived biologically active compounds have also been spotlighted to underlying the impact role of bio-active elements with the related pathways. The current review is also focused on the applied standpoint and clinical translation of marine-derived bioactive compounds. Furthermore, a detailed overview of clinical applications and future perspectives are also given in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Correspondence: or (M.B.); (H.M.N.I.)
| | - Leonardo Vieira Nunes
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora-MG 36036-900, Brazil;
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil;
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares-MG 35010-180, Brazil;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Correspondence: or (M.B.); (H.M.N.I.)
| |
Collapse
|
65
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
66
|
Duan X, Yang J, Jiang B, Duan W, Wei R, Zhang H, Mao X. Identification of chondroitin polymerizing factor (CHPF) as tumor promotor in cholangiocarcinoma through regulating cell proliferation, cell apoptosis and cell migration. Cell Cycle 2021; 20:591-602. [PMID: 33651657 DOI: 10.1080/15384101.2021.1890951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a variety of biliary epithelial tumors involving intrahepatic, perihilar and distal bile duct. It is the most common malignant bile duct tumor in the liver and the second most common primary liver cancer, whose molecular mechanism not fully understood. Specifically, the relationship between CCA and chondroitin polymerizing factor (CHPF) is still not clear. In this study, detection of clinical specimens was performed to preliminarily study the role of CHPF in CCA. CCA cells with CHPF knockdown were constructed for in vitro study, which was also used in the construction of mice xenograft model for investigating the role of CHPF in the development of CCA. The results demonstrated that CHPF was significantly upregulated in CCA tissues compared with normal tissues. High expression of CHPF was correlated with more advanced tumor grade. Moreover, knockdown of CHPF significantly inhibited cell proliferation, cell migration, promoted cell apoptosis and arrest cell cycle in G2 phase in vitro, as well as suppressed tumor growth in vivo. In conclusion, CHPF was identified as a tumor promotor in the development and metastasis of CCA, which may provide a novel therapeutic target for the targeted therapy against CCA.
Collapse
Affiliation(s)
- Xiaohui Duan
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Research Laboratory of Hepatobiliary Tumor,Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Clinical Medical Research Center for Biliary Disease of Hunan Province, Changsha, China
| | - Jianhui Yang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Research Laboratory of Hepatobiliary Tumor,Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Clinical Medical Research Center for Biliary Disease of Hunan Province, Changsha, China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Research Laboratory of Hepatobiliary Tumor,Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Clinical Medical Research Center for Biliary Disease of Hunan Province, Changsha, China
| | - Wenbin Duan
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Research Laboratory of Hepatobiliary Tumor,Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Clinical Medical Research Center for Biliary Disease of Hunan Province, Changsha, China
| | - Rongguang Wei
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Research Laboratory of Hepatobiliary Tumor,Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Clinical Medical Research Center for Biliary Disease of Hunan Province, Changsha, China
| | - Hui Zhang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Research Laboratory of Hepatobiliary Tumor,Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Clinical Medical Research Center for Biliary Disease of Hunan Province, Changsha, China
| | - Xianhai Mao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Research Laboratory of Hepatobiliary Tumor,Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.,Clinical Medical Research Center for Biliary Disease of Hunan Province, Changsha, China.,Laboratory of Hepatobiliary Molecular Oncology, Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
67
|
Badri A, Williams A, Awofiranye A, Datta P, Xia K, He W, Fraser K, Dordick JS, Linhardt RJ, Koffas MAG. Complete biosynthesis of a sulfated chondroitin in Escherichia coli. Nat Commun 2021; 12:1389. [PMID: 33654100 PMCID: PMC7925653 DOI: 10.1038/s41467-021-21692-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Sulfated glycosaminoglycans (GAGs) are a class of important biologics that are currently manufactured by extraction from animal tissues. Although such methods are unsustainable and prone to contamination, animal-free production methods have not emerged as competitive alternatives due to complexities in scale-up, requirement for multiple stages and cost of co-factors and purification. Here, we demonstrate the development of single microbial cell factories capable of complete, one-step biosynthesis of chondroitin sulfate (CS), a type of GAG. We engineer E. coli to produce all three required components for CS production–chondroitin, sulfate donor and sulfotransferase. In this way, we achieve intracellular CS production of ~27 μg/g dry-cell-weight with about 96% of the disaccharides sulfated. We further explore four different factors that can affect the sulfation levels of this microbial product. Overall, this is a demonstration of simple, one-step microbial production of a sulfated GAG and marks an important step in the animal-free production of these molecules. Chondroitin sulfate (CS) is a type of sulfated glycosaminoglycan that is manufactured by extraction from animal tissues for the treatment of osteoarthritis and in drug delivery applications. Here, the authors report the development of single microbial cell factories capable of compete, one-step biosynthesis of animal-free CS production in E. coli.
Collapse
Affiliation(s)
- Abinaya Badri
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Asher Williams
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Adeola Awofiranye
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Payel Datta
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ke Xia
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Wenqin He
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith Fraser
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA. .,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
68
|
Bilal M, Qindeel M, Nunes LV, Duarte MTS, Ferreira LFR, Soriano RN, Iqbal HMN. Marine-Derived Biologically Active Compounds for the Potential Treatment of Rheumatoid Arthritis. Mar Drugs 2020; 19:10. [PMID: 33383638 PMCID: PMC7823916 DOI: 10.3390/md19010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease with a prevalence rate of up to 1% and is significantly considered a common worldwide public health concern. Commercially, several traditional formulations are available to treat RA to some extent. However, these synthetic compounds exert toxicity and considerable side effects even at lower therapeutic concentrations. Considering the above-mentioned critiques, research is underway around the world in finding and exploiting potential alternatives. For instance, marine-derived biologically active compounds have gained much interest and are thus being extensively utilized to confront the confines of in practice counterparts, which have become ineffective for 21st-century medical settings. The utilization of naturally available bioactive compounds and their derivatives can minimize these synthetic compounds' problems to treat RA. Several marine-derived compounds exhibit anti-inflammatory and antioxidant properties and can be effectively used for therapeutic purposes against RA. The results of several studies ensured that the extraction of biologically active compounds from marine sources could provide a new and safe source for drug development against RA. Finally, current challenges, gaps, and future perspectives have been included in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Leonardo Vieira Nunes
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora-MG 36036-900, Brazil;
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil;
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares-MG 35010-180, Brazil;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
69
|
Konar M, Sahoo H. Exploring the chemistry behind protein-glycosaminoglycan conjugate: A steady-state and kinetic spectroscopy based approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118726. [PMID: 32745937 DOI: 10.1016/j.saa.2020.118726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The impact of glycosaminoglycan (chondroitin sulphate, CS) on bone morphogenetic protein - 2 (BMP - 2) structure, stability (thermal and chemical), association kinetics and conformation was monitored by multiple spectroscopic techniques (UV-Visible, fluorescence and circular dichroism). The absorbance in peptide region and fluorescence intensity of BMP - 2 was quenched in presence of CS; thus, confirming the formation of a ground-state complex. As there was an increase in Stern-Volmer constant observed as a function of temperature, idea of dynamic quenching was established. However, the negligible changes in lifetime indicated static quenching; thus, making the process a combination of static-dynamic quenching. Basically, the protein - glycan interaction was driven by entropy of the system and mediated by hydrophobic interactions. Secondary structure (CD spectroscopy) of native protein was significantly affected (intensity became more negative) in presence of CS, thus, introducing more compactness in the protein. CS infused thermal and chemical stability into BMP - 2 via alteration in its conformation. The rate of association was inversely proportional to concentration of quencher (CS), which confirmed the correlation between large size (~ 5 times the size of protein) and structural complexity of CS with fewer binding sites present in BMP - 2. The rate of association in presence of urea, suggested a decrease in association rate as a function of urea concentration for 15 μM CS. Experimental evidences suggested an interaction between protein and glycan mediated by hydrophobic interactions, which deciphers structural, thermal and chemical stability into protein.
Collapse
Affiliation(s)
- Monidipa Konar
- Biophysical Chemistry Lab, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Harekrushna Sahoo
- Biophysical Chemistry Lab, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
70
|
Feng X, Zhou T, Xu P, Ye J, Gou Z, Gao C. Enhanced regeneration of osteochondral defects by using an aggrecanase-1 responsively degradable and N-cadherin mimetic peptide-conjugated hydrogel loaded with BMSCs. Biomater Sci 2020; 8:2212-2226. [PMID: 32119015 DOI: 10.1039/d0bm00068j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to the poor self-repair capabilities of articular cartilage, chondral or osteochondral injuries are difficult to be recovered. In this study, an N-cadherin mimetic peptide sequence HAVDIGGGC (HAV) was conjugated to direct cell-cell interactions, and an aggrecanase-1 cleavable peptide sequence CRDTEGE-ARGSVIDRC (ACpep) was used to crosslink hyperbranched PEG-based multi-acrylate polymer (HBPEG) with cysteamine-modified chondroitin sulfate (Cys-CS), obtaining an aggrecanase-1 responsively degradable and HAV-conjugated hydrogel ((HAV-HBPEG)-CS-ACpep). A HBPEG-CS-ACpep hydrogel without the HAV motif was also prepared. The two hydrogels exhibited similar equilibrium swelling ratios, elastic moduli and pore sizes after lyophilization, indicating the negligible influence of conjugated HAV on the crosslinking networks and mechanical properties of the hydrogels. After being degraded in PBS, aggrecanase-1 (ADAMTS4) and trypsin, the HBPEG-CS-ACpep hydrogel exhibited significantly decreased elastic moduli with a much lower value when incubated in enzyme solutions. The two hydrogels could maintain the viability of encapsulated bone marrow-derived mesenchymal stem cells (BMSCs), and the (HAV-HBPEG)-CS-ACpep hydrogel better promoted the cell-cell interactions. After being implanted into osteochondral defects in rabbits for 18 weeks, the two cell-laden hydrogel groups achieved better repair effects than the blank control group. Moreover, hyaline cartilage was formed in the (HAV-HBPEG)-CS-ACpep/BMSCs hydrogel group, while a hybrid of hyaline cartilage and fibrocartilage was found in the HBPEG-CS-ACpep/BMSCs hydrogel group.
Collapse
Affiliation(s)
- Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Peifang Xu
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, PR China
| | - Juan Ye
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, PR China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
71
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
72
|
Zhao N, Meng J, Jiang W, Xu W, Liu C, Wang F. Study on the relationships between molecular weights of chondroitin sulfate oligosaccharides and Aβ-induced oxidative stress and the related mechanisms. Glycobiology 2020; 31:492-507. [PMID: 33043980 DOI: 10.1093/glycob/cwaa096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, we studied anti-Alzheimer's disease (AD) activities of chondroitin sulfate (CS) oligosaccharides with different molecular weights. CS from shark cartilage was degraded by a recombinant CS endolyase, chondroitinase ABC I (CHSase ABC I), and CS disaccharide (DP2), tetrasaccharide (DP4), hexasaccharide (DP6), octasaccharide (DP8), decasaccharide (DP10) and dodecasaccharide (DP12) were obtained by separation with gel filtration. Anti-AD activities of CS oligosaccharides were assessed using Aβ-injured SH-SY5Y cells and BV2 cells. It was shown that CS oligosaccharides could block Aβ-induced oxidative stress, mitochondrial dysfunction and activation of intrinsic apoptotic pathway for SH-SY5Y cells. Furthermore, these activities increased with the increase of molecular weights. For Aβ-injured BV2 cells, CS oligosaccharides inhibited oxidative stress, the production of proinflammatory cytokines and the activation of toll-like receptor pathway, and CS DP2 had the best activity among them. In conclusion, CS oligosaccharides suppressed Aβ-induced oxidative stress and relevant injury in vitro, and these effects had different relationships with the molecular weights of CS oligosaccharides for different cell lines, which might be caused by different mechanisms.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Jie Meng
- School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Wenjie Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Wenjia Xu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Chunhui Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China.,Laboratory of Carbohydrate Chemistry and Glycobiology, National Glycoengineering Research Center, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
73
|
Analysis of Chondroitin/Dermatan Sulphate Disaccharides Using High-Performance Liquid Chromatography. SEPARATIONS 2020. [DOI: 10.3390/separations7030049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chondroitin sulphates belong to a group of naturally occurring glycosaminoglycans and play a role in many physiological processes including ageing and the effects of various diseases. Research into chondroitin sulphates has found that the most important analytes are 4- and 6-sulphated disaccharides. We developed an HPLC method for the separation and quantification of underivatized chondroitin/dermatan sulphates—unsaturated disaccharides (4- and 6-sulphated disaccharides). This method is based on the separation of disaccharides by amido as well as amino columns under acidic conditions. These columns enabled the successful separation of 4- and 6-sulphated disaccharides using 50 (amido column) and 25 mmol/L (amino column) phosphate buffer, pH 4.25 (detection at 230 nm), at retention times of less than 10 min. The limit of quantification was 0.5 μg/mL. The applicability of this method was demonstrated through analysis of unsaturated disaccharides produced from the enzymatic digestion of chondroitin/dermatan sulphates of the solubilized extracellular matrix produced from porcine urinary bladder and human umbilical cord.
Collapse
|
74
|
Hayes AJ, Melrose J. Electro‐Stimulation, a Promising Therapeutic Treatment Modality for Tissue Repair: Emerging Roles of Sulfated Glycosaminoglycans as Electro‐Regulatory Mediators of Intrinsic Repair Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub Cardiff School of Biosciences Cardiff University Cardiff Wales CF10 3AX UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory Kolling Institute Northern Sydney Local Health District Faculty of Medicine and Health University of Sydney Royal North Shore Hospital St. Leonards NSW 2065 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
75
|
Min D, Park S, Kim H, Lee SH, Ahn Y, Jung W, Kim HJ, Cho YW. Potential anti-ageing effect of chondroitin sulphate through skin regeneration. Int J Cosmet Sci 2020; 42:520-527. [PMID: 32583476 DOI: 10.1111/ics.12645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/03/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Skin ageing is inevitably exposed through its typical features such as wrinkles and sagging. Therefore, skin anti-ageing is a major issue in cosmetic research to prevent and improve ageing symptoms using effective ingredients. Chondroitin sulphate (CS), a type of glycosaminoglycan, is an important structural component of the extracellular matrix (ECM) and is involved in various biological processes, such as cell proliferation, differentiation and migration. Here, we aimed to investigate the effects of CS on skin regeneration and examine its efficacy as a potential safe and effective skin anti-ageing ingredient. METHODS We investigated the effects of CS on cell proliferation in normal human keratinocytes and fibroblasts. Then, cell migration, ECM synthesis and related signalling pathways were examined in fibroblasts through gene and protein expression analysis. Finally, the effect on skin wound healing and regeneration was validated using a full-thickness skin wound model and an aged skin model. RESULTS Chondroitin sulphate treatment increased the proliferation of keratinocytes and fibroblasts. It also stimulated the migration and synthesis of ECM components of fibroblasts. Further analysis revealed that CS induced the expression of type I procollagen by activating the extracellular signal-regulated kinase pathway. Using a full-thickness skin wound model and an aged skin model, we confirmed that CS treatment promoted skin wound healing and regeneration. CONCLUSION Together, our results indicated that CS has the potential to facilitate skin regeneration, implying that CS could be clinically applied to improve skin ageing.
Collapse
Affiliation(s)
- D Min
- Basic Research & Innovation Division, AMOREPACIFIC R&D Unit, Yongin, Republic of Korea.,Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - S Park
- Basic Research & Innovation Division, AMOREPACIFIC R&D Unit, Yongin, Republic of Korea
| | - H Kim
- AMOREPACIFIC R&D Unit, Yongin, Republic of Korea
| | - S H Lee
- Basic Research & Innovation Division, AMOREPACIFIC R&D Unit, Yongin, Republic of Korea
| | - Y Ahn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - W Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - H-J Kim
- Basic Research & Innovation Division, AMOREPACIFIC R&D Unit, Yongin, Republic of Korea
| | - Y W Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
76
|
Li C, Wang K, Li T, Zhou X, Ma Z, Deng C, He C, Wang B, Wang J. Patient-specific Scaffolds with a Biomimetic Gradient Environment for Articular Cartilage–Subchondral Bone Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:4820-4831. [DOI: 10.1021/acsabm.0c00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cuidi Li
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tao Li
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaojun Zhou
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201600, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Changxu Deng
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chuanglong He
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201600, China
| | - Ben Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
77
|
Zou Y, Liu Q, Guo P, Huang Y, Ye Z, Hu J. Anti‑chondrocyte apoptosis effect of genistein in treating inflammation‑induced osteoarthritis. Mol Med Rep 2020; 22:2032-2042. [PMID: 32582961 PMCID: PMC7411358 DOI: 10.3892/mmr.2020.11254] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a chronic disease that is mainly characterized by chondrocyte degeneration. Inflammatory mediators participate in the development of OA, leading to chondrocyte apoptosis and destruction of the cartilage. Genistein is the major active component of isoflavone, with a chemical composition and a biological effect that is similar to that of estrogens, which prevents the degradation of cartilage; however, its underlying mechanisms of action remain unknown. The aim of the present study was to investigate the anti-apoptotic effects of genistein on chondrocytes for the treatment of inflammation-induced OA. Interleukin (IL)-1β was used to establish a chondrocyte OA model. After treatment with different concentrations of genistein, western blotting identified that expression levels of collagen II and aggrecan were increased in a concentration-dependent manner, while caspase 3 expression gradually decreased after genistein application. Moreover, flow cytometry and ELISA results demonstrated that genistein could decrease chondrocyte apoptosis and reduce the levels of tumor necrosis factor (TNF)-α in a dose-dependent manner. Furthermore, the in vitro data were evaluated in an OA rat model. Genistein increased the collagen and acid glycosaminoglycan content, as well as decreased the levels of TNF-α and IL-1β. Genistein also promoted the expression levels of collagen II and aggrecan in the articular cartilage, and decreased the expression of caspase 3, thus alleviating cartilage degradation. In conclusion, the results indicated that genistein mediated inflammation and had an anti-apoptotic role in treating OA. Therefore, genistein may serve as an alternative treatment for OA.
Collapse
Affiliation(s)
- Yang Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Qiming Liu
- Department of Orthopedics Surgery, Fuyang Orthopedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Piaoting Guo
- Department of General Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Yang Huang
- Department of Orthopedics, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Zhengcong Ye
- Department of Orthopedics, Xiaoshan Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Jiong Hu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| |
Collapse
|
78
|
Jakubčinová J, Kozmon S, Šesták S, Baráth M. Novel 1‐ O‐Sulfono‐α‐ d‐Fructofuranosyl Sulfones as Possible Inhibitors of Human GnT‐I Enzyme. ChemistrySelect 2020. [DOI: 10.1002/slct.202001098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jana Jakubčinová
- Institution of ChemistrySlovak Academy of Sciences Dúbravská cesta 9 84538 Bratislava Slovakia
| | - Stanislav Kozmon
- Institution of ChemistrySlovak Academy of Sciences Dúbravská cesta 9 84538 Bratislava Slovakia
| | - Sergej Šesták
- Institution of ChemistrySlovak Academy of Sciences Dúbravská cesta 9 84538 Bratislava Slovakia
| | - Marek Baráth
- Institution of ChemistrySlovak Academy of Sciences Dúbravská cesta 9 84538 Bratislava Slovakia
| |
Collapse
|
79
|
Sharifi F, Irani S, Azadegan G, Pezeshki-Modaress M, Zandi M, Saeed M. Co-electrospun gelatin-chondroitin sulfate/polycaprolactone nanofibrous scaffolds for cartilage tissue engineering. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bcdf.2020.100215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
80
|
Bishnoi M, Jain A, Singla Y, Shrivastava B. Sublingual delivery of chondroitin sulfate conjugated tapentadol loaded nanovesicles for the treatment of osteoarthritis. J Liposome Res 2020; 31:30-44. [PMID: 32064982 DOI: 10.1080/08982104.2020.1730400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent treatment approaches of osteoarthritis (OA) face a number of obstacles due to the progressive multitude of pain generators, nociceptive mechanisms, first pass mechanism, less efficacy and compromised safety. The present study was aimed to bring a novel approach for the effective management of OA, by developing sublingual targeted nanovesicles (NVs) bearing tapentadol HCl (TAP), surface modified with chondroitin sulfate (CS). Optimized nontargeted nanovesicle formulation (MB-NV) was developed by an ultrasound method, characterized as spherical in shape, nanometric in size (around 150 nm) with narrow size distribution (polydispersity index <0.5), and good entrapment efficiency (around 50%). MB-NV conjugated with CS which was confirmed by IR and 1H NMR spectroscopy. C-MB-NV showed improved pharmacokinetics parameters i.e. increased t1/2 (9.7 h), AUC (159.725 μg/mL*h), and MRT (14.99 h) of TAP than nontargeted formulation and plain drug soln. C-MB-NV in in vitro release studies proved sustained drug release pattern for more than 24 h following Higuchi model kinetics with Fickian diffusion (n ≤ 0.5).Targeted nanovesicles exhibited an improved bioavailability and enhanced analgesic activity in a disease-induced Wistar rat model which indicated the superior targeting potential of C-MB-NV exploiting CD44 receptors as mediators, overexpressed at the affected joints in the OA model. It could be a propitious approach to accustomed therapies for methodical and efficient management in advanced OA therapy.
Collapse
Affiliation(s)
- Mamta Bishnoi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Ankit Jain
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Harisingh Gour University, Sagar, India.,Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Yashpaul Singla
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Birendra Shrivastava
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| |
Collapse
|
81
|
Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
82
|
Hoban C, Byard R, Musgrave I. Hypersensitive adverse drug reactions to glucosamine and chondroitin preparations in Australia between 2000 and 2011. Postgrad Med J 2019; 96:190-193. [DOI: 10.1136/postgradmedj-2019-136957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023]
Abstract
Purpose of the studyThis study investigates spontaneous adverse drug reactions (ADRs) to glucosamine and chondroitin in the Australian population between 2000 and 2011, with a primary focus on hypersensitivity reactions.Study designCase reports of ADR to glucosamine and chondroitin sent to the Therapeutic Goods Administration between 2000 and 2011 were obtained and analysed. The demographic information and severity of the ADR were recorded for individual ADR cases. These reactions were classified according to the Brown et al grading system for generalised hypersensitivity reactions. This included mild hypersensitivity reactions (generalised erythema, urticaria and angioedema) through to moderate hypersensitivity reactions (wheeze, nausea, vomiting, dizziness (presyncope), diaphoresis, chest or throat tightness and abdominal pain), and more severe reactions (hypotension, confusion and collapse).ResultsIn this study of 366 ADRs to glucosamine and chondroitin preparations, 71.85% of cases (n=263) were found to have hypersensitivity reactions. Of these 263 cases, 92 cases were classified as mild (eg, pruritus, urticaria and lip oedema), 128 cases classified as moderate (such as dyspnoea, nausea and abdominal pain), and 43 cases classified as severe (including amnesia, gait disturbance, somnolence and hypotension). It is not clear whether the patients involved had a known shellfish allergy or underlying atopy.ConclusionResults of this investigation support the need for clear labelling on glucosamine and chondroitin preparations to raise awareness of possible adverse events for those predisposed to allergy or atopy in response to shellfish.
Collapse
|
83
|
Burge KY, Hannah L, Eckert JV, Gunasekaran A, Chaaban H. The Protective Influence of Chondroitin Sulfate, a Component of Human Milk, on Intestinal Bacterial Invasion and Translocation. J Hum Lact 2019; 35:538-549. [PMID: 31051086 PMCID: PMC6615959 DOI: 10.1177/0890334419845338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Human milk is known to be protective against necrotizing enterocolitis, a devastating intestinal inflammatory disease affecting the preterm population. Although the pathogenesis of necrotizing enterocolitis is yet to be solidified, intestinal integrity dysfunction, bacterial invasion and/or translocation, and inflammation may play important roles. Glycosaminoglycans, compounds naturally prevalent in both human milk and the intestine, are thought to be anti-inflammatory and capable of altering bacterial interactions within the gut. RESEARCH AIM In this study, we aimed to evaluate the potential of chondroitin sulfate, the most prominent class of glycosaminoglycans in human milk, to protect against bacterial infection in an intestinal in vitro model. METHODS T84 cell monolayers were treated with chondroitin sulfate and cell viability was assessed across a number of doses. Monolayers were then pretreated with chondroitin sulfate and subsequently challenged with E. coli invasion and translocation to evaluate any protective role of the compound against infection. Tight junction barrier function was assessed by transepithelial electrical resistance, and cytokine levels were evaluated. RESULTS Chondroitin sulfate at any dose up to 750 μg/ml was not associated with any statistically significant decrease in cell viability. Additionally, chondroitin sulfate at 750 μg/ml was associated with a 75% decrease in both bacterial invasion and translocation compared to control. CONCLUSIONS These data suggest chondroitin sulfate may protect against bacterial infection through a reduction in both invasion and translocation, importantly without attendant reduction in cell viability.
Collapse
Affiliation(s)
- Kathryn Y Burge
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lindsey Hannah
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeffrey V Eckert
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aarthi Gunasekaran
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hala Chaaban
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
84
|
Liu ZL, Li LF, Xia SS, Tian HP, Yan ZH, Zhang GJ, Zhou T, He Y. Chondroitin sulfate modification enhances the targeting and therapeutic effect of nanomedicine on AOM/DSS-induced mouse colon cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
85
|
Pomin VH, Vignovich WP, Gonzales AV, Vasconcelos AA, Mulloy B. Galactosaminoglycans: Medical Applications and Drawbacks. Molecules 2019; 24:E2803. [PMID: 31374852 PMCID: PMC6696379 DOI: 10.3390/molecules24152803] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Galactosaminoglycans (GalAGs) are sulfated glycans composed of alternating N-acetylgalactosamine and uronic acid units. Uronic acid epimerization, sulfation patterns and fucosylation are modifications observed on these molecules. GalAGs have been extensively studied and exploited because of their multiple biomedical functions. Chondroitin sulfates (CSs), the main representative family of GalAGs, have been used in alternative therapy of joint pain/inflammation and osteoarthritis. The relatively novel fucosylated chondroitin sulfate (FCS), commonly found in sea cucumbers, has been screened in multiple systems in addition to its widely studied anticoagulant action. Biomedical properties of GalAGs are directly dependent on the sugar composition, presence or lack of fucose branches, as well as sulfation patterns. Although research interest in GalAGs has increased considerably over the three last decades, perhaps motivated by the parallel progress of glycomics, serious questions concerning the effectiveness and potential side effects of GalAGs have recently been raised. Doubts have centered particularly on the beneficial functions of CS-based therapeutic supplements and the potential harmful effects of FCS as similarly observed for oversulfated chondroitin sulfate, as a contaminant of heparin. Unexpected components were also detected in CS-based pharmaceutical preparations. This review therefore aims to offer a discussion on (1) the current and potential therapeutic applications of GalAGs, including those of unique features extracted from marine sources, and (2) the potential drawbacks of this class of molecules when applied to medicine.
Collapse
Affiliation(s)
- Vitor H Pomin
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| | - William P Vignovich
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Alysia V Gonzales
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Ariana A Vasconcelos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Barbara Mulloy
- Imperial College, Department of Medicine, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
86
|
Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. Int J Biol Macromol 2019; 132:970-977. [DOI: 10.1016/j.ijbiomac.2019.03.213] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 11/19/2022]
|
87
|
Vessella G, Traboni S, Cimini D, Iadonisi A, Schiraldi C, Bedini E. Development of Semisynthetic, Regioselective Pathways for Accessing the Missing Sulfation Patterns of Chondroitin Sulfate. Biomacromolecules 2019; 20:3021-3030. [DOI: 10.1021/acs.biomac.9b00590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Giulia Vessella
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, via de Crecchio 7, I-80138 Napoli, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, via de Crecchio 7, I-80138 Napoli, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| |
Collapse
|
88
|
Flexible two-layer dissolving and safing microneedle transdermal of neurotoxin: A biocomfortable attempt to treat Rheumatoid Arthritis. Int J Pharm 2019; 563:91-100. [DOI: 10.1016/j.ijpharm.2019.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/03/2019] [Accepted: 03/16/2019] [Indexed: 01/21/2023]
|
89
|
Tang C, Holt BD, Wright ZM, Arnold AM, Moy AC, Sydlik SA. Injectable amine functionalized graphene and chondroitin sulfate hydrogel with potential for cartilage regeneration. J Mater Chem B 2019; 7:2442-2453. [PMID: 32255121 DOI: 10.1039/c8tb02967a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Damaged cartilage does not readily heal and often requires surgical intervention that only modestly improves outcomes. A synthetic material that could be injected and covalently crosslinked in situ to form a bioactive, mechanically robust scaffold that promotes stem cell chondrogenic differentiation holds promise for next-generation treatment of cartilage lesions. Here, Johnson-Claisen rearrangement chemistry was performed on graphene oxide (GO) to enable functionalization with a primary amine covalently bound to the graphenic backbone through a chemically stable linker. The primary amines are used to form covalent crosslinks with chondroitin sulfate, an important component of cartilage that promotes regeneration, to form a hydrogel (EDAG-CS). The EDAG-CS system gels in situ within 10 min, and the graphenic component imparts improved mechanical properties, including stiffness (320% increase) and toughness (70% increase). EDAG-CS hydrogels are highly porous, resistant to degradation, and enable the growth of human mesenchymal stem cells and their deposition of collagen matrix. This system has potential to improve clinical outcomes of patients with cartilage damage.
Collapse
Affiliation(s)
- Caoxin Tang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | |
Collapse
|
90
|
Chondroitin Sulfate Safety and Quality. Molecules 2019; 24:molecules24081447. [PMID: 31013685 PMCID: PMC6515237 DOI: 10.3390/molecules24081447] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The industrial production of chondroitin sulfate (CS) uses animal tissue sources as raw material derived from different terrestrial or marine species of animals. CS possesses a heterogeneous structure and physical-chemical profile in different species and tissues, responsible for the various and more specialized functions of these macromolecules. Moreover, mixes of different animal tissues and sources are possible, producing a CS final product having varied characteristics and not well identified profile, influencing oral absorption and activity. Finally, different extraction and purification processes may introduce further modifications of the CS structural characteristics and properties and may lead to extracts having a variable grade of purity, limited biological effects, presence of contaminants causing problems of safety and reproducibility along with not surely identified origin. These aspects pose a serious problem for the final consumers of the pharmaceutical or nutraceutical products mainly related to the traceability of CS and to the declaration of the real origin of the active ingredient and its content. In this review, specific, sensitive and validated analytical quality controls such as electrophoresis, eHPLC (enzymatic HPLC) and HPSEC (high-performance size-exclusion chromatography) able to assure CS quality and origin are illustrated and discussed.
Collapse
|
91
|
Hotta N, Kubo A, Mizumura K. Chondroitin sulfate attenuates acid-induced augmentation of the mechanical response in rat thin-fiber muscle afferents in vitro. J Appl Physiol (1985) 2019; 126:1160-1170. [PMID: 30763166 DOI: 10.1152/japplphysiol.00633.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exercise-induced tissue acidosis augments the exercise pressor reflex (EPR). One reason for this may be acid-induced mechanical sensitization in thin-fiber muscle afferents, which is presumably related to EPR. Acid-induced sensitization to mechanical stimulation has been reported to be attenuated in cultured primary-sensory neurons by exogenous chondroitin sulfate (CS) and chondroitinase ABC, suggesting that the extracellular matrix CS proteoglycan is involved in this sensitization. The purpose of this study was to clarify whether acid-induced sensitization of the mechanical response in the thin-fiber muscle afferents is also suppressed by exogenous CS and chondroitinase ABC using a single-fiber recording technique. A total of 88 thin fibers (conduction velocity <15.0 m/s) dissected from 86 male Sprague-Dawley rats were identified. A buffer solution at pH 6.2 lowered their mechanical threshold and increased their response magnitude. Five minutes after CS (0.3 and 0.03%) injection near the receptive field, these acid-induced changes were significantly reduced. No significant difference in attenuation was detected between the two CS concentrations. Chondroitinase ABC also significantly attenuated this sensitization. The control solution (0% CS) did not significantly alter the mechanical sensitization. Furthermore, no significant differences were detected in this sensitization and CS-based suppression between fibers with and without acid-sensitive channels [transient receptor potential vanilloid 1 (TRPV1), acid-sensing ion channel (ASIC)]. In addition, this mechanical sensitization was not changed by TRPV1 and ASIC antagonists, suggesting that these ion channels are not involved in the acid-induced mechanical sensitization of muscle thin-fiber afferents. In conclusion, CS administration has a potential to attenuate the acidosis-induced exaggeration of muscle mechanoreflex. NEW & NOTEWORTHY We found that exogenous chondroitin sulfate attenuated acid-induced mechanical sensitization in thin-fiber muscle afferents that play a crucial role in the exercise pressor reflex. This finding suggests that extracellular matrix chondroitin sulfate proteoglycans may be involved in the mechanism of acid-induced mechanical sensitization and that daily intake of chondroitin sulfate may potentially attenuate this amplification of muscle mechanoreflex and therefore reduce muscle pain related to acidic muscle conditions.
Collapse
Affiliation(s)
- Norio Hotta
- College of Life and Health Sciences, Chubu University , Aichi , Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry , Tokyo , Japan
| | - Kazue Mizumura
- College of Life and Health Sciences, Chubu University , Aichi , Japan.,Department of Physiology, Nihon University School of Dentistry , Tokyo , Japan
| |
Collapse
|
92
|
Li C, Wang K, Zhou X, Li T, Xu Y, Qiang L, Peng M, Xu Y, Xie L, He C, Wang B, Wang J. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Biomed Mater 2019; 14:025006. [DOI: 10.1088/1748-605x/aaf8ed] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
93
|
Istomina EV, Shikhkerimov RK. The possibilities of using chondroitin sulfate in patients with chronic back pain. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:12-15. [DOI: 10.17116/jnevro201911903112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
94
|
Prajapati SK, Jain A, Shrivastava C, Jain AK. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int J Biol Macromol 2018; 123:691-703. [PMID: 30445095 DOI: 10.1016/j.ijbiomac.2018.11.116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
Purpose of the present research was to evaluate in vitro and in vivo potential of gemcitabine (GEM) loaded hyaluronic acid (HA) conjugated PEGylated multi-walled carbon nanotubes (GEM/HA-PEG-MWCNTs) for effective colon cancer targeting. HA was conjugated onto the surface of aminated or PEGylated MWCNTs which were evaluated for size, surface morphology, entrapment efficiency (~90%), in vitro drug release, in vitro cytotoxicity and in vivo performance in Sprague Dawley rats. In vitro release showed that the release rate of GEM in acidic conditions (pH 5.3) was faster than physiological conditions (PBS, pH 7.4) followed by a sustained release pattern. The developed GEM/HA-PEG-MWCNTs indicated significantly less hemolytic toxicity (7.73 ± 0.4%) paralleled to free GEM (18.71 ± 0.44%) and showed higher cytotoxicity against HT-29 colon cancer cell line. The antitumor study assured that GEM/HA-PEG-MWCNTs significantly reduced tumor volume as compared to free GEM and increased survival rate without noticeable loss in body weight. In vivo studies showed an improvement in pharmacokinetics in terms of remarkable escalation in mean residence time, half-life, AUC, AUMC, median survival time in tumor bearing rats treated with GEM/HA-MWCNTs and GEM/HA-PEG-MWCNTs as compared to free GEM (p ˂ 0.001). These outcomes proved engineered MWCNTs as a safe and effective nanomedicine in colon cancer targeting.
Collapse
Affiliation(s)
| | - Ankit Jain
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India.
| | | | - Ashish Kumar Jain
- Adina Institute of Pharmaceutical Sciences, Sagar, 470002, M.P., India
| |
Collapse
|
95
|
Honarpardaz A, Irani S, Pezeshki-Modaress M, Zandi M, Sadeghi A. Enhanced chondrogenic differentiation of bone marrow mesenchymal stem cells on gelatin/glycosaminoglycan electrospun nanofibers with different amount of glycosaminoglycan. J Biomed Mater Res A 2018; 107:38-48. [PMID: 30408321 DOI: 10.1002/jbm.a.36501] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 12/29/2022]
Abstract
Tissue engineering is a new technique to help damaged cartilage treatment using cells and scaffolds. In this study we tried to evaluate electrospun scaffolds composed of gelatin/glycosaminoglycan (G/GAG) blend nanofibers in chondrogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). Scaffolds were fabricated by electrospinning technique with different concentration of glycosaminoglycan (0%, 5%, 10%, and 15%) in gelatin matrix. BMMSCs were cultured on the scaffolds for chondrogenesis process. MTT assay was done for scaffold's biocompatibility and cells viability evaluation. Alcian blue staining was carried out to determine the release of GAG and reverse transcription polymerase chain reaction (RT-PCR) was done for expression of COL2A1 and also immunocytochemistry assay were used to confirm expression of type II collagen. Scaffold with 15% GAG showed better result for biocompatibility (p =0.02). Scanning electron microscopy (SEM) micrographs showed that MSCs have good attachment to the scaffolds. Alcian blue staining result confirmed that cells produce GAG during differentiation time different from GAG in the scaffolds. Also the results for RT-PCR showed the expression of COL2A1 marker. Immunocytochemistry assay for type II collagen confirm that this protein expressed. Scaffold comprising 15% GAG is better results for chondrogenesis and it can be a good applicant for cartilage tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 38-48, 2019.
Collapse
Affiliation(s)
- Ali Honarpardaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mojgan Zandi
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Amin Sadeghi
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
96
|
Volpi N, Mantovani V, Galeotti F, Bianchi D, Straniero V, Valoti E, Miraglia N. Oral Bioavailability and Pharmacokinetics of Nonanimal Chondroitin Sulfate and Its Constituents in Healthy Male Volunteers. Clin Pharmacol Drug Dev 2018; 8:336-345. [PMID: 30040242 DOI: 10.1002/cpdd.587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/21/2018] [Indexed: 01/10/2023]
Abstract
The pharmacokinetic profile of a new 800-mg tablet of nonanimal chondroitin sulfate (CS) (Mythocondro®, 800-mg tablets, Gnosis S.p.A., Italy) was investigated vs an animal CS in healthy volunteers for a total period of 48 hours. After a single 2400-mg dose of the test and the reference formulation, total CS, the compositional disaccharides (ΔDi6S, ΔDi4S and ΔDi0S), and the overall charge density were quantified in plasma. The safety and tolerability profile after a single dose of this new nonanimal CS tablets was excellent. After baseline-corrected concentrations, an overall greater plasma concentration was observed after 24 hours of ∼44% and after 48 hours of ∼45% from administration of nonanimal when compared to animal-derived CS. Moreover, nonanimal CS increases the specific sulfation in the 6-position of N-acetyl-galactosamine in human plasma CS and, as a consequence, the overall charge density, reaching double values (0.91), after 48 hours compared to bovine CS and to endogenous CS. In conclusion, nonanimal CS, possessing a lower molecular weight than an animal-derived sample, produces a greater CS concentration for a more prolonged period of time in plasma and an increase in charge density and specific 6-sulfation of endogenous plasma CS.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Mantovani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Ermanno Valoti
- Department di Pharmaceutical Sciences, University of Milano, Milano, Italy
| | | |
Collapse
|
97
|
Gul R, Ahmed N, Ullah N, Khan MI, Elaissari A, Rehman A. Biodegradable Ingredient-Based Emulgel Loaded with Ketoprofen Nanoparticles. AAPS PharmSciTech 2018; 19:1869-1881. [PMID: 29651679 DOI: 10.1208/s12249-018-0997-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
Biodegradable materials are extensively employed to design nanocarriers that mimic extracellular environment in arthritis. The aim of this study was to formulate and characterize biocompatible, biodegradable ketoprofen-loaded chitosan-chondroitin sulfate (CHS-CS) nanoparticles with natural ingredients for transdermal applications. Polymers used in the design of nanocarriers are biodegradable and produce synergistic anti-inflammatory effect for the treatment of arthritis. For transdermal application, argan oil-based emulgel is utilized to impart viscosity to the formulation. Furthermore, naturally occurring argan oil synergizes anti-inflammatory effect of formulation and promotes skin penetration. CHS and CS form nanoparticles by polyelectrolyte complex formation or complex coacervation at pH 5.0. These particles were loaded into argan oil-based emulgel. Employing this method, nanoparticles were formulated with particle size in the range of 300-500 nm. These nanocarriers entrapped ketoprofen and showed more than 76% encapsulation efficiency and 77% release of the ketoprofen at pH 7.4 within 72 h. Drug releases from CHS-CS nanoparticles by mechanism of simple diffusion. Nanoparticle-loaded argan oil emulgel significantly enhanced skin penetration of ketoprofen as compared to marketed gel (p < 0.05). Nanocarriers prepared successfully delivered drug through transdermal route using natural ingredients. Graphical abstract ᅟ.
Collapse
|
98
|
Rnjak‐Kovacina J, Tang F, Whitelock JM, Lord MS. Glycosaminoglycan and Proteoglycan-Based Biomaterials: Current Trends and Future Perspectives. Adv Healthc Mater 2018; 7:e1701042. [PMID: 29210510 DOI: 10.1002/adhm.201701042] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Proteoglycans and their glycosaminoglycans (GAG) are essential for life as they are responsible for orchestrating many essential functions in development and tissue homeostasis, including biophysical properties and roles in cell signaling and extracellular matrix assembly. In an attempt to capture these biological functions, a range of biomaterials are designed to incorporate off-the-shelf GAGs, typically isolated from animal sources, for tissue engineering, drug delivery, and regenerative medicine applications. All GAGs, with the exception of hyaluronan, are present in the body covalently coupled to the protein core of proteoglycans, yet the incorporation of proteoglycans into biomaterials remains relatively unexplored. Proteoglycan-based biomaterials are more likely to recapitulate the unique, tissue-specific GAG profiles and native GAG presentation in human tissues. The protein core offers additional biological functionality, including cell, growth factor, and extracellular matrix binding domains, as well as sites for protein immobilization chemistries. Finally, proteoglycans can be recombinantly expressed in mammalian cells and thus offer genetic manipulation and metabolic engineering opportunities for control over the protein and GAG structures and functions. This Progress Report summarizes current developments in GAG-based biomaterials and presents emerging research and future opportunities for the development of biomaterials that incorporate GAGs presented in their native proteoglycan form.
Collapse
Affiliation(s)
| | - Fengying Tang
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| |
Collapse
|
99
|
Pomin VH, Mulloy B. Glycosaminoglycans and Proteoglycans. Pharmaceuticals (Basel) 2018; 11:ph11010027. [PMID: 29495527 PMCID: PMC5874723 DOI: 10.3390/ph11010027] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022] Open
Abstract
In this editorial to MDPI Pharmaceuticals special issue “Glycosaminoglycans and Proteoglycans” we describe in outline the common structural features of glycosaminoglycans and the characteristics of proteoglycans, including the intracellular proteoglycan, serglycin, cell-surface proteoglycans, like syndecans and glypicans, and the extracellular matrix proteoglycans, like aggrecan, perlecan, and small leucine-rich proteoglycans. The context in which the pharmaceutical uses of glycosaminoglycans and proteoglycans are presented in this special issue is given at the very end.
Collapse
Affiliation(s)
- Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Barbara Mulloy
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
100
|
Possible role of chondroitin sulphate and glucosamine for primary prevention of colorectal cancer. Results from the MCC-Spain study. Sci Rep 2018; 8:2040. [PMID: 29391578 PMCID: PMC5794904 DOI: 10.1038/s41598-018-20349-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022] Open
Abstract
A safe and effective colorectal cancer (CRC) chemoprevention agent remains to be discovered. We aim to evaluate the association between the use of glucosamine and/or chondroitin sulphate and risk of colorectal cancer (CRC) in the MCC-Spain study, a case-control study performed in Spain that included 2140 cases of CRC and 3950 population controls. Subjects were interviewed on sociodemographic factors, lifestyle, family and medical history and regular drug use. Adjusted odds ratios and their 95% confidence intervals were estimated. The reported frequency of chondroitin and/or glucosamine use was 2.03% in controls and 0.89% in cases. Users had a reduced risk of CRC (OR: 0.47; 95% CI: 0.28–0.79), but it was no longer significant when adjusted for NSAID (nonsteroidal anti-inflammatory drugs) use (OR: 0.82; 95% CI: 0.47–1.40). A meta-analysis with previous studies suggested a protective effect, overall and stratified by NSAID use (OR: 0.77; 95% CI: 0.62–0.97). We have not found strong evidence of an independent preventive effect of CG on CRC in our population because the observed effects of our study could be attributed to NSAIDs concurrent use. These results merit further research due to the safety profile of these drugs.
Collapse
|