51
|
Glyoxal and methylglyoxal determination in urine by surfactant-assisted dispersive liquid–liquid microextraction and LC. Bioanalysis 2017; 9:369-379. [DOI: 10.4155/bio-2016-0217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: Two important markers of oxidative stress, glyoxal and methylglyoxal, are preconcentrated from human urine by surfactant-assisted dispersive liquid–liquid microextraction and separated by LC-fluorescence. Methods/results: Derivatization was carried out overnight with 0.8 mM 2,3-diaminonaphthalene at 4°C. For surfactant-assisted dispersive liquid–liquid microextraction, 500 µl buffer solution (pH 10.5) and 25 µl 0.03 M Triton X-114 were added to 2.5 ml of the sample and the mixture was made up to 10 ml before the rapid injection of 75 µl 1-undecanol (extractant solvent) and 0.5 ml ethanol (dispersant solvent). Conclusion: The method can be applied to analyze glyoxal and methylglyoxal in urine with LOD of 13 and 16 ng/l, respectively, and recoveries in the 88–103% range.
Collapse
|
52
|
Iyer S, Han L, Ambrogini E, Yavropoulou M, Fowlkes J, Manolagas SC, Almeida M. Deletion of FoxO1, 3, and 4 in Osteoblast Progenitors Attenuates the Loss of Cancellous Bone Mass in a Mouse Model of Type 1 Diabetes. J Bone Miner Res 2017; 32:60-69. [PMID: 27491024 PMCID: PMC5492385 DOI: 10.1002/jbmr.2934] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes is associated with osteopenia and increased fragility fractures, attributed to reduced bone formation. However, the molecular mechanisms mediating these effects remain unknown. Insulin promotes osteoblast formation and inhibits the activity of the FoxO transcription factors. FoxOs, on the other hand, inhibit osteoprogenitor proliferation and bone formation. Here, we investigated whether FoxOs play a role in the low bone mass associated with type 1 diabetes, using mice lacking FoxO1, 3, and 4 in osteoprogenitor cells (FoxO1,3,4ΔOsx1-Cre ). Streptozotocin-induced diabetes caused a reduction in bone mass and strength in FoxO-intact mice. In contrast, cancellous bone was unaffected in diabetic FoxO1,3,4ΔOsx1-Cre mice. The low bone mass in the FoxO-intact diabetic mice was associated with decreased osteoblast number and bone formation, as well as decreased expression of the anti-osteoclastogenic cytokine osteoprotegerin (OPG) and increased osteoclast number. FoxO deficiency did not alter the effects of diabetes on bone formation; however, it did prevent the decrease in OPG and the increase in osteoclast number. Addition of high glucose to osteoblastic cell cultures decreased OPG mRNA, indicating that hyperglycemia in and of itself contributes to diabetic bone loss. Taken together, these results suggest that FoxOs exacerbate the loss of cancellous bone mass associated with type 1 diabetes and that inactivation of FoxOs might ameliorate the adverse effects of insulin deficiency. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Srividhya Iyer
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Li Han
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Elena Ambrogini
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Maria Yavropoulou
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - John Fowlkes
- Barnstable Brown Diabetes and Obesity Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
53
|
Morgenstern J, Fleming T, Schumacher D, Eckstein V, Freichel M, Herzig S, Nawroth P. Loss of Glyoxalase 1 Induces Compensatory Mechanism to Achieve Dicarbonyl Detoxification in Mammalian Schwann Cells. J Biol Chem 2016; 292:3224-3238. [PMID: 27956549 DOI: 10.1074/jbc.m116.760132] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/02/2016] [Indexed: 11/06/2022] Open
Abstract
The glyoxalase system is a highly specific enzyme system existing in all mammalian cells that is responsible for the detoxification of dicarbonyl species, primarily methylglyoxal (MG). It has been implicated to play an essential role in preventing the increased formation of advanced glycation end products under certain pathological conditions. We have established the first glyoxalase 1 knock-out model (GLO1-/-) in mammalian Schwann cells using the CRISPR/Cas9 technique to investigate compensatory mechanisms. Neither elevated concentrations of MG nor associated protein modifications were observed in GLO1-/- cells. Alternative detoxification of MG in GLO1-/- is achieved by increased catalytic efficiency of aldose reductase toward hemithioacetal (product of glutathione and MG), which is most likely caused by S-nitrosylation of aldose reductase. The hemithioacetal is mainly converted into lactaldehyde, which is paralleled by a loss of reduced glutathione. Inhibition of aldose reductase in GLO1-/- cells is associated with an increased sensitivity against MG, elevated intracellular MG levels, associated modifications, as well as increased oxidative stress. Our data suggest that aldose reductase can compensate for the loss of GLO1. This might be of clinical importance within the context of neuronal diseases caused by an impaired glyoxalase system and elevated levels of dicarbonyl species, such as MG.
Collapse
Affiliation(s)
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg
| | - Volker Eckstein
- Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; German Institute for Diabetes and Cancer (IDC)
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; German Institute for Diabetes and Cancer (IDC)
| |
Collapse
|
54
|
Alomar F, Singh J, Jang H, Rozanzki GJ, Shao CH, Padanilam BJ, Mayhan WG, Bidasee KR. Smooth muscle-generated methylglyoxal impairs endothelial cell-mediated vasodilatation of cerebral microvessels in type 1 diabetic rats. Br J Pharmacol 2016; 173:3307-3326. [PMID: 27611446 PMCID: PMC5738666 DOI: 10.1111/bph.13617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/26/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelial cell-mediated vasodilatation of cerebral arterioles is impaired in individuals with Type 1 diabetes (T1D). This defect compromises haemodynamics and can lead to hypoxia, microbleeds, inflammation and exaggerated ischaemia-reperfusion injuries. The molecular causes for dysregulation of cerebral microvascular endothelial cells (cECs) in T1D remains poorly defined. This study tests the hypothesis that cECs dysregulation in T1D is triggered by increased generation of the mitochondrial toxin, methylglyoxal, by smooth muscle cells in cerebral arterioles (cSMCs). EXPERIMENTAL APPROACH Endothelial cell-mediated vasodilatation, vascular transcytosis inflammation, hypoxia and ischaemia-reperfusion injury were assessed in brains of male Sprague-Dawley rats with streptozotocin-induced diabetes and compared with those in diabetic rats with increased expression of methylglyoxal-degrading enzyme glyoxalase-I (Glo-I) in cSMCs. KEY RESULTS After 7-8 weeks of T1D, endothelial cell-mediated vasodilatation of cerebral arterioles was impaired. Microvascular leakage, gliosis, macrophage/neutrophil infiltration, NF-κB activity and TNF-α levels were increased, and density of perfused microvessels was reduced. Transient occlusion of a mid-cerebral artery exacerbated ischaemia-reperfusion injury. In cSMCs, Glo-I protein was decreased, and the methylglyoxal-synthesizing enzyme, vascular adhesion protein 1 (VAP-1) and methylglyoxal were increased. Restoring Glo-I protein in cSMCs of diabetic rats to control levels via gene transfer, blunted VAP-1 and methylglyoxal increases, cECs dysfunction, microvascular leakage, inflammation, ischaemia-reperfusion injury and increased microvessel perfusion. CONCLUSIONS AND IMPLICATIONS Methylglyoxal generated by cSMCs induced cECs dysfunction, inflammation, hypoxia and exaggerated ischaemia-reperfusion injury in diabetic rats. Lowering methylglyoxal produced by cSMCs may be a viable therapeutic strategy to preserve cECs function and blunt deleterious downstream consequences in T1D.
Collapse
Affiliation(s)
- Fadhel Alomar
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNEUSA
- Department of PharmacologyUniversity of DammamDammamSaudi Arabia
| | - Jaipaul Singh
- School of Forensic and Applied ScienceUniversity of Central LancashirePrestonUK
| | - Hee‐Seong Jang
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - George J Rozanzki
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
- Nebraska Redox Biology CenterLincolnNEUSA
| | - Chun Hong Shao
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Babu J Padanilam
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - William G Mayhan
- Department of Basic Biomedical Sciences, Sanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Keshore R Bidasee
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNEUSA
- Department of Environmental, Agricultural and Occupational HealthUniversity of Nebraska Medical CenterOmahaNEUSA
- Nebraska Redox Biology CenterLincolnNEUSA
| |
Collapse
|
55
|
Huang YS, Li YC, Tsai PY, Lin CE, Chen CM, Chen SM, Lee JA. Accumulation of methylglyoxal and d
-lactate in Pb-induced nephrotoxicity in rats. Biomed Chromatogr 2016; 31. [DOI: 10.1002/bmc.3869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yu-Shen Huang
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Yi-Chieh Li
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Pei-Yun Tsai
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Chia-En Lin
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Chien-Ming Chen
- Department of Electro-Optical Engineering; National Taipei University of Technology; Taipei Taiwan
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Jen-Ai Lee
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
56
|
Chen HJC, Yang YF, Lai PY, Chen PF. Analysis of Chlorination, Nitration, and Nitrosylation of Tyrosine and Oxidation of Methionine and Cysteine in Hemoglobin from Type 2 Diabetes Mellitus Patients by Nanoflow Liquid Chromatography Tandem Mass Spectrometry. Anal Chem 2016; 88:9276-84. [PMID: 27541571 DOI: 10.1021/acs.analchem.6b02663] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The post-translational modification (PTM) of proteins by endogenous reactive chlorine, nitrogen, and oxygen species is implicated in certain pathological conditions, including diabetes mellitus. Evidence showed that the extents of modifications on a number of proteins are elevated in diabetic patients. Measuring modification on hemoglobin has been used to monitor the extent of exposure. This study develops an assay for simultaneous quantification of the extent of chlorination, nitration, and oxidation in human hemoglobin and to examine whether the level of any of these modifications is higher in poorly controlled type 2 diabetic mellitus patients. This mass spectrometry-based assay used the bottom-up proteomic strategy. Due to the low amount of endogenous modification, we first characterized the sites of chlorination at tyrosine in hypochlorous acid-treated hemoglobin by an accurate mass spectrometer. The extents of chlorination, nitration, and oxidation of a total of 12 sites and types of modifications in hemoglobin were measured by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry under the selected reaction monitoring mode. Relative quantification of these PTMs in hemoglobin extracted from blood samples shows that the extents of chlorination at α-Tyr-24, nitration at α-Tyr-42, and oxidation at the three methionine residues are significantly higher in diabetic patients (n = 19) than in nondiabetic individuals (n = 18). After excluding the factor of smoking, chlorination at α-Tyr-24, nitration at α-Tyr-42, and oxidation at the three methionine residues are significantly higher in the nonsmoking diabetic patients (n = 12) than in normal nonsmoking subjects (n = 11). Multiple regression analysis performed on the combined effect of age, body-mass index (BMI), and HbA1c showed that the diabetes factor HbA1c contributes significantly to the extent of chlorination at α-Tyr-24 in nonsmokers. In addition, age contributes to oxidation at α-Met-32 significantly in all subjects and in nonsmokers. These results suggest the potential of using chlorination at α-Tyr-24-containing peptide to evaluate protein damage in nonsmoking type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Ya-Fen Yang
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pang-Yen Lai
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pin-Fan Chen
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Dalin, Chia-Yi 62247, Taiwan
| |
Collapse
|
57
|
Stress responses of human retinal pigment epithelial cells to glyoxal. Graefes Arch Clin Exp Ophthalmol 2016; 254:2361-2372. [PMID: 27520463 DOI: 10.1007/s00417-016-3463-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/04/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Intracellular formation of advanced glycation end products (AGEs) is a crucial pathological process in retinal diseases such as age-related macular degeneration (AMD) or diabetic retinopathy (DR). Glyoxal is a physiological metabolite produced during formation of AGEs and has also been shown to derive from photodegraded bisretinoid fluorophores in aging retinal pigment epithelial (RPE) cells. METHODS Flow cytometry was combined with either: 1) immunocytochemical staining to detect glyoxal induced formation of Nε-carboxymethyllysine (CML)-modifications of intracellular proteins (AGEs) and changes in the production of stress response proteins; or 2) vital staining to determine apoptosis rates (annexin V binding), formation of intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and changes in intracellular pH upon treatment of cells with glyoxal. The percentage of apoptotic cells was further quantified by flow cytometry after staining of fixed cells with propidium iodide to determine cells with a subdiploid (fragmented) DNA content. Apoptosis related activation of caspase 3 was determined by Western blotting. Glyoxal induced changes in VEGF-A165a mRNA expression and protein production were determined by real-time PCR and by flow cytometry after immunocytochemical staining. RESULTS Increasing glyoxal concentrations resulted in enhanced formation of AGEs, such as CML modifications of proteins. This was associated with elevated levels of intracellular reactive oxygen species, a depolarized MMP, and a decreased intracellular pH, resulting in an increased number of apoptotic cells. Apoptosis related caspase 3 activation increased in a dose dependent manner after glyoxal incubation. In consequence, the cells activated compensatory mechanisms and increased the levels of the anti-oxidative and stress-related proteins heme oxygenase-1, osteopontin, heat shock protein 27, copper/zinc superoxide dismutase, manganese superoxide dismutase, and cathepsin D. Furthermore, VEGF-A165a mRNA expression and VEGF-A protein production were significantly increased after incubation with glyoxal in ARPE-19 cells. CONCLUSIONS The glyoxal-induced oxidative stress and apoptosis in ARPE-19 cells may provide a suitable in vitro model for studying RPE cellular reactions to AGEs that occur in AMD or in DR.
Collapse
|
58
|
Suzawa S, Takahashi K, Shimada T, Ohta T. Carbonyl stress-induced 5-hydroxytriptamine secretion from RIN-14B, rat pancreatic islet tumor cells, via the activation of transient receptor potential ankyrin 1. Brain Res Bull 2016; 125:181-6. [DOI: 10.1016/j.brainresbull.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
|
59
|
Carlsson H, Törnqvist M. Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one. Food Chem Toxicol 2016; 92:94-103. [PMID: 27046699 DOI: 10.1016/j.fct.2016.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 12/22/2022]
Abstract
Electrophilic compounds have the ability to form adducts with nucleophilic sites in proteins and DNA in tissues, and thereby constitute risks for toxic effects. Adductomic approaches are developed for systematic screening of adducts to DNA and blood proteins, with the aim to detect unknown internal exposures to electrophiles. In a previous adductomic screening of adducts to N-terminals in hemoglobin, using LC-MS/MS, 19 unknown adducts were detected in addition to seven previously identified adducts. The present paper describes the identification of four of these unknown adducts, as well as the strategy used to identify them. Using LC-MS data from the screening, hypotheses about adduct identities were formulated: probable precursor electrophiles with matching molecular weights were suggested based on the molecular weights of the modifications and the retention times of the analytes, in combination with comparisons of theoretical Log P calculations and databases. Reference adducts were generated by incubation of blood samples with the hypothesized precursor electrophiles. The four identified precursor electrophiles, corresponding to the observed unknown adducts, were glyoxal, methylglyoxal, acrylic acid and 1-octen-3-one. Possible origins/exposure sources and toxicological information concerning the electrophilic precursors are discussed. The identified adducts could be explored as possible biomarkers for exposure.
Collapse
Affiliation(s)
- Henrik Carlsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Margareta Törnqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
60
|
Vicente Miranda H, El-Agnaf OMA, Outeiro TF. Glycation in Parkinson's disease and Alzheimer's disease. Mov Disord 2016; 31:782-90. [PMID: 26946341 DOI: 10.1002/mds.26566] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/21/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Glycation is a spontaneous age-dependent posttranslational modification that can impact the structure and function of several proteins. Interestingly, glycation can be detected at the periphery of Lewy bodies in the brain in Parkinson's disease. Moreover, α-synuclein can be glycated, at least under experimental conditions. In Alzheimer's disease, glycation of amyloid β peptide exacerbates its toxicity and contributes to neurodegeneration. Recent studies establish diabetes mellitus as a risk factor for several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, the mechanisms underlying this connection remain unclear. We hypothesize that hyperglycemia might play an important role in the development of these disorders, possibly by also inducing protein glycation and thereby dysfunction, aggregation, and deposition. Here, we explore protein glycation as a common player in Parkinson's and Alzheimer's diseases and propose it may constitute a novel target for the development of strategies for neuroprotective therapeutic interventions. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Omar M A El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, and College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825 Doha, Qatar
| | - Tiago Fleming Outeiro
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Lisboa, Portugal.,Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany
| |
Collapse
|
61
|
Chen HJC, Chen YC, Hsiao CF, Chen PF. Mass Spectrometric Analysis of Glyoxal and Methylglyoxal-Induced Modifications in Human Hemoglobin from Poorly Controlled Type 2 Diabetes Mellitus Patients. Chem Res Toxicol 2015; 28:2377-89. [DOI: 10.1021/acs.chemrestox.5b00380] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Yu-Chin Chen
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Chiung-Fong Hsiao
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pin-Fan Chen
- Buddhist Dalin Tzu Chi General Hospital, No.2, Minsheng Road, Dalin, Chia-Yi 622, Taiwan
| |
Collapse
|
62
|
Knight J, Wood KD, Lange JN, Assimos DG, Holmes RP. Oxalate Formation From Glyoxal in Erythrocytes. Urology 2015; 88:226.e11-5. [PMID: 26546809 DOI: 10.1016/j.urology.2015.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine whether glyoxal can be converted to oxalate in human erythrocytes. Glyoxal synthesis is elevated in diabetes, cardiovascular disease, and other diseases with significant oxidative stress. Erythrocytes are a good model system for such studies as they lack intracellular organelles and have a simplified metabolism. MATERIALS AND METHODS Erythrocytes were isolated from healthy volunteers and incubated with varying concentrations of glyoxal for different amounts of time. Metabolic inhibitors were used to help characterize metabolic steps. The conversion of glyoxal to glycolate and oxalate in the incubation medium was determined by chromatographic techniques. RESULTS The bulk of the glyoxal was converted to glycolate, but ~1% was converted to oxalate. Inclusion of the pro-oxidant, menadione, in the medium increased oxalate synthesis, and the inclusion of disulfiram, an inhibitor of aldehyde dehydrogenase activity, decreased oxalate synthesis. CONCLUSION The glyoxalase system, which utilizes glutathione as a cofactor, converts the majority of the glyoxal taken up by erythrocytes to glycolate, but a small portion is converted to oxalate. A reduction in intracellular glutathione increases oxalate synthesis and a decrease in aldehyde dehydrogenase activity lowers oxalate synthesis and suggests that glyoxylate is an intermediate. Thus, oxidative stress in tissues could potentially increase oxalate synthesis.
Collapse
Affiliation(s)
- John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL
| | - Kyle D Wood
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jessica N Lange
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Dean G Assimos
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL
| | - Ross P Holmes
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
63
|
Schreiber AK, Nones CFM, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6:432-444. [PMID: 25897354 PMCID: PMC4398900 DOI: 10.4239/wjd.v6.i3.432] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/26/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Diabetic neuropathy is a common complication of both type 1 and type 2 diabetes, which affects over 90% of the diabetic patients. Although pain is one of the main symptoms of diabetic neuropathy, its pathophysiological mechanisms are not yet fully known. It is widely accepted that the toxic effects of hyperglycemia play an important role in the development of this complication, but several other hypotheses have been postulated. The management of diabetic neuropathic pain consists basically in excluding other causes of painful peripheral neuropathy, improving glycemic control as a prophylactic therapy and using medications to alleviate pain. First line drugs for pain relief include anticonvulsants, such as pregabalin and gabapentin and antidepressants, especially those that act to inhibit the reuptake of serotonin and noradrenaline. In addition, there is experimental and clinical evidence that opioids can be helpful in pain control, mainly if associated with first line drugs. Other agents, including for topical application, such as capsaicin cream and lidocaine patches, have also been proposed to be useful as adjuvants in the control of diabetic neuropathic pain, but the clinical evidence is insufficient to support their use. In conclusion, a better understanding of the mechanisms underlying diabetic neuropathic pain will contribute to the search of new therapies, but also to the improvement of the guidelines to optimize pain control with the drugs currently available.
Collapse
|
64
|
Burton DGA, Faragher RGA. Cellular senescence: from growth arrest to immunogenic conversion. AGE (DORDRECHT, NETHERLANDS) 2015; 37:27. [PMID: 25787341 PMCID: PMC4365077 DOI: 10.1007/s11357-015-9764-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/27/2015] [Indexed: 05/23/2023]
Abstract
Cellular senescence was first reported in human fibroblasts as a state of stable in vitro growth arrest following extended culture. Since that initial observation, a variety of other phenotypic characteristics have been shown to co-associate with irreversible cell cycle exit in senescent fibroblasts. These include (1) a pro-inflammatory secretory response, (2) the up-regulation of immune ligands, (3) altered responses to apoptotic stimuli and (4) promiscuous gene expression (stochastic activation of genes possibly as a result of chromatin remodeling). Many features associated with senescent fibroblasts appear to promote conversion to an immunogenic phenotype that facilitates self-elimination by the immune system. Pro-inflammatory cytokines can attract and activate immune cells, the presentation of membrane bound immune ligands allows for specific recognition and promiscuous gene expression may function to generate an array of tissue restricted proteins that could subsequently be processed into peptides for presentation via MHC molecules. However, the phenotypes of senescent cells from different tissues and species are often assumed to be broadly similar to those seen in senescent human fibroblasts, but the data show a more complex picture in which the growth arrest mechanism, tissue of origin and species can all radically modulate this basic pattern. Furthermore, well-established triggers of cell senescence are often associated with a DNA damage response (DDR), but this may not be a universal feature of senescent cells. As such, we discuss the role of DNA damage in regulating an immunogenic response in senescent cells, in addition to discussing less established "atypical" senescent states that may occur independent of DNA damage.
Collapse
Affiliation(s)
- D. G. A. Burton
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - R. G. A. Faragher
- School of Pharmacy & Biomolecular Science, University of Brighton, Huxley Building, Brighton, UK
| |
Collapse
|
65
|
Chang WC, Wu SC, Xu KD, Liao BC, Wu JF, Cheng AS. Scopoletin protects against methylglyoxal-induced hyperglycemia and insulin resistance mediated by suppression of advanced glycation endproducts (AGEs) generation and anti-glycation. Molecules 2015; 20:2786-801. [PMID: 25671364 PMCID: PMC6272799 DOI: 10.3390/molecules20022786] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/03/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, several types of foods and drinks, including coffee, cream, and cake, have been found to result in high methylglyoxal (MG) levels in the plasma, thus causing both nutritional and health concerns. MG can be metabolized by phase-II enzymes in liver through the positive regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2). In this study, we investigated the ability of scopoletin (SP) to protect against MG-induced hyperglycemia and insulin resistance. Recently, SP was shown to be a peroxisome proliferator-activated receptor-γ activator to elevate insulin sensitivity. We investigated the effects of oral administration of SP on the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats to understand the potential mechanism of scopoletin for diabetes protection. Our results suggested that SP activated Nrf2 by Ser40 phosphorylation, resulting in the metabolism of MG into d-lactic acid and the inhibition of AGEs generation, which reduced the accumulation of AGEs in the livers of MG-induced rats. In this manner, SP improved the results of the oral glucose tolerance test and dyslipidemia. Moreover, SP also increased the plasma translocation of glucose transporter-2 and promoted Akt phosphorylation caused by insulin treatment in MG-treated FL83B hepatocytes. In contrast, SP effectively suppressed protein tyrosine phosphatase 1B (PTP1B) expression, thereby alleviating insulin resistance. These findings suggest that SP acts as an anti-glycation and anti-diabetic agent, and thus has therapeutic potential for the prevention of diabetes.
Collapse
Affiliation(s)
- Wen-Chang Chang
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - Shinn-Chih Wu
- Department of Animal Science and Technology, National Taiwan University, 59 Roosevelt Road Section 4, Taipei 10617, Taiwan.
| | - Kun-Di Xu
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - Bo-Chieh Liao
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - Jia-Feng Wu
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - An-Sheng Cheng
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| |
Collapse
|
66
|
Kong X, Ma MZ, Huang K, Qin L, Zhang HM, Yang Z, Li XY, Su Q. Increased plasma levels of the methylglyoxal in patients with newly diagnosed type 2 diabetes 2. J Diabetes 2014; 6:535-40. [PMID: 24720446 DOI: 10.1111/1753-0407.12160] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/09/2014] [Accepted: 04/07/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Methylglyoxal (MG) is a reactive-dicarbonyl that is thought to contribute to the development of diabetes either as a precursor for advanced glycation end products or as a direct toxin. The present study was designed to determine plasma MG level in patients with newly diagnosed type 2 diabetes mellitus (T2DM) and to evaluate the relationship between MG and other parameters, such as oxidative stress and metabolic indices. METHODS Methylglyoxal was measured by high-performance liquid chromatographic/tandem mass spectrometry in plasma from 48 subjects with newly diagnosed T2DM. The relationship between two variables was analyzed using Spearman's correlation analysis. Multiple stepwise linear regression analysis was used to assess the association of plasma MG and other parameters. RESULTS Plasma MG level in patients with newly diagnosed T2DM (65.2 ± 19.2 ng/mL) were significantly higher than that in control individuals (40.1 ± 11.1 ng/mL, P < 0.05). The plasma level of MG was positively correlated with the glycosylated hemoglobin A1c (HbA1c, r = 0.670, P < 0.01) and malondialdehyde (MDA, r = 0.694, P < 0.01). Multiple linear regression analysis revealed that both HbA1c and MDA are significant independent determinants of plasma MG level. CONCLUSIONS These findings suggest that increased plasma MG level is associated with the elevation of HbA1c and MDA in newly diagnosed T2DM patients.
Collapse
Affiliation(s)
- Xiang Kong
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Pharmacology, Wannan Medical College, Wuhu, China
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Dihydromyricetin ameliorates the oxidative stress response induced by methylglyoxal via the AMPK/GLUT4 signaling pathway in PC12 cells. Brain Res Bull 2014; 109:117-26. [PMID: 25451453 DOI: 10.1016/j.brainresbull.2014.10.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/03/2014] [Accepted: 10/20/2014] [Indexed: 01/01/2023]
Abstract
Dihydromyricetin (DMY), the major bioactive flavonoid ingredient extracted from the leaves of Ampelopsis grossedentata (Hand.-Mazz) W.T. Wang, displays multiple pharmacological activities, including oxidation resistance, antitumor properties and free radical scavenging capacities. However, the role of DMY in methylglyoxal (MG)-induced diabetes-associated cognitive decline and its underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DMY on oxidative stress and glucose transport activity in a MG-induced PC12 cell line and to explore the related mechanisms. The effects of DMY on cell survival and apoptosis were examined, and the dysregulation of intracellular Ca(2+) was determined. Oxidative stress was evaluated by monitoring ROS production and the glutathione to glutathione disulfide ratio. The effects of DMY on glucose metabolism were investigated using a fluorescently labeled deoxyglucose analog and by measuring ATP and lactate production. Western blot analysis was performed to examine the protein levels of glyoxalase I (Glo-1), glucose transporter 4 (GLUT4), AMP-activated protein kinase (AMPKα) and phosphorylated AMPKα (p-AMPKα). The results revealed that DMY suppressed cellular oxidative stress in PC12 cells and balanced glucose metabolism. Additionally, DMY reduced GLUT4 translocation dysfunction and increased Glo-1 and p-AMPKα expression. We found that DMY protected PC12 cells against MG-induced apoptosis and glycometabolic disorders, at least in part by restraining the hyperactivation of p-AMPK activity and normalizing the translocation of GLUT4 from the intracellular compartment, resulting in a balance in glucose uptake. This result indicates that DMY may serve as a novel and effective candidate agent to treat diabetic encephalopathy by reducing the toxicity of MG.
Collapse
|
68
|
Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples. Nat Protoc 2014; 9:1969-79. [PMID: 25058644 DOI: 10.1038/nprot.2014.129] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This protocol describes a method for the detection and quantification of methylglyoxal (MG), the major physiological substrate of the cytosolic glyoxalase system. Accumulation of MG, also called dicarbonyl stress, is implicated in tissue damage in aging and disease. Measurement of MG is important in physiological studies, in the development of glyoxalase 1 (Glo1) inducer and inhibitor therapeutics, and in the characterization of medical products, especially dialysis fluids, and of thermally processed foods and beverages. MG can be derivatized with 1,2-diaminobenzene (DB), resulting in an adduct that can be detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Quantification is achieved by stable isotopic dilution analysis with [(13)C3]MG. Pre-analytic processing at ambient temperature, under acidic conditions with peroxidase inhibition, avoids artifactual overestimation of MG. Estimates obtained from physiological samples can be validated by kinetic modeling of in situ rates of protein glycation by MG for confirmation of the results. This procedure was developed for the analysis of cultured cells, plasma and animal tissue samples, and it can also be used to analyze plant material. Experimental measurement requires 4.5 h for sample batch pre-analytic processing and 30 min per sample for LC-MS/MS analysis.
Collapse
|
69
|
Mori K, Kitazawa R, Kondo T, Mori M, Hamada Y, Nishida M, Minami Y, Haraguchi R, Takahashi Y, Kitazawa S. Diabetic osteopenia by decreased β-catenin signaling is partly induced by epigenetic derepression of sFRP-4 gene. PLoS One 2014; 9:e102797. [PMID: 25036934 PMCID: PMC4103869 DOI: 10.1371/journal.pone.0102797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 05/27/2014] [Indexed: 11/18/2022] Open
Abstract
In diabetics, methylglyoxal (MG), a glucose-derived metabolite, plays a noxious role by inducing oxidative stress, which causes and exacerbates a series of complications including low-turnover osteoporosis. In the present study, while MG treatment of mouse bone marrow stroma-derived ST2 cells rapidly suppressed the expression of osteotrophic Wnt-targeted genes, including that of osteoprotegerin (OPG, a decoy receptor of the receptor activator of NF-kappaB ligand (RANKL)), it significantly enhanced that of secreted Frizzled-related protein 4 (sFRP-4, a soluble inhibitor of Wnts). On the assumption that upregulated sFRP-4 is a trigger that downregulates Wnt-related genes, we sought out the molecular mechanism whereby oxidative stress enhanced the sFRP-4 gene. Sodium bisulfite sequencing revealed that the sFRP-4 gene was highly methylated around the sFRP-4 gene basic promoter region, but was not altered by MG treatment. Electrophoretic gel motility shift assay showed that two continuous CpG loci located five bases upstream of the TATA-box were, when methylated, a target of methyl CpG binding protein 2 (MeCP2) that was sequestered upon induction of 8-hydroxy-2-deoxyguanosine, a biomarker of oxidative damage to DNA. These in vitro data suggest that MG-derived oxidative stress (not CpG demethylation) epigenetically and rapidly derepress sFRP-4 gene expression. We speculate that under persistent oxidative stress, as in diabetes and during aging, osteopenia and ultimately low-turnover osteoporosis become evident partly due to osteoblastic inactivation by suppressed Wnt signaling of mainly canonical pathways through the derepression of sFRP-4 gene expression.
Collapse
Affiliation(s)
- Kiyoshi Mori
- Department of Pathology, Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kobe City, Japan
- Department of Pathology, National Hospital Organization, Osaka National Hospital, Hoenzaka, Chuo-ku, Osaka City, Japan
| | - Riko Kitazawa
- Department of Pathology, Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kobe City, Japan
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
- Department of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon City, Ehime, Japan
| | - Takeshi Kondo
- Department of Pathology, Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kobe City, Japan
- Department of Legal Medicine, Kobe University Graduate School of Medicine, Kobe City, Japan
| | - Michiko Mori
- Department of Pathology, Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kobe City, Japan
| | - Yasuhiro Hamada
- Department of Therapeutic Nutrition, Institute of Health Bioscience, The University of Tokushima, Tokushima City, Japan
| | - Michiru Nishida
- Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe City, Japan
| | - Yasuhiro Minami
- Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe City, Japan
| | - Ryuma Haraguchi
- Department of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon City, Ehime, Japan
| | - Yutaka Takahashi
- Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe City, Japan
| | - Sohei Kitazawa
- Department of Pathology, Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kobe City, Japan
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
- Department of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon City, Ehime, Japan
- * E-mail:
| |
Collapse
|
70
|
El-Maghrabey MH, Kishikawa N, Ohyama K, Kuroda N. Analytical method for lipoperoxidation relevant reactive aldehydes in human sera by high-performance liquid chromatography-fluorescence detection. Anal Biochem 2014; 464:36-42. [PMID: 25017470 DOI: 10.1016/j.ab.2014.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
A validated, simple and sensitive HPLC method was developed for the simultaneous determination of lipoperoxidation relevant reactive aldehydes: glyoxal (GO), acrolein (ACR), malondialdehyde (MDA), and 4-hydroxy-2-nonenal (HNE) in human serum. The studied aldehydes were reacted with 2,2'-furil to form fluorescent difurylimidazole derivatives that were separated on a C18 column using gradient elution and fluorescence detection at excitation and emission wavelengths of 250 and 355nm, respectively. The method showed good linearity over the concentration ranges of 0.100-5.00, 0.200-10.0, 0.200-40.0, and 0.400-10.0nmol/mL for GO, ACR, HNE, and MDA, respectively, with detection limits ranging from 0.030 to 0.11nmol/mL. The percentage RSD of intraday and interday precision did not exceed 5.0 and 6.2%, respectively, and the accuracy (%found) ranged from 95.5 to 103%. The proposed method was applied for monitoring the four aldehydes in sera of healthy, diabetic, and rheumatic human subjects with simple pretreatment steps and without interference from endogenous components. By virtue of its high sensitivity and accuracy, our method enabled detection of differences between analytes concentrations in sera of human subjects under different clinical conditions.
Collapse
Affiliation(s)
- Mahmoud H El-Maghrabey
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Naoya Kishikawa
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kaname Ohyama
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naotaka Kuroda
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
71
|
Pathogenesis of painful diabetic neuropathy. PAIN RESEARCH AND TREATMENT 2014; 2014:412041. [PMID: 24891949 PMCID: PMC4026988 DOI: 10.1155/2014/412041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/31/2014] [Accepted: 04/15/2014] [Indexed: 12/13/2022]
Abstract
The prevalence of diabetes is rising globally and, as a result, its associated complications are also rising. Painful diabetic neuropathy (PDN) is a well-known complication of diabetes and the most common cause of all neuropathic pain. About one-third of all diabetes patients suffer from PDN. It has a huge effect on a person's daily life, both physically and mentally. Despite huge advances in diabetes and neurology, the exact mechanism of pain causation in PDN is still not clear. The origin of pain could be in the peripheral nerves of the central nervous system. In this review, we discuss various possible mechanisms of the pathogenesis of pain in PDN. We discuss the role of hyperglycaemia in altering the physiology of peripheral nerves. We also describe central mechanisms of pain.
Collapse
|
72
|
Chromatographic determination of low-molecular mass unsaturated aliphatic aldehydes with peroxyoxalate chemiluminescence detection after fluorescence labeling with 4-(N,N-dimethylaminosulfonyl)-7-hydrazino-2,1,3-benzoxadiazole. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 953-954:147-52. [PMID: 24614624 DOI: 10.1016/j.jchromb.2014.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/26/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
A highly sensitive, selective and reproducible chromatographic method is described for determination of low-molecular mass unsaturated aliphatic aldehydes in human serum. The method combines fluorescent labeling using 4-(N,N-Dimethylaminosulfonyl)-7-hydrazino-2,1,3-benzoxadiazole with peroxyoxalate chemiluminescence. The derivatives were separated on a reversed-phase column C8 isocratically using a mixture of acetonitrile and 90mM imidazole-HNO3 buffer (pH 6.4, 1:1, % v/v). The calibration ranges were: 20-420nM for methylglyoxal, 16-320nM for acrolein, 15-360nM for crotonaldehyde and 20-320nM for trans-2-hexenal. The detection limits were ranged from 4.4 to 6.5nM (88-130fmol/injection), the recovery results were within the range of 87.4-103.8% and the intra and inter-day precision results were lower than 5.5%. The proposed validated method has been successfully applied to healthy, diabetic and rheumatic arthritis patients' sera with simple pretreatment method. In conclusion, this new method is suitable for routine analysis of large numbers of clinical samples for assessment of the oxidative stress state in patients.
Collapse
|
73
|
Vidal N, Cavaille J, Graziani F, Robin M, Ouari O, Pietri S, Stocker P. High throughput assay for evaluation of reactive carbonyl scavenging capacity. Redox Biol 2014; 2:590-8. [PMID: 24688895 PMCID: PMC3969608 DOI: 10.1016/j.redox.2014.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal. We describe a rapid method for assessment of reactive carbonyl scavengers. We evaluated the carbonyl scavenger activity of various pharmacophores. α-amino-β-mercaptoethane structure showed the highest degree of activity.
Collapse
Affiliation(s)
- N. Vidal
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - J.P. Cavaille
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - F. Graziani
- Aix Marseille Université, CNRS, ISM2 UMR 7313, 13397, Marseille, France
| | - M. Robin
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - O. Ouari
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - S. Pietri
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - P. Stocker
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
- Corresponding author. Tel.: +33 4 91 28 87 92; fax: +33 4 91 28 87 58.
| |
Collapse
|
74
|
Perturbation of human coronary artery endothelial cell redox state and NADPH generation by methylglyoxal. PLoS One 2014; 9:e86564. [PMID: 24466151 PMCID: PMC3897751 DOI: 10.1371/journal.pone.0086564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/11/2013] [Indexed: 01/01/2023] Open
Abstract
Diabetes is associated with elevated plasma glucose, increased reactive aldehyde formation, oxidative damage, and glycation/glycoxidation of biomolecules. Cellular detoxification of, or protection against, such modifications commonly requires NADPH-dependent reducing equivalents (e.g. GSH). We hypothesised that reactive aldehydes may modulate cellular redox status via the inhibition of NADPH-generating enzymes, resulting in decreased thiol and NADPH levels. Primary human coronary artery endothelial cells (HCAEC) were incubated with high glucose (25 mM, 24 h, 37°C), or methylglyoxal (MGO), glyoxal, or glycolaldehyde (100-500 µM, 1 h, 37°C), before quantification of intracellular thiols and NADPH-generating enzyme activities. Exposure to MGO, but not the other species examined, significantly (P<0.05) decreased total thiols (∼35%), further experiments with MGO showed significant losses of GSH (∼40%) and NADPH (∼10%); these changes did not result in an immediate loss of cell viability. Significantly decreased (∼10%) NADPH-producing enzyme activity was observed for HCAEC when glucose-6-phosphate or 2-deoxyglucose-6-phosphate were used as substrates. Cell lysate experiments showed significant MGO-dose dependent inhibition of glucose-6-phosphate-dependent enzymes and isocitrate dehydrogenase, but not malic enzyme. Analysis of intact cell or lysate proteins showed that arginine-derived hydroimidazolones were the predominant advanced glycation end-product (AGE) formed; lower levels of N(ε)-(carboxyethyl)lysine (CEL) and N(ε)-(carboxymethyl)lysine (CML) were also detected. These data support a novel mechanism by which MGO exposure results in changes in redox status in human coronary artery endothelial cells, via inhibition of NADPH-generating enzymes, with resultant changes in reduced protein thiol and GSH levels. These changes may contribute to the endothelial cell dysfunction observed in diabetes-associated atherosclerosis.
Collapse
|
75
|
Song DW, Xin N, Xie BJ, Li YJ, Meng LY, Li HM, Schläppi M, Deng YL. Formation of a salsolinol-like compound, the neurotoxin, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, in a cellular model of hyperglycemia and a rat model of diabetes. Int J Mol Med 2013; 33:736-42. [PMID: 24366308 DOI: 10.3892/ijmm.2013.1604] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/16/2013] [Indexed: 11/06/2022] Open
Abstract
There are statistical data indicating that diabetes is a risk factor for Parkinson's disease (PD). Methylglyoxal (MG), a biologically reactive byproduct of glucose metabolism, the levels of which have been shown to be increase in diabetes, reacts with dopamine to form 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (ADTIQ); this formation may provide further insight into the connection between PD and diabetes. In this study, we investigated the role of ADTIQ in these two diseases to determine in an aim to enhance our understanding of the link between PD and diabetes. To this end, a cell model of hyperglycemia and a rat model of diabetes were established. In the cell model of hyperglycemia, compared with the control group, the elevated glucose levels promoted free hydroxyl radical formation (p<0.01). An ADTIQ assay was successfully developed and ADTIQ levels were detected and quantified. The levels of its precursors, MG and dopamine (DA), were determined in both the cell model of hyperglycemia and the rat model of diabetes. The proteins related to glucose metabolism were also assayed. Compared with the control group, ADTIQ and MG levels were significantly elevated not only in the cell model of hyperglycemia, but also in the brains of rats with diabetes (p<0.01). Seven key enzymes from the glycolytic pathway were found to be significantly more abundant in the brains of rats with diabetes. Moreover, it was found that adenosine triphosphate (ATP) synthase and superoxide dismutase (SOD) expression levels were markedly decreased in the rats with diabetes compared with the control group. Therefore, ADTIQ expression levels were found to be elevated under hyperglycemic conditions. The results reported herein demonstrate that ADTIQ, which is derived from MG, the levels of which are increased in diabetes, may serve as a neurotoxin to dopaminergic neurons, eventually leading to PD.
Collapse
Affiliation(s)
- De-Wei Song
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100013, P.R. China
| | - Nian Xin
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Bing-Jie Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yu-Juan Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Ling-Yan Meng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Hong-Mei Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100013, P.R. China
| | | | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| |
Collapse
|
76
|
Ojeda AG, Wrobel K, Escobosa ARC, Garay-Sevilla ME, Wrobel K. High-performance liquid chromatography determination of glyoxal, methylglyoxal, and diacetyl in urine using 4-methoxy-o-phenylenediamine as derivatizing reagent. Anal Biochem 2013; 449:52-8. [PMID: 24361711 DOI: 10.1016/j.ab.2013.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/20/2013] [Accepted: 12/11/2013] [Indexed: 12/17/2022]
Abstract
Bioanalytical relevance of glyoxal (Go) and methylglyoxal (MGo) arises from their role as biomarkers of glycation processes and oxidative stress. The third compound of interest in this work is diacetyl (DMGo), a component of different food products and alcoholic beverages and one of the small α-ketoaldehydes previously reported in urine. The original idea for the determination of the above compounds by reversed phase high-performance liquid chromatography (HPLC) with fluorimetric detection was to use 4-methoxy-o-phenylenediamine (4MPD) as a derivatizing reagent and diethylglyoxal (DEGo) as internal standard. Acetonitrile was added to urine for matrix precipitation, and derivatization reaction was carried out in the diluted supernatant at neutral pH (40 °C, 4 h); after acidification, salt-induced phase separation enabled recovery of the obtained quinoxalines in the acetonitrile layer. The separation was achieved within 12 min using a C18 Kinetex column and gradient elution. The calibration detection limits for Go, MGo, and DMGo were 0.46, 0.39, and 0.28 μg/L, respectively. Within-day precision for real-world samples did not exceed 6%. Several urine samples from healthy volunteers, diabetic subjects, and juvenile swimmers were analyzed. The sensitivity of the procedure proposed here enabled detection of differences between analyte concentrations in urine from patients at different clinical or exposure-related conditions.
Collapse
Affiliation(s)
| | - Katarzyna Wrobel
- Department of Chemistry, University of Guanajuato, 36000 Guanajuato, Mexico
| | | | | | - Kazimierz Wrobel
- Department of Chemistry, University of Guanajuato, 36000 Guanajuato, Mexico.
| |
Collapse
|
77
|
Su Y, Qadri SM, Hossain M, Wu L, Liu L. Uncoupling of eNOS contributes to redox-sensitive leukocyte recruitment and microvascular leakage elicited by methylglyoxal. Biochem Pharmacol 2013; 86:1762-74. [PMID: 24144633 DOI: 10.1016/j.bcp.2013.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 01/03/2023]
Abstract
Elevated levels of the glycolysis metabolite methylglyoxal (MG) have been implicated in impaired leukocyte-endothelial interactions and vascular complications in diabetes, putative mechanisms of which remain elusive. Uncoupling of endothelial nitric oxide synthase (eNOS) was shown to be involved in endothelial dysfunction in diabetes. Whether MG contributes to these effects has not been elucidated. By using intravital microscopy in vivo, we demonstrate that MG-triggered reduction in leukocyte rolling velocity and increases in rolling flux, adhesion, emigration and microvascular permeability were significantly abated by scavenging reactive oxygen species (ROS). In murine cremaster muscle, MG treatment reduced tetrahydrobiopterin (BH4)/total biopterin ratio, increased arginase expression and stimulated ROS and superoxide production. The latter was significantly blunted by ROS scavengers Tempol (300μM) or MnTBAP (300μM), by BH4 supplementation (100μM) or by NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 20μM). In these tissues and cultured murine and human primary endothelial cells, MG increased eNOS monomerization and decreased BH4/total biopterin ratio, effects that were significantly mitigated by supplementation of BH4 or its precursor sepiapterin but not by L-NAME or tetrahydroneopterin, indicative of MG-triggered eNOS uncoupling. MG treatment further decreased the expression of guanosine triphosphate cyclohydrolase I in murine primary endothelial cells. MG-induced leukocyte recruitment was significantly attenuated by supplementation of BH4 or sepiapterin or suppression of superoxide by L-NAME confirming the role of eNOS uncoupling in MG-elicited leukocyte recruitment. Together, our study uncovers eNOS uncoupling as a pivotal mechanism in MG-induced oxidative stress, microvascular hyperpermeability and leukocyte recruitment in vivo.
Collapse
Affiliation(s)
- Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
78
|
Han L, Li L, Li B, Zhao D, Li Y, Xu Z, Liu G. Hydroxyl radical induced by lipid in Maillard reaction model system promotes diet-derived N(ε)-carboxymethyllysine formation. Food Chem Toxicol 2013; 60:536-41. [PMID: 23959106 DOI: 10.1016/j.fct.2013.07.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
N(ε)-carboxymethyllysine (CML) is commonly found in food, and is considered as a potential hazard to human health. However, the effect of lipids on CML formation in Maillard reaction is still not clarified. In this study, the content of diet-derived CML and its key intermediates, epsilon-fructoselysine (FL) and glyoxal (GO), is determined with high performance liquid chromatography mass spectrum (HPLC-MS) in model system containing lipid compounds. According to the results, hydroxyl radical (OH) induced by Fenton reagent can promote the three pathways of CML formation. Moreover, in the Maillard reaction system, linoleic acid (Lin), oleic acid (Ole) and glycerol trioleate (Tri) can induce more OH·, which promotes CML formation. Their level of promoting CML formation is in the order of Ole>Lin>Tri. On the contrary, glycerol (Gly) can scavenge OH·, which inhibit the CML formation. Finally, it is proved that FL content and GO content decreases with heating time in model system, while CML content increases with heating time. Thus, it is concluded that in the Maillard reaction system lipids can induce more OH·, which promotes the conversion from FL and GO to CML. Our research may contribute to the development of inhibitory methods for diet-derived CML by scavenging OH·.
Collapse
Affiliation(s)
- Lipeng Han
- College of Light Industry and Food Sciences, South China University of Technology, 381# Wushan Road, Tianhe District, Guangzhou 510640, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | | | | | | | | | | | | |
Collapse
|
79
|
Yang H, Kim GD, Park HR, Park YS. Comparative mRNA and microRNA expression profiling of methylglyoxal-exposed human endothelial cells. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
80
|
Engelbrecht B, Stratmann B, Hess C, Tschoepe D, Gawlowski T. Impact of GLO1 knock down on GLUT4 trafficking and glucose uptake in L6 myoblasts. PLoS One 2013; 8:e65195. [PMID: 23717693 PMCID: PMC3662699 DOI: 10.1371/journal.pone.0065195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/26/2013] [Indexed: 11/23/2022] Open
Abstract
Methylglyoxal (MG), a highly reactive α-dicarbonyl metabolite of glucose degradation pathways, protein and fatty acid metabolism, plays an important role in the pathogenesis of diabetic complications. Hyperglycemia triggers enhanced production of MG and increased generation of advanced glycation endproducts (AGEs). In non-enzymatic reactions, MG reacts with arginine residues of proteins to form the AGEs argpyrimidine and hydroimidazolone. Glyoxalase 1 (GLO1), in combination with glyoxalase 2 and the co-factor glutathione constitute the glyoxalase system, which is responsible for the detoxification of MG. A GLO1 specific knock down results in accumulation of MG in targeted cells. The aim of this study was to investigate the effect of intracellularly accumulated MG on insulin signaling and on the translocation of the glucose transporter 4 (GLUT4). Therefore, L6 cells stably expressing a myc-tagged GLUT4 were examined. For the intracellular accumulation of MG, GLO1, the first enzyme of the glyoxalase pathway, was down regulated by siRNA knock down and cells were cultivated under hyperglycemic conditions (25 mM glucose) for 48 h. Here we show that GLO1 knock down augmented GLUT4 level on the cell surface of L6 myoblasts at least in part through reduction of GLUT4 internalization, resulting in increased glucose uptake. However, intracellular accumulation of MG had no effect on GLUT4 concentration or modification. The antioxidant and MG scavenger NAC prevented the MG-induced GLUT4 translocation. Tiron, which is also a well-known antioxidant, had no impact on MG-induced GLUT4 translocation.
Collapse
Affiliation(s)
- Britta Engelbrecht
- Ruhr-University Bochum, Diabetes Center, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | | | | | | | | |
Collapse
|
81
|
Glyoxal derived from triglyceride participating in diet-derived Nε-carboxymethyllysine formation. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.01.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
82
|
Abstract
The elevation of plasma methylglyoxal levels in diabetic humans is widely observed, but it is unknown to what extent different sources of methylglyoxal contribute to its plasma concentration. A retrospective analysis of clinical findings has been undertaken. There is controversy about the correlation of plasma methylglyoxal concentrations with fasting or postprandial glucose levels, and the relationship with HbA1c. There is only one study in which plasma ketone body levels have been monitored in parallel with methylglyoxal and a positive correlation between plasma methylglyoxal and β-hydroxybutyrate was observed. There are no reports on plasma aminoacetone levels and methylglyoxal in diabetic humans. This paper suggests that although there is a close association between methylglyoxal and carbohydrate metabolism, the presence of this 1,2-dicarbonyl in the plasma is mainly due to other mechanisms. Protein glycation and aminoacetone degradation are proposed to be the major and the minor sources of plasma methylglyoxal under normal conditions.
Collapse
|
83
|
Gonzalo H, Brieva L, Tatzber F, Jové M, Cacabelos D, Cassanyé A, Lanau-Angulo L, Boada J, Serrano JCE, González C, Hernández L, Peralta S, Pamplona R, Portero-Otin M. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J Neurochem 2012; 123:622-34. [PMID: 22924648 DOI: 10.1111/j.1471-4159.2012.07934.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/18/2012] [Accepted: 08/19/2012] [Indexed: 11/30/2022]
Abstract
Metabolomic and lipidomic analyses have been used for the profiling of neurodegenerative processes, both in targeted and untargeted approaches. In this work we have applied these techniques to the study of CSF samples of multiple sclerosis (MS) patients (n = 9), compared with samples of non-MS individuals (n = 9) using mass-spectrometry. We have used western-blot and analyzed cell culture to confirm pathogenic pathways suggested by mass-spectrometric measurements. The results of the untargeted approach of metabolomics and lipidomics suggest the existence of several metabolites and lipids discriminating both populations. Applying targeted lipidomic analyses focused to a pathogenic pathway in MS, oxidative stress, reveal that the lipid peroxidation marker 8-iso-prostaglandin F2α is increased in CSF from MS patients. Furthermore, as lipid peroxidation exerts its pathogenical effects through protein modification, we studied the incidence of protein lipoxidation, revealing specific increases in carboxymethylated, neuroketal and malondialdehyde-mediated protein modifications in proteins of CSF from MS patients, despite the absence of their precursors glyoxal and methylglyoxal. Finally, we report that the level of neuroketal-modified proteins correlated with a hitherto unknown increased amount of autoantibodies against lipid peroxidation-modified proteins in CSF, without compensation by signaling induced by lipid peroxidation via peroxisome proliferator-activated receptor γ (PPARγ). The results, despite the limitation of being obtained in a small population, strongly suggest that autoimmunity against in situ produced epitopes derived from lipid peroxidation can be a relevant pathogenic factor in MS.
Collapse
Affiliation(s)
- Hugo Gonzalo
- Department of Experimental Medicine, PCiTAL-Universitat de Lleida-IRBLLEIDA, Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Yang Y, Li S, Konduru AS, Zhang S, Trower TC, Shi W, Cui N, Yu L, Wang Y, Zhu D, Jiang C. Prolonged exposure to methylglyoxal causes disruption of vascular KATP channel by mRNA instability. Am J Physiol Cell Physiol 2012; 303:C1045-54. [PMID: 22972803 DOI: 10.1152/ajpcell.00020.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is characterized by hyperglycemia and excessive production of intermediary metabolites including methylglyoxal (MGO), a reactive carbonyl species that can lead to cell injuries. Interacting with proteins, lipids, and DNA, excessive MGO can cause dysfunction of various tissues, especially the vascular walls where diabetic complications often take place. However, the potential vascular targets of excessive MGO remain to be fully understood. Here we show that the vascular Kir6.1/SUR2B isoform of ATP-sensitive K(+) (K(ATP)) channels is likely to be disrupted with an exposure to submillimolar MGO. Up to 90% of the Kir6.1/SUR2B currents were suppressed by 1 mM MGO with a time constant of ∼2 h. Consistently, MGO treatment caused a vast reduction of both Kir6.1 and SUR2B mRNAs endogenously expressed in the A10 vascular smooth muscle cells. In the presence of the transcriptional inhibitor actinomycin-D, MGO remained to lower the Kir6.1 and SUR2B mRNAs to the same degree as MGO alone, suggesting that the MGO effect is likely to compromise the mRNA stability. Luciferase reporter assays indicated that the 3'-untranslated regions (UTRs) of the Kir6.1 but not SUR2 mRNA were targeted by MGO. In contrast, the SUR2B mRNAs obtained with in vitro transcription were disrupted by MGO directly, while the Kir6.1 transcripts were unaffected. Consistent with these results, the constriction of mesenteric arterial rings was markedly augmented with an exposure to 1 mM MGO for 2 h, and such an MGO effect was totally eliminated in the presence of glibenclamide. These results therefore suggest that acting on the 3'-UTR of Kir6.1 and the coding region of SUR2B, MGO causes instability of Kir6.1 and SUR2B mRNAs, disruption of vascular K(ATP) channels, and impairment of arterial function.
Collapse
Affiliation(s)
- Yang Yang
- Deptartment of Biology, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Altered glucose metabolism due to insulin resistance is a common feature of essential hypertension in humans and in animal models. Elevated endogenous aldehydes in genetic (spontaneously hypertensive rats) and acquired (fructose-induced hypertensive rats) models of essential hypertension may be due to increased production of the reactive aldehyde methylglyoxal, resulting from altered glucose metabolism. Excess methylglyoxal binds sulfhydryl groups of membrane proteins, altering calcium channels and increasing cytosolic free Ca(2+) and blood pressure. It has been demonstrated that methylglyoxal, when given in drinking water to Wistar-Kyoto rats, leads to an increase in kidney aldehyde conjugates, cytosolic free Ca(2+) concentration, decreased serum nitric oxide, renal vascular hyperplasia and hypertension. N-acetylcysteine (NAC) in the diet of these animals prevented hypertension and associated biochemical and morphological changes. NAC normalizes blood pressure by directly binding to excess methylglyoxal, thus normalizing Ca(2+) channels, cytosolic Ca(2+) and nitric oxide. NAC also leads to increased levels of tissue glutathione, a storage form of cysteine. Glutathione acts as a cofactor in the enzymatic catabolism of methylglyoxal. Cysteine and other antioxidants, such as vitamins B(6), C and E, and lipoic acid, prevented hypertension and associated biochemical and morphological changes in both genetic and acquired rat models of hypertension. The antihypertensive effect of dietary antioxidants may be due to an increase in tissue cysteine and glutathione, which improves glucose metabolism and decreases tissue methylglyoxal. A diet rich in these antioxidants may be effective in preventing and controlling hypertension in humans.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Health Sciences Centre, Memorial University, St John's, Newfoundland and Labrador
| | | |
Collapse
|
86
|
Radu BM, Dumitrescu DI, Mustaciosu CC, Radu M. Dual effect of methylglyoxal on the intracellular Ca2+ signaling and neurite outgrowth in mouse sensory neurons. Cell Mol Neurobiol 2012; 32:1047-57. [PMID: 22402835 DOI: 10.1007/s10571-012-9823-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/21/2012] [Indexed: 12/18/2022]
Abstract
The formation of advanced glycation end products is one of the major factors involved in diabetic neuropathy, aging, and neurodegenerative diseases. Reactive carbonyl compounds, such as methylglyoxal (MG), play a key role in cross-linking to various proteins in the extracellular matrix, especially in neurons, which have a high rate of oxidative metabolism. The MG effect was tested on dorsal root ganglia primary neurons in cultures from adult male Balb/c mice. Lower MG doses contribute to an increased adherence of neurons on their support and an increased glia proliferation, as proved by MTS assay and bright-field microscopy. Time-lapse fluorescence microscopy by Fura-2 was performed for monitoring the relative fluorescence ratio changes (ΔR/R(0)) upon depolarization and immunofluorescence staining for quantifying the degree of neurites extension. The relative change in fluorescence ratio modifies the amplitude and dispersion depending on the subtype of sensory neurons, the medium-sized neurons are more sensitive to MG treatment when compared to small ones. Low MG concentrations (0-150 μM) increase neuronal viability, excitability, and the capacity of neurite extension, while higher concentrations (250-750 μM) are cytotoxic in a dose-dependent manner. In our opinion, MG could be metabolized by the glyoxalase system inside sensory neurons up to a threshold concentration, afterwards disturbing the cell equilibrium. Our study points out that MG has a dual effect concentration dependent on the neuronal viability, excitability, and neurite outgrowth, but only the excitability changes are soma-sized dependent. In conclusion, our data may partially explain the distinct neuronal modifications in various neurodegenerative pathologies.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy
| | | | | | | |
Collapse
|
87
|
Hess C, Stratmann B, Quester W, Tschoepe D, Madea B, Musshoff F. Clinical and forensic examinations of glycaemic marker methylglyoxal by means of high performance liquid chromatography-tandem mass spectrometry. Int J Legal Med 2012; 127:385-93. [PMID: 22820652 DOI: 10.1007/s00414-012-0740-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022]
Abstract
The postmortem determination of hyperglycaemic coma is quite difficult because of the lack of morphological findings and the difficult interpretation of biochemical parameters. Methylglyoxal (MG) is a reactive oxoaldehyde, which is mainly derived from glycolysis. An electrospray ionisation liquid chromatography-tandem mass spectrometric procedure for the determination of methylglyoxal in human serum and postmortem blood was developed. It involves protein precipitation with perchloric acid and a derivatisation step with 2,3-diaminonaphthalene. The assay was validated according to international guidelines. Serum samples from diabetics obtained at a diabetes clinic and from non-diabetics were used to assess data about reference concentrations in human serum. The assay showed linearity within the physiological concentrations in serum (5-500 ng/ml). Intraday imprecision at three concentrations was 10.3, 9.2 and 8.3 %, and interday imprecision was 15.3, 14.2 and 9.4 %; the limit of detection was 1.3 ng/ml, and limit of quantification, 3.2 ng/ml. One hundred and eighteen clinical (100 diabetics, 18 non-diabetics) and 98 forensic samples (84 non-diabetics, 14 in a status of hyperglycaemic coma) were measured. During life, diabetics showed significantly (p < 0.001) higher serum concentrations of MG than non-diabetics. After death, concentrations of MG increased significantly (p < 0.001). However, there was no correlation between the sum formula of Traub in vitreous humour and MG femoral blood concentrations (R = 0.237). This indicates that MG concentrations in the deceased cannot distinguish deaths due to a hyperglycaemic coma from other causes of death.
Collapse
Affiliation(s)
- Cornelius Hess
- Institute of Forensic Medicine, University of Bonn, Stiftsplatz 12, 53111, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
88
|
Eberhardt MJ, Filipovic MR, Leffler A, de la Roche J, Kistner K, Fischer MJ, Fleming T, Zimmermann K, Ivanovic-Burmazovic I, Nawroth PP, Bierhaus A, Reeh PW, Sauer SK. Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem 2012; 287:28291-306. [PMID: 22740698 DOI: 10.1074/jbc.m111.328674] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuropathic pain can develop as an agonizing sequela of diabetes mellitus and chronic uremia. A chemical link between both conditions of altered metabolism is the highly reactive compound methylglyoxal (MG), which accumulates in all cells, in particular neurons, and leaks into plasma as an index of the severity of the disorder. The electrophilic structure of this cytotoxic ketoaldehyde suggests TRPA1, a receptor channel deeply involved in inflammatory and neuropathic pain, as a molecular target. We demonstrate that extracellularly applied MG accesses specific intracellular binding sites of TRPA1, activating inward currents and calcium influx in transfected cells and sensory neurons, slowing conduction velocity in unmyelinated peripheral nerve fibers, and stimulating release of proinflammatory neuropeptides from and action potential firing in cutaneous nociceptors. Using a model peptide of the N terminus of human TRPA1, we demonstrate the formation of disulfide bonds based on MG-induced modification of cysteines as a novel mechanism. In conclusion, MG is proposed to be a candidate metabolite that causes neuropathic pain in metabolic disorders and thus is a promising target for medicinal chemistry.
Collapse
Affiliation(s)
- Mirjam J Eberhardt
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Chen XM, Kitts DD. Identification and quantification of α-dicarbonyl compounds produced in different sugar-amino acid Maillard reaction model systems. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
90
|
DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res 2011; 711:13-27. [PMID: 21419140 DOI: 10.1016/j.mrfmmm.2011.03.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 12/16/2022]
Abstract
DNA damage plays a major role in various pathophysiological conditions including carcinogenesis, aging, inflammation, diabetes and neurodegenerative diseases. Oxidative stress and cell processes such as lipid peroxidation and glycation induce the formation of highly reactive endogenous aldehydes that react directly with DNA, form aldehyde-derived DNA adducts and lead to DNA damage. In occasion of persistent conditions that influence the formation and accumulation of aldehyde-derived DNA adducts the resulting unrepaired DNA damage causes deregulation of cell homeostasis and thus significantly contributes to disease phenotype. Some of the most highly reactive aldehydes produced endogenously are 4-hydroxy-2-nonenal, malondialdehyde, acrolein, crotonaldehyde and methylglyoxal. The mutagenic and carcinogenic effects associated with the elevated levels of these reactive aldehydes, especially, under conditions of stress, are attributed to their capability of causing directly modification of DNA bases or yielding promutagenic exocyclic adducts. In this review, we discuss the current knowledge on DNA damage induced by endogenously produced reactive aldehydes in relation to the pathophysiology of human diseases.
Collapse
|
91
|
Lu J, Randell E, Han Y, Adeli K, Krahn J, Meng QH. Increased plasma methylglyoxal level, inflammation, and vascular endothelial dysfunction in diabetic nephropathy. Clin Biochem 2011; 44:307-11. [DOI: 10.1016/j.clinbiochem.2010.11.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 12/31/2022]
|
92
|
Tamae D, Lim P, Wuenschell GE, Termini J. Mutagenesis and repair induced by the DNA advanced glycation end product N2-1-(carboxyethyl)-2'-deoxyguanosine in human cells. Biochemistry 2011; 50:2321-9. [PMID: 21355561 DOI: 10.1021/bi101933p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycation of biopolymers by glucose-derived α-oxo-aldehydes such as methylglyoxal (MG) is believed to play a major role in the complex pathologies associated with diabetes and metabolic disease. In contrast to the extensive literature detailing the formation and physiological consequences of protein glycation, there is little information about the corresponding phenomenon for DNA. To assess the potential contribution of DNA glycation to genetic instability, we prepared shuttle vectors containing defined levels of the DNA glycation adduct N(2)-(1-carboxyethyl)-2'-deoxyguanosine (CEdG) and transfected them into isogenic human fibroblasts that differed solely in the capacity to conduct nucleotide excision repair (NER). In the NER-compromised fibroblasts, the induced mutation frequencies increased up to 18-fold relative to background over a range of ∼10-1400 CEdG adducts/10(5) dG, whereas the same substrates transfected into NER-competent cells induced a response that was 5-fold over background at the highest adduct density. The positive linear correlation (R(2) = 0.998) of mutation frequency with increasing CEdG level in NER-defective cells suggested that NER was the primary if not exclusive mechanism for repair of this adduct in human fibroblasts. Consistent with predictions from biochemical studies using CEdG-substituted oligonucleotides, guanine transversions were the predominant mutation resulting from replication of MG-modified plasmids. At high CEdG levels, significant increases in the number of AT → GC transitions were observed exclusively in NER-competent cells (P < 0.0001). This suggested the involvement of an NER-dependent mutagenic process in response to critical levels of DNA damage, possibly mediated by error-prone Y-family polymerases.
Collapse
Affiliation(s)
- Daniel Tamae
- Division of Molecular Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | | | | | | |
Collapse
|
93
|
Kuntz S, Kunz C, Rudloff S. Carbonyl compounds methylglyoxal and glyoxal affect interleukin-8 secretion in intestinal cells by superoxide anion generation and activation of MAPK p38. Mol Nutr Food Res 2011; 54:1458-67. [PMID: 20397192 DOI: 10.1002/mnfr.200900408] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The carbonyl compounds methylglyoxal (MG) and glyoxal (GL) are reactive intermediates of glucose degradation pathways and capable of inducing cellular damage. Although immune-stimulating activity has been investigated in endothelial cells, little is known about the signaling pathways of cytokine induction of these compounds in the intestine. Hence, we investigated the impact of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) on IL-8 production by human intestinal cells (Caco-2 and HT-29) after stimulation by MG and GL. Both compounds induced a dose-dependent enhancement of IL-8 secretion in human intestinal cells. MAPK p38 and extracellular signal-regulated kinase (ERK) were phosphorylated in these cells after having been stimulated by MG and GL. Furthermore, inhibitors of MAPK p38 (SB 203580 and 239063), ERK1/2 (PD 98059) and NF-κB activation (SM-7368 and SC-514) reduced IL-8 secretion. The most important mechanism by which MG and GL induced IL-8 secretion was the generation of superoxide anions which was confirmed by the inhibition of the cytosolic NADPH oxidase with diphenyl iodonium (DPI) or by application of superoxide dismutase (SOD). Our data suggest that multiple pathways were simultaneously activated; however, superoxide dependent MAPK p38 activation seems to be the most dominant pathway for IL-8 secretion in intestinal cells.
Collapse
Affiliation(s)
- Sabine Kuntz
- Institute of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany.
| | | | | |
Collapse
|
94
|
Lu J, Zello GA, Randell E, Adeli K, Krahn J, Meng QH. Closing the anion gap: Contribution of d-lactate to diabetic ketoacidosis. Clin Chim Acta 2011; 412:286-91. [DOI: 10.1016/j.cca.2010.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
|
95
|
Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G, Mann GE, Pamplona R, Poli G, Portero-Otin M, Riahi Y, Salvayre R, Sasson S, Serrano J, Shamni O, Siems W, Siow RCM, Wiswedel I, Zarkovic K, Zarkovic N. Pathological aspects of lipid peroxidation. Free Radic Res 2010; 44:1125-71. [PMID: 20836660 DOI: 10.3109/10715762.2010.498478] [Citation(s) in RCA: 480] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lipid peroxidation (LPO) product accumulation in human tissues is a major cause of tissular and cellular dysfunction that plays a major role in ageing and most age-related and oxidative stress-related diseases. The current evidence for the implication of LPO in pathological processes is discussed in this review. New data and literature review are provided evaluating the role of LPO in the pathophysiology of ageing and classically oxidative stress-linked diseases, such as neurodegenerative diseases, diabetes and atherosclerosis (the main cause of cardiovascular complications). Striking evidences implicating LPO in foetal vascular dysfunction occurring in pre-eclampsia, in renal and liver diseases, as well as their role as cause and consequence to cancer development are addressed.
Collapse
|
96
|
The chaperone-dependent ubiquitin ligase CHIP targets HIF-1α for degradation in the presence of methylglyoxal. PLoS One 2010; 5:e15062. [PMID: 21124777 PMCID: PMC2993942 DOI: 10.1371/journal.pone.0015062] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/17/2010] [Indexed: 11/24/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) plays a key role in cell adaptation to low oxygen and stabilization of HIF-1 is vital to ensure cell survival under hypoxia. Diabetes has been associated with impairment of the cell response to hypoxia and downregulation of HIF-1 is most likely the event that transduces hyperglycemia into increased cell death in diabetes-associated hypoxia. In this study, we aimed at identifying the molecular mechanism implicated in destabilization of HIF-1 by high glucose. In this work, we identified a new molecular mechanism whereby methylglyoxal (MGO), which accumulates in high-glucose conditions, led to a rapid proteasome-dependent degradation of HIF-1α under hypoxia. Significantly, MGO-induced degradation of HIF-1α did not require the recruitment of the ubiquitin ligase pVHL nor did it require hydroxylation of the proline residues P402/P564 of HIF-1α. Moreover, we identified CHIP (Carboxy terminus of Hsp70-Interacting Protein) as the E3 ligase that ubiquitinated HIF-1α in the presence of MGO. Consistently, silencing of endogenous CHIP and overexpression of glyoxalase I both stabilized HIF-1α under hypoxia in the presence of MGO. Data shows that increased association of Hsp40/70 with HIF-1α led to recruitment of CHIP, which promoted polyubiquitination and degradation of HIF-1α. Moreover, MGO-induced destabilization of HIF-1α led to a dramatic decrease in HIF-1 transcriptional activity. Altogether, data is consistent with a new pathway for degradation of HIF-1α in response to intracellular accumulation of MGO. Moreover, we suggest that accumulation of MGO is likely to be the link between high glucose and the loss of cell response to hypoxia in diabetes.
Collapse
|
97
|
|
98
|
Younis NN, Soran H, Sharma R, Charlton-Menys V, Durrington PN. Lipoprotein glycation in atherogenesis. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
99
|
Miyazawa N, Abe M, Souma T, Tanemoto M, Abe T, Nakayama M, Ito S. Methylglyoxal augments intracellular oxidative stress in human aortic endothelial cells. Free Radic Res 2009; 44:101-7. [DOI: 10.3109/10715760903321788] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
100
|
Stirban A, Tschoepe D, Stratmann B. Shifting the disease management paradigm from glucose: what are the pros? Diabetes Care 2009; 32 Suppl 2:S349-52. [PMID: 19875579 PMCID: PMC2811442 DOI: 10.2337/dc09-s337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Alin Stirban
- Diabetes Center, Heart and Diabetes Center NRW Bad Oeynhausen, Ruhr-University Bochum, Bochum, Germany
| | | | | |
Collapse
|