51
|
Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
52
|
Zhu J, Tan X, Hafid HS, Wakisaka M. Enhancement of biomass yield and lipid accumulation of freshwater microalga Euglena gracilis by phenolic compounds from basic structures of lignin. BIORESOURCE TECHNOLOGY 2021; 321:124441. [PMID: 33268047 DOI: 10.1016/j.biortech.2020.124441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Introducing biomass-derived additives into microalgae cultivation to increase its yield has been regarded as a more cost-effective and environment-friendly method compared with gene-editing and nutrients supplementation. In this research, feasibility of three major phenolic compounds from lignin's basic structures (guaiacyl-, hydroxyphenyl- and syringyl- types) for freshwater microalga Euglena gracilis cultivation was evaluated. The results indicated that trans-4-hydroxy-3-methoxycinnamic acid (HMA), 4-hydroxybenzaldehyde (HBA), and syringaldehyde (SRA) could all promote microalgae growth in a phytohormone-like role, and the highest promotion effect was achieved under HMA treatment. HMA at 0.5 g·L-1 enhanced the cell biomass yield by 2.30 times, while HBA and SRA at the concentration of 0.1 g·L-1 increased the yield by 1.30 and 1.21 times, respectively. In addition, increased carotenoids and lipid biosynthesis were also observed under the treatments of phenolic compounds, which would contribute to the microalgae biofuel production, since the growth and lipid accumulation of E. gracilis were simultaneously enhanced.
Collapse
Affiliation(s)
- Jiangyu Zhu
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan
| | - Xiaomiao Tan
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan; School of Food Science and Engineering, Yangzhou University, No.196 Huayang West Road, Hanjiang District, Yangzhou City, Jiangsu Province 225127, China
| | - Halimatun Saadiah Hafid
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan
| | - Minato Wakisaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan.
| |
Collapse
|
53
|
León-Vaz A, Romero LC, Gotor C, León R, Vigara J. Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111301. [PMID: 32949933 DOI: 10.1016/j.ecoenv.2020.111301] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Cadmium is one of the most common heavy metals in contaminated aquatic environments and one of the most toxic contaminants for phytoplankton. Nevertheless, there are not enough studies focused on the effect of this metal in algae. Through a proteomic approach, this work shows how Cd can alter the growth, cell morphology and metabolism of the microalga Chlorella sorokiniana. Using the sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS), we concluded that exposure of Chlorella sorokiniana to 250 μM Cd2+ for 40 h caused downregulation of different metabolic pathways, such as photosynthesis, oxidative phosphorylation, glycolysis, TCA cycle and ribosomal proteins biosynthesis. However, photorespiration, antioxidant enzymes, gluconeogenesis, starch catabolism, and biosynthesis of glutamate, cysteine, glycine and serine were upregulated, under the same conditions. Finally, exposure to Cd also led to changes in the metabolism of carotenoids and lipids. In addition, the high tolerance of Chlorella sorokiniana to Cd points to this microalga as a potential microorganism to be used in bioremediation processes.
Collapse
Affiliation(s)
- Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 210071, Huelva, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Seville. Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Seville. Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 210071, Huelva, Spain
| | - Javier Vigara
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 210071, Huelva, Spain.
| |
Collapse
|
54
|
Machado MD, Soares EV. Exposure of the alga Pseudokirchneriella subcapitata to environmentally relevant concentrations of the herbicide metolachlor: Impact on the redox homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111264. [PMID: 32911184 DOI: 10.1016/j.ecoenv.2020.111264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effect of the herbicide metolachlor (MET) on the redox homeostasis of the freshwater green alga Pseudokirchneriella subcapitata. At low MET concentrations (≤40 μg L-1), no effects on algal cells were detected. The exposure of P. subcapitata to 45-235 μg L-1 MET induced a significant increase of reactive oxygen species (ROS). The intracellular levels of ROS were particularly increased at high (115 and 235 μg L-1) but environmentally relevant MET concentrations. The exposure of algal cells to 115 and 235 μg L-1 MET originated a decrease in the levels of antioxidants molecules (reduced glutathione and carotenoids) as well as a reduction of the activity of scavenging enzymes (superoxide dismutase and catalase). These results suggest that antioxidant (non-enzymatic and enzymatic) defenses were affected by the excess of MET. As consequence of this imbalance (ROS overproduction and decline of the antioxidant system), ROS inflicted oxidative injury with lipid peroxidation and damage of cell membrane integrity. The results provide further insights about the toxic modes of action of MET on a non-target organism and emphasize the relevance of toxicological studies in the assessment of the impact of herbicides in freshwater environments.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory-CIET, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Eduardo V Soares
- Bioengineering Laboratory-CIET, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
55
|
Kato Y, Hasunuma T. Metabolic Engineering for Carotenoid Production Using Eukaryotic Microalgae and Prokaryotic Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1261:121-135. [PMID: 33783735 DOI: 10.1007/978-981-15-7360-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotic microalgae and prokaryotic cyanobacteria are diverse photosynthetic organisms that produce various useful compounds. Due to their rapid growth and efficient biomass production from carbon dioxide and solar energy, microalgae and cyanobacteria are expected to become cost-effective, sustainable bioresources in the future. These organisms also abundantly produce various carotenoids, but further improvement in carotenoid productivity is needed for a successful commercialization. Metabolic engineering via genetic manipulation and mutational breeding is a powerful tool for generating carotenoid-rich strains. This chapter focuses on carotenoid production in microalgae and cyanobacteria, as well as strategies and potential target genes for metabolic engineering. Recent achievements in metabolic engineering that improved carotenoid production in microalgae and cyanobacteria are also reviewed.
Collapse
Affiliation(s)
- Yuichi Kato
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe-city, Hyogo, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe-city, Hyogo, Japan.
| |
Collapse
|
56
|
Patel AK, Singhania RR, Sim SJ, Dong CD. Recent advancements in mixotrophic bioprocessing for production of high value microalgal products. BIORESOURCE TECHNOLOGY 2021; 320:124421. [PMID: 33246239 DOI: 10.1016/j.biortech.2020.124421] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Recently, microalgal biomass has become an attractive and sustainable feedstock for renewable production of various biochemicals and biofuels. However, attaining required productivity remains a key challenge to develop industrial applications. Fortunately, mixotrophic cultivation strategy (MCS) is leading to higher productivity due to the metabolic ability of some microalgal strain to utilise both photosynthesis and organic carbon compared to phototrophic or heterotrophic processes. The potential of MCS is being explored by researchers for maximized biochemicals and biofuels production however it requires further development yet to reach commercialization stage. In this review, recent developments in the MCS bioprocess for selective value-added (carotenoids) products have been reviewed; synergistic mechanism of carbon and energy was conferred. Moreover, the metabolic regulation of microalgae under MCS for utilized carbon forms and carbon recycling was demonstrated; Additionally, the opportunities and challenges of large-scale MCS have been discussed.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| | | | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seoungbuk-gu, Seoul 02841, Republic of Korea
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
57
|
Morocho-Jácome AL, Ruscinc N, Martinez RM, de Carvalho JCM, Santos de Almeida T, Rosado C, Costa JG, Velasco MVR, Baby AR. (Bio)Technological aspects of microalgae pigments for cosmetics. Appl Microbiol Biotechnol 2020; 104:9513-9522. [PMID: 33015721 DOI: 10.1007/s00253-020-10936-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022]
Abstract
Photosynthetic microorganisms convert carbon dioxide and solar radiation into interesting bioactive compounds not yet entirely explored. Several species of microalgae are known to be rich in colored high-valuable components that, although remarkable, are poorly explored as natural sources of pigments for cosmetics. Pigments associated to photosynthetic activity include chlorophyll, β-carotene, astaxanthin, xanthophylls, and phycobiliproteins, many of which have shown high potential as cosmetic actives due to their antioxidant, immune-enhancing, and anti-inflammatory properties. In the last decade, concern with a young and beautiful appearance has emerged, encouraging many consumers to use anti-aging cosmetics daily. As a result, the cosmetic market has been growing and evolving rapidly to meet consumer expectations. However, due to regular use and the sensitive nature of facial skin, local adverse reactions may often occur, such as irritation, sensitization, or photoreactions, and safety evaluation is mandatory prior to marketing. It is, therefore, understandable that new actives from natural sources, such as microalgae, are perceived as attractive alternatives for consumers who seek ingredients without allergenic potential. Thus, the cosmetic industry has recently started to explore the inclusion of compounds extracted from microalgae and cyanobacteria in innovative formulations. Herein, we revised nontraditional microalgae species for pigment production with cosmetic applications, indicating those that could also be considered potential ingredients for innovative cosmetics. KEY POINTS: • Extraction methods for pigments from photosynthetic microorganisms were compiled. • Innovative cosmeceuticals could be developed with natural pigments. • Safety features of such natural pigments were also described.
Collapse
Affiliation(s)
- Ana Lucía Morocho-Jácome
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, 580 Prof. Lineu Prestes Av., Bl.15, São Paulo, 05508-900, Brazil.
| | - Nadia Ruscinc
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, 580 Prof. Lineu Prestes Av., Bl.15, São Paulo, 05508-900, Brazil
| | - Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, 580 Prof. Lineu Prestes Av., Bl.15, São Paulo, 05508-900, Brazil
| | - João Carlos Monteiro de Carvalho
- Biochemical and Pharmaceutical Technology Department, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tânia Santos de Almeida
- CBIOS - Universidade Lusófona's Research Center for Biosciences and Health Technologies, Lisbon, Portugal
| | - Catarina Rosado
- CBIOS - Universidade Lusófona's Research Center for Biosciences and Health Technologies, Lisbon, Portugal
| | - João Guilherme Costa
- CBIOS - Universidade Lusófona's Research Center for Biosciences and Health Technologies, Lisbon, Portugal
| | - Maria Valéria Robles Velasco
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, 580 Prof. Lineu Prestes Av., Bl.15, São Paulo, 05508-900, Brazil
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, 580 Prof. Lineu Prestes Av., Bl.15, São Paulo, 05508-900, Brazil.
| |
Collapse
|
58
|
Abril Bonett JE, de Sousa Geraldino P, Cardoso PG, de Freitas Coelho F, Duarte WF. Isolation of freshwater microalgae and outdoor cultivation using cheese whey as substrate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
59
|
Rosales-Mendoza S, García-Silva I, González-Ortega O, Sandoval-Vargas JM, Malla A, Vimolmangkang S. The Potential of Algal Biotechnology to Produce Antiviral Compounds and Biopharmaceuticals. Molecules 2020; 25:E4049. [PMID: 32899754 PMCID: PMC7571207 DOI: 10.3390/molecules25184049] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
The emergence of the Coronavirus Disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to an unprecedented pandemic, which demands urgent development of antiviral drugs and antibodies; as well as prophylactic approaches, namely vaccines. Algae biotechnology has much to offer in this scenario given the diversity of such organisms, which are a valuable source of antiviral and anti-inflammatory compounds that can also be used to produce vaccines and antibodies. Antivirals with possible activity against SARS-CoV-2 are summarized, based on previously reported activity against Coronaviruses or other enveloped or respiratory viruses. Moreover, the potential of algae-derived anti-inflammatory compounds to treat severe cases of COVID-19 is contemplated. The scenario of producing biopharmaceuticals in recombinant algae is presented and the cases of algae-made vaccines targeting viral diseases is highlighted as valuable references for the development of anti-SARS-CoV-2 vaccines. Successful cases in the production of functional antibodies are described. Perspectives on how specific algae species and genetic engineering techniques can be applied for the production of anti-viral compounds antibodies and vaccines against SARS-CoV-2 are provided.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2. Sección, San Luis Potosí 78210, Mexico
| | - Ileana García-Silva
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2. Sección, San Luis Potosí 78210, Mexico
| | - Omar González-Ortega
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
| | - José M. Sandoval-Vargas
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2. Sección, San Luis Potosí 78210, Mexico
| | - Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
60
|
Tamil Selvan S, Velramar B, Ramamurthy D, Balasundaram S, Sivamani K. Pilot scale wastewater treatment, CO 2 sequestration and lipid production using microalga, Neochloris aquatica RDS02. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1462-1479. [PMID: 32615792 DOI: 10.1080/15226514.2020.1782828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In present investigation carried out large-scale treatment of tannery effluent by the cultivation of microalgae, Neochloris aquatica RDS02. The tannery effluent treatment revealed that significant reduction heavy metals were chromium-3.59, lead-2.85, nickel-1.9, cadmium-10.68, zinc-4.49, copper-0.95 and cobalt-1.86 mg/L on 15th day of treatment using N. aquatica RDS02. The microalgal biosorption capacity q max rate was Cr-88.66, Pb-75.87, Ni-87.61, Cd-60.44, Co-52.86, Zn-84.90 and Cu-54.39, and isotherm model emphasized that the higher R 2 value 0.99 by Langmuir and Freundlich kinetics model. The microalga utilized highest CO2 (90%) analyzed by CO2 biofixation and utilization kinetics, biomass (3.9 mg/mL), lipid (210 mg mL-1), carbohydrate (102.75 mg mL-1), biodiesel (4.9 mL g-1) and bioethanol (4.1 mL g-1). The microalgal-lipid content was analyzed through Nile red staining. Gas chromatography mass spectrometric (GCMS) analysis confirmed that the presence of a biodiesel and major fatty acid methyl ester (FAME) profiling viz., tridecanoic acid methyl ester, pentadecanoic acid methyl ester, octadecanoic acid methyl ester, myristic acid methyl ester, palmitic acid methyl ester and oleic acid methyl ester. Fourier transform infrared (FTIR) analysis confirmed that the presence of a functional groups viz., phenols, alcohols, alkynes, carboxylic acids, ketones, carbonyl and ester groups. The bioethanol production was confirmed by high-performance liquid chromatography (HPLC) analyze.
Collapse
Affiliation(s)
- Silambarasan Tamil Selvan
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
- Department of Microbiology, School of Biosciences, Periyar University, Salem, India
| | | | | | - Sendilkumar Balasundaram
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
- School of Allied Health Sciences, VIMS Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, India
| | - Kanimozhi Sivamani
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
| |
Collapse
|
61
|
Sun H, Ren Y, Lao Y, Li X, Chen F. A novel fed-batch strategy enhances lipid and astaxanthin productivity without compromising biomass of Chromochloris zofingiensis. BIORESOURCE TECHNOLOGY 2020; 308:123306. [PMID: 32276201 DOI: 10.1016/j.biortech.2020.123306] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 05/03/2023]
Abstract
To improve lipid and astaxanthin productivity without compromising biomass during the whole cultivation period, carbon-dependent kinetics involving nitrogen stress was applied under excess light to elevate intracellular carbon availability and metabolic activity of Chromochloris zofingiensis. Results suggested that fed-batch strategy proposed could increase lipid and astaxanthin productivity to 457.1 and 2.0 mg L-1 d-1, respectively. Biomass productivity at 1084.3 mg L-1 d-1 was comparable with that under suitable condition. Then 13C tracer-based metabolic flux analysis (13C-MFA) demonstrated that central carbon metabolism provided ATP, NADPH and carbon availability for lipid biosynthesis during the strategy. In combination with targeted metabolite analysis, 13C-MFA revealed that the strategy improved precursor content for lipid biosynthesis and elevated path rate to synthesize C16:0 and C18:0. The enhanced lipid content potentially accounted for the high biomass productivity. Therefore, comprehensively understanding relationships between carbon availability and carbon conversion could precisely design strategy for productivity improvements during cultivation.
Collapse
Affiliation(s)
- Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen 518060, China; Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yuanyuan Ren
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen 518060, China; Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yongmin Lao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaojie Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
62
|
An M, Yang S, Wu H, Luo G, Li M. Recommended turbulent energy dissipation rate for biomass and lipid production of Scenedesmus obliquus in an aerated photosynthetic culture system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26473-26483. [PMID: 32367240 DOI: 10.1007/s11356-020-08700-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Effects of turbulent energy dissipation rate (increased from 1.28 × 10-6 to 1.67 × 10-5 m2 s-3) on Scenedesmus obliquus biomass and lipid accumulation at different aeration rates (0.3, 0.6, 0.9, 1.2, and 1.5 L min-1) were investigated. The turbulent energy dissipation rate was calculated by CFD model simulation. When the turbulent energy dissipation rate increased to 7.30 × 10-6 m2 s-3, the biomass and lipid productivity increased gradually, and finally reached their maximum values of 1.11 × 107 cells mL-1 and 16.0 mg L-1 day-1, respectively. When it exceeded 7.30 × 10-6 m2 s-3, the biomass and lipid productivity showed a decreasing trend. Therefore, the most favorable turbulent energy dissipation rate for S. obliquus growth and lipid accumulation was 7.30 × 10-6 m2 s-3.
Collapse
Affiliation(s)
- Mei An
- Gansu Microalgae Technology Innovation Center, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, Gansu, 734000, People's Republic of China
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, 712100, People's Republic of China
| | - Songqi Yang
- Gansu Microalgae Technology Innovation Center, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, Gansu, 734000, People's Republic of China
| | - Haiming Wu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, 712100, People's Republic of China
| | - Guanghong Luo
- Gansu Microalgae Technology Innovation Center, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, Gansu, 734000, People's Republic of China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
63
|
Zhang S, He Y, Sen B, Wang G. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. BIORESOURCE TECHNOLOGY 2020; 307:123234. [PMID: 32245673 DOI: 10.1016/j.biortech.2020.123234] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Oleaginous microorganisms are among the most promising alternative sources of lipids for oleochemicals and biofuels. However, in the course of lipid production, reactive oxygen species (ROS) are generated inevitably as byproducts of aerobic metabolisms. Although excessive accumulation of ROS leads to lipid peroxidation, DNA damage, and protein denaturation, ROS accumulation has been suggested to enhance lipid synthesis in these microorganisms. There are many unresolved questions concerning this dichotomous view of ROS influence on lipid accumulation. These include what level of ROS triggers lipid overproduction, what mechanisms and targets are vital and whether ROS act as toxic byproducts or cellular messengers in these microorganisms? Here we review the current state of knowledge on ROS generation, antioxidative defense system, the dual effects of ROS on microbial lipid production, and ROS-induced lipid peroxidation and accumulation mechanisms. Toward the end, the review summarizes strategies that enhance lipid production based on ROS manipulation.
Collapse
Affiliation(s)
- Sai Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
64
|
Fernández-López JA, Fernández-Lledó V, Angosto JM. New insights into red plant pigments: more than just natural colorants. RSC Adv 2020; 10:24669-24682. [PMID: 35516216 PMCID: PMC9055186 DOI: 10.1039/d0ra03514a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Pigments make nature both colorful and attractive. Humans have always incorporated the natural pigments of fruits, vegetables and spices into their dietary requirements. Naturally occurring red pigments in plants are carotenoids, anthocyanins and betacyanins. Natural pigments, apart from colour, provide added properties and are therefore considered to be bioactive constituents. Red natural colorants are one of the most widely used in the food industry. The interest in these pigments lies in the enhancement of the healthy effects of the diet. In this context, attention is given to carotenoids, anthocyanins and betacyanins, with emphasis on the basic chemical and biochemical attributes and wide-ranging health-promoting benefits of these pigments. Thus, in this review, we systematically present the advantages and limitations of these natural pigments as food colorants in relation to their physico-chemical properties, reactivity and bioactivity.
Collapse
Affiliation(s)
- José A Fernández-López
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT) Paseo Alfonso XIII 52 E-30203 Cartagena Murcia Spain
| | - Vicente Fernández-Lledó
- Higher Technical School of Telecommunications, Technical University of Madrid (UPM) Madrid Spain
| | - José M Angosto
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT) Paseo Alfonso XIII 52 E-30203 Cartagena Murcia Spain
| |
Collapse
|
65
|
Malavasi V, Soru S, Cao G. Extremophile Microalgae: the potential for biotechnological application. JOURNAL OF PHYCOLOGY 2020; 56:559-573. [PMID: 31917871 DOI: 10.1111/jpy.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Microalgae are photosynthetic microorganisms that use sunlight as an energy source, and convert water, carbon dioxide, and inorganic salts into algal biomass. The isolation and selection of microalgae, which allow one to obtain large amounts of biomass and valuable compounds, is a prerequisite for their successful industrial production. This work provides an overview of extremophile algae, where their ability to grow under harsh conditions and the corresponding accumulation of metabolites are addressed. Emphasis is placed on the high-value products of some prominent algae. Moreover, the most recent applications of these microorganisms and their potential exploitation in the context of astrobiology are taken into account.
Collapse
Affiliation(s)
- Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Santina Soru
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| |
Collapse
|
66
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
67
|
Lou S, Zhu X, Zeng Z, Wang H, Jia B, Li H, Hu Z. Identification of microRNAs response to high light and salinity that involved in beta-carotene accumulation in microalga Dunaliella salina. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
68
|
Kumar M, Sun Y, Rathour R, Pandey A, Thakur IS, Tsang DCW. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137116. [PMID: 32059310 DOI: 10.1016/j.scitotenv.2020.137116] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The current review explores the potential application of algal biomass for the production of biofuels and bio-based products. The variety of processes and pathways through which bio-valorization of algal biomass can be performed are described in this review. Various lipid extraction techniques from algal biomass along with transesterification reactions for biodiesel production are briefly discussed. Processes such as the pretreatment and saccharification of algal biomass, fermentation, gasification, pyrolysis, hydrothermal liquefaction, and anaerobic digestion for the production of biohydrogen, bio-oils, biomethane, biochar (BC), and various bio-based products are reviewed in detail. The biorefinery model and its collaborative approach with various processes are highlighted for the production of eco-friendly, sustainable, and cost-effective biofuels and value-added products. The authors also discuss opportunities and challenges related to bio-valorization of algal biomass and use their own perspective regarding the processes involved in production and the feasibility to make algal research a reality for the production of biofuels and bio-based products in a sustainable manner.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Rashmi Rathour
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, 31 MG Marg, Lucknow 226 001, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
69
|
Algae-Derived Bioactive Compounds with Anti-Lung Cancer Potential. Mar Drugs 2020; 18:md18040197. [PMID: 32276401 PMCID: PMC7230368 DOI: 10.3390/md18040197] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is one of the major causes of death worldwide. Natural molecules with anti-lung cancer potential are of a great interest and considered as very promising alternative to substitute or enhance the efficiency of the conventional drugs. Recently, algae as source of high value-added compounds are considered as very promising source of these bioactive molecules. These are secondary metabolites that consist mainly of derivatives of peptides, carbohydrates, and lipids with various structures. Accordingly, various mechanisms by which different algae molecules demonstrate attenuation of tumor angiogenesis were stated and discussed. The mode of action of the algae bioactives is closely related to their nature and chemical structure. Furthermore, this literature review considers the synergistic effect between microalgae bioactives and conventional drugs and discuss the economic feasibility of producing microalgae bioactives at large scale to conclude with some future perspectives related to algae-based drug discovery.
Collapse
|
70
|
Ermis H, Guven-Gulhan U, Cakir T, Altinbas M. Effect of iron and magnesium addition on population dynamics and high value product of microalgae grown in anaerobic liquid digestate. Sci Rep 2020; 10:3510. [PMID: 32103096 PMCID: PMC7044283 DOI: 10.1038/s41598-020-60622-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022] Open
Abstract
In this study, FeSO4 supplementation ranging from 0 to 4.5 mM, and MgSO4 supplementation ranging from 0 to 5.1 mM were investigated to observe the effect on the population dynamics, biochemical composition and fatty acid content of mixed microalgae grown in Anaerobic Liquid Digestate (ALD). Overall, 3.1 mM FeSO4 addition into ALD increased the total protein content 60% and led to highest biomass (1.56 g L-1) and chlorophyll-a amount (18.7 mg L-1) produced. Meanwhile, 0.4 mM MgSO4 addition increased the total carotenoid amount 2.2 folds and slightly increased the biomass amount. According to the microbial community analysis, Diphylleia rotans, Synechocystis PCC-6803 and Chlorella sorokiniana were identified as mostly detected species after confirmation with 4 different markers. The abundance of Chlorella sorokiniana and Synechocystis PCC-6803 increased almost 2 folds both in iron and magnesium addition. On the other hand, the dominancy of Diphylleia rotans was not affected by iron addition while drastically decreased (95%) with magnesium addition. This study helps to understand how the dynamics of symbiotic life changes if macro elements are added to the ALD and reveal that microalgae can adapt to adverse environmental conditions by fostering the diversity with a positive effect on high value product.
Collapse
Affiliation(s)
- Hande Ermis
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | | | - Tunahan Cakir
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Mahmut Altinbas
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| |
Collapse
|
71
|
Molina-Márquez A, Vila M, Rengel R, Fernández E, García-Maroto F, Vigara J, León R. Validation of a New Multicistronic Plasmid for the Efficient and Stable Expression of Transgenes in Microalgae. Int J Mol Sci 2020; 21:E718. [PMID: 31979077 PMCID: PMC7037629 DOI: 10.3390/ijms21030718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022] Open
Abstract
Low stability of transgenes and high variability of their expression levels among the obtained transformants are still pending challenges in the nuclear genetic transformation of microalgae. We have generated a new multicistronic microalgal expression plasmid, called Phyco69, to make easier the large phenotypic screening usually necessary for the selection of high-expression stable clones. This plasmid contains a polylinker region (PLK) where any gene of interest (GOI) can be inserted and get linked, through a short viral self-cleaving peptide to the amino terminus of the aminoglycoside 3'-phosphotransferase (APHVIII) from Streptomyces rimosus, which confers resistance to the antibiotic paromomycin. The plasmid has been validated by expressing a second antibiotic resistance marker, the ShBLE gene, which confers resistance to phleomycin. It has been shown, by RT-PCR and by phenotypic studies, that the fusion of the GOI to the selective marker gene APHVIII provides a simple method to screen and select the transformants with the highest level of expression of both the APHVIII gene and the GOI among the obtained transformants. Immunodetection studies have shown that the multicistronic transcript generated from Phyco69 is correctly processed, producing independent gene products from a common promoter.
Collapse
Affiliation(s)
- Ana Molina-Márquez
- Laboratory of Biochemistry. Faculty of Experimental Sciences. Marine International Campus of Excellence and RENSMA. University of Huelva, 21071 Huelva, Spain; (M.V.); (R.R.); (J.V.); (R.L.)
| | - Marta Vila
- Laboratory of Biochemistry. Faculty of Experimental Sciences. Marine International Campus of Excellence and RENSMA. University of Huelva, 21071 Huelva, Spain; (M.V.); (R.R.); (J.V.); (R.L.)
| | - Rocío Rengel
- Laboratory of Biochemistry. Faculty of Experimental Sciences. Marine International Campus of Excellence and RENSMA. University of Huelva, 21071 Huelva, Spain; (M.V.); (R.R.); (J.V.); (R.L.)
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology. University of Córdoba, 14071 Córdoba, Spain;
| | - Federico García-Maroto
- Laboratory of Biotechnology of Natural Products, Agro-feed International Excellence campus, University of Almería, 04071 Almería, Spain;
| | - Javier Vigara
- Laboratory of Biochemistry. Faculty of Experimental Sciences. Marine International Campus of Excellence and RENSMA. University of Huelva, 21071 Huelva, Spain; (M.V.); (R.R.); (J.V.); (R.L.)
| | - Rosa León
- Laboratory of Biochemistry. Faculty of Experimental Sciences. Marine International Campus of Excellence and RENSMA. University of Huelva, 21071 Huelva, Spain; (M.V.); (R.R.); (J.V.); (R.L.)
| |
Collapse
|
72
|
Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101732] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
73
|
Schüler LM, Gangadhar KN, Duarte P, Placines C, Molina-Márquez AM, Léon-Bañares R, Sousa VS, Varela J, Barreira L. Improvement of carotenoid extraction from a recently isolated, robust microalga, Tetraselmis sp. CTP4 (chlorophyta). Bioprocess Biosyst Eng 2020; 43:785-796. [PMID: 31894389 DOI: 10.1007/s00449-019-02273-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
In recent years, there has been increasing consumer interest in carotenoids, particularly of marine sustainable origin with applications in the food, cosmeceutical, nutritional supplement and pharmaceutical industries. For instance, microalgae belonging to the genus Tetraselmis are known for their biotechnologically relevant carotenoid profile. The recently isolated marine microalgal strain Tetraselmis sp. CTP4 is a fast-growing, robust industrial strain, which has successfully been produced in 100-m3 photobioreactors. However, there are no reports on total carotenoid contents from this strain belonging to T. striata/convolutae clade. Although there are several reports on extraction methods targeting chlorophytes, extraction depends on the strength of cell coverings, solvent polarity and the nature of the targeted carotenoids. Therefore, this article evaluates different extraction methods targeting Tetraselmis sp. CTP4, a strain known to contain a mechanically resistant theca. Here, we propose a factorial experimental design to compare extraction of total carotenoids from wet and freeze-dried microalgal biomass using four different solvents (acetone, ethanol, methanol or tetrahydrofuran) in combination with two types of mechanical cell disruption (glass beads or dispersion). The extraction efficiency of the methods was assessed by pigment contents and profiles present in the extracts. Extraction of wet biomass by means of glass bead-assisted cell disruption using tetrahydrofuran yielded the highest amounts of lutein and β-carotene (622 ± 40 and 618 ± 32 µg g-1 DW, respectively). Although acetone was slightly less efficient than tetrahydrofuran, it is preferable due to its lower costs and toxicity.
Collapse
Affiliation(s)
- Lisa M Schüler
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Katkam N Gangadhar
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo Duarte
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Chloé Placines
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana María Molina-Márquez
- Department of Chemistry, Biochemistry, University of Huelva, Avda de las Fuerzas Armadas s/n, 21071, Huelva, Spain
| | - Rosa Léon-Bañares
- Department of Chemistry, Biochemistry, University of Huelva, Avda de las Fuerzas Armadas s/n, 21071, Huelva, Spain
| | - Vânia S Sousa
- CIMA, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - João Varela
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
74
|
El-Baz FK, Aly HF, Abd-Alla HI. The ameliorating effect of carotenoid rich fraction extracted from Dunaliella salina microalga against inflammation- associated cardiac dysfunction in obese rats. Toxicol Rep 2019; 7:118-124. [PMID: 31938688 PMCID: PMC6953768 DOI: 10.1016/j.toxrep.2019.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
The carotenoid-rich fraction of Dunaliella salina improves serum inflammatory markers. The fraction has the ability to improve various disorders associated cardiac dysfunction in the high-fat diet treated rats. The fraction attenuates fibrotic cardiac tissue and congestion of myocardial blood vessels. The mentioned promising activities may be related to that fraction acts as an antioxidant and anti-inflammatory agent.
The carotenoid rich fraction of microalgae Dunaliella salina (crf-DS) have been receiving great attention, due to they abilities to protect and improve various disorders. The objective of this study is to explore the therapeutic efficiency of crf-DS on obesity-assciated cardiac dysfunction in the high-fat diet (HFD) treated rats. These rats were orally administered with crf-DS (150 mg /kg body weight), for six consecutive weeks in comparison with reference drug(orlistat). Specific cardiac biomarkers were examined including; adiponectin, plasminogen activator inhibitor (PAI-1), glucagon, troponin-I (cTnI). The cell adhesion molecules (VCAM and ICAM), C-reactive protein (CRP), collagen type II (Col II), collagen alpha-1 (III) chain (Col3A1), lipoxygenase activity (LOX), as well as histopathological examination of cardiac tissue were investigated. Results indicated a significant reduction(P ≤ 0.05) in adiponectin and glucagon levels in serum of obese rats. However, cTnI, PAI-1, cell adhesion molecules, CRP, Col II, and Col3A1 and LOX levels declared marked increase. Histopathological examination of cardiac tissue showed fibrosis with severe congestion in the myocardial blood vessels. On the other hand, rats medicated with a crf-DS demonstrated noticeable ameliorating effect in all the measured parameters. Beside, myocardial tissue of obese rats showed no alteration. Hence, It could be concluded that, oral supplementation with crf-DS is able to attenuate cardiac dysfunction in obese rats. Further extended work is needed to exploit, the possible application of D. salina as nutraceuticals and food additives.
Collapse
Affiliation(s)
- Farouk K El-Baz
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Bohouth St. (Former El-Tahrir St.), 12622 Dokki, Giza, Egypt
| | - Hanan F Aly
- Therapeutic Chemistry Department, National Research Centre (NRC), 33 El Bohouth St. (Former El- Tahrir St.), 12622 Dokki, Giza, Egypt
| | - Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre (NRC), 33 El Bohouth St. (Former El-Tahrir St.), 12622 Dokki, Giza, Egypt
| |
Collapse
|
75
|
Hamidi M, Kozani PS, Kozani PS, Pierre G, Michaud P, Delattre C. Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Mar Drugs 2019; 18:E28. [PMID: 31905716 PMCID: PMC7024282 DOI: 10.3390/md18010028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Natural bioactive compounds with antioxidant activity play remarkable roles in the prevention of reactive oxygen species (ROS) formation. ROS, which are formed by different pathways, have various pathological influences such as DNA damage, carcinogenesis, and cellular degeneration. Incremental demands have prompted the search for newer and alternative resources of natural bioactive compounds with antioxidant properties. The marine environment encompasses almost three-quarters of our planet and is home to many eukaryotic and prokaryotic microorganisms. Because of extreme physical and chemical conditions, the marine environment is a rich source of chemical and biological diversity, and marine microorganisms have high potential as a source of commercially interesting compounds with various pharmaceutical, nutraceutical, and cosmeceutical applications. Bacteria and microalgae are the most important producers of valuable molecules including antioxidant enzymes (such as superoxide dismutase and catalase) and antioxidant substances (such as carotenoids, exopolysaccharides, and bioactive peptides) with various valuable biological properties and applications. Here, we review the current knowledge of these bioactive compounds while highlighting their antioxidant properties, production yield, health-related benefits, and potential applications in various biological and industrial fields.
Collapse
Affiliation(s)
- Masoud Hamidi
- Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht P.O. Box 41446/66949, Iran;
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115/111, Iran;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
76
|
Lin B, Cui Y, Yan M, Wang Y, Gao Z, Meng C, Qin S. Construction of astaxanthin metabolic pathway in the green microalga Dunaliella viridis. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
77
|
Lu X, Liu B, He Y, Guo B, Sun H, Chen F. Novel insights into mixotrophic cultivation of Nitzschia laevis for co-production of fucoxanthin and eicosapentaenoic acid. BIORESOURCE TECHNOLOGY 2019; 294:122145. [PMID: 31539854 DOI: 10.1016/j.biortech.2019.122145] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to determine a compatible method for co-production of fucoxanthin and eicosapentaenoic acid of diatom Nitzschia laevis by mixotrophic and heterotrophic cultivation modes in view of cell growth, targeting products' contents, photosynthesis-related characteristics and carbon partitioning. The results showed that mixotrophic mode enhanced fucoxanthin and eicosapentaenoic acid yields by increasing their precursors of pyruvate and acetyl-CoA at the expense of starch. The increase of chlorophylls and glyceraldehyde 3-phosphate indicated the development of Calvin cycle and carbon repartitioning in mixotrophic mode. Consequently, microalgal cells in mixotrophic mode achieved much higher fucoxanthin (60.12%) and eicosapentaenoic acid (50.67%) contents, and lower starch content (30.2%) compared with heterotrophic mode. Furthermore, fucoxanthin content was positively correlated with eicosapentaenoic acid content (adjusted R2 = 0.96). Taken together, these results showed that the mixotrophic mode could be a promising approach for the co-production of fucoxanthin and eicosapentaenoic acid by Nitzschia laevis.
Collapse
Affiliation(s)
- Xue Lu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yongjin He
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Bingbing Guo
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Han Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
78
|
Ruiz-Domínguez MC, Espinosa C, Paredes A, Palma J, Jaime C, Vílchez C, Cerezal P. Determining the Potential of Haematococcus pluvialis Oleoresin as a Rich Source of Antioxidants. Molecules 2019; 24:molecules24224073. [PMID: 31717936 PMCID: PMC6891815 DOI: 10.3390/molecules24224073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/12/2023] Open
Abstract
Haematococcus pluvialis is known to be a natural source of antioxidants for numerous applications. In this study, an oleoresin rich in carotenoids extracted by supercritical CO2 treatment of H. pluvialis was extensively characterized for its antioxidant capacity. Carotenoid content, fatty acid profile, total phenol content, antioxidant capacity, and viscosity of the oleoresin were determined with the aim of ascertaining the potential of the oleoresin in terms of its antioxidant content for food applications. The oleoresin contained 96.22 mg/g of total astaxanthin (which includes free astaxanthin and astaxanthin esters) and mostly included unsaturated fatty acids (~78% of total fatty acids). High total phenol content and ferric reducing antioxidant potential indicated high antioxidant capacity, but oxygen radical absorbance capacity was lower compared to the oleoresin samples obtained from other species. The oleoresin was a non-Newtonian fluid since it had shear-thinning (pseudoplastic) and shear-thickening (dilatant) flow. Therefore, the H. pluvialis oleoresin is a potential alternative in developing functional ingredients for designing healthy food products. To the best of our knowledge, this is the first study that has reported an extensive characterization of the antioxidant properties of a microalgal oleoresin obtained by means of supercritical CO2 fluid extraction.
Collapse
Affiliation(s)
- Mari Carmen Ruiz-Domínguez
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA, acronym in Spanish), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta 02800, Antofagasta 1240000, Chile; (C.E.); (J.P.); (P.C.)
- Correspondence: ; Tel.: +56-552-633-660
| | - Carolina Espinosa
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA, acronym in Spanish), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta 02800, Antofagasta 1240000, Chile; (C.E.); (J.P.); (P.C.)
| | - Adrián Paredes
- Laboratorio de Química Biológicas, Instituto Antofagasta (IA, acronym in Spanish), Universidad de Antofagasta 02800, Antofagasta 1240000, Chile;
| | - Jenifer Palma
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA, acronym in Spanish), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta 02800, Antofagasta 1240000, Chile; (C.E.); (J.P.); (P.C.)
| | - Carolina Jaime
- Atacama Bio Natural Products S.A., Vía 5 Esq. Vía 9, Bajo Molle, Iquique 1100000, Chile;
| | - Carlos Vílchez
- Algal Biotechnology Group, CIDERTA-RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain;
| | - Pedro Cerezal
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA, acronym in Spanish), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta 02800, Antofagasta 1240000, Chile; (C.E.); (J.P.); (P.C.)
| |
Collapse
|
79
|
Chen JH, Kato Y, Matsuda M, Chen CY, Nagarajan D, Hasunuma T, Kondo A, Dong CD, Lee DJ, Chang JS. A novel process for the mixotrophic production of lutein with Chlorella sorokiniana MB-1-M12 using aquaculture wastewater. BIORESOURCE TECHNOLOGY 2019; 290:121786. [PMID: 31306936 DOI: 10.1016/j.biortech.2019.121786] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, microalgal cultivation was applied as a feasible strategy for treating shrimp culture wastewater (SCW) from a shrimp farm in southern Tainan. Chlorella sorokiniana MB-1-M12 was first grown on BG-11 medium with 0.5% salinity, obtaining a biomass concentration and productivity of 4.35 g/L and 1.56 g/L/d, respectively. When 80% of BG-11 nutrients were added to 75% strength SCW, lutein content and productivity increased to 5.19 mg/g and 5.55 mg/L/d, respectively. A novel operation strategy involving periodic exchange of freshwater and SCW was designed for semi-continuous cultivation of MB-1-M12 strain for optimal biomass and lutein production. The average biomass concentration, productivity, lutein content, and productivity were 3.5 g/L, 1.3 g/L/d, 3.89 mg/g and 5.0 mg/L/d, respectively. Although microalgae have been considered as an alternative natural source of lutein, this work is among the earliest reports describing lutein production from microalgae cultivated with wastewater via a circular economy concept.
Collapse
Affiliation(s)
- Jih-Heng Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Mami Matsuda
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
80
|
Singh DP, Khattar JS, Rajput A, Chaudhary R, Singh R. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS One 2019; 14:e0221930. [PMID: 31490970 PMCID: PMC6730905 DOI: 10.1371/journal.pone.0221930] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 08/19/2019] [Indexed: 12/23/2022] Open
Abstract
Since carotenoids are important as natural colorants, antioxidants, neutraceutics and pharmaceutics, the aim of the present study was to find a new good source of these pigments. We hereby report a green microalga Asterarcys quadricellulare PUMCC 5.1.1 as a new and good producer of carotenoids. The organism produced 35±1.75 μg carotenoids mg-1 dry biomass during stationary phase in control cultures. The growth and carotenoids production by the test microalga were optimized by varying nutrient growth media, pH, nitrogen and phosphate source, salinity, light quality, intensity and duration. The optimized conditions for carotenoid production were: Bold basal (BB) medium with pH 8.5, containing with10 mM nitrate, 3.5 mM phosphate and 0.17 mM salinity and illuminated with blue light with 60 μmol m-2 s-1 photon flux light intensity. Cultivation of cultures in the above mentioned optimized conditions resulted in nearly 3.0 fold increase in carotenoid production compared to the control cultures grown in unmodified BB medium. Using HPTLC, four carotenoids have been identified as β-carotene, lutein, astaxanthin and canthaxanthin. Further, carotenoids were also separated and purified by flash chromatography and the amounts of purified carotenoids were determined by HPLC. The organism produced 47.0, 28.7, 15.5 and 14.0 μg β-carotene, lutein, astaxanthin and canthaxanthin mg-1 dry biomass, respectively, under optimized conditions. The amount of total carotenoids (118 μg mg-1 dry biomass) produced by Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions was significantly higher than control cultures. Thus, this microalgal strain is a promising candidate for carotenoid production at commercial level.
Collapse
Affiliation(s)
- Davinder Pal Singh
- Department of Botany, Punjabi University, Patiala, Punjab, India
- * E-mail:
| | | | - Alka Rajput
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | - Rajni Chaudhary
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | - Ramsarup Singh
- Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
81
|
Galarza JI, Arredondo Vega BO, Villón J, Henríquez V. Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 23:e00351. [PMID: 31312607 PMCID: PMC6609789 DOI: 10.1016/j.btre.2019.e00351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 04/12/2023]
Abstract
Haematococcus pluvialis is the richest biological source of astaxanthin under unfavorable growing conditions. Many reports have discussed the optimal astaxanthin extraction methods. Free-astaxanthin could be still hindered by microalgae extracts composition or by prolonged extraction times. In this study we evaluated the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions. Results showed that cholesterol esterase facilitated astaxanthin deesterification (975.65 μg mg-1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg-1 DW).
Collapse
Affiliation(s)
- Janeth I. Galarza
- Facultad de Ciencias del Mar, Universidad Estatal Península de Santa Elena, Provincia de Santa Elena, Ecuador
- Corresponding author. http://
| | - Bertha O. Arredondo Vega
- Laboratorio de Biotecnología de Microalgas, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Jimmy Villón
- Facultad de Ciencias del Mar, Universidad Estatal Península de Santa Elena, Provincia de Santa Elena, Ecuador
| | - Vitalia Henríquez
- Laboratorio de Genética e Inmunología Molecular. Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
82
|
The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective. Molecules 2019; 24:molecules24142640. [PMID: 31330843 PMCID: PMC6680436 DOI: 10.3390/molecules24142640] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
As the leading causes of human disability and mortality, neurological diseases affect millions of people worldwide and are on the rise. Although the general roles of several signaling pathways in the pathogenesis of neurodegenerative disorders have so far been identified, the exact pathophysiology of neuronal disorders and their effective treatments have not yet been precisely elucidated. This requires multi-target treatments, which should simultaneously attenuate neuronal inflammation, oxidative stress, and apoptosis. In this regard, astaxanthin (AST) has gained growing interest as a multi-target pharmacological agent against neurological disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD), brain and spinal cord injuries, neuropathic pain (NP), aging, depression, and autism. The present review highlights the neuroprotective effects of AST mainly based on its anti-inflammatory, antioxidative, and anti-apoptotic properties that underlies its pharmacological mechanisms of action to tackle neurodegeneration. The need to develop novel AST delivery systems, including nanoformulations, targeted therapy, and beyond, is also considered.
Collapse
|
83
|
Rauytanapanit M, Janchot K, Kusolkumbot P, Sirisattha S, Waditee-Sirisattha R, Praneenararat T. Nutrient Deprivation-Associated Changes in Green Microalga Coelastrum sp. TISTR 9501RE Enhanced Potent Antioxidant Carotenoids. Mar Drugs 2019; 17:E328. [PMID: 31159386 PMCID: PMC6627699 DOI: 10.3390/md17060328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023] Open
Abstract
The utilization of microalgae as a source of carotenoid productions has gained increasing popularity due to its advantages, such as a relatively fast turnaround time. In this study, a newly discovered Coelastrum sp. TISTR 9501RE was characterized and investigated for its taxonomical identity and carotenoid profile. To the best of our knowledge, this report was the first to fully investigate the carotenoid profiles in a microalga of the genus Coelastrum. Upon use of limited nutrients as a stress condition, the strain was able to produce astaxanthin, canthaxanthin, and lutein, as the major carotenoid components. Additionally, the carotenoid esters were found to be all astaxanthin derivatives, and β-carotene was not significantly present under this stress condition. Importantly, we also demonstrated that this practical stress condition could be combined with simple growing factors, such as ambient sunlight and temperature, to achieve even more focused carotenoid profiles, i.e., increased overall amounts of the aforementioned carotenoids with fewer minor components and chlorophylls. In addition, this green microalga was capable of tolerating a wide range of salinity. Therefore, this study paved the way for more investigations and developments on this fascinating strain, which will be reported in due course.
Collapse
Affiliation(s)
- Monrawat Rauytanapanit
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| | - Kantima Janchot
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| | - Pokchut Kusolkumbot
- Thailand Institute of Scientific and Technological Research (TISTR), Khlong Luang, Pathum Thani 12120, Thailand.
| | - Sophon Sirisattha
- Thailand Institute of Scientific and Technological Research (TISTR), Khlong Luang, Pathum Thani 12120, Thailand.
| | - Rungaroon Waditee-Sirisattha
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| | - Thanit Praneenararat
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
84
|
The influence of bio-optical properties of Emiliania huxleyi and Tetraselmis sp. on biomass and lipid production when exposed to different light spectra and intensities of an adjustable LED array and standard light sources. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
85
|
Bacova R, Klejdus B, Ryant P, Cernei N, Adam V, Huska D. The effects of 5-azacytidine and cadmium on global 5-methylcytosine content and secondary metabolites in the freshwater microalgae Chlamydomonas reinhardtii and Scenedesmus quadricauda. JOURNAL OF PHYCOLOGY 2019; 55:329-342. [PMID: 30506677 DOI: 10.1111/jpy.12819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Epigenetic changes are important mechanisms in the regulation of chromatin structure and gene expression. Cytosine methylation is one of the major epigenetic modifications, mediated by DNA methyltransferases, which transfer methyl groups from S-adenosyl-L-methionine (SAM) to the fifth carbon of cytosine. Various external environmental conditions can change the global hypo/hypermethylation pattern of DNA. These alterations may affect the organism's response to stress conditions. In this study, for the first time, we investigated the effects of 5-azacytidine, a DNA methyltransferase inhibitor, and cadmium, a toxic metal and environmental pollutant, on the growth, biosynthesis of secondary metabolites (phenols, flavonoids, carotenoids), SAM, S-adenosylhomocysteine, 5'-methylthioadenosine and global 5-methylcytosine (5-mC) in the green microalgae Chlamydomonas reinhardtii and Scenedesmus quadricauda. The studied species showed major differences in 5-mC content, secondary metabolite content, and antioxidant activity. Cadmium increased GSH (glutathione) content in C. reinhardtii by 60% whereas 5-azacytidine did not affect GSH. The biosynthesis of GSH in S. quadricauda in response to the stressors was the opposite. Global 5-mC content of C. reinhardtii was 1%-1.5%, and the content in S. quadricauda was 3.5%. Amount of some investigated methionine cycle metabolites (SAM, S-adenosyl homocysteine [SAH], methionine) in S. quadricauda distinctly exceeded C. reinhardtii as well. However, chlorophylls a and b, carotenoids, total phenolic content, total flavonoid content and, antioxidant activity were significantly higher in C. reinhardtii than S. quadricauda. Therefore, in further studies it would be advisable to verify whether methylation of cytosine affects the expression of genes encoding certain secondary metabolites.
Collapse
Affiliation(s)
- Romana Bacova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Borivoj Klejdus
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Pavel Ryant
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, Czech Republic
| |
Collapse
|
86
|
Molina-Márquez A, Vila M, Vigara J, Borrero A, León R. The Bacterial Phytoene Desaturase-Encoding Gene ( CRTI) is an Efficient Selectable Marker for the Genetic Transformation of Eukaryotic Microalgae. Metabolites 2019; 9:E49. [PMID: 30871061 PMCID: PMC6468381 DOI: 10.3390/metabo9030049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022] Open
Abstract
Genetic manipulation shows great promise to further boost the productivity of microalgae-based compounds. However, selection of microalgal transformants depends mainly on the use of antibiotics, which have raised concerns about their potential impacts on human health and the environment. We propose the use of a synthetic phytoene desaturase-encoding gene (CRTIop) as a selectable marker and the bleaching herbicide norflurazon as a selective agent for the genetic transformation of microalgae. Bacterial phytoene desaturase (CRTI), which, unlike plant and algae phytoene desaturase (PDS), is not sensitive to norflurazon, catalyzes the conversion of the colorless carotenoid phytoene into lycopene. Although the expression of CRTI has been described to increase the carotenoid content in plant cells, its use as a selectable marker has never been testedin algae or in plants. In this study, a version of the CRTI gene adapted to the codon usage of Chlamydomonas has been synthesized, and its suitability to be used as selectable marker has been shown. The microalgae were transformed by the glass bead agitation method and selected in the presence of norflurazon. Average transformation efficiencies of 550 colonies µg-1 DNA were obtained. All the transformants tested had incorporated the CRTIop gene in their genomes and were able to synthesize colored carotenoids.
Collapse
Affiliation(s)
- Ana Molina-Márquez
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110 Huelva, Spain.
| | - Marta Vila
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110 Huelva, Spain.
- PhycoGenetics SL, C/Joan Miró Nº6, Aljaraque, 21110 Huelva, Spain.
| | - Javier Vigara
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110 Huelva, Spain.
| | - Ana Borrero
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110 Huelva, Spain.
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110 Huelva, Spain.
| |
Collapse
|
87
|
Performance of reflector coated LED Bio-box on the augmentation of growth and lipid production in aerophytic trebouxiophyceaen algae Coccomyxa sp. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.101401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
88
|
León-Vaz A, León R, Díaz-Santos E, Vigara J, Raposo S. Using agro-industrial wastes for mixotrophic growth and lipids production by the green microalga Chlorella sorokiniana. N Biotechnol 2019; 51:31-38. [PMID: 30738878 DOI: 10.1016/j.nbt.2019.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
There has been growing interest in the use of microalgae for the production of biofuels, but production costs continue to be too high to compete with fossil fuel prices. One of the main limitations for photobioreactor productivity is light shielding, especially at high cell densities. The growth of the green microalga Chlorella sorokiniana, a robust industrial species, has been evaluated under different trophic conditions with traditional carbon sources, such as glucose and sucrose, and alternative low cost carbon sources, such as carob pod extract, industrial glycerol and acetate-rich oxidized wine waste lees. The mixotrophic cultivation of this microalga with wine waste lees alleviated the problems of light shielding observed in photoautotrophic cultures, improving specific growth rate (0.052 h-1) compared with the other organic sources. The fed-batch mixotrophic culture of Chlorella sorokiniana in a 2 L stirred tank reactor, with optimized nutritional conditions, 100 mM of acetate coming from the oxidized wine waste lees and 30 mM of ammonium, produced an algal biomass concentration of 11 g L-1 with a lipid content of 38 % (w/w). This fed-batch strategy has been found to be a very effective means to enhance the biomass and neutral lipid productivity.
Collapse
Affiliation(s)
- Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR) and CEICAMBIO, University of Huelva, 21007, Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR) and CEICAMBIO, University of Huelva, 21007, Huelva, Spain
| | - Encarnación Díaz-Santos
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR) and CEICAMBIO, University of Huelva, 21007, Huelva, Spain
| | - Javier Vigara
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR) and CEICAMBIO, University of Huelva, 21007, Huelva, Spain
| | - Sara Raposo
- Center for Marine and Environmental Research - CIMA, University of Algarve - Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
89
|
Saini DK, Chakdar H, Pabbi S, Shukla P. Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit Rev Food Sci Nutr 2019; 60:391-405. [PMID: 30706720 DOI: 10.1080/10408398.2018.1533518] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The versatile use of biopigments in food, feed, cosmetic, pharmaceutical and analytical industries emphasized to find different and renewable sources of biopigments. Microalgae, including cyanobacteria, are becoming a potential candidate for pigment production as these have fast-growing ability, high pigment content, highly variable and also have "Generally recognized as safe" status. These algal groups are known to produce different metabolites that include hormones, vitamins, biopolythene and biochemicals. We discuss here the potential use of microalgal biopigments in our daily life as well as in food and cosmetic industries. Pigment like carotenoids has many health benefits such as antioxidant, anti-inflammatory properties and also provide photo-protection against UV radiation. This review details the effect of various abiotic and biotic factors such as temperature, light, nutrition on maximizing the pigment content in the microalgal cell. This review also highlights the potential of microalgae, whether in present native or engineered strain including the many metabolic strategies which are used or can be used to produce a higher amount of these valuable biopigments. Additionally, future challenges in the context of pigment production have also been discussed.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Enzyme Technology and Protein Bioinformatics Laboratory Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA) Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
90
|
Carotenoids from heterotrophic bacteria isolated from Fildes Peninsula, King George Island, Antarctica. ACTA ACUST UNITED AC 2019; 21:e00306. [PMID: 30705834 PMCID: PMC6348148 DOI: 10.1016/j.btre.2019.e00306] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Carotenoids are isoprenoid pigments used by pharmaceutical, cosmetic, food and feed industry as antioxidants and colorants. Although traditional sources of carotenoids are fruits, vegetables and chemical synthesis, prospecting for alternative sinks of common and/or unusual carotenoids is important for the development of natural carotenoid industry. In this work, 30 pigmented bacterial strains from Fildes Peninsula in King George Island, Antarctica, were isolated and identified by 16S rRNA gene sequencing and classified in three phyla, Bacteroidetes, Firmicutes and Actinobacteria. After cells extraction, ten different carotenoids were identified based on the chromatographic and spectroscopic characteristic obtained by HPLC-PDA and HPLC-PDA-APCI-MS analyses. Strains assigned to Bacteroidetes affiliated to Flavobacterium, Chryseobacterium and Zobellia genera, presented a pigment profile composed of zeaxanthin, β-cryptoxanthin and β-carotene. Firmicutes strains of Planococcus genus produced a C50 carotenoid, identified as C.p. 450 glucoside. Actinobacteria isolates were mainly assigned to Arthrobacter genus, and few to Salinibacterium and Cryobacterium genera. Arthrobacter strains produced C50 carotenoids such as decaprenoxanthin and its glucosylated derivatives, as well as some C40 carotenoids such as lycopene which is used as synthesis precursors of the C50 carotenoids. Salinibacterium and Cryobacterium genera produced C.p. 450 free form and its glucosylated derivatives. Although most isolates produce carotenoids similar in diversity and quantity than those already reported in the literature, novel sources for C50 carotenoids results from this work. According to their carotenoid content, all isolates could be promising candidates for carotenoids production.
Collapse
|
91
|
Kottuparambil S, Thankamony RL, Agusti S. Euglena as a potential natural source of value-added metabolites. A review. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
92
|
Saini DK, Pabbi S, Shukla P. Cyanobacterial pigments: Perspectives and biotechnological approaches. Food Chem Toxicol 2018; 120:616-624. [PMID: 30077705 DOI: 10.1016/j.fct.2018.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Cyanobacteria are the oxygenic photosynthesis performing prokaryotes and show a connecting link between plastids of eukaryotic autotrophs and prokaryotes. A variety of pigments, like chlorophyll, carotenoids and phycobiliproteins which exhibit different colors are present in cyanobacteria. Increasing consciousness about the harmful effects of synthetic or chemical dyes encouraged people to give more preference towards the usage of natural products, such as plant or microbial-derived colors in food and cosmetics. That is why cyanobacteria are exploited as a source of natural colors and have high commercial value in many industries. This review mainly focuses on different cyanobacterial pigments, their applications and modern biotechnological approaches such as genetic engineering, systems biology to enhance the production of biopigments for their potential use in pharmaceuticals, food, research, and cosmetics industries.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
93
|
Hong L, Liu JL, Midoun SZ, Miller PC. Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina. J Zhejiang Univ Sci B 2018; 18:833-844. [PMID: 28990374 DOI: 10.1631/jzus.b1700088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds (including β-carotene and vitamins) with potential commercial value. A large transcriptome database of D. salina during the adjustment, exponential and stationary growth phases was generated using a high throughput sequencing platform. We characterized the metabolic processes in D. salina with a focus on valuable metabolites, with the aim of manipulating D. salina to achieve greater economic value in large-scale production through a bioengineering strategy. Gene expression profiles under salt stress verified using quantitative polymerase chain reaction (qPCR) implied that salt can regulate the expression of key genes. This study generated a substantial fraction of D. salina transcriptional sequences for the entire growth cycle, providing a basis for the discovery of novel genes. This first full-scale transcriptome study of D. salina establishes a foundation for further comparative genomic studies.
Collapse
Affiliation(s)
- Ling Hong
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Li Liu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Samira Z Midoun
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Philip C Miller
- Systems Biology Research Group, Bioengineering Department, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
94
|
Ambati RR, Gogisetty D, Aswathanarayana RG, Ravi S, Bikkina PN, Bo L, Yuepeng S. Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Crit Rev Food Sci Nutr 2018; 59:1880-1902. [PMID: 29370540 DOI: 10.1080/10408398.2018.1432561] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microalgae are rich source of various bioactive molecules such as carotenoids, lipids, fatty acids, hydrocarbons, proteins, carbohydrates, amino acids, etc. and in recent Years carotenoids from algae gained commercial recognition in the global market for food and cosmeceutical applications. However, the production of carotenoids from algae is not yet fully cost effective to compete with synthetic ones. In this context the present review examines the technologies/methods in relation to mass production of algae, cell harvesting for extraction of carotenoids, optimizing extraction methods etc. Research studies from different microalgal species such as Spirulina platensis, Haematococcus pluvialis, Dunaliella salina, Chlorella sps., Nannochloropsis sps., Scenedesmus sps., Chlorococcum sps., Botryococcus braunii and Diatoms in relation to carotenoid content, chemical structure, extraction and processing of carotenoids are discussed. Further these carotenoid pigments, are useful in various health applications and their use in food, feed, nutraceutical, pharmaceutical and cosmeceutical industries was briefly touched upon. The commercial value of algal carotenoids has also been discussed in this review. Possible recommendations for future research studies are proposed.
Collapse
Affiliation(s)
- Ranga Rao Ambati
- a Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College , Tangjiawan, Zhuhai , Guangdong , China.,b Estuarine Fisheries Research Institute , Doumen, Zhuhai , Guangdong , China.,c Department of Biotechnology , Vignan's Foundation for Science, Technology and Research (Deemed to be University) , Vadlamudi, Guntur , Andhra Pradesh , India
| | - Deepika Gogisetty
- d Department of Chemistry , Sri Chaitanya Junior College , Tenali, Guntur , Andhra Pradesh , India
| | | | - Sarada Ravi
- f Plant Cell Biotechnology Department , Central Food Technological Research Institute, (Constituent Laboratory of Council of Scientific & Industrial Research) , Mysore , Karnataka , India
| | | | - Lei Bo
- a Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College , Tangjiawan, Zhuhai , Guangdong , China
| | - Su Yuepeng
- b Estuarine Fisheries Research Institute , Doumen, Zhuhai , Guangdong , China
| |
Collapse
|
95
|
Aluç Y, Başaran Kankılıç G, Tüzün İ. Determination of carotenoids in two algae species from the saline water of Kapulukaya reservoir by HPLC. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2017.1418376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yasar Aluç
- Scientific and Technological Research Application and Research Center, Kırıkkale University, Kırıkkale, Turkey
| | - Gökben Başaran Kankılıç
- Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, Kırıkkale, Turkey
| | - İlhami Tüzün
- Research and Application Center for Environmental Issues, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
96
|
Sathasivam R, Ki JS. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries. Mar Drugs 2018; 16:E26. [PMID: 29329235 PMCID: PMC5793074 DOI: 10.3390/md16010026] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are natural pigments that play pivotal roles in many physiological functions. The characteristics of carotenoids, their effects on health, and the cosmetic benefits of their usage have been under investigation for a long time; however, most reviews on this subject focus on carotenoids obtained from several microalgae, vegetables, fruits, and higher plants. Recently, microalgae have received much attention due to their abilities in producing novel bioactive metabolites, including a wide range of different carotenoids that can provide for health and cosmetic benefits. The main objectives of this review are to provide an updated view of recent work on the health and cosmetic benefits associated with carotenoid use, as well as to provide a list of microalgae that produce different types of carotenoids. This review could provide new insights to researchers on the potential role of carotenoids in improving human health.
Collapse
Affiliation(s)
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea.
| |
Collapse
|
97
|
Sun H, Zhao W, Mao X, Li Y, Wu T, Chen F. High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:227. [PMID: 30151055 PMCID: PMC6100726 DOI: 10.1186/s13068-018-1225-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 05/13/2023]
Abstract
Microalgae are capable of producing sustainable bioproducts and biofuels by using carbon dioxide or other carbon substances in various cultivation modes. It is of great significance to exploit microalgae for the economical viability of biofuels and the revenues from high-value bioproducts. However, the industrial performance of microalgae is still challenged with potential conflict between cost of microalgae cultivation and revenues from them, which is mainly ascribed to the lack of comprehensive understanding of carbon metabolism and energy conversion. In this review, we provide an overview of the recent advances in carbon and energy fluxes of light-dependent reaction, Calvin-Benson-Bassham cycle, tricarboxylic acid cycle, glycolysis pathway and processes of product biosynthesis in microalgae, with focus on the increased photosynthetic and carbon efficiencies. Recent strategies for the enhanced production of bioproducts and biofuels from microalgae are discussed in detail. Approaches to alter microbial physiology by controlling light, nutrient and other environmental conditions have the advantages of increasing biomass concentration and product yield through the efficient carbon conversion. Engineering strategies by regulating carbon partitioning and energy route are capable of improving the efficiencies of photosynthesis and carbon conversion, which consequently realize high-value biomass. The coordination of carbon and energy fluxes is emerging as the potential strategy to increase efficiency of carbon fixation and product biosynthesis. To achieve more desirable high-value products, coordination of multi-stage cultivation with engineering and stress-based strategies occupies significant positions in a long term.
Collapse
Affiliation(s)
- Han Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Weiyang Zhao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Yuelian Li
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
98
|
Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol Adv 2018; 36:54-67. [DOI: 10.1016/j.biotechadv.2017.09.009] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/26/2017] [Accepted: 09/20/2017] [Indexed: 10/25/2022]
|
99
|
Baek K, Yu J, Jeong J, Sim SJ, Bae S, Jin E. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii
strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnol Bioeng 2017; 115:719-728. [DOI: 10.1002/bit.26499] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Kwangryul Baek
- Department of Life Science; Hanyang University; Seoul South Korea
| | - Jihyeon Yu
- School of Biological Sciences; Seoul National University; Seoul South Korea
| | - Jooyeon Jeong
- Department of Life Science; Hanyang University; Seoul South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering; Korea University; Seoul South Korea
| | - Sangsu Bae
- Department of Chemistry; Hanyang University; Seoul South Korea
| | - EonSeon Jin
- Department of Life Science; Hanyang University; Seoul South Korea
| |
Collapse
|
100
|
Schulze PS, Guerra R, Pereira H, Schüler LM, Varela JC. Flashing LEDs for Microalgal Production. Trends Biotechnol 2017; 35:1088-1101. [DOI: 10.1016/j.tibtech.2017.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022]
|