51
|
Huang D, Cheng CQ, Qiu JB, Huang Y, Zhang HY, Xu ZH, Wu SW, Huang YT, Chen J, Zou LG, Yang WD, Zheng XF, Li HY, Li DW. Mechanistic insights into the effects of diuron exposure on Alexandrium pacificum. WATER RESEARCH 2024; 250:120987. [PMID: 38113594 DOI: 10.1016/j.watres.2023.120987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Diuron (N-(3,4-dichlorophenyl)-N,N‑dimethylurea, DCMU), a ureic herbicide, is extensively used in agriculture to boost crop productivity; however, its extensive application culminates in notable environmental pollution, especially in aquatic habitats. Therefore, the present study investigated the effect of diuron on the dinoflagellate Alexandrium pacificum, which is known to induce harmful algal blooms (HAB), and its potential to biodegrade DCMU. Following a four-day DCMU exposure, our results revealed that A. pacificum proficiently assimilated DCMU at concentrations of 0.05 mg/L and 0.1 mg/L in seawater, attaining a complete reduction (100 % efficiency) after 96 h for both concentrations. Moreover, evaluations of paralytic shellfish toxins content indicated that cells subjected to higher DCMU concentrations (0.1 mg/L) exhibited reductions of 73.4 %, 86.7 %, and 75 % in GTX1, GTX4, and NEO, respectively. Exposure to DCMU led to a notable decrease in A. pacificum's photosynthetic efficacy, accompanied by increased levels of reactive oxygen species (ROS) and suppressed cell growth, with a growth inhibition rate of 41.1 % at 72 h. Proteomic investigations pinpointed the diminished expression levels of specific proteins like SxtV and SxtW, linked to paralytic shellfish toxins (PSTs) synthesis, as well as key proteins associated with Photosystem II, namely PsbA, PsbD, PsbO, and PsbU. Conversely, proteins central to the cysteine biosynthesis pathways exhibited enhanced expression. In summary, our results preliminarily resolved the molecular mechanisms underlying the response of A. pacificum to DCMU and revealed that DCMU affected the synthesis of PSTs. Meanwhile, our data suggested that A. pacificum has great potential in scavenging DCMU.
Collapse
Affiliation(s)
- Dan Huang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Cai-Qin Cheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Jiang-Bing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yun Huang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Hao-Yun Zhang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Zhen-Hao Xu
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Si-Wei Wu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Jian Chen
- State Key Laboratory of Medical Vector Surveillance, Zhuhai International Travel Healthcare Center, Zhuhai, Guangdong 519020, China
| | - Li-Gong Zou
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Wei-Dong Yang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Xiao-Fei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Hong-Ye Li
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China
| | - Da-Wei Li
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
52
|
Bharali P, Gogoi B, Sorhie V, Acharjee SA, Walling B, Alemtoshi, Vishwakarma V, Shah MP. Autochthonous psychrophilic hydrocarbonoclastic bacteria and its ecological function in contaminated cold environments. Biodegradation 2024; 35:1-46. [PMID: 37436665 DOI: 10.1007/s10532-023-10042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
Petroleum hydrocarbon (PH) pollution has mostly been caused by oil exploration, extraction, and transportation activities in colder regions, particularly in the Arctic and Antarctic regions, where it serves as a primary source of energy. Due to the resilience feature of nature, such polluted environments become the realized ecological niches for a wide community of psychrophilic hydrocarbonoclastic bacteria (PHcB). In contrast, to other psychrophilic species, PHcB is extremely cold-adapted and has unique characteristics that allow them to thrive in greater parts of the cold environment burdened with PHs. The stated group of bacteria in its ecological niche aids in the breakdown of litter, turnover of nutrients, cycling of carbon and nutrients, and bioremediation. Although such bacteria are the pioneers of harsh colder environments, their growth and distribution remain under the influence of various biotic and abiotic factors of the environment. The review discusses the prevalence of PHcB community in colder habitats, the metabolic processes involved in the biodegradation of PH, and the influence of biotic and abiotic stress factors. The existing understanding of the PH metabolism by PHcB offers confirmation of excellent enzymatic proficiency with high cold stability. The discovery of more flexible PH degrading strategies used by PHcB in colder environments could have a significant beneficial outcome on existing bioremediation technologies. Still, PHcB is least explored for other industrial and biotechnological applications as compared to non-PHcB psychrophiles. The present review highlights the pros and cons of the existing bioremediation technologies as well as the potential of different bioaugmentation processes for the effective removal of PH from the contaminated cold environment. Such research will not only serve to investigate the effects of pollution on the basic functional relationships that form the cold ecosystem but also to assess the efficacy of various remediation solutions for diverse settings and climatic conditions.
Collapse
Affiliation(s)
- Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India.
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR Delhi, India
| | - Maulin Pramod Shah
- Industrial Waste Water Research Lab, Division of Applied and Environmental Microbiology Lab at Enviro Technology Ltd., Ankleshwar, Gujarat, India
| |
Collapse
|
53
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
54
|
Ahmad J, Marsidi N, Sheikh Abdullah SR, Hasan HA, Othman AR, Ismail N'I, Kurniawan SB. Integrating phytoremediation and mycoremediation with biosurfactant-producing fungi for hydrocarbon removal and the potential production of secondary resources. CHEMOSPHERE 2024; 349:140881. [PMID: 38048826 DOI: 10.1016/j.chemosphere.2023.140881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Treatment of petroleum-contaminated soil to a less toxic medium via physical and chemical treatment is too costly and requires posttreatment. This review focuses on the employment of phytoremediation and mycoremediation technologies in cleaning hydrocarbon-contaminated soil which is currently rare. It is considered environmentally beneficial and possibly cost-effective as it implements the synergistic interaction between plants and biosurfactant producing mycorrhiza to degrade hydrocarbon contaminants. This review also covers possible sources of hydrocarbon pollution in water and soil, toxicity effects, and current technologies for hydrocarbon removal and degradation. In addition to these problems, this review also discusses the challenges and opportunities of transforming the resultant treated sludge and treating plants into potential by-products for a higher quality of life for future generations.
Collapse
Affiliation(s)
- Jamilah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nuratiqah Marsidi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, Třeboň, 379 81, Czech Republic.
| |
Collapse
|
55
|
Bansal M, Santhiya D, Sharma JG. Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8354-8368. [PMID: 38170356 DOI: 10.1007/s11356-023-31680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Contaminated soil is one of today's most difficult environmental issues, posing serious hazards to human health and the environment. Contaminants, particularly micro-nano plastics, have become more prevalent around the world, eventually ending up in the soil. Numerous studies have been conducted to investigate the interactions of micro-nano plastics in plants and agroecosystems. However, viable remediation of micro-nano plastics in soil remains limited. In this review, a powerful in situ soil remediation technology known as phytoremediation is emphasized for addressing micro-nano-plastic contamination in soil and plants. It is based on the synergistic effects of plants and the microorganisms that live in their rhizosphere. As a result, the purpose of this review is to investigate the mechanism of micro-nano plastic (MNP) uptake by plants as well as the limitations of existing MNP removal methods. Different phytoremediation options for removing micro-nano plastics from soil are also described. Phytoremediation improvements (endophytic-bacteria, hyperaccumulator species, omics investigations, and CRISPR-Cas9) have been proposed to enhance MNP degradation in agroecosystems. Finally, the limitations and future prospects of phytoremediation strategies have been highlighted in order to provide a better understanding for effective MNP decontamination from soil.
Collapse
Affiliation(s)
- Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
56
|
Geris R, Malta M, Soares LA, de Souza Neta LC, Pereira NS, Soares M, Reis VDS, Pereira MDG. A Review about the Mycoremediation of Soil Impacted by War-like Activities: Challenges and Gaps. J Fungi (Basel) 2024; 10:94. [PMID: 38392767 PMCID: PMC10890077 DOI: 10.3390/jof10020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: The frequency and intensity of war-like activities (war, military training, and shooting ranges) worldwide cause soil pollution by metals, metalloids, explosives, radionuclides, and herbicides. Despite this environmentally worrying scenario, soil decontamination in former war zones almost always involves incineration. Nevertheless, this practice is expensive, and its efficiency is suitable only for organic pollutants. Therefore, treating soils polluted by wars requires efficient and economically viable alternatives. In this sense, this manuscript reviews the status and knowledge gaps of mycoremediation. (2) Methods: The literature review consisted of searches on ScienceDirect and Web of Science for articles (1980 to 2023) on the mycoremediation of soils containing pollutants derived from war-like activities. (3) Results: This review highlighted that mycoremediation has many successful applications for removing all pollutants of war-like activities. However, the mycoremediation of soils in former war zones and those impacted by military training and shooting ranges is still very incipient, with most applications emphasizing explosives. (4) Conclusion: The mycoremediation of soils from conflict zones is an entirely open field of research, and the main challenge is to optimize experimental conditions on a field scale.
Collapse
Affiliation(s)
- Regina Geris
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Marcos Malta
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Luar Aguiar Soares
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Lourdes Cardoso de Souza Neta
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Natan Silva Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Miguel Soares
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Vanessa da Silva Reis
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Madson de Godoi Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| |
Collapse
|
57
|
Mathimani T, Alshiekheid MA, Sabour A, Le T, Xia C. Appraising the phycoremediation potential of cyanobacterial strains Phormidium and Oscillatoria for nutrient removal from textile wastewater (TWW) and synchronized biodiesel production from TWW-tolerant biomass. ENVIRONMENTAL RESEARCH 2024; 241:117628. [PMID: 37956756 DOI: 10.1016/j.envres.2023.117628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
In this study, phycoremediation of textile wastewater (TWW) by freshwater cyanobacterial strains such as sp., Oscillatoria sp. F01 and Oscillatoria sp. F02 was evaluated, and lipids were simultaneously extracted from biomass for biodiesel production. Onset of the study, Phormidium sp. and Oscillatoria sp. F01 has better growth rates, increased biomass production, high chlorophyll content, and efficient nutrient utilization in TWW compared to Oscillatoria sp. F02. Phormidium sp. showed 1.41 g/L dry weight, followed by Oscillatoria sp. F01 with 1.39 g/L and Oscillatoria sp. F02 with 1.02 g/L biomass. Both strains demonstrated their capability to elevate the pH level while reducing TDS and eliminating/reducing several nutrients such as nitrates, nitrites, phosphates, sulphates, sulphides, chlorides, calcium, sodium, and magnesium. Further, the total lipids extracted from the TWW-grown Phormidium sp., Oscillatoria sp. F01 and Oscillatoria sp. F02 was estimated to be 8.20, 13.70 and 11.20 %, respectively, on day 21, which was higher than the lipid content obtained from control cultures. Further, biodiesel produced from the lipids of all strains showed higher levels of C12:0, C16:0, C16:1, C18:1, C18:2, and C18:3 among all the fatty acids. Therefore, they can potentially offer a valuable source of lipids and diverse fatty acids for high-quality biodiesel production. This integrated system not only offers a solution for TWW treatment but also provides a feedstock for renewable fuel production simultaneously.
Collapse
Affiliation(s)
- Thangavel Mathimani
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh, 11451, Saudi Arabia
| | - Amal Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh, 11451, Saudi Arabia
| | - Tht Le
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, Viet Nam
| | - Changlei Xia
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
58
|
Al-Gethami W, Qamar MA, Shariq M, Alaghaz ANMA, Farhan A, Areshi AA, Alnasir MH. Emerging environmentally friendly bio-based nanocomposites for the efficient removal of dyes and micropollutants from wastewater by adsorption: a comprehensive review. RSC Adv 2024; 14:2804-2834. [PMID: 38234871 PMCID: PMC10792434 DOI: 10.1039/d3ra06501d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Water scarcity will worsen due to population growth, urbanization, and climate change. Addressing this issue requires developing energy-efficient and cost-effective water purification technologies. One approach is to use biomass to make bio-based materials (BBMs) with valuable attributes. This aligns with the goal of environmental conservation and waste management. Furthermore, the use of biomass is advantageous because it is readily available, economical, and has minimal secondary environmental impact. Biomass materials are ideal for water purification because they are abundant and contain important functional groups like hydroxyl, carboxyl, and amino groups. Functional groups are important for modifying and absorbing contaminants in water. Single-sourced biomass has limitations such as weak mechanical strength, limited adsorption capacity, and chemical instability. Investing in research and development is crucial for the development of efficient methods to produce BBMs and establish suitable water purification application models. This review covers BBM production, modification, functionalization, and their applications in wastewater treatment. These applications include oil-water separation, membrane filtration, micropollutant removal, and organic pollutant elimination. This review explores the production processes and properties of BBMs from biopolymers, highlighting their potential for water treatment applications. Furthermore, this review discusses the future prospects and challenges of developing BBMs for water treatment and usage. Finally, this review highlights the importance of BBMs in solving water purification challenges and encourages innovative solutions in this field.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University Al-Hawiah, PO Box 11099 Taif City Saudi Arabia
| | - Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University Jazan 45142 Saudi Arabia
| | | | - Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38040 Pakistan
| | - Ashwaq A Areshi
- Samtah General Hospital, Ministry of Health Jazan 86735 Saudi Arabia
| | - M Hisham Alnasir
- Department of Physics, RIPHAH International University Islamabad 44000 Pakistan
| |
Collapse
|
59
|
Diefenbach T, Sumetzberger-Hasinger M, Braunschmid V, Konegger H, Heipieper HJ, Guebitz GM, Lackner M, Ribitsch D, Loibner AP. Laccase-mediated degradation of petroleum hydrocarbons in historically contaminated soil. CHEMOSPHERE 2024; 348:140733. [PMID: 37977536 DOI: 10.1016/j.chemosphere.2023.140733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Laccases (EC1.10.3.2) have attracted growing attention in bioremediation research due to their high reactivity and substrate versatility. In this study, three genes for potential novel laccases were identified in an enrichment culture from contaminated field soil and recombinantly expressed in E. coli. Two of them, designated as PlL and BaL, were biochemically characterized regarding their optimal pH and temperature, kinetic parameters, and substrate versatility. In addition, lacasse PlL from Parvibaculum lavamentivorans was tested on historically contaminated soil. Treatment with PlL led to a significantly higher reduction of total petroleum hydrocarbons (83% w/w) compared to the microbial control (74% w/w). Hereby, PlL was especially effective in degrading hydrocarbons > C17. Their residual concentration was by 43% w/w lower than in the microbial treatment. In comparison to the laccase from Myceliophthora thermophila (MtL), PlL treatment was not significantly different for the fraction > C17 but resulted in a 30% (w/w) lower residual concentration for hydrocarbons < C18. In general, PlL can promote the degradation of petroleum hydrocarbons. As a consequence, it can be applied to reduce remediation time by duly achieving remediation target concentrations needed for site closure.
Collapse
Affiliation(s)
- Thore Diefenbach
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | - Marion Sumetzberger-Hasinger
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | - Verena Braunschmid
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | - Hannes Konegger
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Georg M Guebitz
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | | | - Doris Ribitsch
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria.
| | - Andreas P Loibner
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| |
Collapse
|
60
|
Ali S, Baloch SB, Bernas J, Konvalina P, Onyebuchi EF, Naveed M, Ali H, Jamali ZH, Nezhad MTK, Mustafa A. Phytotoxicity of radionuclides: A review of sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2024; 240:117479. [PMID: 37884073 DOI: 10.1016/j.envres.2023.117479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Various anthropogenic activities and natural sources contribute to the presence of radioactive materials in the environment, posing a serious threat to phytotoxicity. Contamination of soil and water by radioactive isotopes degrades the environmental quality and biodiversity. They persist in soils for a considerable amount of time and disturb the fauna and flora of any affected area. Hence, their removal from the contaminated medium is inevitable to prevent their entry into the food chain and the organisms at higher levels of the food chain. Physicochemical methods for radioactive element remediation are effective; however, they are not eco-friendly, can be expensive and impractical for large-scale remediation. Contrastingly, different bioremediation approaches, such as phytoremediation using appropriate plant species for removing the radionuclides from the polluted sites, and microbe-based remediation, represent promising alternatives for cleanup. In this review, sources of radionuclides in soil as well as their hazardous impacts on plants are discussed. Moreover, various conventional physicochemical approaches used for remediation discussed in detail. Similarly, the effectiveness and superiority of various bioremediation approaches, such as phytoremediation and microbe-based remediation, over traditional approaches have been explained in detail. In the end, future perspectives related to enhancing the efficiency of the phytoremediation process have been elaborated.
Collapse
Affiliation(s)
- Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Sadia Babar Baloch
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Jaroslav Bernas
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic.
| | - Petr Konvalina
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Eze Festus Onyebuchi
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zameer Hussain Jamali
- College of Environmental Science, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Mohammad Tahsin Karimi Nezhad
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental 13 Gardening, Lidicka, 25/27, Brno, 60200, Czech Republic
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences Guangzhou, 510650, China.
| |
Collapse
|
61
|
Kimbi Yaah VB, Ahmadi S, Quimbayo M J, Morales-Torres S, Ojala S. Recent technologies for glyphosate removal from aqueous environment: A critical review. ENVIRONMENTAL RESEARCH 2024; 240:117477. [PMID: 37918766 DOI: 10.1016/j.envres.2023.117477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The growing demand for food has led to an increase in the use of herbicides and pesticides over the years. One of the most widely used herbicides is glyphosate (GLY). It has been used extensively since 1974 for weed control and is currently classified by the World Health Organization (WHO) as a Group 2A substance, probably carcinogenic to humans. The industry and academia have some disagreements regarding GLY toxicity in humans and its effects on the environment. Even though this herbicide is not mentioned in the WHO water guidelines, some countries have decided to set maximum acceptable concentrations in tap water, while others have decided to ban its use in crop production completely. Researchers around the world have employed different technologies to remove or degrade GLY, mostly at the laboratory scale. Water treatment plants combine different technologies to remove it alongside other water pollutants, in some cases achieving acceptable removal efficiencies. Certainly, there are many challenges in upscaling purification technologies due to the costs and lack of factual information about their adverse effects. This review presents different technologies that have been used to remove GLY from water since 2012 to date, its detection and removal methods, challenges, and future perspectives.
Collapse
Affiliation(s)
- Velma Beri Kimbi Yaah
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu. Oulu, Finland; NanoTech - Nanomaterials and Sustainable Chemical Technologies. Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, 18071, Granada, Spain
| | - Sajad Ahmadi
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu. Oulu, Finland
| | - Jennyffer Quimbayo M
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu. Oulu, Finland; Nano and Molecular Systems Research Unit (NANOMO), Faculty of Science, University of Oulu. Oulu, Finland
| | - Sergio Morales-Torres
- NanoTech - Nanomaterials and Sustainable Chemical Technologies. Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, 18071, Granada, Spain
| | - Satu Ojala
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu. Oulu, Finland
| |
Collapse
|
62
|
Varshney S, Bhattacharya A, Gupta A. Halo-alkaliphilic microbes as an effective tool for heavy metal pollution abatement and resource recovery: challenges and future prospects. 3 Biotech 2023; 13:400. [PMID: 37982082 PMCID: PMC10651602 DOI: 10.1007/s13205-023-03807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
The current study presents an overview of heavy metals bioremediation from halo-alkaline conditions by using extremophilic microorganisms. Heavy metal remediation from the extreme environment with high pH and elevated salt concentration is a challenge as mesophilic microorganisms are unable to thrive under these polyextremophilic conditions. Thus, for effective bioremediation of extreme systems, specialized microbes (extremophiles) are projected as potential bioremediating agents, that not only thrive under such extreme conditions but are also capable of remediating heavy metals from these environments. The physiological versatility of extremophiles especially halophiles and alkaliphiles and their enzymes (extremozymes) could conveniently be harnessed to remediate and detoxify heavy metals from the high alkaline saline environment. Bibliometric analysis has shown that research in this direction has found pace in recent years and thus this review is a timely attempt to highlight the importance of halo-alkaliphiles for effective contaminant removal in extreme conditions. Also, this review systematically presents insights on adaptive measures utilized by extremophiles to cope with harsh environments and outlines the role of extremophilic microbes in industrial wastewater treatment and recovery of metals from waste with relevant examples. Further, the major challenges and way forward for the effective applicability of halo-alkaliphilic microbes in heavy metals bioremediation from extremophilic conditions are also highlighted.
Collapse
Affiliation(s)
- Shipra Varshney
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078 India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016 India
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh 201313 India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078 India
| |
Collapse
|
63
|
Bradu P, Biswas A, Nair C, Sreevalsakumar S, Patil M, Kannampuzha S, Mukherjee AG, Wanjari UR, Renu K, Vellingiri B, Gopalakrishnan AV. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124488-124519. [PMID: 35397034 PMCID: PMC8994424 DOI: 10.1007/s11356-022-20024-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 05/06/2023]
Abstract
This review gives concise information on green technology (GT) and Industrial Revolution 4.0 (IR 4.0). Climate change has begun showing its impacts on the environment, and the change is real. The devastating COVID-19 pandemic has negatively affected lives and the world from the deadly consequences at a social, economic, and environmental level. In order to balance this crisis, there is a need to transition toward green, sustainable forms of living and practices. We need green innovative technologies (GTI) and Internet of Things (IoT) technologies to develop green, durable, biodegradable, and eco-friendly products for a sustainable future. GTI encompasses all innovations that contribute to developing significant products, services, or processes that lower environmental harm, impact, and worsening while augmenting natural resource utilization. Sensors are typically used in IoT environmental monitoring applications to aid ecological safety by nursing air or water quality, atmospheric or soil conditions, and even monitoring species' movements and habitats. The industries and the governments are working together, have come up with solutions-the Green New Deal, carbon pricing, use of bio-based products as biopesticides, in biopharmaceuticals, green building materials, bio-based membrane filters for removing pollutants, bioenergy, biofuels and are essential for the green recovery of world economies. Environmental biotechnology, Green Chemical Engineering, more bio-based materials to separate pollutants, and product engineering of advanced materials and environmental economies are discussed here to pave the way toward the Sustainable Development Goals (SDGs) set by the UN and achieve the much-needed IR 4.0 for a greener-balanced environment and a sustainable future.
Collapse
Affiliation(s)
- Pragya Bradu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Chandralekha Nair
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Salini Sreevalsakumar
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India, 600 007
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
64
|
Sharma M, Agarwal S, Agarwal Malik R, Kumar G, Pal DB, Mandal M, Sarkar A, Bantun F, Haque S, Singh P, Srivastava N, Gupta VK. Recent advances in microbial engineering approaches for wastewater treatment: a review. Bioengineered 2023; 14:2184518. [PMID: 37498651 PMCID: PMC10376923 DOI: 10.1080/21655979.2023.2184518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 07/28/2023] Open
Abstract
In the present era of global climate change, the scarcity of potable water is increasing both due to natural and anthropogenic causes. Water is the elixir of life, and its usage has risen significantly due to escalating economic activities, widespread urbanization, and industrialization. The increasing water scarcity and rising contamination have compelled, scientists and researchers, to adopt feasible and sustainable wastewater treatment methods in meeting the growing demand for freshwater. Presently, various waste treatment technologies are adopted across the globe, such as physical, chemical, and biological treatment processes. There is a need to replace these technologies with sustainable and green technology that encourages the use of microorganisms since they have proven to be more effective in water treatment processes. The present review article is focused on demonstrating how effectively various microbes can be used in wastewater treatment to achieve environmental sustainability and economic feasibility. The microbial consortium used for water treatment offers many advantages over pure culture. There is an urgent need to develop hybrid treatment technology for the effective remediation of various organic and inorganic pollutants from wastewater.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Zoology, University of Jammu, Jammu and Kashmir, India
| | - Sangita Agarwal
- Department of Applied Science, RCC Institute of Information Technology Kolkata, West Bengal, India
| | - Richa Agarwal Malik
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| | - Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Pardeep Singh
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | | |
Collapse
|
65
|
Azuazu IN, Sam K, Campo P, Coulon F. Challenges and opportunities for low-carbon remediation in the Niger Delta: Towards sustainable environmental management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165739. [PMID: 37499826 DOI: 10.1016/j.scitotenv.2023.165739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
There is increasing demand for low-carbon remediation strategies for reducing greenhouse gas emissions and promoting sustainable development in the management of environmental contamination. This trend is within the broader context of sustainable remediation strategies that balance environmental, economic, and social aspects. This article critically reviewed existing literature to evaluate and compare various low-carbon remediation methods, such as bioremediation, phytoremediation, in situ chemical oxidation, soil vapour extraction, and electrokinetic remediation, to identify suitable techniques for the remediation of oil-contaminated sites in the Niger Delta region of Nigeria. We analysed the UK sustainable remediation frameworks (SuRF-UK) to glean lessons for the Nigerian context. Our findings indicate that bioremediation and phytoremediation are particularly promising low-carbon remediation technologies for the Niger Delta region due to their cost-effectiveness and adaptability to local conditions. We proposed a framework that deeply considers opportunities for achieving multiple goals including effective remediation and limited greenhouse gas emissions while returning net social and economic benefit to local communities. The proposed framework will help decision makers to implement effective remediation technologies that meet sustainability indices, integrates emissions considerations return net environmental benefit to local communities. There is a need for policymakers to establish and enforce policies and regulations that support sustainable remediation practises, build the capacity of stakeholders, invest in research and development, and promote collaboration among stakeholders to create a regulatory environment that supports sustainable remediation practises and promotes environmental sustainability in the region. This study provides insights for achieving low-carbon remediation in regions addressing land contamination by different contaminants and facilitates the adoption of remediation technologies that consider contextual socio-economic and environmental indices for sustainable development.
Collapse
Affiliation(s)
| | - Kabari Sam
- School of the Environment, Geography and Geosciences, University of Portsmouth, PO1 3QL, UK
| | - Pablo Campo
- School of Water Energy and Environment, Cranfield University, MK430AL, UK
| | - Frederic Coulon
- School of Water Energy and Environment, Cranfield University, MK430AL, UK.
| |
Collapse
|
66
|
Goligar N, Saadatmand S, Khavarinejad RA. Mycoremediation of lead and cadmium by lignocellulosic enzymes of Pleurotus eryngii. AMB Express 2023; 13:127. [PMID: 37964138 PMCID: PMC10646141 DOI: 10.1186/s13568-023-01626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
This study aimed to investigate the ability of Pleurotus eryngii fungus to absorb lead and cadmium from industrial wastewater. After culturing the fungus on a potato dextrose agar (PDA) medium containing 0 (control), 150 mg L-1, 250 mg L-1, and 350 mg L-1 concentrations of lead and cademium for 30 days, the mycelia were isolated from the culture medium and their extracts were used to measure protein content and the activity of antioxidant enzymes. Also, heavy metal contents were analyzed by atomic absorption spectrometry using flame photometry. Results showed that the growth of mycelia was significantly affected by different concentrations of the two heavy metals. High tolerance of heavy metal pollution in the culture media and the ability to accumulate lead and cademium confirmed that Pleurotus eryngii is a favorable option for mycoremediation. Also, molecular studies for fungal sequencing were investigated using the trench method, the sequence of the fungus was recorded in the gene bank, and finally the fungus was identified in the study.
Collapse
Affiliation(s)
- N Goligar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - S Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - R A Khavarinejad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
67
|
K S, Manian R. Bioremediation of polycyclic aromatic hydrocarbons contaminated soils: recent progress, perspectives and challenges. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1441. [PMID: 37946088 DOI: 10.1007/s10661-023-12042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
The life of all creatures is supported directly or indirectly by soil, which is a significant environmental matrix. The soil has been polluted partly due to increased human activities and population growth, releasing several foreign substances and persistent contaminants. When toxic substances like polycyclic aromatic hydrocarbons (PAHs) are disposed of, the characteristics of the soil are changed, microbial biodiversity is impacted, and items are destroyed. Because of the mutagenicity, carcinogenicity, and toxicity of petroleum hydrocarbons, the restoration and cleanup of PAH-polluted areas represent a severe technological and environmental challenge for long-term growth and development. Although there are several ways to clean up PAH-contaminated soils, much attention is paid to intriguing bacteria, fungus, and their enzymes. Various factors influence PAH breakdown, including pH, temperature, airflow, moisture level, nutrient availability, and degrading microbial populations. This review discusses how PAHs affect soil characteristics and shows that secondary metabolite and carbon dioxide decomposition are produced due to microbial breakdown processes. Furthermore, the advantages of bioremediation strategies were assessed for correct evaluation and considered dependable on each legislative and scientific research level, as analyzed in this review.
Collapse
Affiliation(s)
- Sumathi K
- Department of Biotechnology, School of Biosciences and Technology, VIT University: Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rameshpathy Manian
- Department of Biotechnology, School of Biosciences and Technology, VIT University: Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
68
|
Romantschuk M, Lahti-Leikas K, Kontro M, Galitskaya P, Talvenmäki H, Simpanen S, Allen JA, Sinkkonen A. Bioremediation of contaminated soil and groundwater by in situ biostimulation. Front Microbiol 2023; 14:1258148. [PMID: 38029190 PMCID: PMC10658714 DOI: 10.3389/fmicb.2023.1258148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Bioremediation by in situ biostimulation is an attractive alternative to excavation of contaminated soil. Many in situ remediation methods have been tested with some success; however, due to highly variable results in realistic field conditions, they have not been implemented as widely as they might deserve. To ensure success, methods should be validated under site-analogous conditions before full scale use, which requires expertise and local knowledge by the implementers. The focus here is on indigenous microbial degraders and evaluation of their performance. Identifying and removing biodegradation bottlenecks for degradation of organic pollutants is essential. Limiting factors commonly include: lack of oxygen or alternative electron acceptors, low temperature, and lack of essential nutrients. Additional factors: the bioavailability of the contaminating compound, pH, distribution of the contaminant, and soil structure and moisture, and in some cases, lack of degradation potential which may be amended with bioaugmentation. Methods to remove these bottlenecks are discussed. Implementers should also be prepared to combine methods or use them in sequence. Chemical/physical means may be used to enhance biostimulation. The review also suggests tools for assessing sustainability, life cycle assessment, and risk assessment. To help entrepreneurs, decision makers, and methods developers in the future, we suggest founding a database for otherwise seldom reported unsuccessful interventions, as well as the potential for artificial intelligence (AI) to assist in site evaluation and decision-making.
Collapse
Affiliation(s)
- Martin Romantschuk
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Katariina Lahti-Leikas
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Merja Kontro
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | | | - Harri Talvenmäki
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Suvi Simpanen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - John A. Allen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland (Luke), Horticulture Technologies, Turku, Finland
| |
Collapse
|
69
|
Zhao S, Wang J, Zhu W. Controlled-Release Materials for Remediation of Trichloroethylene Contamination in Groundwater. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7045. [PMID: 37959642 PMCID: PMC10650286 DOI: 10.3390/ma16217045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Groundwater contamination by trichloroethylene (TCE) presents a pressing environmental challenge with far-reaching consequences. Traditional remediation methods have shown limitations in effectively addressing TCE contamination. This study reviews the limitations of conventional remediation techniques and investigates the application of oxidant-based controlled-release materials, including encapsulated, loaded, and gel-based potassium permanganate since the year 2000. Additionally, it examines reductant controlled-release materials and electron donor-release materials such as tetrabutyl orthosilicate (TBOS) and polyhydroxybutyrate (PHB). The findings suggest that controlled-release materials offer a promising avenue for enhancing TCE degradation and promoting groundwater restoration. This study concludes by highlighting the future research directions and the potential of controlled-release materials in addressing TCE contamination challenges.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China;
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - Wenjin Zhu
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
70
|
El Rasafi T, Haouas A, Tallou A, Chakouri M, Aallam Y, El Moukhtari A, Hamamouch N, Hamdali H, Oukarroum A, Farissi M, Haddioui A. Recent progress on emerging technologies for trace elements-contaminated soil remediation. CHEMOSPHERE 2023; 341:140121. [PMID: 37690564 DOI: 10.1016/j.chemosphere.2023.140121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Abiotic stresses from potentially toxic elements (PTEs) have devastating impacts on health and survival of all living organisms, including humans, animals, plants, and microorganisms. Moreover, because of the rapid growing industrial activities together with the natural processes, soil contamination with PTEs has pronounced, which required an emergent intervention. In fact, several chemical and physical techniques have been employed to overcome the negative impacts of PTEs. However, these techniques have numerous drawback and their acceptance are usually poor as they are high cost, usually ineffectiveness and take longer time. In this context, bioremediation has emerged as a promising approach for reclaiming PTEs-contaminated soils through biological process using bacteria, fungus and plants solely or in combination. Here, we comprehensively reviews and critically discusses the processes by which microorganisms and hyperaccumulator plants extract, volatilize, stabilize or detoxify PTEs in soils. We also established a multi-technology repair strategy through the combination of different strategies, such as the application of biochar, compost, animal minure and stabilized digestate for stimulation of PTE remediation by hyperaccumulators plants species. The possible use of remote sensing of soil in conjunction with geographic information system (GIS) integration for improving soil bio-remediation of PTEs was discussed. By synergistically combining these innovative strategies, the present review will open very novel way for cleaning up PTEs-contaminated soils.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Health and Environment Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, B.P 5366, Maarif, Casablanca, Morocco.
| | - Ayoub Haouas
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Anas Tallou
- Department of Soil, Plant and Food Sciences - University of Bari "Aldo Moro", Italy
| | - Mohcine Chakouri
- Team of Remote Sensing and GIS Applied to Geosciences and Environment, Department of Earth Sciences, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Yassine Aallam
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco; Mohammed VI Polytechnic (UM6P) University, Ben Guerir, Morocco
| | - Ahmed El Moukhtari
- Ecology and Environment Laboratory, Faculty of Sciences Ben Msik, Hassan II University, PO 7955, Sidi Othmane, Casablanca, Morocco
| | - Noureddine Hamamouch
- Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fes, Morocco
| | - Hanane Hamdali
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| | | | - Mohamed Farissi
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty, USMS, Beni Mellal, Morocco
| | - Abdelmajid Haddioui
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| |
Collapse
|
71
|
Jalil S, Nazir MM, Ali Q, Zulfiqar F, Moosa A, Altaf MA, Zaid A, Nafees M, Yong JWH, Jin X. Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:870-888. [PMID: 37598713 DOI: 10.1071/fp23021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Heavy metals and metalloids (HMs) contamination in the environment has heightened recently due to increasing global concern for food safety and human livability. Zinc (Zn2+ ) is an important nutrient required for the normal development of plants. It is an essential cofactor for the vital enzymes involved in various biological mechanisms of plants. Interestingly, Zn2+ has an additional role in the detoxification of HMs in plants due to its unique biochemical-mediating role in several soil and plant processes. During any exposure to high levels of HMs, the application of Zn2+ would confer greater plant resilience by decreasing oxidative stress, maintaining uptake of nutrients, photosynthesis productivity and optimising osmolytes concentration. Zn2+ also has an important role in ameliorating HMs toxicity by regulating metal uptake through the expression of certain metal transporter genes, targeted chelation and translocation from roots to shoots. This review examined the vital roles of Zn2+ and nano Zn in plants and described their involvement in alleviating HMs toxicity in plants. Moving forward, a broad understanding of uptake, transport, signalling and tolerance mechanisms of Zn2+ /zinc and its nanoparticles in alleviating HMs toxicity of plants will be the first step towards a wider incorporation of Zn2+ into agricultural practices.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, Punjab University, Lahore 54590, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agricultural and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Abbu Zaid
- Department of Botany, Government Gandhi Memorial Science College, Jammu, India
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden
| | - Xiaoli Jin
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
72
|
Numpilai T, Seubsai A, Chareonpanich M, Witoon T. Unraveling the roles of microporous and micro-mesoporous structures of carbon supports on iron oxide properties and As (V) removal performance in contaminated water. ENVIRONMENTAL RESEARCH 2023; 236:116742. [PMID: 37507043 DOI: 10.1016/j.envres.2023.116742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
This study investigates the impact of microporous (SP-C) and micro-mesoporous carbon (DP-C) supports on the dispersion and phase transformation of iron oxides and their arsenic (V) removal efficiency. The research demonstrates that carbon-supported iron oxide sorbents exhibit superior As(V) uptake capacity compared to unsupported Fe2O3, attributed to reduced iron oxide crystallite sizes and As(V) adsorption on carbon supports. Maximum As(V) uptake capacities of 23.8 mg/g and 18.9 mg/g were achieved for Fe/SP-C and Fe/DP-C at 30 wt% and 50 wt% iron loading, respectively. The study reveals a nonlinear relationship between As(V) sorption capacity and iron oxide crystallite size after excluding As(V) adsorption capacity on carbon supports, suggesting the iron oxide phase (Fe3O4) plays a role in determining adsorption capacity. Iron oxide-loaded DP-C sorbents exhibit faster adsorption rates at low As(V) concentrations (5 mg/L) than SP-C sorbents due to their bimodal pore structure. Adsorption behavior varies at higher As(V) concentrations (45 mg/L), with Fe/DP-C reaching maximum capacity more slowly due to limited available adsorptive sites. All adsorbents maintained near-complete As(V) removal efficiency over five cycles. The findings provide insights for designing more efficient adsorbents for As(V) removal from contaminated water sources.
Collapse
Affiliation(s)
- Thanapha Numpilai
- Department of Environmental Science, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Anusorn Seubsai
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Metta Chareonpanich
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Thongthai Witoon
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
73
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
74
|
Ejaz M, Gul A, Ozturk M, Hafeez A, Turkyilmaz Unal B, Jan SU, Siddique MT. Nanotechnologies for environmental remediation and their ecotoxicological impacts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1368. [PMID: 37875634 DOI: 10.1007/s10661-023-11661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/01/2023] [Indexed: 10/26/2023]
Abstract
Environmental nanoremediation is an emerging technology that aims to rapidly and efficiently remove contaminants from the polluted sites using engineered nanomaterials (ENMs). Inorganic nanoparticles which are generally metallic, silica-based, carbon-based, or polymeric in nature serve to remediate through chemical reactions, filtration, or adsorption. Their greater surface area per unit mass and high reactivity enable them to treat groundwater, wastewater, oilfields, and toxic industrial contaminants. Despite the growing interest in nanotechnological solutions for bioremediation, the environmental and human hazard associated with their use is raising concerns globally. Nanoremediation techniques when compared to conventional remediation solutions show increased effectivity in terms of cost and time; however, the main challenge is the ability of ENMs to remove contaminants from different environmental mediums by safeguarding the ecosystem. ENMs improving the accretion of the pollutant and increasing their bioavailability should be rectified along with the vigilant management of their transfer to the upper levels of the food chain which subsequently causes biomagnification. The ecosystem-centered approach will help monitor the ecotoxicological impacts of nanoremediation considering the safety, sustainability, and proper disposal of ENMs. The environment and human health risk assessment of each novel engineered nanomaterial along with the regulation of life cycle assessment (LCA) tools of ENMs for nanoremediation can help investigate the possible environmental hazard. This review focuses on the currently available nanotechnological methods used for environmental remediation and their potential toxicological impacts on the ecosystem.
Collapse
Affiliation(s)
- Mahnoor Ejaz
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan.
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Türkiye.
| | - Ahmed Hafeez
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Bengu Turkyilmaz Unal
- Biotechnology Department, Faculty of Arts and Science, Nigde Omer Halisdemir University, Nigde, Türkiye
| | - Sami Ullah Jan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
75
|
Sar P, Kundu S, Ghosh A, Saha B. Natural surfactant mediated bioremediation approaches for contaminated soil. RSC Adv 2023; 13:30586-30605. [PMID: 37859781 PMCID: PMC10583161 DOI: 10.1039/d3ra05062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
The treatment of environmental pollution by employing microorganisms is a promising technology, termed bioremediation, which has several advantages over the other established conventional remediation techniques. Consequently, there is an urgent inevitability to develop pragmatic techniques for bioremediation, accompanied by the potency of detoxifying soil environments completely. The bioremediation of contaminated soils has been shown to be an alternative that could be an economically viable way to restore polluted soil. The soil environments have long been extremely polluted by a number of contaminants, like agrochemicals, polyaromatic hydrocarbons, heavy metals, emerging pollutants, etc. In order to achieve a quick remediation overcoming several difficulties the utility of biosurfactants became an excellent advancement and that is why, nowadays, the biosurfactant mediated recovery of soil is a focus of interest to the researcher of the environmental science field specifically. This review provides an outline of the present scenario of soil bioremediation by employing a microbial biosurfactant. In addition to this, a brief account of the pollutants is highlighted along with how they contaminate the soil. Finally, we address the future outlook for bioremediation technologies that can be executed with a superior efficiency to restore a polluted area, even though its practical applicability has been cultivated tremendously over the few decades.
Collapse
Affiliation(s)
- Pintu Sar
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur - 741246 West Bengal India
| | - Sandip Kundu
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Aniruddha Ghosh
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| |
Collapse
|
76
|
Kaur G, Lecka J, Krol M, Brar SK. Novel BTEX-degrading strains from subsurface soil: Isolation, identification and growth evaluation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122303. [PMID: 37558195 DOI: 10.1016/j.envpol.2023.122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/05/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and o, m, and p-xylenes (BTEX) are high-risk pollutants because of their mutagenic and carcinogenic nature. These pollutants are found with elevated levels in groundwater and soil in Canada at several contaminated sites. The intrinsic microbes present in the subsurface have the potential to degrade pollutants by their metabolic pathways and convert them to non-toxic products. However, the low subsurface temperature (5-10 °C) limits their growth and degradation ability. This study examined the feasibility of subsurface heat augmentation using geothermal heating for BTEX bioremediation. Novel potent BTEX-degrading bacterial strains were isolated from soil at 3.0, 42.6, and 73.2 m depths collected from a geothermal borehole during installation and screened using an enrichment technique. The selected strains were identified with Sanger sequencing and phylogenetic tree analysis, revealing that all the strains except Bacillus subtilis are novel with respective to BTEX degradation. The isolates, Microbacterium esteraromaticum and Bacillus infantis showed the highest degradation with 67.98 and 65.2% for benzene, 72.8 and 71.02% for toluene, 77.52 and 76.44% for ethylbenzene, and 74.58 and 74.04% for xylenes respectively. Further, temperature influence at 15 ± 1 °C, 28 ± 1 °C and 40 ± 1 °C was observed, which showed increased growth by two-fold and on average 35-49% more biodegradation at higher temperatures. Results showed that temperature is a positive stimulant for bioremediation, hence geothermal heating could also be a stimulant for in-situ bioremediation.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Joanna Lecka
- Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environment, 490, Rue de La Couronne, Quebec, G1K 9A9, Canada
| | - Magdalena Krol
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
77
|
Conde Molina D, Liporace F, Quevedo CV. Bioremediation of an industrial soil contaminated by hydrocarbons in microcosm system, involving bioprocesses utilizing co-products and agro-industrial wastes. World J Microbiol Biotechnol 2023; 39:323. [PMID: 37773232 DOI: 10.1007/s11274-023-03766-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
The present study describes practical implication of bioaugmentation and biostimulation processes for bioremediation of an industrial soil chronically contaminated by hydrocarbons. For this purpose, biomass production of six autochthonous hydrocarbon-degrading bacteria were evaluated as inoculum of bioaugmentation strategy, by testing carbon and nitrogen sources included co-products and agro-industrial waste as sustainable and low-cost components of the growth medium. Otherwise, biostimulation was approached by the addition of optimized concentration of nitrogen and phosphorus. Microcosm assays showed that total hydrocarbons (TH) were significantly removed from chronically contaminated soil undergoing bioremediation treatment. Systems Mix (bioaugmentation); N,P (biostimulation) and Mix + N,P (bioaugmentation and biostimulation) reached higher TH removal, being 89.85%, 91.00%, 93.04%, respectively, comparing to 77.83% of system C (natural attenuation) at 90 days. The increased heterotrophic aerobic bacteria and hydrocarbon degrading bacteria counts were according to TH biodegrading process during the experiments. Our results showed that biostimulation with nutrients represent a valuable alternative tool to treat a chronically hydrocarbon-contaminated industrial soil, while bioaugmentation with a consortium of hydrocarbon degrading bacteria would be justified when the soil has a low amount of endogenous degrading microorganisms. Furthermore, the production of inoculum for application in bioaugmentation using low-cost substrates, such as industrial waste, would lead to the development of an environmentally friendly and attractive process in terms of cost-benefit.
Collapse
Affiliation(s)
- Debora Conde Molina
- Grupo de Biotecnología y Nanotecnología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martín 1171, Campana, 2804, Buenos Aires, Argentina.
| | - Franco Liporace
- Grupo de Biotecnología y Nanotecnología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martín 1171, Campana, 2804, Buenos Aires, Argentina
| | - Carla V Quevedo
- Grupo de Biotecnología y Nanotecnología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martín 1171, Campana, 2804, Buenos Aires, Argentina
- Consejo de Investigaciones Científicas y Técnicas (CONICET), CABA (C1425FQB), 2290, Godoy Cruz, Argentina
| |
Collapse
|
78
|
Murthy MK, Khandayataray P, Padhiary S, Samal D. A review on chromium health hazards and molecular mechanism of chromium bioremediation. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:461-478. [PMID: 35537040 DOI: 10.1515/reveh-2021-0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/19/2022] [Indexed: 05/13/2023]
Abstract
Living beings have been devastated by environmental pollution, which has reached its peak. The disastrous pollution of the environment is in large part due to industrial wastes containing toxic pollutants. The widespread use of chromium (Cr (III)/Cr (VI)) in industries, especially tanneries, makes it one of the most dangerous environmental pollutants. Chromium pollution is widespread due to ineffective treatment methods. Bioremediation of chromium (Cr) using bacteria is very thoughtful due to its eco-friendly and cost-effective outcome. In order to counter chromium toxicity, bacteria have numerous mechanisms, such as the ability to absorb, reduce, efflux, or accumulate the metal. In this review article, we focused on chromium toxicity on human and environmental health as well as its bioremediation mechanism.
Collapse
Affiliation(s)
| | | | - Samprit Padhiary
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| |
Collapse
|
79
|
Viana T, Ferreira N, Tavares DS, Abdolvaseei A, Pereira E, Henriques B. Eco-friendly methodology for removing and recovering rare earth elements from saline industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96617-96628. [PMID: 37578580 PMCID: PMC10482783 DOI: 10.1007/s11356-023-29088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
In this study, response surface methodology (RSM) was applied with a Box-Behnken design to optimize the biosorption (removal and bioconcentration) of rare earth elements (REEs) (Y, La, Ce Eu, Gd, Tb) by living Ulva sp. from diluted industrial wastewaters (also containing Pt and the classic contaminants Hg, Pb, Zn, Cu, Co, and Cd). Element concentration (A: 10-190 μg/L), wastewater salinity (B: 15-35), and Ulva sp. dosage (C: 1.0-5.0 g/L) were the operating parameters chosen for optimization. Analysis of the Box-Behnken central point confirmed the reproducibility of the methodology and p-values below 0.0001 validated the developed mathematical models. The largest inter-element differences were observed at 24 h, with most REEs, Cu, Pb and Hg showing removals ≥ 50 %. The factor with the greatest impact (positive) on element removal was the initial seaweed dosage (ANOVA, p < 0.05). The optimal conditions for REEs removal were an initial REEs concentration of 10 μg/L, at a wastewater salinity of 15, and an Ulva sp. dosage of 5.0 g/L, attaining removals up to 88 % in 24 h. Extending the time to 96 h allowed seaweed dosage to be reduced to 4.2 g/L while achieving removals ≥ 90 %. The high concentrations in REE-enriched biomass (∑REEs of 3222 μg/g), which are up to 3000 times higher than those originally found in water and exceed those in common ores, support their use as an alternative source of these critical raw materials.
Collapse
Affiliation(s)
- Thainara Viana
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nicole Ferreira
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela S Tavares
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Azadeh Abdolvaseei
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
- Central Laboratory of Analysis, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Bruno Henriques
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
80
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
81
|
Narayanan M, Kandasamy S, Lee J, Barathi S. Microbial degradation and transformation of PPCPs in aquatic environment: A review. Heliyon 2023; 9:e18426. [PMID: 37520972 PMCID: PMC10382289 DOI: 10.1016/j.heliyon.2023.e18426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
The Pharmaceuticals and Personal Care Products (PPCPs) presence at harmful levels has been identified in aquatic ecosystems all over the world. Currently, PPCPs are more common in aquatic regions and have been discovered to be extremely harmful to aquatic creatures. Waste-water treatment facilities are the primary cause of PPCPs pollution in aquatic systems due to their limited treatment as well as the following the release of PPCPs. The degree of PPCPs elimination is primarily determined by the method applied for the remediation. It must be addressed in an eco-friendly manner in order to significantly improve the environmental quality or, at the very least, to prevent the spread as well as effects of toxic pollutants. However, when compared to other methods, environmentally friendly strategies (biological methods) are less expensive and require less energy. Most biological methods under aerobic conditions have been shown to degrade PPCPs effectively. Furthermore, the scientific literature indicates that with the exception of a few extremely hydrophobic substances, biological degradation by microbes is the primary process for the majority of PPCPs compounds. Hence, this review discusses about the optimistic role of microbe concerned in the degradation or transformation of PPCPs into non/less toxic form in the polluted environment. Accordingly, more number of microbial strains has been implicated in the biodegradation/transformation of harmful PPCPs through a process termed as bioremediation and their limitations.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore, 641004, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
82
|
Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK. Bioremediation of Heavy Metals by Rhizobacteria. Appl Biochem Biotechnol 2023; 195:4689-4711. [PMID: 36287331 PMCID: PMC10354140 DOI: 10.1007/s12010-022-04177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
Heavy elements accumulate rapidly in the soil due to industrial activities and the industrial revolution, which significantly impact the morphology, physiology, and yield of crops. Heavy metal contamination will eventually affect the plant tolerance threshold and cause changes in the plant genome and genetic structure. Changes in the plant genome lead to changes in encoded proteins and protein sequences. Consuming these mutated products can seriously affect human and animal health. Bioremediation is a process that can be applied to reduce the adverse effects of heavy metals in the soil. In this regard, bioremediation using plant growth-promoting rhizobacteria (PGPRs) as beneficial living agents can help to neutralize the negative interaction between the plant and the heavy metals. PGPRs suppress the adverse effects of heavy metals and the negative interaction of plant-heavy elements by different mechanisms such as biological adsorption and entrapment of heavy elements in extracellular capsules, reduction of metal ion concentration, and formation of complexes with metal ions inside the cell.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Najmeh Hajabdollahi
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Edinburgh, EH9 3JG UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007 India
- Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab India
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248002 Uttarakhand India
| |
Collapse
|
83
|
Raj A, Dubey A, Malla MA, Kumar A. Pesticide pestilence: Global scenario and recent advances in detection and degradation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117680. [PMID: 37011532 DOI: 10.1016/j.jenvman.2023.117680] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 06/19/2023]
Abstract
Increased anthropogenic activities are confronted as the main cause for rising environmental and health concerns globally, presenting an indisputable threat to both environment and human well-being. Modern-day industrialization has given rise to a cascade of concurrent environmental and health challenges. The global human population is growing at an alarming rate, posing tremendous pressure on future food security, and healthy and environmentally sustainable diets for all. To feed all, the global food production needs to increase by 50% by 2050, but this increase has to occur from the limited arable land, and under the present-day climate variabilities. Pesticides have become an integral component of contemporary agricultural system, safeguarding crops from pests and diseases and their use must be reduce to fulfill the SDG (Sustainable Development Goals) agenda . However, their indiscriminate use, lengthy half-lives, and high persistence in soil and aquatic ecosystems have impacted global sustainability, overshot the planetary boundaries and damaged the pure sources of life with severe and negative impacts on environmental and human health. Here in this review, we have provided an overview of the background of pesticide use and pollution status and action strategies of top pesticide-using nations. Additionally, we have summarized biosensor-based methodologies for the rapid detection of pesticide residue. Finally, omics-based approaches and their role in pesticide mitigation and sustainable development have been discussed qualitatively. The main aim of this review is to provide the scientific facts for pesticide management and application and to provide a clean, green, and sustainable environment for future generations.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India
| | - Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India; Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, 211002, U.P., India.
| |
Collapse
|
84
|
Kou L, Huang T, Zhang H, Li K, Hua F, Huang C, Liu X, Si F. Water-lifting and aeration system improves water quality of drinking water reservoirs: Biological mechanism and field application. J Environ Sci (China) 2023; 129:174-188. [PMID: 36804234 DOI: 10.1016/j.jes.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/18/2023]
Abstract
Reservoirs have been served as the major source of drinking water for dozens of years. The water quality safety of large and medium reservoirs increasingly becomes the focus of public concern. Field test has proved that water-lifting and aeration system (WLAS) is a piece of effective equipment for in situ control and improvement of water quality. However, its intrinsic bioremediation mechanism, especially for nitrogen removal, still lacks in-depth investigation. Hence, the dynamic changes in water quality parameters, carbon source metabolism, species compositions and co-occurrence patterns of microbial communities were systematically studied in Jinpen Reservoir within a whole WLAS running cycle. The WLAS operation could efficiently reduce organic carbon (19.77%), nitrogen (21.55%) and phosphorus (65.60%), respectively. Biolog analysis revealed that the microbial metabolic capacities were enhanced via WLAS operation, especially in bottom water. High-throughput sequencing demonstrated that WLAS operation altered the diversity and distributions of microbial communities in the source water. The most dominant genus accountable for aerobic denitrification was identified as Dechloromonas. Furthermore, network analysis revealed that microorganisms interacted more closely through WLAS operation. Oxidation-reduction potential (ORP) and total nitrogen (TN) were regarded as the two main physicochemical parameters influencing microbial community structures, as confirmed by redundancy analysis (RDA) and Mantel test. Overall, the results will provide a scientific basis and an effective way for strengthening the in-situ bioremediation of micro-polluted source water.
Collapse
Affiliation(s)
- Liqing Kou
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China.
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Kai Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Fengyao Hua
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Cheng Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Fan Si
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| |
Collapse
|
85
|
Iturbe-Espinoza P, Bonte M, Weedon JT, Braster M, Brandt BW, van Spanning RJ. Correlating the succession of microbial communities from Nigerian soils to petroleum biodegradation. World J Microbiol Biotechnol 2023; 39:239. [PMID: 37392206 PMCID: PMC10314880 DOI: 10.1007/s11274-023-03656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/19/2023] [Indexed: 07/03/2023]
Abstract
Whilst biodegradation of different hydrocarbon components has been widely demonstrated to occur by specialist oil-degrading bacteria, less is known about the impact on microbial communities as a function of oil composition by comparing the biodegradation of chemically complex fuels to synthetic products. The objectives of this study were (i) to assess the biodegradation capacity and succession of microbial communities isolated from Nigerian soils in media with crude oil or synthetic oil as sole sources of carbon and energy, and (ii) to assess the temporal variability of the microbial community size. Community profiling was done using 16 S rRNA gene amplicon sequencing (Illumina), and oil profiling using gas chromatography. The biodegradation of natural and synthetic oil differed probably due to the content of sulfur that may interfere with the biodegradation of hydrocarbons. Both alkanes and PAHs in the natural oil were biodegraded faster than in the synthetic oil. Variable community responses were observed during the degradation of alkanes and more simple aromatic compounds, but at later phases of growth they became more homogeneous. The degradation capacity and the size of the community from the more-contaminated soil were higher than those from the less-contaminated soil. Six abundant organisms isolated from the cultures were found to biodegrade oil molecules in pure cultures. Ultimately, this knowledge may contribute to a better understanding of how to improve the biodegradation of crude oil by optimizing culturing conditions through inoculation or bioaugmentation of specific bacteria during ex-situ biodegradation such as biodigesters or landfarming.
Collapse
Affiliation(s)
- Paul Iturbe-Espinoza
- Systems biology lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085 (location code O|2-2E51), NL-1081HV, Amsterdam, The Netherlands.
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.
| | - Matthijs Bonte
- Shell Global Solutions International BV, The Hague, The Netherlands
- MB-Water, Amsterdam, The Netherlands
| | - James T Weedon
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Braster
- Systems biology lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085 (location code O|2-2E51), NL-1081HV, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Jm van Spanning
- Systems biology lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085 (location code O|2-2E51), NL-1081HV, Amsterdam, The Netherlands
| |
Collapse
|
86
|
Adeola AO, Iwuozor KO, Akpomie KG, Adegoke KA, Oyedotun KO, Ighalo JO, Amaku JF, Olisah C, Conradie J. Advances in the management of radioactive wastes and radionuclide contamination in environmental compartments: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2663-2689. [PMID: 36097208 DOI: 10.1007/s10653-022-01378-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Several anthropogenic activities produce radioactive materials into the environment. According to reports, exposure to high concentrations of radioactive elements such as potassium (40K), uranium (238U and 235U), and thorium (232Th) poses serious health concerns. The scarcity of reviews addressing the occurrence/sources, distribution, and remedial solutions of radioactive contamination in the ecosystems has fueled data collection for this bibliometric survey. In rivers and potable water, reports show that several parts of Europe and Asia have recorded radionuclide concentrations much higher than the permissible level of 1 Bq/L. According to various investigations, activity concentrations of gamma-emitting radioactive elements discovered in soils are higher than the global average crustal values, especially around mining activities. Adsorption technique is the most prevalent remedial method for decontaminating radiochemically polluted sites. However, there is a need to investigate integrated approaches/combination techniques. Although complete radionuclide decontamination utilizing the various technologies is feasible, future research should focus on cost-effectiveness, waste minimization, sustainability, and rapid radionuclide decontamination. Radioactive materials can be harnessed as fuel for nuclear power generation to meet worldwide energy demand. However, proper infrastructure must be put in place to prevent catastrophic disasters.
Collapse
Affiliation(s)
- A O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria.
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - K O Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, Nigeria
| | - K G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - K A Adegoke
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - K O Oyedotun
- Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria, 0028, South Africa
| | - J O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria
| | - J F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - C Olisah
- Department of Botany, Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Port Elizabeth, South Africa
| | - J Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa
| |
Collapse
|
87
|
Feng H, Yang W, Zhang Y, Ding Y, Chen L, Kang Y, Huang H, Chen R. Electroactive microorganism-assisted remediation of groundwater contamination: Advances and challenges. BIORESOURCE TECHNOLOGY 2023; 377:128916. [PMID: 36940880 DOI: 10.1016/j.biortech.2023.128916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Groundwater contamination has become increasingly prominent, therefore, the development of efficient remediation technology is crucial for improving groundwater quality. Bioremediation is cost-effective and environmentally friendly, while coexisting pollutant stress can affect microbial processes, and the heterogeneous character of groundwater medium can induce bioavailability limitations and electron donor/acceptor imbalances. Electroactive microorganisms (EAMs) are advantageous in contaminated groundwater because of their unique bidirectional electron transfer mechanism, which allows them to use solid electrodes as electron donors/acceptors. However, the relatively low-conductivity groundwater environment is unfavorable for electron transfer, which becomes a bottleneck problem that limits the remediation efficiency of EAMs. Therefore, this study reviews the recent advances and challenges of EAMs applied in the groundwater environment with complex coexisting ions, heterogeneity, and low conductivity and proposes corresponding future directions.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Wanyue Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Ying Kang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Huan Huang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
88
|
Thacharodi A, Hassan S, Hegde TA, Thacharodi DD, Brindhadevi K, Pugazhendhi A. Water a major source of endocrine-disrupting chemicals: An overview on the occurrence, implications on human health and bioremediation strategies. ENVIRONMENTAL RESEARCH 2023; 231:116097. [PMID: 37182827 DOI: 10.1016/j.envres.2023.116097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are toxic compounds that occur naturally or are the output of anthropogenic activities that negatively impact both humans and wildlife. A number of diseases are associated with these disruptors, including reproductive disorders, cardiovascular disorders, kidney disease, neurological disorders, autoimmune disorders, and cancer. Due to their integral role in pharmaceuticals and cosmetics, packaging companies, agro-industries, pesticides, and plasticizers, the scientific awareness on natural and artificial EDCs are increasing. As these xenobiotic compounds tend to bioaccumulate in body tissues and may also persist longer in the environment, the concentrations of these organic compounds may increase far from their original point of concentrations. Water remains as the major sources of how humans and animals are exposed to EDCs. However, these toxic compounds cannot be completely biodegraded nor bioremediated from the aqueous medium with conventional treatment strategies thereby requiring much more efficient strategies to combat EDC contamination. Recently, genetically engineered microorganism, genome editing, and the knowledge of protein and metabolic engineering has revolutionized the field of bioremediation thereby helping to breakdown EDCs effectively. This review shed lights on understanding the importance of aquatic mediums as a source of EDCs exposure. Furthermore, the review sheds light on the consequences of these EDCs on human health as well as highlights the importance of different remediation and bioremediation approaches. Particular attention is paid to the recent trends and perspectives in order to attain sustainable approaches to the bioremediation of EDCs. Additionally, rigorous restrictions to preclude the discharge of estrogenic chemicals into the environment should be followed in efforts to combat EDC pollution.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand; Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Thanushree A Hegde
- Civil Engineering Department, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Dhanya Dilip Thacharodi
- Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Kathirvel Brindhadevi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
89
|
Ahmad A, Mustafa G, Rana A, Zia AR. Improvements in Bioremediation Agents and Their Modified Strains in Mediating Environmental Pollution. Curr Microbiol 2023; 80:208. [PMID: 37169903 DOI: 10.1007/s00284-023-03316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
Environmental pollution has been a significant concern around the globe as the release of toxic pollutants is associated with carcinogenic, mutagenic, and teratogenic impacts on living organisms. Since microorganisms have the natural potential to degrade toxic metabolites into nontoxic forms, an eco-friendly approach known as bioremediation has been used to tackle toxic-induced pollution. Bioremediation has three fundamental levels, i.e., natural attenuation, bio-augmentation, and biostimulation in which the synthetic biology approach has been lately utilized to enhance the conventional bioremediation techniques. Recently, a more advanced approach of programmable nucleases such as zinc finger nucleases, tale-like effector nucleases, and clustered regularly interspaced short palindromic repeats Cas is being employed to engineer several bacterial, fungal, and algal strains for targeted mutagenesis by knocking in and out specific genes which are involved in reconstructing the metabolic pathways of native microbes. These genetically engineered microorganisms possess heavy metal resistance, greater substrate range, enhanced enzymatic activity, and binding affinity which accelerate the biodegradation of toxic pollutants to environmentally safe levels. This review provides a comprehensive understanding of how we can correlate the novel genetics-based approaches employed to produce genetically engineered microorganisms to enhance the biodegradation of hazardous pollutants, hence, developing a clean and sustainable ecosystem.
Collapse
Affiliation(s)
- Asmara Ahmad
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Amna Rana
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Abdur Rehman Zia
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
90
|
Tiwari S, Tripathi P, Mohan D, Singh RS. Imidacloprid biodegradation using novel bacteria Tepidibacillus decaturensis strain ST1 in batch and in situ microcosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61562-61572. [PMID: 36534260 DOI: 10.1007/s11356-022-24779-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/12/2022] [Indexed: 05/10/2023]
Abstract
Imidacloprid is one of the frequently used insecticides. Indiscriminate use of imidacloprid makes it perilous to non-target organisms as well as the environment, including soil and water sources, thus, making its elimination from the environment an irresistible concern. Bioremediation is a technique that uses the degrading capabilities of bacteria to create an economical and reliable method of pesticide abatement. In an attempt to solve the problem arising due to imidacloprid contamination, bacterial strains possessing the ability to degrade imidacloprid were isolated from contaminated agricultural soil samples in the present study. Imidacloprid-degrading isolate, identified as Tepidibacillus decaturensis strain ST1, could effectively degrade imidacloprid in liquid media, slurry, and soil microcosms. The microcosm studies using the isolate resulted in the degradation of around 77.5% and 85% of imidacloprid (200 ppm) in sterile and unsterile soils within 45 days. In addition to biodegradation, sorption of insecticide by the plants and natural reduction of insecticide over time has also been reported. The degradation in soil follows first-order kinetics. Hydrazinecarboxamide and hydroxyurea were identified as metabolites on conducting GC-MS analysis of the degraded samples.
Collapse
Affiliation(s)
- Sonam Tiwari
- Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pranjal Tripathi
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Devendra Mohan
- Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ram Sharan Singh
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
91
|
Ullah H, Lun L, Rashid A, Zada N, Chen B, Shahab A, Li P, Ali MU, Lin S, Wong MH. A critical analysis of sources, pollution, and remediation of selenium, an emerging contaminant. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1359-1389. [PMID: 35972610 PMCID: PMC9379879 DOI: 10.1007/s10653-022-01354-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/09/2022] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential metalloid and is categorized as emerging anthropogenic contaminant released to the environment. The rise of Se release into the environment has raised concern about its bioaccumulation, toxicity, and potential to cause serious damages to aquatic and terrestrial ecosystem. Therefore, it is extremely important to monitor Se level in environment on a regular basis. Understanding Se release, anthropogenic sources, and environmental behavior is critical for developing an effective Se containment strategy. The ongoing efforts of Se remediation have mostly emphasized monitoring and remediation as an independent topics of research. However, our paper has integrated both by explaining the attributes of monitoring on effective scale followed by a candid review of widespread technological options available with specific focus on Se removal from environmental media. Another novel approach demonstrated in the article is the presentation of an overwhelming evidence of limitations that various researchers are confronted with to overcome achieving effective remediation. Furthermore, we followed a holistic approach to discuss ways to remediate Se for cleaner environment especially related to introducing weak magnetic field for ZVI reactivity enhancement. We linked this phenomenal process to electrokinetics and presented convincing facts in support of Se remediation, which has led to emerge 'membrane technology', as another viable option for remediation. Hence, an interesting, innovative and future oriented review is presented, which will undoubtedly seek attention from global researchers.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Lu Lun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655 China
| | - Audil Rashid
- Faculty of Sciences, Department of Botany, University of Gujrat, Gujrat, 50700 Pakistan
| | - Noor Zada
- Department of Chemistry, Government Post Graduate College, Lower Dir, Timergara, 18300 Pakistan
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077 China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
92
|
Cenčič Predikaka T, Mastnak T, Svoljšak Jerman M, Finšgar M. Ex situ bioremediation of diesel fuel-contaminated soil in two different climates. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1881-1889. [PMID: 37125609 DOI: 10.1080/15226514.2023.2204165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The petroleum industry is often faced with accidental spills and discharges that pollute valuable natural resources such as soil. The purpose of this study was to assess bioremediation potential of an on-site landfarming unit (LU), a highly economical solution that complies with the zero-waste policy, for bioremediation of the contaminated soil after an actual diesel fuel leakage in a fuel depot. The first aim was to evaluate the effects of different climates on hydrocarbon bioremediation. For this reason, a part of the contaminated soil was moved from the initial location with a sub-Mediterranean climate to an LU at another location with a temperate continental climate. Our results demonstrated that remediation in sub-Mediterranean climate is less effective than the remediation in a temperate continental climate. The second aim of this study was to evaluate the effect of different plant species on the microbial population during bioremediation. For that purpose, 365-day monitoring of phospholipid fatty acids (PLFA) was performed. Our results support the hypothesis that plant-assisted bioremediation can diminish toxic effects of diesel-polluted soil and that the changes in plant species during bioremediation cause changes in the microbial population.
Collapse
Affiliation(s)
- Tjaša Cenčič Predikaka
- Institute for Chemistry, Ecology, Measurements and Analytics, IKEMA d.o.o, Lovrenc na Dravskem polju, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Tinkara Mastnak
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | | | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| |
Collapse
|
93
|
Koohkan H, Mortazavi MS, Golchin A, Najafi-Ghiri M, Golkhandan M, Akbarzadeh-Chomachaei G, Saraji F. The effect of petroleum levels on some soil biological properties under phytoremediation and bioaugmentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60618-60637. [PMID: 37036650 DOI: 10.1007/s11356-023-26730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/26/2023] [Indexed: 04/11/2023]
Abstract
With the development of industries and excessive use of petroleum compounds, petroleum pollution has become a serious threat to the environment. The aim of this study was to the effect of petroleum levels on the biological activities of soil affected by phytoremediation and bioaugmentation. A surface soil sample was collected from the polluted areas around Bandar Abbas Oil Refinery Company, and the petroleum-degrading bacteria were isolated. M. yunnanensis (native) was selected among the isolated colonies for further experiment. The used soil in this study was a surface soil collected from Baghu region of Bandar Abbas, Sothern Iran, and treatments were added to soil samples. To evaluate removal of petroleum levels (0, 4, and 8%) from the soil by phytoremediation (control, sorghum, barley, and bermudagrass) and bioaugmentation (control, A. brasilense (non-native) and M. yunnanensis) and bioaugmented phytoremediation, a factorial pot experiment with completely randomized design and three replications was performed. The results demonstrated that sorghum and bermudagrass were more resistant than barley to the toxic effects of petroleum. Positive effect of bacteria on dry weight in polluted soil was greater than in the non-polluted soil. The degradation of petroleum reaches 77% in sorghum + M. yunanesis + 4% petroleum. Plants had stronger ability to degrade total petroleum hydrocarbon (TPH), while bacteria could better degrade polyaromatic hydrocarbons (PAHs). Application of bacteria and plants stimulated soil biological characteristics (dehydrogenase, arylsulfatase, lipase, bacterial population, and respiration) in polluted soil. Among measured enzymes, dehydrogenase exhibited a stronger response to petroleum levels. Four-percent level had greater irritating effect on soil biological properties. Plants and bacteria rely on differences in biological properties to attain synergy in petroleum degradation. Results indicated that M. yunnanensis has a high ability to remove petroleum from soil, and plants enhance the efficiency of this bacterium.
Collapse
Affiliation(s)
- Hadi Koohkan
- Agricultural Education and Extension Research Organization, Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Bandar Abbas, Hormozgan, Iran.
| | - Mohammad Seddiq Mortazavi
- Agricultural Education and Extension Research Organization, Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Bandar Abbas, Hormozgan, Iran
| | - Ahmad Golchin
- Soil Science Department, Faculty of Agriculture, Zanjan University of Zanjan, Zanjan, Iran
| | - Mehdi Najafi-Ghiri
- College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran
| | | | - Gholamali Akbarzadeh-Chomachaei
- Agricultural Education and Extension Research Organization, Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Bandar Abbas, Hormozgan, Iran
| | - Fereshteh Saraji
- Agricultural Education and Extension Research Organization, Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Bandar Abbas, Hormozgan, Iran
| |
Collapse
|
94
|
Ortmeyer F, Guerreiro MA, Begerow D, Banning A. Modified microbiology through enhanced denitrification by addition of various organic substances-temperature effect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60282-60293. [PMID: 37022539 PMCID: PMC10163118 DOI: 10.1007/s11356-023-26784-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
Worldwide, the environmental nitrate (NO3-) problem is increasingly coming into focus. These increases in NO3- concentration result mainly from agricultural inputs and are further exacerbated by decreasing and finite geogenic NO3- degradation capacity in aquifers. Thus, treatment methods are becoming more and more important. In this study, the effects of enhanced denitrification with addition of organic carbon (C) on thereby autochthonous occurring microbiology and compared at room temperature as well as 10 °C were investigated. Incubation of bacteria and fungi was carried out using natural sediments without degradation capacity and groundwater with high NO3- concentrations. Addition of the four applied substrates (acetate, glucose, ascorbic acid, and ethanol) results in major differences in microbial community. Cooling to 10 °C changes the microbiology again. Relative abundances of bacteria are strongly influenced by temperature, which is probably the explanation for different denitrification rates. Fungi are much more sensitive to the milieu change with organic C. Different fungi taxa preferentially occur at one of the two temperature approaches. Major modifications of the microbial community are mainly observed whose denitrification rates strongly depend on the temperature effect. Therefore, we assume a temperature optimum of enhanced denitrification specific to each substrate, which is influenced by the microbiology.
Collapse
Affiliation(s)
- Felix Ortmeyer
- Hydrogeology Department, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
- Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen and Universitetsbyen 81, 8000, Aarhus, Denmark.
| | - Marco Alexandre Guerreiro
- Department of Evolution of Plants and Fungi, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Dominik Begerow
- Department of Evolution of Plants and Fungi, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- University of Hamburg, Institute of Plant Sciences and Microbiology, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Andre Banning
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23 N73K, Ireland
- University College Cork, Environmental Research Institute, Lee Road, Cork, T23 XE10, Ireland
| |
Collapse
|
95
|
Mendoza-Burguete Y, de la Luz Pérez-Rea M, Ledesma-García J, Campos-Guillén J, Ramos-López MA, Guzmán C, Rodríguez-Morales JA. Global Situation of Bioremediation of Leachate-Contaminated Soils by Treatment with Microorganisms: A Systematic Review. Microorganisms 2023; 11:microorganisms11040857. [PMID: 37110280 PMCID: PMC10145224 DOI: 10.3390/microorganisms11040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This systematic review presents the current state of research in the last five years on contaminants in soils, especially in leachates from solid waste landfills, with emphasis on biological remediation. In this work, the pollutants that can be treated by microorganisms and the results obtained worldwide were studied. All the data obtained were compiled, integrated, and analyzed by soil type, pollutant type, bacterial type, and the countries where these studies were carried out. This review provides reliable data on the contamination of soils worldwide, especially soils contaminated by leachate from municipal landfills. The extent of contamination, treatment objectives, site characteristics, cost, type of microorganisms to be used, and time must be considered when selecting a viable remediation strategy. The results of this study can help develop innovative and applicable methods for evaluating the overall contamination of soil with different contaminants and soil types. These findings can help develop innovative, applicable, and economically feasible methods for the sustainable management of contaminated soils, whether from landfill leachate or other soil types, to reduce or eliminate risk to the environment and human health, and to achieve greater greenery and functionality on the planet.
Collapse
|
96
|
Chaudhari YS, Kumar P, Soni S, Gacem A, Kumar V, Singh S, Yadav VK, Dawane V, Piplode S, Jeon BH, Ibrahium HA, Hakami RA, Alotaibi MT, Abdellattif MH, Cabral-Pinto MMS, Yadav P, Yadav KK. An inclusive outlook on the fate and persistence of pesticides in the environment and integrated eco-technologies for their degradation. Toxicol Appl Pharmacol 2023; 466:116449. [PMID: 36924898 DOI: 10.1016/j.taap.2023.116449] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023]
Abstract
Intensive and inefficient exploitation of pesticides through modernized agricultural practices has caused severe pesticide contamination problems to the environment and become a crucial problem over a few decades. Due to their highly toxic and persistent properties, they affect and get accumulated in non-target organisms, including microbes, algae, invertebrates, plants as well as humans, and cause severe issues. Considering pesticide problems as a significant issue, researchers have investigated several approaches to rectify the pesticide contamination problems. Several analyses have provided an extensive discussion on pesticide degradation but using specific technology for specific pesticides. However, in the middle of this time, cleaner techniques are essential for reducing pesticide contamination problems safely and environmentally friendly. As per the research findings, no single research finding provides concrete discussion on cleaner tactics for the remediation of contaminated sites. Therefore, in this review paper, we have critically discussed cleaner options for dealing with pesticide contamination problems as well as their advantages and disadvantages have also been reviewed. As evident from the literature, microbial remediation, phytoremediation, composting, and photocatalytic degradation methods are efficient and sustainable and can be used for treatment at a large scale in engineered systems and in situ. However, more study on the bio-integrated system is required which may be more effective than existing technologies.
Collapse
Affiliation(s)
- Yogesh S Chaudhari
- Department of Microbiology, K. J. Somaiya College of Arts, Commerce, and Science, Kopargaon, Maharashtra 423601, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India.
| | - Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Vinay Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Snigdha Singh
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University, Lakshmangarh, Sikar 332311, Rajasthan, India
| | - Vinars Dawane
- Department of Microbiology and Biotechnology, Sardar Vallabh Bhai Patel College Mandleshwar, Madhya Pradesh 451221, India
| | - Satish Piplode
- Department of Chemistry, SBS Government PG College, Pipariya, Hoshangabad, Madhya Pradesh 461775, India
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Bo x 530, El Maadi, Egypt
| | - Rabab A Hakami
- Chemistry Department, Faculty of Science, King Khalid University, Postal Code 61413, Box number 9044, Saudi Arabia
| | - Mohammed T Alotaibi
- Department of Chemistry, Turabah University Collage, Taif University, Turabah, Saudi Arabia
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Priyanka Yadav
- Department of Zoology, Mohammad Hasan P. G. College, Shahganj road, Jaunpur 222001, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
97
|
Sulbaran-Bracho Y, Orellana-Saez M, Castro-Severyn J, Galbán-Malagón C, Castro-Nallar E, Poblete-Castro I. Continuous bioreactors enable high-level bioremediation of diesel-contaminated seawater at low and mesophilic temperatures using Antarctic bacterial consortia: Pollutant analysis and microbial community composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121139. [PMID: 36702434 DOI: 10.1016/j.envpol.2023.121139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
In 2020, more than 21,000 tons of diesel oil were released accidently into the environment with most of it contaminating water bodies. There is an urgent need for sustainable technologies to clean up rivers and oceans to protect wildlife and human health. One solution is harnessing the power of bacterial consortia; however isolated microbes from different environments have shown low diesel bioremediation rates in seawater thus far. An outstanding question is whether Antarctic microorganisms that thrive in environments polluted with hydrocarbons exhibit better diesel degrading activities when propagated at higher temperatures than those encountered in their natural ecosystems. Here, we isolated bacterial consortia, LR-30 (30 °C) and LR-10 (10 °C), from the Antarctic rhizosphere soil of Deschampsia antarctica (Livingston Island), that used diesel oil as the only carbon substrate. We found that LR-30 and LR-10 batch bioreactors metabolized nearly the entire diesel content when the initial concentration was 10 (g/L) in seawater. Increasing the initial diesel concentration to 50 gDiesel/L, LR-30 and LR-10 bioconverted 33.4 and 31.2 gDiesel/L in 7 days, respectively. The 16S rRNA gene sequencing profiles revealed that the dominant bacterial genera of the inoculated LR-30 community were Achromobacter (50.6%), Pseudomonas (25%) and Rhodanobacter (14.9%), whereas for LR-10 were Pseudomonas (58%), Candidimonas (10.3%) and Renibacterium (7.8%). We also established continuous bioreactors for diesel biodegradation where LR-30 bioremediated diesel at an unprecedent rate of (34.4 g/L per day), while LR-10 achieved (24.5 g/L per day) at 10 °C for one month. The abundance of each bacterial genera present significantly fluctuated at some point during the diesel bioremediation process, yet Achromobacter and Pseudomonas were the most abundant member at the end of the batch and continuous bioreactors for LR-30 and LR-10, respectively.
Collapse
Affiliation(s)
- Yoelvis Sulbaran-Bracho
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Universidad de Santiago de Chile (USACH), 9170022, Santiago, Chile
| | - Matias Orellana-Saez
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Universidad de Santiago de Chile (USACH), 9170022, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada Y Extremófilos, Facultad de Ingeniería Y Ciencias Geológicas, Universidad Católica Del Norte, Antofagasta, Chile
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Universidad de Santiago de Chile (USACH), 9170022, Santiago, Chile.
| |
Collapse
|
98
|
Kugarajah V, Nisha KN, Jayakumar R, Sahabudeen S, Ramakrishnan P, Mohamed SB. Significance of microbial genome in environmental remediation. Microbiol Res 2023; 271:127360. [PMID: 36931127 DOI: 10.1016/j.micres.2023.127360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
Environmental pollutants seriously threaten the ecosystem and health of various life forms, particularly with the rapid industrialization and emerging population. Conventionally physical and chemical strategies are being opted for the removal of these pollutants. Bioremediation, through several advancements, has been a boon to combat the existing threat faced today. Microbes with enzymes degrade various pollutants and utilize them as a carbon and energy source. With the existing demand and through several research explorations, Genetically Engineered Microorganisms (GEMs) have paved to be a successful approach to abate pollution through bioremediation. The genome of the microbe determines its biodegradative nature. Thus, methods including pure culture techniques and metagenomics are used for analyzing the genome of microbes, which provides information about catabolic genes. The information obtained along with the aid of biotechnology helps to construct GEMs that are cost-effective and safer thereby exhibiting higher degradation of pollutants. The present review focuses on the role of microbes in the degradation of environmental pollutants, role of evolution in habitat and adaptation of microbes, microbial degenerative genes, their pathways, and the efficacy of recombinant DNA (rDNA) technology for creating GEMs for bioremediation. The present review also provides a gist of existing GEMs for bioremediation and their limitations, thereby providing a future scope of implementation of these GEMs for a sustainable environment.
Collapse
Affiliation(s)
- Vaidhegi Kugarajah
- Department of Nanobiomaterials, Institute for Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602015, India
| | | | - R Jayakumar
- Department of Nanobiomaterials, Institute for Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602015, India
| | - S Sahabudeen
- Department of Biotechnology, SRM Institute of Science and Technology, Kanchipuram Dist, Kattankulathur, Tamil Nadu, India; Medical Team, Doctoral Institute for Evidence Based Policy, Tokyo, Japan
| | - P Ramakrishnan
- Department of Nanobiomaterials, Institute for Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602015, India.
| | - S B Mohamed
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
99
|
Rhodococcus Strains from the Specialized Collection of Alkanotrophs for Biodegradation of Aromatic Compounds. Molecules 2023; 28:molecules28052393. [PMID: 36903638 PMCID: PMC10005059 DOI: 10.3390/molecules28052393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The ability to degrade aromatic hydrocarbons, including (i) benzene, toluene, o-xylene, naphthalene, anthracene, phenanthrene, benzo[a]anthracene, and benzo[a]pyrene; (ii) polar substituted derivatives of benzene, including phenol and aniline; (iii) N-heterocyclic compounds, including pyridine; 2-, 3-, and 4-picolines; 2- and 6-lutidine; 2- and 4-hydroxypyridines; (iv) derivatives of aromatic acids, including coumarin, of 133 Rhodococcus strains from the Regional Specialized Collection of Alkanotrophic Microorganisms was demonstrated. The minimal inhibitory concentrations of these aromatic compounds for Rhodococcus varied in a wide range from 0.2 up to 50.0 mM. o-Xylene and polycyclic aromatic hydrocarbons (PAHs) were the less-toxic and preferred aromatic growth substrates. Rhodococcus bacteria introduced into the PAH-contaminated model soil resulted in a 43% removal of PAHs at an initial concentration 1 g/kg within 213 days, which was three times higher than that in the control soil. As a result of the analysis of biodegradation genes, metabolic pathways for aromatic hydrocarbons, phenol, and nitrogen-containing aromatic compounds in Rhodococcus, proceeding through the formation of catechol as a key metabolite with its following ortho-cleavage or via the hydrogenation of aromatic rings, were verified.
Collapse
|
100
|
Cai Q, Shi C, Yuan S, Tong M. Integrated anaerobic-aerobic biodegradation of mixed chlorinated solvents by electrolysis coupled with groundwater circulation in a simulated aquifer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31188-31201. [PMID: 36445524 DOI: 10.1007/s11356-022-24377-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated solvents are widespread subsurface contaminants that are often present as complex mixtures. Complete biodegradation of mixed chlorinated solvents remains challenging because the optimal redox conditions for biodegradation of different chlorinated solvents differ significantly. In this study, anaerobic and aerobic conditions were integrated by electrolysis coupled with groundwater circulation for biodegradation of a mixture of chloroform (CF, 8.25 mg/L), 1,2-dichloroethane (DCA, 7.01 mg/L), and trichloroethylene (TCE, 4.56 mg/L). A two-dimensional tank was filled with field sandy and silty-clayed sediments to simulate aquifer conditions, a pair of electrodes was installed between an injection well and abstraction well, and groundwater circulation transported cathodic H2 and anodic O2 to produce multiple redox conditions. Microbial community analysis demonstrated that the system constructed a habitat suitable for the co-existence of aerobic and anaerobic microbes. After 50 days of treatment, 93.1%, 100%, and 87.3% of CF, 1,2-DCA, and TCE were removed without observed intermediates, respectively. Combined with compound specific isotope analysis, the degradation of 1,2-DCA and CF was mainly attributed to aerobic oxidation and reductive dechlorination, respectively, and TCE was removed by both aerobic and anaerobic biodegradation. Our findings provide a new and efficient strategy for in situ bioremediation of groundwater contaminated by mixed chlorinated solvents.
Collapse
Affiliation(s)
- Qizheng Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Chongwen Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
- Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China.
- Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China.
| |
Collapse
|