51
|
Paolucci T, Piccinini G, Iosa M, Piermattei C, de Angelis S, Grasso MR, Zangrando F, Saraceni VM. Efficacy of extremely low-frequency magnetic field in fibromyalgia pain: A pilot study. ACTA ACUST UNITED AC 2018; 53:1023-1034. [PMID: 28475205 DOI: 10.1682/jrrd.2015.04.0061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 11/03/2015] [Indexed: 11/05/2022]
Abstract
The purpose of this pilot study was to determine the efficacy of an extremely low-frequency magnetic field (ELF-MF) in decreasing chronic pain in fibromyalgia (FM) patients. Thirty-seven females were recruited and randomized into two groups: one group was first exposed to systemic ELF-MF therapy (100 microtesla, 1 to 80 Hz) and then to sham therapy, and the other group received the opposite sequence of intervention. Pain, FM-related symptoms, and the ability to perform daily tasks were measured using the Visual Analog Scale, Fibromyalgia Impact Questionnaire (FIQ), Fibromyalgia Assessment Scale (FAS), and Health Assessment Questionnaire (HAQ) at baseline, end of first treatment cycle, beginning of second treatment cycle (after 1 mo washout), end of second treatment cycle, and end of 1 mo follow-up. ELF-MF treatment significantly reduced pain, which increased on cessation of therapy but remained significantly lower than baseline levels. Short-term benefits were also observed in FIQ, FAS, and HAQ scores, with less significant effects seen in the medium term. ELF-MF therapy can be recommended as part of a multimodal approach for mitigating pain in FM subjects and improving the efficacy of drug therapy or physiotherapy.
Collapse
Affiliation(s)
- Teresa Paolucci
- Complex Operative Unit in Physical Medicine and Rehabilitation, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giulia Piccinini
- Complex Operative Unit in Physical Medicine and Rehabilitation, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Marco Iosa
- Clinical Laboratory of Experimental Neurorehabilitation, Santa Lucia Foundation, Rome, Italy
| | - Cristina Piermattei
- Complex Operative Unit in Physical Medicine and Rehabilitation, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Simona de Angelis
- Complex Operative Unit in Physical Medicine and Rehabilitation, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Maria Rosaria Grasso
- Complex Operative Unit in Physical Medicine and Rehabilitation, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federico Zangrando
- Complex Operative Unit in Physical Medicine and Rehabilitation, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Maria Saraceni
- Complex Operative Unit in Physical Medicine and Rehabilitation, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
52
|
Oliveira-Giacomelli Á, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM, de Souza HDN, Ulrich H. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy. Front Pharmacol 2018; 9:325. [PMID: 29692728 PMCID: PMC5902708 DOI: 10.3389/fphar.2018.00325] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.
Collapse
Affiliation(s)
| | - Yahaira Naaldijk
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Laura Sardá-Arroyo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria C. B. Gonçalves
- Department of Neurology and Neuroscience, Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Micheli M. Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Héllio D. N. de Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
53
|
Patel JJ, Zhu D, Opdebeeck B, D’Haese P, Millán JL, Bourne LE, Wheeler-Jones CPD, Arnett TR, MacRae VE, Orriss IR. Inhibition of arterial medial calcification and bone mineralization by extracellular nucleotides: The same functional effect mediated by different cellular mechanisms. J Cell Physiol 2018; 233:3230-3243. [PMID: 28976001 PMCID: PMC5792173 DOI: 10.1002/jcp.26166] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
Arterial medial calcification (AMC) is thought to share some outward similarities to skeletal mineralization and has been associated with the transdifferentiation of vascular smooth muscle cells (VSMCs) to an osteoblast-like phenotype. ATP and UTP have previously been shown to inhibit bone mineralization. This investigation compared the effects of extracellular nucleotides on calcification in VSMCs with those seen in osteoblasts. ATP, UTP and the ubiquitous mineralization inhibitor, pyrophosphate (PPi ), dose dependently inhibited VSMC calcification by ≤85%. Culture of VSMCs in calcifying conditions was associated with an increase in apoptosis; treatment with ATP, UTP, and PPi reduced apoptosis to levels seen in non-calcifying cells. Extracellular nucleotides had no effect on osteoblast viability. Basal alkaline phosphatase (TNAP) activity was over 100-fold higher in osteoblasts than VSMCs. ATP and UTP reduced osteoblast TNAP activity (≤50%) but stimulated VSMC TNAP activity (≤88%). The effects of extracellular nucleotides on VSMC calcification, cell viability and TNAP activity were unchanged by deletion or inhibition of the P2Y2 receptor. Conversely, the actions of ATP/UTP on bone mineralization and TNAP activity were attenuated in osteoblasts lacking the P2Y2 receptor. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) hydrolyses ATP and UTP to produce PPi . In both VSMCs and osteoblasts, deletion of NPP1 blunted the inhibitory effects of extracellular nucleotides suggesting involvement of P2 receptor independent pathways. Our results show that although the overall functional effect of extracellular nucleotides on AMC and bone mineralization is similar there are clear differences in the cellular mechanisms mediating these actions.
Collapse
Affiliation(s)
- JJ Patel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - D Zhu
- Guangzhou Institute of Cardiovascular Disease, School of Basic Medical Sciences, Guangzhou Medical University, China
| | - B Opdebeeck
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - P D’Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - JL Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - LE Bourne
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - CPD Wheeler-Jones
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - TR Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - VE MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - IR Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
54
|
Heinonen I, Boushel R, Hellsten Y, Kalliokoski K. Regulation of bone blood flow in humans: The role of nitric oxide, prostaglandins, and adenosine. Scand J Med Sci Sports 2018; 28:1552-1558. [PMID: 29377406 DOI: 10.1111/sms.13064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 12/23/2022]
Abstract
The mechanisms that regulate bone blood flow (BBF) in humans are largely unknown. Animal studies suggest that nitric oxide (NO) could be involved, and in this study, we investigated the effects of inhibition of nitric oxide synthase (NOS) alone and in combination with inhibition of cyclooxygenase (COX) enzyme, thus prostaglandin (PG) synthesis on femoral bone marrow blood flow by positron emission tomography in healthy young men at rest and during one-leg dynamic exercise. In an additional group of healthy men, the role of adenosine (ADO) in the regulation of BBF during exercise was investigated by use of an adenosine receptor blocker (aminophylline). Inhibitors were directly infused into the femoral artery. Resting BBF was 1.1 ± 0.4 mL 100 g-1 min-1 and increased to almost sixfold in response to exercise (6.3 ± 1.5 mL 100 g-1 min-1 ). Inhibition of NOS reduced BBF at rest to 0.7 ± 0.3 mL 100 g-1 min-1 (P = .036), but did not affect BBF significantly during exercise (5.5 ± 1.4 mL 100 g-1 min-1 , P = .25). On the other hand, while combined NOS and COX inhibition did not cause any further reduction of blood flow at rest (0.6 ± 0.2 mL 100 g-1 min-1 ), the combined blockade reduced BBF during exercise by ~21%, to 5.0 ± 1.8 mL 100 g-1 min-1 (P = .014). Finally, the ADO inhibition during exercise reduced BBF from 5.5 ± 1.9 mL 100 g-1 min-1 to 4.6 ± 1.2 mL 100 g-1 min-1 (P = .045). In conclusion, our results support the view that NO is involved in controlling bone marrow blood flow at rest, and NO, PG, and ADO play important roles in controlling human BBF during exercise.
Collapse
Affiliation(s)
- I Heinonen
- Turku PET Centre, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland.,Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - R Boushel
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Y Hellsten
- Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
55
|
Benameur L, Baudequin T, Mekhail M, Tabrizian M. The bioconjugation mechanism of purine cross-linkers affects microstructure and cell response to ultra rapidly gelling purine–chitosan sponges. J Mater Chem B 2018; 6:602-613. [DOI: 10.1039/c7tb02968c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As a cell carrier, cross-linking is one of the most common approaches used to provide chitosan with greater structural integrity.
Collapse
Affiliation(s)
- Laila Benameur
- Department of Biomedical Engineering
- McGill University
- Montreal
- Canada
| | | | - Mina Mekhail
- Department of Biomedical Engineering
- McGill University
- Montreal
- Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering
- McGill University
- Montreal
- Canada
- Faculty of Dentistry
| |
Collapse
|
56
|
Abstract
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Collapse
Affiliation(s)
- Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284, USA
| | - Roy W Qu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
57
|
Miteva AS, Gaydukov AE, Shestopalov VI, Balezina OP. The role of pannexin 1 in the purinergic regulation of synaptic transmission in mouse motor synapses. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Ellegaard M, Agca C, Petersen S, Agrawal A, Kruse LS, Wang N, Gartland A, Jensen JEB, Jørgensen NR, Agca Y. Bone turnover is altered in transgenic rats overexpressing the P2Y2 purinergic receptor. Purinergic Signal 2017; 13:545-557. [PMID: 28828576 PMCID: PMC5714845 DOI: 10.1007/s11302-017-9582-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/10/2017] [Indexed: 01/28/2023] Open
Abstract
It is now widely recognized that purinergic signaling plays an important role in the regulation of bone remodeling. One receptor subtype, which has been suggested to be involved in this regulation, is the P2Y2 receptor (P2Y2R). In the present study, we investigated the effect of P2Y2R overexpression on bone status and bone cell function using a transgenic rat. Three-month-old female transgenic Sprague Dawley rats overexpressing P2Y2R (P2Y2R-Tg) showed higher bone strength of the femoral neck. Histomorphometry showed increase in resorptive surfaces and reduction in mineralizing surfaces. Both mineral apposition rate and thickness of the endocortical osteoid layer were higher in the P2Y2R-Tg rats. μCT analysis showed reduced trabecular thickness and structural model index in P2Y2R-Tg rats. Femoral length was increased in the P2Y2R-Tg rats compared to Wt rats. In vitro, there was an increased formation of osteoclasts, but no change in total resorption in cultures from P2Y2R-Tg rats. The formation of mineralized nodules was significantly reduced in the osteoblastic cultures from P2Y2R-Tg rats. In conclusion, our study suggests that P2Y2R is involved in regulation of bone turnover, due to the effects on both osteoblasts and osteoclasts and that these effects might be relevant in the regulation of bone growth.
Collapse
Affiliation(s)
- Maria Ellegaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Cansu Agca
- College of Veterinary Medicine, University of Missouri, Columbia, MO USA
| | - Solveig Petersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Ankita Agrawal
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - Lars Schack Kruse
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Ning Wang
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - Alison Gartland
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - Jens-Erik Beck Jensen
- Osteoporosis and Bone Metabolic Unit, Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- OPEN, Odense Patient data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Yuksel Agca
- College of Veterinary Medicine, University of Missouri, Columbia, MO USA
| |
Collapse
|
59
|
de Andrade Mello P, Coutinho-Silva R, Savio LEB. Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor-Host Interaction and Therapeutic Perspectives. Front Immunol 2017; 8:1526. [PMID: 29184552 PMCID: PMC5694450 DOI: 10.3389/fimmu.2017.01526] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer is still one of the world's most pressing health-care challenges, leading to a high number of deaths worldwide. Immunotherapy is a new developing therapy that boosts patient's immune system to fight cancer by modifying tumor-immune cells interaction in the tumor microenvironment (TME). Extracellular adenosine triphosphate (eATP) and adenosine (Ado) are signaling molecules released in the TME that act as modulators of both immune and tumor cell responses. Extracellular adenosine triphosphate and Ado activate purinergic type 2 (P2) and type 1 (P1) receptors, respectively, triggering the so-called purinergic signaling. The concentration of eATP and Ado within the TME is tightly controlled by several cell-surface ectonucleotidases, such as CD39 and CD73, the major ecto-enzymes expressed in cancer cells, immune cells, stromal cells, and vasculature, being CD73 also expressed on tumor-associated fibroblasts. Once accumulated in the TME, eATP boosts antitumor immune response, while Ado attenuates or suppresses immunity against the tumor. In addition, both molecules can mediate growth stimulation or inhibition of the tumor, depending on the specific receptor activated. Therefore, purinergic signaling is able to modulate both tumor and immune cells behavior and, consequently, the tumor-host interaction and disease progression. In this review, we discuss the role of purinergic signaling in the host-tumor interaction detailing the multifaceted effects of eATP and Ado in the inflammatory TME. Moreover, we present recent findings into the application of purinergic-targeting therapy as a potential novel option to boost antitumor immune responses in cancer.
Collapse
Affiliation(s)
- Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
60
|
Langdahl JH, Frederiksen AL, Hansen SJ, Andersen PH, Yderstraede KB, Dunø M, Vissing J, Frost M. Mitochondrial Point Mutation m.3243A>G Associates With Lower Bone Mineral Density, Thinner Cortices, and Reduced Bone Strength: A Case-Control Study. J Bone Miner Res 2017; 32:2041-2048. [PMID: 28603900 DOI: 10.1002/jbmr.3193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/19/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is associated with several clinical manifestations including diabetes mellitus (DM), neurological disorders, renal and hepatic diseases, and myopathy. Although mitochondrial dysfunction is associated with increased bone resorption and decreased bone formation in mouse models, effects of alterations in mitochondrial function on bone remodeling and mass have not been investigated in humans. We recruited 45 carriers (29 females, 16 males) with the m.3243A>G mutation and healthy controls matched for gender, age, height, and menopausal status. DXA and HRpQCT scans were performed, and bone turnover markers (BTMs) P1NP and CTX were measured. Cases and controls were well matched except for body weight, which was lower in cases (63.6 ± 18.1 kg versus 74.6 ± 14.8 kg, p < 0.01), and manifest DM was present in 25 of 45 cases (none in controls). Bone scans showed lower BMD at the lumbar spine, total hip, and femoral neck in cases. Mean lumbar spine, total hip, and femoral neck T-scores were -1.5, -1.3, and -1.6 in cases, respectively, and -0.8, -0.3, and -0.7 in controls (all p < 0.05). The m.3243A>G mutation was associated with lower BMD, cortical but not trabecular density, cortical thickness, and estimated bone strength. Furthermore, BTMs were lower in the m.3243A>G group before but not after adjustment for DM. The mitochondrial point mutation m.3243A>G was associated with decreased bone mass and strength. Although the coexistence of DM may have influenced bone turnover, the bone phenotype observed in m.3243A>G cases appeared to mirror age-related deterioration in bone, suggesting that mitochondrial dysfunction may cause a premature aging of bone. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Jakob Høgild Langdahl
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Endocrinology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Anja Lisbeth Frederiksen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Stinus Jørn Hansen
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Per Heden Andersen
- Department of Endocrinology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | | | - Morten Dunø
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Morten Frost
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
61
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
62
|
Wang W, Chen M, Gao Y, Song X, Zheng H, Zhang K, Zhang B, Chen D. P2Y6 regulates cytoskeleton reorganization and cell migration of C2C12 myoblasts via ROCK pathway. J Cell Biochem 2017; 119:1889-1898. [PMID: 28815725 DOI: 10.1002/jcb.26350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022]
Abstract
Migration of skeletal muscle precursor cells is required for limb muscle development and skeletal muscle repair. This study aimed to examine the role of P2Y6 receptor in C2C12 myoblasts migration. C2C12 myoblasts were treated with P2Y6 agonist UDP, P2Y6 antagonist MRS2578, Ca2+ channel blocker BTP2, or ROCK inhibitor GSK269962 or Y27632, and the migration ability of C2C12 cells was assessed by wound healing assay. The cellular Ca2+ content was analyzed with fluo-4 probe and the activation of ROCK (phosphorlyation of LIMK and cofilin) was assayed by western blot. The cytoskeleton was labeled with Actin-Tracker Green and Tubulin-Tracker-Red. Silencing P2Y6 expression in C2C12 myoblasts reduced intracellular Ca2+ content and cell motility. Whereas UDP increased cellular Ca2+ content, actin filaments, and cell migration, MRS2578 had the opposite effects. The effects of UDP were abrogated by BTP2 and GSK269962 (and Y27632). Disruption of P2Y6 signaling pathway caused C2C12 myoblasts to have an elongated morphology. These results demonstrated that P2Y6 signaled through Ca2+ influx and RhoA/ROCK to reorganize cytoskeleton and promote migration in myoblasts.
Collapse
Affiliation(s)
- Wei Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Mengjie Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yingna Gao
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianmin Song
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongliang Zheng
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Donghui Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
63
|
Orriss IR, Guneri D, Hajjawi MOR, Shaw K, Patel JJ, Arnett TR. Activation of the P2Y 2 receptor regulates bone cell function by enhancing ATP release. J Endocrinol 2017; 233:341-356. [PMID: 28420708 DOI: 10.1530/joe-17-0042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 02/02/2023]
Abstract
Bone cells constitutively release ATP into the extracellular environment where it acts locally via P2 receptors to regulate bone cell function. Whilst P2Y2 receptor stimulation regulates bone mineralisation, the functional effects of this receptor in osteoclasts remain unknown. This investigation used the P2Y2 receptor knockout (P2Y2R-/- ) mouse model to investigate the role of this receptor in bone. MicroCT analysis of P2Y2R-/- mice demonstrated age-related increases in trabecular bone volume (≤48%), number (≤30%) and thickness (≤17%). In vitro P2Y2R-/- osteoblasts displayed a 3-fold increase in bone formation and alkaline phosphatase activity, whilst P2Y2R-/- osteoclasts exhibited a 65% reduction in resorptive activity. Serum cross-linked C-telopeptide levels (CTX, resorption marker) were also decreased (≤35%). The resorption defect in P2Y2R-/- osteoclasts was rescued by the addition of exogenous ATP, suggesting that an ATP deficit could be a key factor in the reduced function of these cells. In agreement, we found that basal ATP release was reduced up to 53% in P2Y2R-/- osteoclasts. The P2Y2 receptor agonists, UTP and 2-thioUTP, increased osteoclast activity and ATP release in wild-type but not in P2Y2R-/- cells. This indicates that the P2Y2 receptor may regulate osteoclast function indirectly by promoting ATP release. UTP and 2-thioUTP also stimulate ATP release from osteoblasts suggesting that the P2Y2 receptor exerts a similar function in these cells. Taken together, our findings are consistent with the notion that the primary action of P2Y2 receptor signalling in bone is to regulate extracellular ATP levels.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical SciencesRoyal Veterinary College, London, UK
| | - Dilek Guneri
- Department of Comparative Biomedical SciencesRoyal Veterinary College, London, UK
| | - Mark O R Hajjawi
- Department of Cell & Developmental BiologyUniversity College London, London, UK
| | - Kristy Shaw
- Department of Comparative Biomedical SciencesRoyal Veterinary College, London, UK
| | - Jessal J Patel
- Department of Comparative Biomedical SciencesRoyal Veterinary College, London, UK
| | - Timothy R Arnett
- Department of Cell & Developmental BiologyUniversity College London, London, UK
| |
Collapse
|
64
|
Xiong L, Jung JU, Guo HH, Pan JX, Sun XD, Mei L, Xiong WC. Osteoblastic Lrp4 promotes osteoclastogenesis by regulating ATP release and adenosine-A 2AR signaling. J Cell Biol 2017; 216:761-778. [PMID: 28193701 PMCID: PMC5350517 DOI: 10.1083/jcb.201608002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/23/2016] [Accepted: 01/10/2017] [Indexed: 02/05/2023] Open
Abstract
Lrp4 is mutated in patients with high-bone-mass diseases. Loss of Lrp4 in osteoblasts (OBs) increases bone formation by OBs and decreases bone resorption by osteoclasts through an unclear mechanism. Xiong et al. show that overproduction of extracellular adenosine in Lrp4-deficient OBs, which are derived from ATP hydrolysis and signals through A2AR and RANK, may underlie Lrp4 regulation of osteoclastogenesis. Bone homeostasis depends on the functional balance of osteoblasts (OBs) and osteoclasts (OCs). Lrp4 is a transmembrane protein that is mutated in patients with high bone mass. Loss of Lrp4 in OB-lineage cells increases bone mass by elevating bone formation by OBs and reducing bone resorption by OCs. However, it is unclear how Lrp4 deficiency in OBs impairs osteoclastogenesis. Here, we provide evidence that loss of Lrp4 in the OB lineage stabilizes the prorenin receptor (PRR) and increases PRR/V-ATPase–driven ATP release, thereby enhancing the production of the ATP derivative adenosine. Both pharmacological and genetic inhibition of adenosine-2A receptor (A2AR) in culture and Lrp4 mutant mice diminishes the osteoclastogenic deficit and reduces trabecular bone mass. Furthermore, elevated adenosine-A2AR signaling reduces receptor activator of nuclear factor κB (RANK)–mediated osteoclastogenesis. Collectively, these results identify a mechanism by which osteoblastic Lrp4 controls osteoclastogenesis, reveal a cross talk between A2AR and RANK signaling in osteoclastogenesis, and uncover an unrecognized pathophysiological mechanism of high-bone-mass disorders.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Ji-Ung Jung
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| | - Hao-Han Guo
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Jin-Xiu Pan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Xiang-Dong Sun
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912 .,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Wen-Cheng Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912 .,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| |
Collapse
|
65
|
Mentrup B, Girschick H, Jakob F, Hofmann C. A homozygous intronic branch-point deletion in the ALPL gene causes infantile hypophosphatasia. Bone 2017; 94:75-83. [PMID: 27777120 DOI: 10.1016/j.bone.2016.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/07/2016] [Accepted: 10/20/2016] [Indexed: 01/06/2023]
Abstract
Hypophosphatasia (HPP) is a multi-systemic inborn disease with an extraordinary spectrum of severity, ranging from the absence of mineralization to high lethality and it involves different organs including bone, muscle, kidney, lung, gastrointestinal tract and the nervous system. The disease is characterized by low levels of serum alkaline phosphatase, caused by loss-of-function mutations within the ALPL gene that encodes the tissue-nonspecific alkaline phosphatase TNAP. Here we present the functional characterization of a gene mutation, detected in intron 7 of the ALPL gene of a boy with infantile HPP in whom routine sequencing of the coding region failed to detect any mutation. The homozygous c.793del-14_33 mutation results in the loss of the branch-point motif, relevant for correct ALPL pre-mRNA splicing. The main transcript skips exon 8 and codes for a C-terminally truncated TNAP protein of 275 amino acids, which was detected in peripheral blood mononuclear cells and serum from the patient. The functional characterization of recombinant TNAP275 revealed no enzymatic activity nor any dominant-negative effect, relevant for the heterozygous parents. Nevertheless correct pre-mRNA splicing can take place without the branch-point sequence to a limited extend, as concluded from the ALPL cDNA, obtained from patient's PBMC, and from the low serum AP activity. These data reaffirm that in clear cut clinical cases, where conventional sequencing including the coding sequence and direct exon-intron-boundaries fails to detect mutations, deeper analyses of regulatory important motifs like branch-point sequences are required to establish a genetic diagnosis.
Collapse
Affiliation(s)
- Birgit Mentrup
- Orthopaedic Center for Musculoskeletal Research, Orthopaedic Department, University of Würzburg, Würzburg, Germany.
| | - Hermann Girschick
- Children's Hospital, Vivantes Hospital im Friedrichshain, Berlin, Germany
| | - Franz Jakob
- Orthopaedic Center for Musculoskeletal Research, Orthopaedic Department, University of Würzburg, Würzburg, Germany
| | - Christine Hofmann
- Children's Hospital, Pediatric Rheumatology and Osteology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
66
|
De Oliveira Moreira D, Santo Neto H, Marques MJ. P2Y 2 purinergic receptors are highly expressed in cardiac and diaphragm muscles of mdx mice, and their expression is decreased by suramin. Muscle Nerve 2016; 55:116-121. [PMID: 27220808 DOI: 10.1002/mus.25199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In Duchenne muscular dystrophy (DMD) and in the mdx mouse model of DMD, the lack of dystrophin leads to increased calcium influx and muscle necrosis. Patients suffer progressive muscle loss, and cardiomyopathy is an important determinant of morbidity. P2 purinergic receptors participate in the increased calcium levels in dystrophic skeletal muscles. METHODS In this study, we evaluated whether P2 receptors are involved in cardiomyopathy in mdx mice at later stages of the disease. RESULTS Western blotting revealed that P2Y2 receptor levels were upregulated (54%) in dystrophic heart compared with a normal heart. Suramin reduced the levels of P2Y2 to almost normal values. Suramin also decreased heart necrosis (reduced CK-MB) and the expression of the stretch-activated calcium channel TRPC1. CONCLUSIONS This study suggests that P2Y2 may participate in cardiomyopathy in mdx mice. P2-selective drugs with specific actions in the dystrophic heart may ameliorate cardiomyopathy in dystrophinopathies. Muscle Nerve 55: 116-121, 2017.
Collapse
Affiliation(s)
- Drielen De Oliveira Moreira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Humberto Santo Neto
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Maria Julia Marques
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| |
Collapse
|
67
|
Oláh T, Bodnár D, Tóth A, Vincze J, Fodor J, Reischl B, Kovács A, Ruzsnavszky O, Dienes B, Szentesi P, Friedrich O, Csernoch L. Cannabinoid signalling inhibits sarcoplasmic Ca 2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle. J Physiol 2016; 594:7381-7398. [PMID: 27641745 DOI: 10.1113/jp272449] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation-contraction coupling (ECC) of mammalian skeletal muscle remains unknown. We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+ -sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue. We demonstrate that CB1Rs are not connected to the inositol 1,4,5-trisphosphate pathway either in myotubes or in adult muscle fibres. By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein-mediated way in adult skeletal muscle fibres but not in myotubes. These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. ABSTRACT Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R-mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+ -sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5-trisphosphate (IP3 )-mediated Ca2+ transients, nor did they alter excitation-contraction coupling. By contrast, in isolated muscle fibres of wild-type mice, although CB1R agonists did not evoke IP3 -mediated Ca2+ transients too, they significantly reduced the amplitude of the depolarization-evoked transients in a pertussis-toxin sensitive manner, indicating a Gi/o protein-dependent mechanism. Concurrently, on skeletal muscle fibres isolated from CB1R-knockout animals, depolarization-evoked Ca2+ transients, as well qas Ca2+ release flux via ryanodine receptors (RyRs), and the total amount of released Ca2+ was significantly greater than that from wild-type mice. Our results show that CB1R-mediated signalling exerts both a constitutive and an agonist-mediated inhibition on the Ca2+ transients via RyR, regulates the activity of the sarcoplasmic reticulum Ca2+ ATPase and enhances muscle fatigability, which might decrease exercise performance, thus playing a role in myopathies, and therefore should be considered during the development of new cannabinoid drugs.
Collapse
Affiliation(s)
- Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Bodnár
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Adrienn Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Olga Ruzsnavszky
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
68
|
Roszek K, Porowińska D, Bajek A, Hołysz M, Czarnecka J. Chondrogenic Differentiation of Human Mesenchymal Stem Cells Results in Substantial Changes of Ecto-Nucleotides Metabolism. J Cell Biochem 2016; 116:2915-23. [PMID: 26018728 DOI: 10.1002/jcb.25239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are population of adult stem cells and attractive candidates for cartilage repair due to their chondrogenic potential. Purinergic compounds (purinergic receptors and ecto-enzymes metabolizing nucleotides), together with nucleotides/nucleosides present in the extracellular environment, are known to play a key role in controlling the stem cells biological potential to proliferate and differentiate. Despite the available literature pointing to the importance of purinergic signaling in controlling the fate of MSCs, the research results linking nucleotides and ecto-nucleotidases with MSCs chondrogenic differentiation are indigent. Therefore, the aim of presented study was the characterization of the ecto-nucleotides hydrolysis profile and ecto-enzymes expression in human umbilical cord-derived MSCs and chondrogenically induced MSCs. We described substantial changes of ecto-nucleotides metabolism and ecto-enzymes expression profiles resulting from chondrogenic differentiation of human umbilical cord-derived MSCs. The increased rate of ADP hydrolysis, measured by ecto-nucleotidases activity, plays a pivotal role in the regulation of cartilage formation and resorption. Despite the increased level of NTPDase1 and NTPDase3 mRNA expression in chondrogenically induced MSCs, their activity toward ATP remains quite low. Supported by the literature data, we hypothesize that structure-function relationships in chondrogenic lineage dictate the direction of nucleotides metabolism. In early neocartilage tissue, the beneficial role of ATP in improving biomechanical properties of cartilage does not necessitate the high rate of enzymatic ATP degradation.
Collapse
Affiliation(s)
- Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Dorota Porowińska
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Anna Bajek
- Department of Tissue Engineering, Chair of Regenerative Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Marcin Hołysz
- Department of Biochemistry and Molecular Biology, Karol Marcinkowski Medical University, Poznan, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
69
|
Burnstock G. Short- and long-term (trophic) purinergic signalling. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150422. [PMID: 27377731 PMCID: PMC4938022 DOI: 10.1098/rstb.2015.0422] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 12/26/2022] Open
Abstract
There is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body, in addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion. It is not always easy to distinguish between short- and long-term signalling. For example, adenosine triphosphate (ATP) can sometimes act as a short-term trigger for long-term trophic events that become evident days or even weeks after the original challenge. Examples of short-term purinergic signalling during sympathetic, parasympathetic and enteric neuromuscular transmission and in synaptic transmission in ganglia and in the central nervous system are described, as well as in neuromodulation and secretion. Long-term trophic signalling is described in the immune/defence system, stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption and in cancer. It is likely that the increase in intracellular Ca(2+) in response to both P2X and P2Y purinoceptor activation participates in many short- and long-term physiological effects.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
70
|
Seo JB, Jung SR, Hille B, Koh DS. Extracellular ATP protects pancreatic duct epithelial cells from alcohol-induced damage through P2Y1 receptor-cAMP signal pathway. Cell Biol Toxicol 2016; 32:229-47. [PMID: 27197531 PMCID: PMC5493489 DOI: 10.1007/s10565-016-9331-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/22/2016] [Indexed: 12/18/2022]
Abstract
Extracellular adenosine-5'-triphosphate (ATP) regulates cell death and survival of neighboring cells. The detailed effects are diverse depending on cell types and extracellular ATP concentration. We addressed the effect of ATP on ethanol-induced cytotoxicity in epithelial cells, the cell type that experiences the highest concentrations of alcohol. Using pancreatic duct epithelial cells (PDEC), we found that a micromolar range of ATP reverses all intracellular toxicity mechanisms triggered by exceptionally high doses of ethanol and, thus, improves cell viability dramatically. Out of the many purinergic receptors expressed in PDEC, the P2Y1 receptor was identified to mediate the protective effect, based on pharmacological and siRNA assays. Activation of P2Y1 receptors increased intracellular cyclic adenosine monophosphate (cAMP). The protective effect of ATP was mimicked by forskolin and 8-Br-cAMP but inhibited by a protein kinase A (PKA) inhibitor, H-89. Finally, ATP reverted leakiness of PDEC monolayers induced by ethanol and helped to maintain epithelial integrity. We suggest that purinergic receptors reduce extreme alcohol-induced cell damage via the cAMP signal pathway in PDEC and some other types of cells.
Collapse
Affiliation(s)
- Jong Bae Seo
- Department of Physiology and Biophysics, University of Washington, Health Sciences Bldg. Rm. G-424, Seattle, WA, 98195-7290, USA
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, 92093, USA
| | - Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington, Health Sciences Bldg. Rm. G-424, Seattle, WA, 98195-7290, USA
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Health Sciences Bldg. Rm. G-424, Seattle, WA, 98195-7290, USA
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington, Health Sciences Bldg. Rm. G-424, Seattle, WA, 98195-7290, USA.
| |
Collapse
|
71
|
Decoding the intervertebral disc: Unravelling the complexities of cell phenotypes and pathways associated with degeneration and mechanotransduction. Semin Cell Dev Biol 2016; 62:94-103. [PMID: 27208724 DOI: 10.1016/j.semcdb.2016.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Back pain is the most common cause of pain and disability worldwide. While its etiology remains unknown, it is typically associated with intervertebral disc (IVD) degeneration. Despite the prevalence of back pain, relatively little is known about the specific cellular pathways and mechanisms that contribute to the development, function and degeneration of the IVD. Consequently, current treatments for back pain are largely limited to symptomatic interventions. However, major progress is being made in multiple research directions to unravel the biology and pathology of the IVD, raising hope that effective disease-modifying interventions will soon be developed. In this review, we will discuss our current knowledge and gaps in knowledge on the developmental origin of the IVD, the phenotype of the distinct cell types found within the IVD tissues, molecular targets in IVD degeneration identified using bioinformatics strategies, and mechanotransduction pathways that influence IVD cell fate and function.
Collapse
|
72
|
Aeby M, Wyss T, Mentrup B, Kunstmann E, Jakob F, Aeberli D. Low-energy trauma-induced intercondylar femoral fracture. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2016; 13:151-153. [PMID: 27920814 PMCID: PMC5119715 DOI: 10.11138/ccmbm/2016.13.2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present a 44-year-old female patient with recurrent fragility fractures including an intercondylar femoral fracture and with normal planar bone densitometry. Diagnosis of hypophosphatasia was suggested by low volumetric cortical bone mineral density and laboratory findings. DNA sequencing revealed heterozygous mutations in the exons 5, 6 and 9 of the ALPL gene, thus confirming the suspected diagnosis.
Collapse
Affiliation(s)
- Mathias Aeby
- Department of Rheumatology, Immunology and Allergology, Inselspital Bern, Bern, Switzerland
| | - Tobias Wyss
- Orthopedic Clinic Sonnenhof Bern, Bern, Switzerland
| | - Birgit Mentrup
- Orthopedic Center for Musculoskeletal Research Experimental and Clinical Osteology, Orthopedic Department University of Würzburg, Würzburg, Germany
| | - Erdmute Kunstmann
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research Experimental and Clinical Osteology, Orthopedic Department University of Würzburg, Würzburg, Germany
| | - Daniel Aeberli
- Department of Rheumatology, Immunology and Allergology, Inselspital Bern, Bern, Switzerland
| |
Collapse
|
73
|
Basu U, Goodbrand J, McMurdo MET, Donnan PT, McGilchrist M, Frost H, George J, Witham MD. Association between allopurinol use and hip fracture in older patients. Bone 2016; 84:189-193. [PMID: 26769005 DOI: 10.1016/j.bone.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Allopurinol reduces oxidative stress and interacts with purinergic signalling systems important in bone metabolism and muscle function. We assessed whether allopurinol use was associated with a reduced incidence of hip fracture in older people. METHODS Analysis of prospective, routinely-collected health and social care data on patients undergoing health and social work assessment in a single geographical area over a 12year period. Exposure to allopurinol was derived from linked community prescribing data, and hospitalisation for hip fracture and comorbid disease was derived from linked hospitalisation data. Fine and Gray modelling was used to model time to hip fracture accounting for the competing risk of death, incorporating previous use of allopurinol, cumulative exposure to allopurinol as a time dependent variable, and covariate adjustments. RESULTS 17,308 patients were alive at the time of first social work assessment without previous hip fracture; the mean age was 73years. 10,171 (59%) were female, and 1155 (8%) had at least one exposure to allopurinol. 618 (3.6%) sustained a hip fracture, and 4226 (24%) died during a mean follow-up of 7.2years. In fully-adjusted analyses, each year of allopurinol exposure conferred a hazard ratio of 1.01 (95% CI 0.99, 1.02; p=0.37) for hip fracture and 1.00 (0.99, 1.01; p=0.47) for death. Previous use of allopurinol conferred a hazard ratio of 0.76 (0.45, 1.26; p=0.28) for hip fracture and 1.13 (0.99, 1.29; p=0.07) for death. CONCLUSION Greater cumulative use of allopurinol was not associated with a reduced risk of hip fracture or death in this cohort.
Collapse
Affiliation(s)
- Ujani Basu
- School of Medicine, University of Dundee, UK
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Matta C, Fodor J, Csernoch L, Zákány R. Purinergic signalling-evoked intracellular Ca(2+) concentration changes in the regulation of chondrogenesis and skeletal muscle formation. Cell Calcium 2016; 59:108-16. [PMID: 26925979 DOI: 10.1016/j.ceca.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/16/2015] [Accepted: 01/23/2016] [Indexed: 01/28/2023]
Abstract
It is now widely recognised that changes of the intracellular calcium concentration have deep impact on the differentiation of various non-excitable cells including the elements of the vertebrate skeleton. It has become evident that purinergic signalling is one of the most ancient cellular mechanisms that can cause such alterations in the intracellular Ca(2+)-homeostasis, which are precisely set either spatially or temporally. Purinergic signalling is believed to regulate intracellular Ca(2+)-concentration of developing cartilage and skeletal muscle cells and suggested to play roles in the modulation of various cellular functions. This idea is supported by the fact that pluripotent mesenchymal cells, chondroprogenitors or muscle precursors, as well as mature chondrocytes all are capable of releasing ectonucleotides, and express various types of purinoreceptors and ectonucleotidases. The presence of the basic components of purinergic signalling proves that cells of the chondrogenic lineage can utilise this mechanism for modulating their intracellular Ca(2+) concentration independently from the surrounding skeletal muscle and bone tissues, which are well known to release ectopurines during development and mechanical stress. In this review, we summarize accumulating experimental evidence supporting the importance of purinergic signalling in the regulation of chondrogenesis and during skeletal muscle formation.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary; Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine and Science, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, United Kingdom
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary.
| |
Collapse
|
75
|
Hajjawi MOR, Patel JJ, Corcelli M, Arnett TR, Orriss IR. Lack of effect of adenosine on the function of rodent osteoblasts and osteoclasts in vitro. Purinergic Signal 2016; 12:247-58. [PMID: 26861849 DOI: 10.1007/s11302-016-9499-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/01/2016] [Indexed: 01/06/2023] Open
Abstract
Extracellular ATP, signalling through P2 receptors, exerts well-documented effects on bone cells, inhibiting mineral deposition by osteoblasts and stimulating the formation and resorptive activity of osteoclasts. The aims of this study were to determine the potential osteotropic effects of adenosine, the hydrolysis product of ATP, on primary bone cells in vitro. We determined the effect of exogenous adenosine on (1) the growth, alkaline phosphatase (TNAP) activity and bone-forming ability of osteoblasts derived from the calvariae of neonatal rats and mice and the marrow of juvenile rats and (2) the formation and resorptive activity of osteoclasts from juvenile mouse marrow. Reverse transcription polymerase chain reaction (RT-PCR) analysis showed marked differences in the expression of P1 receptors in osteoblasts from different sources. Whilst mRNA for the A1 and A2B receptors was expressed by all primary osteoblasts, A2A receptor expression was limited to rat bone marrow and mouse calvarial osteoblasts and the A3 receptor to rat bone marrow osteoblasts. We found that adenosine had no detectable effects on cell growth, TNAP activity or bone formation by rodent osteoblasts in vitro. The analogue 2-chloroadenosine, which is hydrolysed more slowly than adenosine, had no effects on rat or mouse calvarial osteoblasts but increased TNAP activity and bone formation by rat bone marrow osteoblasts by 30-50 % at a concentration of 1 μM. Osteoclasts were found to express the A2A, A2B and A3 receptors; however, neither adenosine (≤100 μM) nor 2-chloroadenosine (≤10 μM) had any effect on the formation or resorptive activity of mouse osteoclasts in vitro. These results suggest that adenosine, unlike ATP, is not a major signalling molecule in the bone.
Collapse
Affiliation(s)
- Mark O R Hajjawi
- Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, WC1E 6BT, London, UK
| | - Jessal J Patel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Michelangelo Corcelli
- Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, WC1E 6BT, London, UK
| | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, WC1E 6BT, London, UK.
| | - Isabel R Orriss
- Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, WC1E 6BT, London, UK.,Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
76
|
Noronha-Matos JB, Correia-de-Sá P. Mesenchymal Stem Cells Ageing: Targeting the "Purinome" to Promote Osteogenic Differentiation and Bone Repair. J Cell Physiol 2016; 231:1852-61. [PMID: 26754327 DOI: 10.1002/jcp.25303] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming cells. Such ability is compromised in elderly individuals resulting in bone disorders such as osteoporosis, also limiting their clinical usage for cell transplantation and bone tissue engineering strategies. In bone marrow niches, adenine and uracil nucleotides are important local regulators of osteogenic differentiation of MSCs. Nucleotides can be released to the extracellular milieu under both physiological and pathological conditions via (1) membrane cell damage, (2) vesicle exocytosis, (3) ATP-binding cassette transporters, and/or (4) facilitated diffusion through maxi-anion channels, hemichannels or ligand-gated receptor pores. Nucleotides and their derivatives act via adenosine P1 (A1 , A2A , A2B , and A3 ) and nucleotide-sensitive P2 purinoceptors comprising ionotropic P2X and G-protein-coupled P2Y receptors. Purinoceptors activation is terminated by membrane-bound ecto-nucleotidases and other ecto-phosphatases, which rapidly hydrolyse extracellular nucleotides to their respective nucleoside 5'-di- and mono-phosphates, nucleosides and free phosphates, or pyrophosphates. Current knowledge suggests that different players of the "purinome" cascade, namely nucleotide release sites, ecto-nucleotidases and purinoceptors, orchestrate to fine-tuning regulate the activity of MSCs in the bone microenvironment. Increasing studies, using osteoprogenitor cell lines, animal models and, more recently, non-modified MSCs from postmenopausal women, raised the possibility to target chief components of the purinergic signaling pathway to regenerate the ability of aged MSCs to differentiate into functional osteoblasts. This review summarizes the main findings of those studies, prompting for novel therapeutic strategies to control ageing disorders where bone destruction exceeds bone formation, like osteoporosis, rheumatoid arthritis, and fracture mal-union. J. Cell. Physiol. 231: 1852-1861, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| |
Collapse
|
77
|
Abstract
Aerobic exercise training leads to cardiovascular changes that markedly increase aerobic power and lead to improved endurance performance. The functionally most important adaptation is the improvement in maximal cardiac output which is the result of an enlargement in cardiac dimension, improved contractility, and an increase in blood volume, allowing for greater filling of the ventricles and a consequent larger stroke volume. In parallel with the greater maximal cardiac output, the perfusion capacity of the muscle is increased, permitting for greater oxygen delivery. To accommodate the higher aerobic demands and perfusion levels, arteries, arterioles, and capillaries adapt in structure and number. The diameters of the larger conduit and resistance arteries are increased minimizing resistance to flow as the cardiac output is distributed in the body and the wall thickness of the conduit and resistance arteries is reduced, a factor contributing to increased arterial compliance. Endurance training may also induce alterations in the vasodilator capacity, although such adaptations are more pronounced in individuals with reduced vascular function. The microvascular net increases in size within the muscle allowing for an improved capacity for oxygen extraction by the muscle through a greater area for diffusion, a shorter diffusion distance, and a longer mean transit time for the erythrocyte to pass through the smallest blood vessels. The present article addresses the effect of endurance training on systemic and peripheral cardiovascular adaptations with a focus on humans, but also covers animal data.
Collapse
Affiliation(s)
- Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
78
|
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 2015; 12:25-57. [PMID: 26545760 DOI: 10.1007/s11302-015-9483-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, Germany.
| |
Collapse
|
79
|
Li W, Li G, Zhang Y, Wei S, Song M, Wang W, Yuan X, Wu H, Yang Y. Role of P2 × 7 receptor in the differentiation of bone marrow stromal cells into osteoblasts and adipocytes. Exp Cell Res 2015; 339:367-79. [PMID: 26481422 DOI: 10.1016/j.yexcr.2015.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023]
Abstract
Imbalance in osteogenesis and adipogenesis of bone marrow stromal cells is a crucial pathological process of osteoporosis. P2 × 7-deficient mice were previously shown to exhibit an osteopenic phenotype and abnormal fat distribution, leading us to hypothesize that P2 × 7R activation was involved in the differentiation of BMSCs. Consequently, we investigated the effect of P2 × 7R activation on osteogenic and adipogenic differentiation of BMSCs in vitro, and established an ovariectomized (OVX) osteoporosis model to test P2 × 7R activation on adipocytes formation, trabecular and cortical bone parameters in vivo. Our results showed that activation of P2 × 7R by BzATP resulted in increase in the gene expression of osteoblastic markers, the activity of alkaline phosphatase and bone mineralization, and decrease in the gene expression of adipogenic markers and the number of adipocytes generated by BMSCs. MicroCT analysis showed that BzATP treatment ameliorated the micro-architecture of trabecular bones in OVX mice, while cortical bone parameters were unaffected. H&E staining analysis showed that was increase in the volume of trabecular bone and number of trabecular bone, and decrease in bone marrow adipocytes in BzATP-treated OVX mice compared with OVX mice. Also, activation of P2 × 7R transduced to ERK1/2 and JNK signaling pathways. This transduction was prevented by BBG, U0126, and SP600125. U0126 and SP600125 prevented BzATP-induced up-regulation of osteogenic-related genes expression and down-regulation of adipogenic-related genes expression. These data suggest that BzATP activates the differentiation of BMSCs into osteoblasts but not adipocytes by stimulating ERK1/2 and JNK signaling pathways in a P2 × 7R-dependent way.
Collapse
Affiliation(s)
- Wenkai Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Guizhen Li
- Department of Orthopedics, Enshi Center Hospital, Enshi 445000, China
| | - Yingchi Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Sheng Wei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Mingyu Song
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Wei Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Xuefeng Yuan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China.
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China.
| |
Collapse
|
80
|
Fulle S. Purinergic signalling during myogenesis: a role for adenosine and its receptors. Acta Physiol (Oxf) 2015; 214:436-9. [PMID: 26082066 DOI: 10.1111/apha.12542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- S. Fulle
- Department of Neuroscience Imaging and Clinical Sciences; Section of Physiology and Physiopathology; Interuniversity Institute of Myology; University “G.d'Annunzio” of Chieti-Pescara; Chieti Italy
| |
Collapse
|
81
|
Díaz-Vegas A, Campos CA, Contreras-Ferrat A, Casas M, Buvinic S, Jaimovich E, Espinosa A. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells. PLoS One 2015; 10:e0129882. [PMID: 26053483 PMCID: PMC4460042 DOI: 10.1371/journal.pone.0129882] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 05/15/2015] [Indexed: 01/15/2023] Open
Abstract
During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.
Collapse
Affiliation(s)
- Alexis Díaz-Vegas
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristian A. Campos
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ariel Contreras-Ferrat
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mariana Casas
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sonja Buvinic
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
82
|
Abstract
Accumulating evidence now suggests that purinergic signalling exerts significant regulatory effects in the musculoskeletal system. In particular, it has emerged that extracellular nucleotides are key regulators of bone cell differentiation, survival and function. This review discusses our current understanding of the direct effects of purinergic signalling in bone, cartilage and muscle.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom.
| |
Collapse
|
83
|
Riquelme MA, Cea LA, Vega JL, Puebla C, Vargas AA, Shoji KF, Subiabre M, Sáez JC. Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation. Front Cell Dev Biol 2015; 3:25. [PMID: 26000275 PMCID: PMC4422085 DOI: 10.3389/fcell.2015.00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/17/2015] [Indexed: 11/13/2022] Open
Abstract
The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca2+ concentration ([Ca2+]i). Putative cell membrane pathways involved in these [Ca2+]i increments are P2 receptors (P2Rs) as well as connexin (Cx) and/or pannexin (Panx) hemichannels and channels (Cx HChs and Panx Chs), respectively, which are known to permeate Ca2+. Reserve cells (RCs) are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca2+]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs), did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs, and Panx Chs.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Luis A Cea
- Program of Anatomy and Developmental Biology, Institute of Biomedical Science, Faculty of Medicine, University of Chile Santiago, Chile
| | - José L Vega
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Experimental Physiology Laboratory (EPhyL), Instituto Antofagasta, Universidad de Antofagasta Antofagasta, Chile
| | - Carlos Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Aníbal A Vargas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Kenji F Shoji
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mario Subiabre
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
84
|
Fang J, Chen X, Wang S, Xie T, Du X, Liu H, Wang S, Li X, Chen J, Zhang B, Liang H, Yang Y, Zhang W. The expression of P2X₇ receptors in EPCs and their potential role in the targeting of EPCs to brain gliomas. Cancer Biol Ther 2015; 16:498-510. [PMID: 25839324 DOI: 10.1080/15384047.2015.1016663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In order to use endothelial progenitor cells (EPCs) as a therapeutic and imaging probe to overcome antiangiogenic resistance for gliomas, how to enhance proliferation and targeting ability of transplanted EPCs is a high priority. Here, we confirmed, for the first time, the expression of P2X7 receptors in rat spleen-derived EPCs. Activation of P2X7 receptors in EPCs by BzATP promoted cells proliferation and migration, rather than apoptosis. In vivo, the homing of transplanted EPCs after long-term suppression of P2X7 receptors by persistent BBG stimulation was evaluated by MRI, immunohistochemistry and flow cytometry. Compared to the group without BBG treatment, less transplanted EPCs homed to gliomas in the group with BBG treatment, especially integrated into the vessels containing tumor-derived endothelial cells in gliomas. Moreover, western blot showed that CXCL1 expression was downregulated in gliomas with BBG treatment, which meant P2X7 receptors suppression inhibited the homing of EPCs to gliomas through down-regulation of CXCLl expression. Further, effects of P2X7 receptors on C6 glioma cells or gliomas were evaluated at the same dose of BzATP or BBG used in EPCs experiments in vitro and in vivo. MTT assay and MRI revealed that P2X7 receptors exerted no significant promoting effect on C6 glioma cells proliferation, gliomas growth and angiogenesis. Taken together, our findings imply the possibility of promoting proliferation and targeting ability of transplanted EPCs to brain gliomas in vivo through P2X7 receptors, which may provide new perspectives on application of EPCs as a therapeutic and imaging probe to overcome antiangiogenic resistance for gliomas.
Collapse
Affiliation(s)
- Jingqin Fang
- a Department of Radiology; Institute of Surgery Research; Daping Hospital; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Godinho RO, Duarte T, Pacini ESA. New perspectives in signaling mediated by receptors coupled to stimulatory G protein: the emerging significance of cAMP efflux and extracellular cAMP-adenosine pathway. Front Pharmacol 2015; 6:58. [PMID: 25859216 PMCID: PMC4373373 DOI: 10.3389/fphar.2015.00058] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/06/2015] [Indexed: 12/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) linked to stimulatory G (Gs) proteins (GsPCRs) mediate increases in intracellular cyclic AMP as consequence of activation of nine adenylyl cyclases , which differ considerably in their cellular distribution and activation mechanisms. Once produced, cyclic AMP may act via distinct intracellular signaling effectors such as protein kinase A and the exchange proteins activated by cAMP (Epacs). More recently, attention has been focused on the efflux of cAMP through a specific transport system named multidrug resistance proteins that belongs to the ATP-binding cassette transporter superfamily. Outside the cell, cAMP is metabolized into adenosine, which is able to activate four distinct subtypes of adenosine receptors, members of the GPCR family: A1, A2A, A2B, and A3. Taking into account that this phenomenon occurs in numerous cell types, as consequence of GsPCR activation and increment in intracellular cAMP levels, in this review, we will discuss the impact of cAMP efflux and the extracellular cAMP-adenosine pathway on the regulation of GsPCR-induced cell response.
Collapse
Affiliation(s)
- Rosely O Godinho
- Disciplina Farmacologia Celular, Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Thiago Duarte
- Disciplina Farmacologia Celular, Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Enio S A Pacini
- Disciplina Farmacologia Celular, Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
86
|
Tanaka M, Mori H, Kayasuga R, Kawabata K. Induction of creatine kinase release from cultured osteoclasts via the pharmacological action of aminobisphosphonates. SPRINGERPLUS 2015; 4:59. [PMID: 25664231 PMCID: PMC4315803 DOI: 10.1186/s40064-015-0848-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022]
Abstract
An increase of serum creatine kinase (CK) has been observed in clinical studies of nitrogen-containing aminobisphosphonates (N-BPs). Osteoclasts are thought to be the source of the CK, but there is no clear evidence for the hypothesis. In this study, CK release from rabbit osteoclasts induced by N-BPs was examined in an in vitro culture system. Rabbit bone-derived cells were cultured for 3 days on the N-BPs pretreated cortical bone slices. CK activity in the culture medium was measured at 3 days of culture. The CK activity was increased with all N-BPs at concentrations at which showed antiresorptive activity over 60% inhibition of C-terminal cross-linking telopeptide of type I collagen (CTX-1) release. The maximum induction of CK activity was 2.6 times the control level. The lowest N-BP concentration inducing CK release was 3 times lower than that required to decrease the osteoclast number. Bafilomycin A1, an inhibitor of vacuolar H+-ATPase, abrogated all N-BP actions, including CK release. Bone-derived cells except osteoclasts were insensitive to bafilomycin A1, suggesting that osteoclasts were the source of CK. Regarding the time course, CK release occurred after a 1 day lag time and increased steadily until day 3 of culture. These results show that CK release is induced by N-BPs from osteoclasts at concentrations at which N-BPs show antiresorptive activity over 60% inhibition of CTX-1 release in vitro. These findings explain the mechanism of the CK increase induced by clinical use of N-BPs.
Collapse
Affiliation(s)
- Makoto Tanaka
- Research Promotion, Ono Pharmaceutical Co., Ltd, 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun Osaka, 618-8585 Japan
| | - Hiroshi Mori
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, Shimamoto-cho, Mishima-gun Osaka, 618-8585 Japan
| | - Ryoji Kayasuga
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, Shimamoto-cho, Mishima-gun Osaka, 618-8585 Japan
| | - Kazuhito Kawabata
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, Shimamoto-cho, Mishima-gun Osaka, 618-8585 Japan
| |
Collapse
|
87
|
Hill M, Dušková M, Stárka L. Dehydroepiandrosterone, its metabolites and ion channels. J Steroid Biochem Mol Biol 2015; 145:293-314. [PMID: 24846830 DOI: 10.1016/j.jsbmb.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 11/20/2022]
Abstract
This review is focused on the physiological and pathophysiological relevance of steroids influencing the activities of the central and peripheral nervous systems with regard to their concentrations in body fluids and tissues in various stages of human life like the fetal development or pregnancy. The data summarized in this review shows that DHEA and its unconjugated and sulfated metabolites are physiologically and pathophysiologically relevant in modulating numerous ion channels and participate in vital functions of the human organism. DHEA and its unconjugated and sulfated metabolites including 5α/β-reduced androstane steroids participate in various physiological and pathophysiological processes like the management of GnRH cyclic release, regulation of glandular and neurotransmitter secretions, maintenance of glucose homeostasis on one hand and insulin insensitivity on the other hand, control of skeletal muscle and smooth muscle activities including vasoregulation, promotion of tolerance to ischemia and other neuroprotective effects. In respect of prevalence of steroid sulfates over unconjugated steroids in the periphery and the opposite situation in the CNS, the sulfated androgens and androgen metabolites reach relevance in peripheral organs. The unconjugated androgens and estrogens are relevant in periphery and so much the more in the CNS due to higher concentrations of most unconjugated steroids in the CNS tissues than in circulation and peripheral organs. This article is part of a Special Issue entitled "Essential role of DHEA".
Collapse
Affiliation(s)
- M Hill
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - M Dušková
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - L Stárka
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| |
Collapse
|
88
|
The role of extracellular ATP-mediated purinergic signaling in bone, cartilage, and tooth tissue. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
89
|
New insights into the relationship between mIGF-1-induced hypertrophy and Ca2+ handling in differentiated satellite cells. PLoS One 2014; 9:e107753. [PMID: 25229238 PMCID: PMC4168228 DOI: 10.1371/journal.pone.0107753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/16/2014] [Indexed: 11/19/2022] Open
Abstract
Muscle regeneration involves the activation of satellite cells, is regulated at the genetic and epigenetic levels, and is strongly influenced by gene activation and environmental conditions. The aim of this study was to determine whether the overexpression of mIGF-1 can modify functional features of satellite cells during the differentiation process, particularly in relation to modifications of intracellular Ca2+ handling. Satellite cells were isolated from wild-type and MLC/mIGF-1 transgenic mice. The cells were differentiated in vitro, and morphological analyses, intracellular Ca2+ measurements, and ionic current recordings were performed. mIGF-1 overexpression accelerates satellite cell differentiation and promotes myotube hypertrophy. In addition, mIGF-1 overexpression-induced potentiation of myogenesis triggers both quantitative and qualitative changes to the control of intracellular Ca2+ handling. In particular, the differentiated MLC/mIGF-1 transgenic myotubes have reduced velocity and amplitude of intracellular Ca2+ increases after stimulation with caffeine, KCl and acetylcholine. This appears to be due, at least in part, to changes in the physico-chemical state of the sarcolemma (increased membrane lipid oxidation, increased output currents) and to increased expression of dihydropyridine voltage-operated Ca2+ channels. Interestingly, extracellular ATP and GTP evoke intracellular Ca2+ mobilization to greater extents in the MLC/mIGF-1 transgenic satellite cells, compared to the wild-type cells. These data suggest that these MLC/mIGF-1 transgenic satellite cells are more sensitive to trophic stimuli, which can potentiate the effects of mIGF-1 on the myogenic programme.
Collapse
|
90
|
Noronha-Matos JB, Coimbra J, Sá-e-Sousa A, Rocha R, Marinhas J, Freitas R, Guerra-Gomes S, Ferreirinha F, Costa MA, Correia-de-Sá P. P2X7-induced zeiosis promotes osteogenic differentiation and mineralization of postmenopausal bone marrow-derived mesenchymal stem cells. FASEB J 2014; 28:5208-22. [PMID: 25169056 DOI: 10.1096/fj.14-257923] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polymorphisms of the P2X7 receptor have been associated with increased risk of fractures in postmenopausal women. Although both osteoblasts and osteoclasts express P2X7 receptors, their function in osteogenesis remains controversial. Here, we investigated the role of the P2X7 receptor on osteogenic differentiation and mineralization of bone marrow mesenchymal stem cell (BMSC) cultures from postmenopausal women (age 71±3 yr, n=18). We focused on the mechanisms related to intracellular [Ca(2+)]i oscillations and plasma membrane-dynamics. ATP, and the P2X7 agonist BzATP (100 μM), increased [Ca(2+)]i in parallel to the formation of membrane pores permeable to TO-PRO-3 dye uptake. ATP and BzATP elicited reversible membrane blebs (zeiosis) in 38 ± 1 and 70 ± 1% of the cells, respectively. P2X7-induced zeiosis was Ca(2+) independent, but involved phospholipase C, protein kinase C, and Rho-kinase activation. BzATP (100 μM) progressively increased the expression of Runx-2 and Osterix transcription factors by 452 and 226% (at d 21), respectively, alkaline phosphatase activity by 88% (at d 28), and mineralization by 329% (at d 43) of BMSC cultures in a Rho-kinase-dependent manner. In summary, reversible plasma membrane zeiosis involving cytoskeleton rearrangements due to activation of the P2X7-Rho-kinase axis promotes osteogenic differentiation and mineralization of BMSCs, thus providing new therapeutic targets for postmenopausal bone loss.
Collapse
Affiliation(s)
- José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - João Coimbra
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Ana Sá-e-Sousa
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Rui Rocha
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - José Marinhas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Rolando Freitas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Sónia Guerra-Gomes
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia and Departamento de Química, Unit for Multidisciplinary Research in Biomedicine (UMIB), and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| |
Collapse
|
91
|
Verkhratsky A, Burnstock G. Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. Bioessays 2014; 36:697-705. [PMID: 24782352 DOI: 10.1002/bies.201400024] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purinergic signalling system, which utilises ATP, related nucleotides and adenosine as transmitter molecules, appeared very early in evolution: release mechanisms and ATP-degrading enzymes are operative in bacteria, and the first specific receptors are present in single cell eukaryotic protozoa and algae. Further evolution of the purinergic signalling system resulted in the development of multiple classes of purinoceptors, several pathways for release of nucleotides and adenosine, and a system of ectonucleotidases controlling extracellular levels of purinergic transmitters. The purinergic signalling system is expressed in virtually all types of tissues and cells, where it mediates numerous physiological reactions and contributes to pathological responses in a variety of diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- School of Biological Sciences, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | |
Collapse
|
92
|
Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin. Proc Natl Acad Sci U S A 2013; 110:21012-7. [PMID: 24324138 DOI: 10.1073/pnas.1321210110] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Osteocytes in the lacunar-canalicular system of the bone are thought to be the cells that sense mechanical loading and transduce mechanical strain into biomechanical responses. The goal of this study was to evaluate the extent to which focal mechanical stimulation of osteocyte cell body and process led to activation of the cells, and determine whether integrin attachments play a role in osteocyte activation. We use a novel Stokesian fluid stimulus probe to hydrodynamically load osteocyte processes vs. cell bodies in murine long bone osteocyte Y4 (MLO-Y4) cells with physiological-level forces <10 pN without probe contact, and measured intracellular Ca(2+) responses. Our results indicate that osteocyte processes are extremely responsive to piconewton-level mechanical loading, whereas the osteocyte cell body and processes with no local attachment sites are not. Ca(2+) signals generated at stimulated sites spread within the processes with average velocity of 5.6 μm/s. Using the near-infrared fluorescence probe IntegriSense 750, we demonstrated that inhibition of αVβ3 integrin attachment sites compromises the response to probe stimulation. Moreover, using apyrase, an extracellular ATP scavenger, we showed that Ca(2+) signaling from the osteocyte process to the cell body was greatly diminished, and thus dependent on ATP-mediated autocrine signaling. These findings are consistent with the hypothesis that osteocytes in situ are highly polarized cells, where mechanotransduction occurs at substrate attachment sites along the processes at force levels predicted to occur at integrin attachment sites in vivo. We also demonstrate the essential role of αVβ3 integrin in osteocyte-polarized mechanosensing and mechanotransduction.
Collapse
|
93
|
Burnstock G. Introduction and perspective, historical note. Front Cell Neurosci 2013; 7:227. [PMID: 24312014 PMCID: PMC3836022 DOI: 10.3389/fncel.2013.00227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/04/2013] [Indexed: 12/11/2022] Open
Abstract
P2 nucleotide receptors were proposed to consist of two subfamilies based on pharmacology in 1985, named P2X and P2Y receptors. Later, this was confirmed following cloning of the receptors for nucleotides and studies of transduction mechanisms in the early 1990s. P2X receptors are ion channels and seven subtypes are recognized that form trimeric homomultimers or heteromultimers. P2X receptors are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed on many types of non-neuronal cells to mediate smooth muscle contraction, secretion, and immune modulation. The emphasis in this review will be on the pathophysiology of P2X receptors and therapeutic potential of P2X receptor agonists and antagonists for neurodegenerative and inflammatory disorders, visceral and neuropathic pain, irritable bowel syndrome, diabetes, kidney failure, bladder incontinence and cancer, as well as disorders if the special senses, airways, skin, cardiovascular, and musculoskeletal systems.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, UK
- Department of Pharmacology, The University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|