51
|
Russell RA, Chojnacki J, Jones DM, Johnson E, Do T, Eggeling C, Padilla-Parra S, Sattentau QJ. Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material. Cell Rep 2017; 18:1473-1483. [PMID: 28178524 PMCID: PMC5316642 DOI: 10.1016/j.celrep.2017.01.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/13/2016] [Accepted: 01/12/2017] [Indexed: 11/03/2022] Open
Abstract
HIV-1 disseminates to diverse tissues and establishes long-lived viral reservoirs. These reservoirs include the CNS, in which macrophage-lineage cells, and as suggested by many studies, astrocytes, may be infected. Here, we have investigated astrocyte infection by HIV-1. We confirm that astrocytes trap and internalize HIV-1 particles for subsequent release but find no evidence that these particles infect the cell. Astrocyte infection was not observed by cell-free or cell-to-cell routes using diverse approaches, including luciferase and GFP reporter viruses, fixed and live-cell fusion assays, multispectral flow cytometry, and super-resolution imaging. By contrast, we observed intimate interactions between HIV-1-infected macrophages and astrocytes leading to signals that might be mistaken for astrocyte infection using less stringent approaches. These results have implications for HIV-1 infection of the CNS, viral reservoir formation, and antiretroviral therapy.
Collapse
Affiliation(s)
- Rebecca A Russell
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jakub Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Daniel M Jones
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK; Wellcome Trust Centre for Human Genetics, Cellular Imaging Core, University of Oxford, Oxford OX3 7BN, UK
| | - Errin Johnson
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Thao Do
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sergi Padilla-Parra
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK; Wellcome Trust Centre for Human Genetics, Cellular Imaging Core, University of Oxford, Oxford OX3 7BN, UK
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
52
|
Womersley JS, Seedat S, Hemmings SMJ. Childhood maltreatment and HIV-associated neurocognitive disorders share similar pathophysiology: a potential sensitisation mechanism? Metab Brain Dis 2017; 32:1717-1733. [PMID: 28681198 DOI: 10.1007/s11011-017-0062-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/22/2017] [Indexed: 01/16/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) are increasingly prevalent despite the use of antiretroviral therapies. Previous research suggests that individual host factors play an important role in determining susceptibility to HAND. In this review, we propose that childhood trauma (CT) and HAND share several common aetiological mechanisms, namely hypothalamic-pituitary-adrenal axis dysregulation, neuroinflammation and oxidative stress. These convergent and consequent mechanisms may translate into an increased risk of developing HAND in individuals who have experienced early life stress. We provide an overview of basic and clinical research relating to these pathophysiological mechanisms and suggest that further research examine brain-derived neurotrophic factor and telomere length as common mediating factors and potential therapeutic targets for HAND and CT. Graphical abstract Both childhood trauma and HIV-associated neurocognitive disorders are associated with HPA axis dysregulation, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| |
Collapse
|
53
|
Abstract
Despite the success of cART, greater than 50% of HIV infected people develop cognitive and motor deficits termed HIV-associated neurocognitive disorders (HAND). Macrophages are the major cell type infected in the CNS. Unlike for T cells, the virus does not kill macrophages and these long-lived cells may become HIV reservoirs in the brain. They produce cytokines/chemokines and viral proteins that promote inflammation and neuronal damage, playing a key role in HIV neuropathogenesis. HIV Tat is the transactivator of transcription that is essential for replication and transcriptional regulation of the virus and is the first protein to be produced after HIV infection. Even with successful cART, Tat is produced by infected cells. In this study we examined the role of the HIV Tat protein in the regulation of gene expression in human macrophages. Using THP-1 cells, a human monocyte/macrophage cell line, and their infection with lentivirus, we generated stable cell lines that express Tat-Flag. We performed ChIP-seq analysis of these cells and found 66 association sites of Tat in promoter or coding regions. Among these are C5, CRLF2/TSLPR, BDNF, and APBA1/Mint1, genes associated with inflammation/damage. We confirmed the association of Tat with these sequences by ChIP assay and expression of these genes in our THP-1 cell lines by qRT-PCR. We found that HIV Tat increased expression of C5, APBA1, and BDNF, and decreased CRLF2. The K50A Tat-mutation dysregulated expression of these genes without affecting the binding of the Tat complex to their gene sequences. Our data suggest that HIV Tat, produced by macrophage HIV reservoirs in the brain despite successful cART, contributes to neuropathogenesis in HIV-infected people.
Collapse
|
54
|
The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer's disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect Agent Cancer 2017. [PMID: 28642806 PMCID: PMC5477123 DOI: 10.1186/s13027-017-0145-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common form of dementia characterized by cognitive and memory impairment. One of the mechanism involved in the pathogenesis of AD, is the oxidative stress being involved in AD's development and progression. In addition, several studies proved that chronic viral infections, mainly induced by Human herpesvirus 1 (HHV-1), Cytomegalovirus (CMV), Human herpesvirus 2 (HHV-2), and Hepatitis C virus (HCV) could be responsible for AD's neuropathology. Despite the large amount of data regarding the pathogenesis of Alzheimer's disease (AD), a very limited number of therapeutic drugs and/or pharmacological approaches, have been developed so far. It is important to underline that, in recent years, natural compounds, due their antioxidants and anti-inflammatory properties have been largely studied and identified as promising agents for the prevention and treatment of neurodegenerative diseases, including AD. The ester of epigallocatechin and gallic acid, (-)-Epigallocatechin-3-Gallate (EGCG), is the main and most significantly bioactive polyphenol found in solid green tea extract. Several studies showed that this compound has important anti-inflammatory and antiatherogenic properties as well as protective effects against neuronal damage and brain edema. To date, many studies regarding the potential effects of EGCG in AD's treatment have been reported in literature. The purpose of this review is to summarize the in vitro and in vivo pre-clinical studies on the use of EGCG in the prevention and the treatment of AD as well as to offer new insights for translational perspectives into clinical practice.
Collapse
|
55
|
The Role of Caveolin 1 in HIV Infection and Pathogenesis. Viruses 2017; 9:v9060129. [PMID: 28587148 PMCID: PMC5490806 DOI: 10.3390/v9060129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/29/2022] Open
Abstract
Caveolin 1 (Cav-1) is a major component of the caveolae structure and is expressed in a variety of cell types including macrophages, which are susceptible to human immunodeficiency virus (HIV) infection. Caveolae structures are present in abundance in mechanically stressed cells such as endothelial cells and adipocytes. HIV infection induces dysfunction of these cells and promotes pathogenesis. Cav-1 and the caveolae structure are believed to be involved in multiple cellular processes that include signal transduction, lipid regulation, endocytosis, transcytosis, and mechanoprotection. Such a broad biological role of Cav-1/caveolae is bound to have functional cross relationships with several molecular pathways including HIV replication and viral-induced pathogenesis. The current review covers the relationship of Cav-1 and HIV in respect to viral replication, persistence, and the potential role in pathogenesis.
Collapse
|
56
|
Devlin KN, Giovannetti T. Heterogeneity of Neuropsychological Impairment in HIV Infection: Contributions from Mild Cognitive Impairment. Neuropsychol Rev 2017; 27:101-123. [PMID: 28536861 DOI: 10.1007/s11065-017-9348-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 05/02/2017] [Indexed: 02/04/2023]
Abstract
Despite longstanding acknowledgement of the heterogeneity of HIV-associated neurocognitive disorders (HAND), existing HAND diagnostic methods classify according to the degree of impairment, without regard to the pattern of neuropsychological strengths and weaknesses. Research in mild cognitive impairment (MCI) has demonstrated that classifying individuals into subtypes by both their level and pattern of impairment, using either conventional or statistical methods, has etiologic and prognostic utility. Methods for characterizing the heterogeneity of MCI provide a framework that can be applied to other disorders and may be useful in clarifying some of the current challenges in the study of HAND. A small number of studies have applied these methods to examine the heterogeneity of neurocognitive function among individuals with HIV. Most have supported the existence of multiple subtypes of neurocognitive impairment, with some evidence for distinct clinicodemographic features of these subtypes, but a number of gaps exist. Following a review of diagnostic methods and challenges in the study of HAND, we summarize the literature regarding conventional and empirical subtypes of MCI and HAND and identify directions for future research regarding neurocognitive heterogeneity in HIV infection.
Collapse
Affiliation(s)
- Kathryn N Devlin
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA.
| | - Tania Giovannetti
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
57
|
Megra BW, Eugenin EA, Berman JW. The Role of Shed PrP c in the Neuropathogenesis of HIV Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:224-232. [PMID: 28533442 DOI: 10.4049/jimmunol.1601041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/21/2017] [Indexed: 01/02/2023]
Abstract
HIV-1 enters the CNS soon after peripheral infection and causes chronic neuroinflammation and neuronal damage that leads to cognitive impairment in 40-70% of HIV-infected people. The nonpathogenic cellular isoform of the human prion protein (PrPc) is an adhesion molecule constitutively expressed in the CNS. Previously, our laboratory showed that shed PrPc (sPrPc) is increased in the cerebrospinal fluid of HIV-infected people with cognitive deficits as compared with infected people with no impairment. In this article, we demonstrate that CCL2 and TNF-α, inflammatory mediators that are elevated in the CNS of HIV-infected people, increase shedding of PrPc from human astrocytes by increasing the active form of the metalloprotease ADAM10. We show that the consequence of this shedding can be the production of inflammatory mediators, because treatment of astrocytes with rPrPc increased secretion of CCL2, CXCL-12, and IL-8. Supernatants from rPrPc-treated astrocytes containing factors produced in response to this treatment, but not rPrPc by itself, cause increased chemotaxis of both uninfected and HIV-infected human monocytes, suggesting a role for sPrPc in monocyte recruitment into the brain. Furthermore, we examined whether PrPc participates in glutamate uptake and found that rPrPc decreased uptake of this metabolite in astrocytes, which could lead to neurotoxicity and neuronal loss. Collectively, our data characterize mediators involved in PrPc shedding and the effect of this sPrPc on monocyte chemotaxis and glutamate uptake from astrocytes. We propose that shedding of PrPc could be a potential target for therapeutics to limit the cognitive impairment characteristic of neuroAIDS.
Collapse
Affiliation(s)
- Bezawit W Megra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Eliseo A Eugenin
- Public Health Research Institute, Newark, NJ 07103.,Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461; .,Department of Microbiology, Albert Einstein College of Medicine, Bronx, NY 10461; and.,Department of Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
58
|
Ambrosius B, Faissner S, Guse K, von Lehe M, Grunwald T, Gold R, Grewe B, Chan A. Teriflunomide and monomethylfumarate target HIV-induced neuroinflammation and neurotoxicity. J Neuroinflammation 2017; 14:51. [PMID: 28284222 PMCID: PMC5346211 DOI: 10.1186/s12974-017-0829-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/28/2017] [Indexed: 12/11/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) affect about 50% of infected patients despite combined antiretroviral therapy (cART). Ongoing compartmentalized inflammation mediated by microglia which are activated by HIV-infected monocytes has been postulated to contribute to neurotoxicity independent from viral replication. Here, we investigated effects of teriflunomide and monomethylfumarate on monocyte/microglial activation and neurotoxicity. Human monocytoid cells (U937) transduced with a minimal HIV-Vector were co-cultured with human microglial cells (HMC3). Secretion of pro-inflammatory/neurotoxic cytokines (CXCL10, CCL5, and CCL2: p < 0.001; IL-6: p < 0.01) by co-cultures was strongly increased compared to microglia in contact with HIV-particles alone. Upon treatment with teriflunomide, cytokine secretion was decreased (CXCL10, 3-fold; CCL2, 2.5-fold; IL-6, 2.2-fold; p < 0.001) and monomethylfumarate treatment led to 2.9-fold lower CXCL10 secretion (p < 0.001). Reduced toxicity of co-culture conditioned media on human fetal neurons by teriflunomide (29%, p < 0.01) and monomethylfumarate (27%, p < 0.05) indicated functional relevance. Modulation of innate immune functions by teriflunomide and monomethylfumarate may target neurotoxic inflammation in the context of HAND.
Collapse
Affiliation(s)
- Björn Ambrosius
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany.
| | - Simon Faissner
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany.,Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Kirsten Guse
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany.,Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Marec von Lehe
- Department of Neurosurgery, Knappschaftskrankenhaus Bochum, In der Schornau 22-25, 44892, Bochum, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Bastian Grewe
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Andrew Chan
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland.
| |
Collapse
|
59
|
Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, Karn J. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 2017; 14:9. [PMID: 28166799 PMCID: PMC5294768 DOI: 10.1186/s12977-017-0335-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023] Open
Abstract
Background Multiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. We hypothesized that TLR receptor mediated responses to inflammatory conditions by microglial cells in the central nervous system (CNS) are able to induce latent HIV proviruses, and contribute to the etiology of HIV-associated neurocognitive disorders. Results Newly developed human microglial cell lines (hµglia), obtained by immortalizing human primary microglia with simian virus-40 (SV40) large T antigen and the human telomerase reverse transcriptase, were used to generate latently infected cells using a single-round HIV virus carrying a green fluorescence protein reporter (hµglia/HIV, clones HC01 and HC69). Treatment of these cells with a panel of TLR ligands showed surprisingly that two potent TLR3 agonists, poly (I:C) and bacterial ribosomal RNA potently reactivated HIV in hμglia/HIV cells. LPS (TLR4 agonist), flagellin (TLR5 agonist), and FSL-1 (TLR6 agonist) reactivated HIV to a lesser extent, while Pam3CSK4 (TLR2/1 agonist) and HKLM (TLR2 agonist) only weakly reversed HIV latency in these cells. While agonists for TLR2/1, 4, 5 and 6 reactivated HIV through transient NF-κB induction, poly (I:C), the TLR3 agonist, did not activate NF-κB, and instead induced the virus by a previously unreported mechanism mediated by IRF3. The selective induction of IRF3 by poly (I:C) was confirmed by chromatin immunoprecipitation (ChIP) analysis. In comparison, in latently infected rat-derived microglial cells (hT-CHME-5/HIV, clone HC14), poly (I:C), LPS and flagellin were only partially active. The TLR response profile in human microglial cells is also distinct from that shown by latently infected monocyte cell lines (THP-1/HIV, clone HA3, U937/HIV, clone HUC5, and SC/HIV, clone HSCC4), where TLR2/1, 4, 5, 6 or 8, but not for TLR3, 7 or 9, reactivated HIV. Conclusions TLR signaling, in particular TLR3 activation, can efficiently reactivate HIV transcription in infected microglia, but not in monocytes or T cells. The unique response profile of microglial cells to TLR3 is fundamental to understanding how the virus responds to continuous microbial exposure, especially during inflammatory episodes, that characterizes HIV infection in the CNS. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0335-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Stephanie Milne
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Biswajit Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Roxana Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA.
| |
Collapse
|
60
|
Belloli S, Pannese M, Buonsanti C, Maiorino C, Di Grigoli G, Carpinelli A, Monterisi C, Moresco RM, Panina-Bordignon P. Early upregulation of 18-kDa translocator protein in response to acute neurodegenerative damage in TREM2-deficient mice. Neurobiol Aging 2017; 53:159-168. [PMID: 28189343 DOI: 10.1016/j.neurobiolaging.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/21/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
Mutations in the TREM2 gene confer risk for Alzheimer's disease and susceptibility for Parkinson's disease (PD). We evaluated the effect of TREM2 deletion in a 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, measuring neurodegeneration and microglia activation using a combined in vivo imaging and postmortem molecular approach. In wild-type mice, MPTP administration induced a progressive decrease of [11C]FECIT uptake, culminating at day 7. Neuronal loss was accompanied by an increase of TREM2, IL-1β, and translocator protein (TSPO) transcript levels, [11C]PK11195 binding and GFAP staining (from day 2), and an early and transient increase of TNF-α, Galectin-3, and Iba-1 (from day 1). In TREM2 null (TREM2-/-) mice, MPTP similarly affected neuron viability and microglial cells, as shown by the lower level of Iba-1 staining in basal condition, and reduced increment of Iba-1, TNF-α, and IL-1β in response to MPTP. Likely to compensate for TREM2 absence, TREM2-/- mice showed an earlier increment of [11C]PK11195 binding and a significant increase of IL-4. Taken together, our data demonstrate a central role of TREM2 in the regulation of microglia response to acute neurotoxic insults and suggest a potential modulatory role of TSPO in response to immune system deficit.
Collapse
Affiliation(s)
- Sara Belloli
- Institute of Bioimages and Molecular Physiology, National Research Council, Segrate, MI, Italy; Milan Center for Neuroscience (NeuroMi), Milan, Italy; Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pannese
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Buonsanti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Maiorino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Di Grigoli
- Institute of Bioimages and Molecular Physiology, National Research Council, Segrate, MI, Italy; Milan Center for Neuroscience (NeuroMi), Milan, Italy
| | - Assunta Carpinelli
- Institute of Bioimages and Molecular Physiology, National Research Council, Segrate, MI, Italy
| | - Cristina Monterisi
- Department of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- Milan Center for Neuroscience (NeuroMi), Milan, Italy; Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Medicine and Surgery, University of Milan Bicocca, Monza, Italy.
| | - Paola Panina-Bordignon
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
61
|
Immediate initiation of cART is associated with lower levels of cerebrospinal fluid YKL-40, a marker of microglial activation, in HIV-1 infection. AIDS 2017; 31:247-252. [PMID: 27819802 DOI: 10.1097/qad.0000000000001314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To characterize cerebrospinal fluid (CSF) YKL-40, a unique biomarker that reflects activation of microglial cells, in acute (AHI) and chronic HIV-1 infection (CHI) and to determine the effect of treatment initiation on levels of this marker. DESIGN A cross-sectional study of two groups of HIV-infected participants at baseline and follow-up timepoints. METHODS AHI (n = 33) and CHI (n = 34) participants underwent CSF and blood sampling before treatment initiation with combination antiretroviral therapy (cART) and at follow-up on cART in a subset of these individuals [6 months in AHI participants (n = 24), 1 year in CHI participants (n = 10)]. Measured parameters were analyzed at each timepoint. Analyses employed Mann-Whitney tests and Spearman correlations. RESULTS Baseline median YKL-40 was higher in CHI than AHI (96844 versus 80754 ng/l; P = 0.011). Elevations in the CHI group relative to the AHI group persisted at follow-up despite treatment (87414 versus 66130 ng/l; P = 0.003). In untreated CHI, YKL-40 correlated with neopterin (r = 0.51, P = 0.0025), chemokine (CXC-motif) ligand-10 (r = 0.44, P = 0.011), and neurofilament light chain (r = 0.56, P = 0.0008) in CSF. CONCLUSIONS This study is the first to describe the dynamics of CSF YKL-40 in two groups of HIV-infected individuals before and after cART and demonstrates the value of this marker in understanding HIV neuropathogenesis. The results suggest the utility of further exploring the prognostic value of YKL-40, particularly in individuals with early HIV infection or those initiating treatment during CHI.
Collapse
|
62
|
Mothapo KM, Ten Oever J, Koopmans P, Stelma FF, Burm S, Bajramovic J, Verbeek MM, Rikkert MGO, Netea MG, Koopman G, van der Ven AJ. Soluble TLR2 and 4 concentrations in cerebrospinal fluid in HIV/SIV-related neuropathological conditions. J Neurovirol 2016; 23:250-259. [PMID: 27882497 DOI: 10.1007/s13365-016-0495-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 11/29/2022]
Abstract
HIV in the central nervous system (CNS) mainly infects microglial cells which are known to express toll-like receptors (TLRs). This paper aimed to study the role of soluble TLR2 (sTLR2), sTLR4, and other inflammatory markers in cerebrospinal fluid (CSF) in HIV/Simian immunodeficiency virus (SIV)-related neurological sequelae. We determined sTLR2 and sTLR4 levels in CSF and serum/plasma of SIV-infected rhesus macaques with and without neurological sequelae, as well as in HIV-infected patients with and without cognitive impairments and Alzheimer's disease (AD) patients and matched controls. CSF cytokines and chemokines levels were analyzed in macaques as markers of neuroinflammation, while neopterin and S100B CSF concentrations were measured in HIV-infected patients as microglial and astrocyte marker, respectively. We found detectable levels of sTLR2 and sTLR4 in CSF of macaques and humans. Furthermore, CSF sTLR2 and sTLR4 concentrations were higher in SIV-infected macaques with neurological sequelae compared to those without neurological complications (p = 0.0003 and p = 0.0006, respectively). CSF IL-8 and monocyte chemoattractant protein-1 (MCP-1) levels were elevated in macaques with neurological sequelae, and a positive correlation was found between CSF levels of sTLR2/4 and IL-8 and MCP-1. Also in humans, elevated CSF sTLR4 levels were found in HIV-infected patients with cognitive impairments compared to HIV-infected patients with normal cognition (p = 0.019). Unlike CSF S100B levels, neopterin correlated positively with sTLR2 and sTLR4. No difference was found in plasma and CSF sTLR2 and sTLR4 levels between AD patients and control subjects (p = 0.26). In conclusion, CSF sTLR2 and sTLR4 may play a role in HIV/SIV-related neuroinflammation and subsequent neuropathology.
Collapse
Affiliation(s)
- Khutso M Mothapo
- Department of Internal Medicine and Nijmegen Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - J Ten Oever
- Department of Internal Medicine and Nijmegen Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - P Koopmans
- Department of Internal Medicine and Nijmegen Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - F F Stelma
- Department of Medical Microbiology-Section Virology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S Burm
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - M M Verbeek
- Departments of Neurology and Laboratory Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M G Olde Rikkert
- Radboudumc Alzheimer Centre, Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M G Netea
- Department of Internal Medicine and Nijmegen Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - G Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - A J van der Ven
- Department of Internal Medicine and Nijmegen Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
63
|
Immune activation in the central nervous system throughout the course of HIV infection. Curr Opin HIV AIDS 2016; 11:226-33. [PMID: 26760827 DOI: 10.1097/coh.0000000000000243] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Robust and dynamic innate and adaptive responses characterize the acute central nervous system (CNS) response to HIV and other viral infections. In a state of chronic infection or viral latency, persistent immune activation associates with abnormality in the CNS. Understanding this process is critical, as immune-mediated abnormality in nonrenewable CNS cells may result in long-term neurologic sequelae for HIV-infected individuals. RECENT FINDINGS In humans, immune activation is reduced by suppressive combination antiretroviral therapy, but persists at abnormally elevated levels on treatment. CNS immune activation is initiated in acute infection and progressively increases until combination antiretroviral therapy is started. Newly identified characteristics of the CNS immune surveillance network include features of homeostasis and function of brain microglial cells, lymphatic drainage from CNS to cervical lymph nodes, and cells in cerebrospinal fluid associated with neurocognitive impairment. SUMMARY More research is required to determine whether early intervention to reduce infection limits the immunopathology established by sustained immune responses that ultimately fail to resolve infection, and to unravel mechanisms of persistent immune activation during treated HIV so that strategies can be developed to therapeutically protect the brain.
Collapse
|
64
|
Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, Rohr O, Schwartz C. Targeting the Brain Reservoirs: Toward an HIV Cure. Front Immunol 2016; 7:397. [PMID: 27746784 PMCID: PMC5044677 DOI: 10.3389/fimmu.2016.00397] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/20/2016] [Indexed: 12/23/2022] Open
Abstract
One of the top research priorities of the international AIDS society by the action “Towards an HIV Cure” is the purge or the decrease of the pool of all latently infected cells. This strategy is based on reactivation of latently reservoirs (the shock) followed by an intensifying combination antiretroviral therapy (cART) to kill them (the kill). The central nervous system (CNS) has potential latently infected cells, i.e., perivascular macrophages, microglial cells, and astrocytes that will need to be eliminated. However, the CNS has several characteristics that may preclude the achievement of a cure. In this review, we discuss several limitations to the eradication of brain reservoirs and how we could circumvent these limitations by making it efforts in four directions: (i) designing efficient latency-reversal agents for CNS-cell types, (ii) improving cART by targeting HIV transcription, (iii) improving delivery of HIV drugs in the CNS and in the CNS-cell types, and (iv) developing therapeutic immunization. As a prerequisite to these efforts, we also believe that a better comprehension of molecular mechanisms involved in establishment and persistence of HIV latency in brain reservoirs are essential to design new molecules for strategies aiming to achieve a cure for instance the “shock and kill” strategy.
Collapse
Affiliation(s)
- Céline Marban
- INSERM UMR 1121 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg , France
| | | | - Amina Ait-Ammar
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| | - Fadoua Daouad
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Olivier Rohr
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France; Institut Universitaire de France, Paris, France
| | - Christian Schwartz
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| |
Collapse
|
65
|
Abstract
While highly active anti-retroviral therapy has greatly improved the lives of HIV-infected individuals, current treatments are unable to completely eradicate the virus. This is due to the presence of HIV latently infected cells which harbor transcriptionally silent HIV. Latent HIV does not replicate or produce viral proteins, thereby preventing efficient targeting by anti-retroviral drugs. Strategies to target the HIV latent reservoir include viral reactivation, enhancing host defense mechanisms, keeping latent HIV silent, and using gene therapy techniques to knock out or reactivate latent HIV. While research into each of these areas has yielded promising results, currently no one mechanism eradicates latent HIV. Instead, combinations of these approaches should be considered for a potential HIV functional cure.
Collapse
Affiliation(s)
- Daniele C Cary
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| | - B Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
66
|
Neuroprotective Activity of (-)-Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity. J Immunol Res 2016; 2016:4962351. [PMID: 27191001 PMCID: PMC4844887 DOI: 10.1155/2016/4962351] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide- (LPS-) mediated systemic inflammation plays a critical role in neurodegenerative diseases. The present study was conducted to evaluate the protective effects of epigallocatechin gallate (EGCG), the major component in green tea, on LPS-mediated inflammation and neurotoxicity. LPS treatment of macrophages induced expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). However, EGCG pretreatment of macrophages significantly inhibited LPS-mediated induction of these cytokines. In addition, EGCG significantly diminished LPS-induced inflammatory cytokines in the peripheral mononuclear blood cells (PBMCs). Supernatant from EGCG-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-EGCG-pretreated and LPS-activated macrophage cultures. Furthermore, EGCG treatment of neurons could inhibit LPS-induced production of reactive oxygen species (ROS). Thus EGCG represents a potent and useful neuroprotective agent for inflammation-mediated neurological disorders.
Collapse
|
67
|
Yadav A, Betts MR, Collman RG. Statin modulation of monocyte phenotype and function: implications for HIV-1-associated neurocognitive disorders. J Neurovirol 2016; 22:584-596. [PMID: 27021071 DOI: 10.1007/s13365-016-0433-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/08/2016] [Accepted: 02/19/2016] [Indexed: 12/15/2022]
Abstract
HIV-1-associated neurocognitive disorder (HAND) remains a persistent problem despite antiretroviral therapy (ART), largely a result of continued inflammation in the periphery and the brain and neurotoxin release from activated myeloid cells in the CNS. CD14+CD16+ inflammatory monocytes, expanded in HIV infection, play a central role in the pathogenesis of HAND and have parallels with monocyte-dependent inflammatory mechanisms in atherosclerosis. Statins, through their HMG-CoA reductase inhibitor activity, have pleiotropic immunomodulatory properties that contribute to their benefit in atherosclerosis beyond lipid lowering. Here, we investigated whether statins would modulate the monocyte phenotype and function associated with HIV-1 neuropathogenesis. Treatment ex vivo with simvastatin and atorvastatin reduced the proportion of CD16+ monocytes in peripheral blood mononuclear cells, as well as in purified monocytes, especially CD14++CD16+ "intermediate" monocytes most closely associated with neurocognitive disease. Statin treatment also markedly reduced expression of CD163, which is also linked to HAND pathogenesis. Finally, simvastatin inhibited production of monocyte chemoattractant protein-1 (MCP-1) and other inflammatory cytokines following LPS stimulation and reduced monocyte chemotaxis in response to MCP-1, a major driver of myeloid cell accumulation in the CNS in HAND. Together, these findings suggest that statin drugs may be useful to prevent or reduce HAND in HIV-1-infected subjects on ART with persistent monocyte activation and inflammation.
Collapse
Affiliation(s)
- Anjana Yadav
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA. .,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
68
|
Verma AK, Ghosh S, Pradhan S, Basu A. Microglial activation induces neuronal death in Chandipura virus infection. Sci Rep 2016; 6:22544. [PMID: 26931456 PMCID: PMC4773833 DOI: 10.1038/srep22544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
Neurotropic viruses induce neurodegeneration either directly by activating host death domains or indirectly through host immune response pathways. Chandipura Virus (CHPV) belonging to family Rhabdoviridae is ranked among the emerging pathogens of the Indian subcontinent. Previously we have reported that CHPV induces neurodegeneration albeit the root cause of this degeneration is still an open question. In this study we explored the role of microglia following CHPV infection. Phenotypic analysis of microglia through lectin and Iba-1 staining indicated cells were in an activated state post CHPV infection in cortical region of the infected mouse brain. Cytokine Bead Array (CBA) analysis revealed comparatively higher cytokine and chemokine levels in the same region. Increased level of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), Nitric Oxide (NO) and Reactive Oxygen species (ROS) in CHPV infected mouse brain indicated a strong inflammatory response to CHPV infection. Hence it was hypothesized through our analyses that this inflammatory response may stimulate the neuronal death following CHPV infection. In order to validate our hypothesis supernatant from CHPV infected microglial culture was used to infect neuronal cell line and primary neurons. This study confirmed the bystander killing of neurons due to activation of microglia post CHPV infection.
Collapse
Affiliation(s)
| | - Sourish Ghosh
- National Brain Research Centre, Manesar, Haryana-122051, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana-122051, India
| |
Collapse
|
69
|
Liu B, Liu X, Tang SJ. Interactions of Opioids and HIV Infection in the Pathogenesis of Chronic Pain. Front Microbiol 2016; 7:103. [PMID: 26903982 PMCID: PMC4748029 DOI: 10.3389/fmicb.2016.00103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/19/2016] [Indexed: 12/30/2022] Open
Abstract
Over 50% of HIV-1/AIDS patients suffer chronic pain. Currently, opioids are the cornerstone medications for treating severe pain in these patients. Ironically, emerging clinical data indicates that repeated use of opiate pain medicines might in fact heighten the chronic pain states in HIV patients. Both laboratory-based and clinical studies strongly suggest that opioids exacerbate the detrimental effects of HIV-1 infection on the nervous system, both on neurons and glia. The combination of opioids and HIV-1infection may promote the damage of neurons, including those in the pain sensory and transmission pathway, by activating both caspase-dependent and caspase-independent pro-apoptotic pathways. In addition, the opiate-HIV-1 interaction may also cause widespread disturbance of glial function and elicit glial-derived pro-inflammatory responses that dysregulate neuronal function. The deregulation of neuron-glia cross-talk that occurs with the combination of HIV-1 and opioids appears to play an important role in the development of the pathological pain state. In this article, we wish to provide an overview of the potential molecular and cellular mechanisms by which opioids may interact with HIV-1 to cause neurological problems, especially in the context of HIV-associated pathological pain. Elucidating the underlying mechanisms will help researchers and clinicians to understand how chronic use of opioids for analgesia enhances HIV-associated pain. It will also assist in optimizing therapeutic approaches to prevent or minimize this significant side effect of opiate analgesics in pain management for HIV patients.
Collapse
Affiliation(s)
- Bolong Liu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, GalvestonTX, USA; Department of Urology, Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, China
| | - Xin Liu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| |
Collapse
|
70
|
Reid WC, Ibrahim WG, Kim SJ, Denaro F, Casas R, Lee DE, Maric D, Hammoud DA. Characterization of neuropathology in the HIV-1 transgenic rat at different ages. J Neuroimmunol 2016; 292:116-25. [PMID: 26943969 DOI: 10.1016/j.jneuroim.2016.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/27/2016] [Accepted: 01/31/2016] [Indexed: 02/08/2023]
Abstract
The transgenic HIV-1 rat (Tg) is a commonly used neuroHIV model with documented neurologic/behavioral deficits. Using immunofluorescent staining of the Tg brain, we found astrocytic dysfunction/damage, as well as dopaminergic neuronal loss/dysfunction, both of which worsening significantly in the striatum with age. We saw mild microglial activation in young Tg brains, but this decreased with age. There were no differences in neurogenesis potential suggesting a neurodegenerative rather than a neurodevelopmental process. Gp120 CSF levels exceeded serum gp120 levels in some animals, suggesting local viral protein production in the brain. Further probing of the pathophysiology underlying astrocytic injury in this model is warranted.
Collapse
Affiliation(s)
- William C Reid
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Wael G Ibrahim
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Saejeong J Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Frank Denaro
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Rafael Casas
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dianne E Lee
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Division of Intermural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
71
|
The neurobiology of HIV and its impact on cognitive reserve: A review of cognitive interventions for an aging population. Neurobiol Dis 2016; 92:144-56. [PMID: 26776767 DOI: 10.1016/j.nbd.2016.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/17/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022] Open
Abstract
The medications used to treat HIV have reduced the severity of cognitive deficits; yet, nearly half of adults with HIV still exhibit some degree of cognitive deficits, referred to as HIV-associated neurocognitive disorder or HAND. These cognitive deficits interfere with everyday functioning such as emotional regulation, medication adherence, instrumental activities of daily living, and even driving a vehicle. As adults are expected to live a normal lifespan, the process of aging in this clinical population may exacerbate such cognitive deficits. Therefore, it is important to understand the neurobiological mechanisms of HIV on cognitive reserve and develop interventions that are either neuroprotective or compensate for such cognitive deficits. Within the context of cognitive reserve, this article delivers a state of the science perspective on the causes of HAND and provides possible interventions for addressing such cognitive deficits. Suggestions for future research are also provided.
Collapse
|
72
|
Lisi L, Laudati E, Miscioscia TF, Dello Russo C, Topai A, Navarra P. Antiretrovirals inhibit arginase in human microglia. J Neurochem 2015; 136:363-72. [DOI: 10.1111/jnc.13393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Lucia Lisi
- Institute of Pharmacology; Catholic University Medical School; Rome Italy
| | - Emilia Laudati
- Institute of Pharmacology; Catholic University Medical School; Rome Italy
| | | | - Cinzia Dello Russo
- Institute of Pharmacology; Catholic University Medical School; Rome Italy
| | - Alessandra Topai
- Colosseum Combinatorial Chemistry Centre for Technology; Rome Italy
| | - Pierluigi Navarra
- Institute of Pharmacology; Catholic University Medical School; Rome Italy
| |
Collapse
|
73
|
Nowlin BT, Burdo TH, Midkiff CC, Salemi M, Alvarez X, Williams KC. SIV encephalitis lesions are composed of CD163(+) macrophages present in the central nervous system during early SIV infection and SIV-positive macrophages recruited terminally with AIDS. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1649-65. [PMID: 25963554 DOI: 10.1016/j.ajpath.2015.01.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 10/23/2022]
Abstract
Macrophage recruitment to the central nervous system (CNS) during AIDS pathogenesis is poorly understood. We measured the accumulation of brain perivascular (CD163(+)) and inflammatory (MAC387(+)) macrophages in SIV-infected monkeys. Monocyte progenitors were 5-bromo-2'-deoxyuridine (BrdU) labeled in bone marrow, and CNS macrophages were labeled serially with fluorescent dextrans injected into the cisterna magna. MAC387(+) macrophages accumulated in the meninges and choroid plexus in early inflammation and in the perivascular space and SIV encephalitis (SIVE) lesions late. CD163(+) macrophages accumulated in the perivascular space and SIVE lesions with late inflammation. Most of the BrdU(+) cells were MAC387(+); however, CD163(+)BrdU(+) macrophages were present in the meninges and choroid plexus with AIDS. Most (81.6% ± 1.8%) of macrophages in SIVE lesions were present in the CNS before SIVE lesion formation. There was a 2.9-fold increase in SIVp28(+) macrophages entering the CNS late compared with those entering early (P < 0.05). The rate of CD163(+) macrophage recruitment to the CNS inversely correlated with time to death (P < 0.03) and increased with SIVE. In SIVE animals, soluble CD163 correlated with CD163(+) macrophage recruitment (P = 0.02). Most perivascular macrophages that comprise SIVE lesions and multinucleated giant cells are present in the CNS early, before SIVE lesions are formed. Most SIV-infected macrophages traffic to the CNS terminally with AIDS.
Collapse
Affiliation(s)
- Brian T Nowlin
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Tricia H Burdo
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana
| | | |
Collapse
|
74
|
Duan M, Yao H, Cai Y, Liao K, Seth P, Buch S. HIV-1 Tat disrupts CX3CL1-CX3CR1 axis in microglia via the NF-κBYY1 pathway. Curr HIV Res 2015; 12:189-200. [PMID: 24862326 DOI: 10.2174/1570162x12666140526123119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 11/22/2022]
Abstract
Microglia are critical for the pathogenesis of HIV-associated dementia not only by acting as conduits of viral entry but also as reservoirs for productive and latent virus infection, and as producers of neurotoxins. Interaction between CX3CL1 (fractalkine) and FKN receptor (CX3CR1) is highly functional in the brain, and is known to regulate a complex network of paracrine and autocrine interactions between neurons and microglia. The aim of the present study was to determine which extent of HIV-1 Tat protein causes the alteration of CX3CR1 expression and to investigate the regulatory mechanism for CX3CR1 expression. Here we showed that exposure of primary microglia and BV2 cells to exogenous Tat protein resulted in down-regulation of CX3CR1 mRNA and protein expression, with a concomitant induction of proinflammatory responses. Next, we further showed that NF-κB activation by Tat treatment negatively regulated CX3CR1 expression. Since a YY1 binding site ~10kb upstream of CX3CR1 promoter was predicted in rats, mice and humans, the classical NF-κB-YY1 regulatory pathway was considered. Our findings indicated that Tat repressed CX3CR1 expression via NF-κB-YY1 regulatory pathway. To gain insight into the effect of Tat on CX3CL1-CX3CR1 communication, calcium mobilization, MAPK activation and microglial migration, respectively, were tested in microglial cells after successive treatment with Tat and CX3CL1. The results suggested that Tat disrupted the responses of microglia to CX3CL1. Taken together, these results demonstrate that HIV-1 Tat protein suppresses CX3CR1 expression in microglia via NF-κB-YY1 pathway and attenuates CX3CL1-induced functional response of microglia.
Collapse
Affiliation(s)
| | | | | | | | | | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
75
|
Carvallo L, Lopez L, Che FY, Lim J, Eugenin EA, Williams DW, Nieves E, Calderon TM, Madrid-Aliste C, Fiser A, Weiss L, Angeletti RH, Berman JW. Buprenorphine decreases the CCL2-mediated chemotactic response of monocytes. THE JOURNAL OF IMMUNOLOGY 2015; 194:3246-58. [PMID: 25716997 DOI: 10.4049/jimmunol.1302647] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite successful combined antiretroviral therapy, ∼ 60% of HIV-infected people exhibit HIV-associated neurocognitive disorders (HAND). CCL2 is elevated in the CNS of infected people with HAND and mediates monocyte influx into the CNS, which is critical in neuroAIDS. Many HIV-infected opiate abusers have increased neuroinflammation that may augment HAND. Buprenorphine is used to treat opiate addiction. However, there are few studies that examine its impact on HIV neuropathogenesis. We show that buprenorphine reduces the chemotactic phenotype of monocytes. Buprenorphine decreases the formation of membrane projections in response to CCL2. It also decreases CCL2-induced chemotaxis and mediates a delay in reinsertion of the CCL2 receptor, CCR2, into the cell membrane after CCL2-mediated receptor internalization, suggesting a mechanism of action of buprenorphine. Signaling pathways in CCL2-induced migration include increased phosphorylation of p38 MAPK and of the junctional protein JAM-A. We show that buprenorphine decreases these phosphorylations in CCL2-treated monocytes. Using DAMGO, CTAP, and Nor-BNI, we demonstrate that the effect of buprenorphine on CCL2 signaling is opioid receptor mediated. To identify additional potential mechanisms by which buprenorphine inhibits CCL2-induced monocyte migration, we performed proteomic analyses to characterize additional proteins in monocytes whose phosphorylation after CCL2 treatment was inhibited by buprenorphine. Leukosialin and S100A9 were identified and had not been shown previously to be involved in monocyte migration. We propose that buprenorphine limits CCL2-mediated monocyte transmigration into the CNS, thereby reducing neuroinflammation characteristic of HAND. Our findings underscore the use of buprenorphine as a therapeutic for neuroinflammation as well as for addiction.
Collapse
Affiliation(s)
- Loreto Carvallo
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Lillie Lopez
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Fa-Yun Che
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jihyeon Lim
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Eliseo A Eugenin
- Public Health Research Institute, Newark, NJ 07103; Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ 07103
| | - Dionna W Williams
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Edward Nieves
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Carlos Madrid-Aliste
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Louis Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ruth Hogue Angeletti
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
76
|
Singh VB, Wooten AK, Jackson JW, Maggirwar SB, Kiebala M. Investigating the role of ankyrin-rich membrane spanning protein in human immunodeficiency virus type-1 Tat-induced microglia activation. J Neurovirol 2015; 21:186-98. [PMID: 25636783 DOI: 10.1007/s13365-015-0318-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
Long-term persistence of human immunodeficiency virus type-1 (HIV) in the central nervous system (CNS) results in mild to severe neurocognitive impairment in a significant proportion of the HIV-infected population. These neurological deficits are known as HIV-associated neurocognitive disorders (HAND). Microglia are CNS-resident immune cells that are directly infected by HIV and consequently secrete proinflammatory molecules that contribute to HIV-induced neuroinflammation. Indeed, the number of activated macrophage and microglia in the brain is more highly correlated with cognitive impairment than the amount of neuronal apoptosis. Ankyrin-rich membrane spanning protein (ARMS/Kidins220) is a multidomain transmembrane protein that is involved with neurotrophin signaling in the CNS. We have previously established the role of ARMS in mediating neuronal survival via a neurotrophin-dependent mechanism. Recent reports also have suggested that ARMS is involved with cell signaling in multiple immune cell types. In this study, we aim to investigate the role of ARMS in HIV Tat-mediated microglial cell activation by employing in vitro methods. Following ARMS depletion by a lentivirus encoding ARMS-specific short hairpin RNA (shRNA), we observed a marked reduction in the HIV Tat-induced proinflammatory response, associated with loss of tumor necrosis factor alpha production and nuclear factor-kappa B (NF-κB) activation. Furthermore, co-immunoprecipitation studies suggested that ARMS physically interacts with inhibitory kappa B kinase subunits in order to facilitate NF-κB activation. Our results establish the role of ARMS in microglial activation by HIV Tat and warrant additional studies to better understand these molecular mechanisms, which may uncover novel therapeutic targets for the treatment of HAND.
Collapse
Affiliation(s)
- Vir B Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 672, Rochester, NY, 14642, USA,
| | | | | | | | | |
Collapse
|
77
|
Sacktor N, Miyahara S, Evans S, Schifitto G, Cohen B, Haughey N, Drewes JL, Graham D, Zink MC, Anderson C, Nath A, Pardo CA, McCarthy S, Hosey L, Clifford D. Impact of minocycline on cerebrospinal fluid markers of oxidative stress, neuronal injury, and inflammation in HIV-seropositive individuals with cognitive impairment. J Neurovirol 2014; 20:620-6. [PMID: 25377444 DOI: 10.1007/s13365-014-0292-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022]
Abstract
Elevated cerebrospinal fluid (CSF) levels of markers of oxidative stress, neuronal injury, and inflammation and decreased neurotransmitter levels have been reported in HIV-associated neurocognitive disorders (HAND). Minocycline may have a neuroprotective effect by inhibiting inducible nitric oxide synthase, which produces nitric oxide, a compound that induces oxygen free radical production. In A5235, "Phase II, Randomized, Placebo-Controlled, Double-Blind Study of Minocycline in the Treatment of HIV-Associated Cognitive Impairment," minocycline was not associated with cognitive improvement, but the effect on the above CSF measures was not examined previously. The objective of this study was to examine the effect of minocycline on markers of oxidative stress, neuronal injury, neurotransmitter levels, and inflammation from CSF in participants in A5235. One hundred seven HIV+ individuals received either minocycline 100 mg or placebo orally every 12 h for 24 weeks. Twenty-one HIV+ individuals received the optional lumbar punctures. Lipid and protein markers of oxidative stress (e.g., ceramides and protein carbonyls), glutamate, neurotransmitter precursors, kynurenine metabolites, neurofilament heavy chain, and inflammatory cytokines were measured in the CSF before and after treatment. The 24-week change in ceramides was larger in a beneficial direction in the minocycline group compared to the placebo group. The two groups did not differ in the 24-week changes for other markers.These results suggest that minocycline may decrease lipid markers of oxidative stress (ceramides) in individuals with HAND; however, an effect of minocycline on other CSF markers was not observed. A larger sample size is needed to further validate these results.
Collapse
Affiliation(s)
- Ned Sacktor
- Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Moran LM, Fitting S, Booze RM, Webb KM, Mactutus CF. Neonatal intrahippocampal HIV-1 protein Tat(1-86) injection: neurobehavioral alterations in the absence of increased inflammatory cytokine activation. Int J Dev Neurosci 2014; 38:195-203. [PMID: 25285887 DOI: 10.1016/j.ijdevneu.2014.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 01/05/2023] Open
Abstract
Pediatric AIDS caused by human immunodeficiency virus type 1 (HIV-1) remains one of the leading worldwide causes of childhood morbidity and mortality. HIV-1 proteins, such as Tat and gp120, are believed to play a crucial role in the neurotoxicity of pediatric HIV-1 infection. Detrimental effects on development, behavior, and neuroanatomy follow neonatal exposure to the HIV-1 viral toxins Tat1-72 and gp120. The present study investigated the neurobehavioral effects induced by the HIV-1 neurotoxic protein Tat1-86, which encodes the first and second exons of the Tat protein. In addition, the potential effects of HIV-1 toxic proteins Tat1-86 and gp120 on inflammatory pathways were examined in neonatal brains. Vehicle, 25 μg Tat1-86 or 100 ng gp120 was injected into the hippocampus of male Sprague-Dawley pups on postnatal day 1 (PD1). Tat1-86 induced developmental neurotoxic effects, as witnessed by delays in eye opening, delays in early reflex development and alterations in prepulse inhibition (PPI) and between-session habituation of locomotor activity. Overall, the neurotoxic profile of Tat1-86 appeared more profound in the developing nervous system in vivo relative to that seen with the first exon encoded Tat1-72 (Fitting et al., 2008b), as noted on measures of eye opening, righting reflex, and PPI. Neither the direct PD1 CNS injection of the viral HIV-1 protein variant Tat1-86, nor the HIV-1 envelope protein gp120, at doses sufficient to induce neurotoxicity, necessarily induced significant expression of the inflammatory cytokine IL-1β or inflammatory factors NF-κβ and I-κβ. The findings agree well with clinical observations that indicate delays in developmental milestones of pediatric HIV-1 patients, and suggest that activation of inflammatory pathways is not an obligatory response to viral protein-induced neurotoxicity that is detectable with behavioral assessments. Moreover, the amino acids encoded by the second tat exon may have unique actions on the developing hippocampus.
Collapse
Affiliation(s)
- Landhing M Moran
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Sylvia Fitting
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Rosemarie M Booze
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Katy M Webb
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Charles F Mactutus
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA.
| |
Collapse
|
79
|
Gaskill PJ, Yano HH, Kalpana GV, Javitch JA, Berman JW. Dopamine receptor activation increases HIV entry into primary human macrophages. PLoS One 2014; 9:e108232. [PMID: 25268786 PMCID: PMC4182469 DOI: 10.1371/journal.pone.0108232] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/25/2014] [Indexed: 01/11/2023] Open
Abstract
Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.
Collapse
Affiliation(s)
- Peter J. Gaskill
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| | - Hideaki H. Yano
- Department of Psychiatry and Pharmacology, Columbia University, New York, New York, United States of America
| | - Ganjam V. Kalpana
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jonathan A. Javitch
- Department of Psychiatry and Pharmacology, Columbia University, New York, New York, United States of America
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
80
|
Chauhan A, Tikoo A, Patel J, Abdullah AM. HIV-1 endocytosis in astrocytes: a kiss of death or survival of the fittest? Neurosci Res 2014; 88:16-22. [PMID: 25219546 DOI: 10.1016/j.neures.2014.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/23/2022]
Abstract
The brain is a target of HIV-1 and serves as an important viral reservoir. Astrocytes, the most abundant glial cell in the human brain, are involved in brain plasticity and neuroprotection. Several studies have reported HIV-1 infection of astrocytes in cell cultures and infected brain tissues. The prevailing concept is that HIV-1 infection of astrocytes leads to latent infection. Here, we provide our perspective on endocytosis-mediated HIV-1 entry and its fate in astrocytes. Natural entry of HIV-1 into astrocytes occurs via endocytosis. However, endocytosis of HIV-1 in astrocytes is a natural death trap where the majority of virus particles are degraded in endosomes and a few which escape intact lead to successful infection. Thus, regardless of artificial fine-tuning (treatment with cytokines or proinflammatory products) done to astrocytes, HIV-1 does not infect them efficiently unless the viral entry route or the endosomal enzymatic machinery has been manipulated.
Collapse
Affiliation(s)
- Ashok Chauhan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| | - Akshay Tikoo
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Jankiben Patel
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Arwa Mujahid Abdullah
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| |
Collapse
|
81
|
Paris JJ, Fenwick J, McLaughlin JP. Progesterone protects normative anxiety-like responding among ovariectomized female mice that conditionally express the HIV-1 regulatory protein, Tat, in the CNS. Horm Behav 2014; 65:445-53. [PMID: 24726788 PMCID: PMC4067900 DOI: 10.1016/j.yhbeh.2014.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/21/2014] [Accepted: 04/02/2014] [Indexed: 02/03/2023]
Abstract
Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17β-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4mg/kg), but not 17β-estradiol (0.09mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17β-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice.
Collapse
Affiliation(s)
- Jason J Paris
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA.
| | - Jason Fenwick
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA.
| | - Jay P McLaughlin
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA.
| |
Collapse
|
82
|
LIN28 expression in rat spinal cord after injury. Neurochem Res 2014; 39:862-74. [PMID: 24700281 PMCID: PMC4000414 DOI: 10.1007/s11064-014-1278-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/19/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
LIN28, an RNA-binding protein, is known to be involved in the regulation of many cellular processes, such as embryonic stem cell proliferation, cell fate succession, developmental timing, and oncogenesis. However, its expression and function in central nervous system still unclear. In this study, we performed an acute spinal cord contusion injury (SCI) model in adult rats and investigated the dynamic changes of LIN28 expression in spinal cord. Western blot and immunohistochemistry analysis revealed that LIN28 was present in normal spinal cord. It gradually increased, reached a peak at 3 day, and then nearly declined to the basal level at 14 days after SCI. Double immunofluorescence staining showed that LIN28 immunoreactivity was found in neurons, astrocytes and a handful of microglia. Interestingly, LIN28 expression was increased predominantly in astrocytes but not in neurons. Moreover, the colocalization of LIN28 and proliferating cell nuclear antigen was detected after injury. Western blot showed that LIN28 participated in lipopolysaccharide (LPS) induced astrocytes inflammatory responses by NF-κB signaling pathway. These results suggested that LIN28 may be involved in the pathologic process of SCI, and further research is needed to have a good understanding of its function and mechanism.
Collapse
|
83
|
Cytotoxic CD8+ T Cells Stimulate Hematopoietic Progenitors by Promoting Cytokine Release from Bone Marrow Mesenchymal Stromal Cells. Cell Stem Cell 2014; 14:460-72. [DOI: 10.1016/j.stem.2014.01.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 11/17/2013] [Accepted: 12/26/2013] [Indexed: 12/22/2022]
|
84
|
Vance DE, Randazza J, Fogger S, Slater LZ, Humphrey SC, Keltner NL. An overview of the biological and psychosocial context surrounding neurocognition in HIV. J Am Psychiatr Nurses Assoc 2014; 20:117-24. [PMID: 24717830 DOI: 10.1177/1078390314527549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of a psychiatric illness increases the risk of exposure to HIV and disease complications; however, effective treatments have substantially reduced mortality in adults with HIV. Despite such effective treatments, nearly half of adults with HIV experience neurocognitive deficits that can affect job-related and everyday tasks, thus reducing their quality of life. This article provides an overview of the context in which neurocognitive deficits occur in adults with HIV; it also includes implications for treatment and mitigation of such neurocognitive deficits. Understanding the underlying neurocognitive changes related to HIV can help psychiatric nurses provide better care to patients that may improve medication compliance and everyday functioning.
Collapse
Affiliation(s)
- David E Vance
- David E. Vance, PhD, MGS, The University of Alabama School of Nursing, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
85
|
Moritani T, Capizzano A, Kirby P, Policeni B. Viral Infections and White Matter Lesions. Radiol Clin North Am 2014; 52:355-82. [DOI: 10.1016/j.rcl.2013.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
86
|
McLane VD, Cao L, Willis CL. Morphine increases hippocampal viral load and suppresses frontal lobe CCL5 expression in the LP-BM5 AIDS model. J Neuroimmunol 2014; 269:44-51. [PMID: 24629894 DOI: 10.1016/j.jneuroim.2014.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/21/2014] [Accepted: 02/22/2014] [Indexed: 01/26/2023]
Abstract
Chronic opiate abuse accelerates the development of cognitive deficits in human immunodeficiency virus (HIV)-1 patients. To investigate morphine's effects on viral infection of the central nervous system, we applied chronic morphine treatment to the LP-BM5 murine acquired immunodeficiency syndrome (MAIDS) model. LP-BM5 infection induces proinflammatory cytokine/chemokine production, correlating to increased blood-brain barrier permeability. Morphine treatment significantly increased LP-BM5 viral load in the hippocampus, but not in the frontal lobe. Morphine reduced the chemokine CCL5 to non-infected levels in the frontal lobe, but not in the hippocampus. These data indicate a region-specific mechanism for morphine's effects on virally-induced neurocognitive deficits.
Collapse
Affiliation(s)
- Virginia D McLane
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04473, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA.
| | - Ling Cao
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| | - Colin L Willis
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| |
Collapse
|
87
|
Harbison C, Zhuang K, Gettie A, Blanchard J, Knight H, Didier P, Cheng-Mayer C, Westmoreland S. Giant cell encephalitis and microglial infection with mucosally transmitted simian-human immunodeficiency virus SHIVSF162P3N in rhesus macaques. J Neurovirol 2014; 20:62-72. [PMID: 24464410 DOI: 10.1007/s13365-013-0229-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/17/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
Neurocognitive disorders such as dementia and cognitive/motor impairments are among the most significant complications associated with human immunodeficiency virus (HIV) infection, especially in aging populations, yet the pathogenesis remains poorly understood. Activated macrophages and microglia in white matter along with the hallmark multinucleated giant cells are prominent features of HIV encephalitis (HIVE) and of several simian immunodeficiency virus (SIV) models. While infected microglia have been demonstrated in HIVE, this feature is not routinely seen in experimental infections in rhesus macaques using SIV or chimeric simian/HIV (SHIV) strains, limiting utility in HIV-1 pathogenesis and treatment studies. Here, 50 rhesus macaques were inoculated with the CCR5 (R5)-tropic SHIVSF162P3N virus by one of three routes: intravenously (n = 9), intrarectally (n = 17), or intravaginally (n = 24). Forty-three monkeys became viremic, 26 developed AIDS, and 7 (7/26, 27 %) developed giant cell SIV encephalitis (SIVE). Rapid progressor phenotype was evident in five of seven (71 %) macaques with SIVE, and expansion to utilize the CXCR4 coreceptor (X4 coreceptor switch) was observed in four out of seven (57 %). SIVE lesions were present in gray and white matter in the cerebrum, cerebellum, thalamus, and brain stem of affected animals. Lesions were composed of virally infected CD68(+), CD163(+), and HLA-DR(+) macrophages accompanied by white matter damage, necrosis, and astroglial and microglial activation. Importantly, microglial infection was observed, which makes R5 SHIVSF162P3N infection of macaques an attractive animal model not only to study transmission and HIVE pathogenesis but also to conduct preclinical evaluation of therapeutic interventions aimed at eradicating HIV-1 from the central nervous system (CNS).
Collapse
Affiliation(s)
- Carole Harbison
- Division of Comparative Medicine and Pathology, New England Primate Research Center, Harvard Medical School, Southborough, MA, 01772, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Carrithers MD. Innate immune viral recognition: relevance to CNS infections. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:215-23. [PMID: 25015487 DOI: 10.1016/b978-0-444-53488-0.00009-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Innate immune responses mediated by mononuclear phagocytes represent the initial host response to acute viral infection. PRRs, including TLRs, retinoic RLRs,and NOD-like receptors, recognize viral nucleic acid and localized injury signals to initiate proinflammatory responses and activation of adaptive immunity. These responses are host- and viral-dependent. Neurotropic viruses, such as HSV, West Nile virus, and HIV activate and evade innate immune signaling mechanisms by distinct mechanisms. These highly complex pathogen-host interactions determine establishment of infection, severity of clinical disease, development of chronic inflammatory processes, and success of vaccination strategies.
Collapse
Affiliation(s)
- Michael D Carrithers
- Neurology Service, William S. Middleton Memorial Veterans Hospital, and Department of Neurology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
89
|
Gorry PR, Francella N, Lewin SR, Collman RG. HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies. J Leukoc Biol 2014; 95:71-81. [PMID: 24158961 PMCID: PMC3868190 DOI: 10.1189/jlb.0713368] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023] Open
Abstract
Myeloid cells residing in the CNS and lymphoid tissues are targets for productive HIV-1 replication, and their infection contributes to the pathological manifestations of HIV-1 infection. The Envs can adopt altered configurations to overcome entry restrictions in macrophages via a more efficient and/or altered mechanism of engagement with cellular receptors. This review highlights evidence supporting an important role for macrophages in HIV-1 pathogenesis and persistence, which need to be considered for strategies aimed at achieving a functional or sterilizing cure. We also highlight that the molecular mechanisms underlying HIV-1 tropism for macrophages are complex, involving enhanced and/or altered interactions with CD4, CCR5, and/or CXCR4, and that the nature of these interactions may depend on the anatomical location of the virus.
Collapse
Affiliation(s)
- Paul R. Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia; and
| | - Nicholas Francella
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sharon R. Lewin
- Center for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ronald G. Collman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
90
|
Ray LA, Roche DJO, Heinzerling K, Shoptaw S. Opportunities for the development of neuroimmune therapies in addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:381-401. [PMID: 25175870 DOI: 10.1016/b978-0-12-801284-0.00012-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies have implicated neuroinflammatory processes in the pathophysiology of various psychiatric conditions, including addictive disorders. Neuroimmune signaling represents an important and relatively poorly understood biological process in drug addiction. The objective of this review is to update the field on recent developments in neuroimmune therapies for addiction. First, we review studies of neuroinflammation in relation to alcohol and methamphetamine dependence followed by a section on neuroinflammation and accompanying neurocognitive dysfunction in HIV infection and concomitant substance abuse. Second, we provide a review of pharmacotherapies with neuroimmune properties and their potential development for the treatment of addictions. Pharmacotherapies covered in this review include ibudilast, minocycline, doxycycline, topiramate, indomethacin, rolipram, anakinra (IL-1Ra), peroxisome proliferator-activated receptor agonists, naltrexone, and naloxone. Lastly, summary and future directions are provided with recommendations for how to efficiently translate preclinical findings into clinical studies that can ultimately lead to novel and more effective pharmacotherapies for addiction.
Collapse
Affiliation(s)
- Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA.
| | - Daniel J O Roche
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Keith Heinzerling
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Steve Shoptaw
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
91
|
Darbinian N, Khalili K, Amini S. Neuroprotective activity of pDING in response to HIV-1 Tat. J Cell Physiol 2013; 229:153-61. [PMID: 23955241 DOI: 10.1002/jcp.24392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/17/2013] [Indexed: 12/13/2022]
Abstract
Although neurons are not productively infected with HIV-1, neuronal injury and death are frequently seen in the brains of AIDS patients with neurological and neurocognitive disorders. Evidently, viral proteins including Tat and cellular inflammatory factors released by activated and/or infected microglia, macrophages, and astrocytes contribute to neuronal cell death. Several studies have demonstrated that HIV-1 associated neuronal cell injury is mediated by dysregulation of signaling pathways that are controlled, in part, by a class of serine/threonine kinases. In this study, we demonstrate that pDING, a novel plant-derived phosphate binding protein has the capacity to reduce the severity of injury and death caused by HIV-1 and its neurotoxic Tat protein. We demonstrate that pDING, also called p27SJ/p38SJ, protects cells from the loss of neuronal processes induced by Tat and promotes neuronal outgrowth after Tat-mediated injury. Further, expression of pDING prevents Tat-induced oxidative stress and mitochondrial permeability. With its profound phosphatase activity, pDING controls the activity of several kinases including MAPK, Cdk5, and their downstream target protein, MEF2, which is implicated in neuronal cell protection. Our results show that expression of pDING in neuronal cells diminishes the level of hyperphosphorylated forms of Cdk5 and MEF2 caused by Tat and the other neurotoxic agents that are secreted by the HIV-1 infected cells. These observations suggest that pDING, through its phosphatase activity, has the ability to manipulate the state of phosphorylation and activity of several factors involved in neuronal cell health in response to HIV-1.
Collapse
Affiliation(s)
- Nune Darbinian
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
92
|
Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B. Genetic variation and HIV-associated neurologic disease. Adv Virus Res 2013; 87:183-240. [PMID: 23809924 DOI: 10.1016/b978-0-12-407698-3.00006-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV, coupled with the evolution of genetically isolated populations in the CNS, is responsible for poor prognosis in patients with AIDS, warranting further investigation and possible additions to the current therapeutic strategy. This chapter reviews key advances in the field of neuropathogenesis and studies that have highlighted how molecular diversity within the HIV genome may impact HIV-associated neurologic disease. We also discuss the possible functional implications of genetic variation within the viral promoter and possibly other regions of the viral genome, especially in the cells of monocyte-macrophage lineage, which are arguably key cellular players in HIV-associated CNS disease.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Bryan P Irish
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
93
|
Levine AJ, Horvath S, Miller EN, Singer EJ, Shapshak P, Baldwin GC, Martínez-Maza O, Witt MD, Langfelder P. Transcriptome analysis of HIV-infected peripheral blood monocytes: gene transcripts and networks associated with neurocognitive functioning. J Neuroimmunol 2013; 265:96-105. [PMID: 24094461 DOI: 10.1016/j.jneuroim.2013.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/15/2013] [Accepted: 09/21/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Immunologic dysfunction, mediated via monocyte activity, has been implicated in the development of HIV-associated neurocognitive disorder (HAND). We hypothesized that transcriptome changes in peripheral blood monocytes relate to neurocognitive functioning in HIV+ individuals, and that such alterations could be useful as biomarkers of worsening HAND. METHODS mRNA was isolated from the monocytes of 86 HIV+ adults and analyzed with the Illumina HT-12 v4 Expression BeadChip. Neurocognitive functioning, HAND diagnosis, and other clinical and virologic variables were determined. Data were analyzed using standard expression analysis and weighted gene co-expression network analysis (WGCNA). RESULTS Neurocognitive functioning was correlated with multiple gene transcripts in the standard expression analysis. WGCNA identified two nominally significant co-expression modules associated with neurocognitive functioning, which were enriched with genes involved in mitotic processes and translational elongation. CONCLUSIONS Multiple modified gene transcripts involved in inflammation, cytoprotection, and neurodegeneration were correlated with neurocognitive functioning. The associations were not strong enough to justify their use as biomarkers of HAND; however, the associations of two co-expression modules with neurocognitive functioning warrant further exploration.
Collapse
Affiliation(s)
- Andrew J Levine
- Department of Neurology, National Neurological AIDS Bank, David Geffen School of Medicine, University of California, Los Angeles, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
STAT1 regulates human glutaminase 1 promoter activity through multiple binding sites in HIV-1 infected macrophages. PLoS One 2013; 8:e76581. [PMID: 24086752 PMCID: PMC3782442 DOI: 10.1371/journal.pone.0076581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/25/2013] [Indexed: 01/14/2023] Open
Abstract
Mononuclear phagocytes (MP, macrophages and microglia), the main targets of HIV-1 infection in the brain, play a pathogenic role in HIV-associated neurocognitive disorders (HAND) through the production and release of various soluble neurotoxic factors including glutamate. We have previously reported that glutaminase (GLS), the glutamate-generating enzyme, is upregulated in HIV-1 infected MP and in the brain tissues of HIV dementia individuals, and that HIV-1 or interferon-α (IFN-α) regulates human glutaminase 1 (GLS1) promoter through signal transducer and activator of transcription 1 (STAT1) phosphorylation in macrophages. However, there are multiple putative STAT1 binding sites in human GLS1 promoter, the exact molecular mechanism of how HIV-1 or IFN-α regulates human GLS1 promoter remains unclear. To further study the function of the putative STAT1 binding sites, we mutated the sequence of each binding site to ACTAGTCTC and found that six mutants (mut 1,3,4,5,7,8) had significantly higher promoter activity and two mutants (mut 2 and mut 6) completely lost the promoter activity compared with the wild type. To determine whether sites 2 and 6 could interfere with other inhibitory sites, particularly the nearby inhibitory sites 3 and 5, we made double mutants dmut 2/3 and dmut 5/6, and found that both the double mutants had significantly higher activity than the wild type, indicating that sites 3 and 5 are critical inhibitory elements, while sites 2 and 6 are excitatory elements. ChIP assay verified that STAT1 could bind with sites 2/3 and 5/6 within human GLS1 promoter in IFN-α stimulated or HIV-1-infected monocyte-derived macrophages. Interestingly, we found that rat Gls1 promoter was regulated through a similar way as human GLS1 promoter. Together, our data identified critical elements that regulate GLS1 promoter activity.
Collapse
|
95
|
Cary DC, Clements JE, Henderson AJ. RON receptor tyrosine kinase, a negative regulator of inflammation, is decreased during simian immunodeficiency virus-associated central nervous system disease. THE JOURNAL OF IMMUNOLOGY 2013; 191:4280-7. [PMID: 24043899 DOI: 10.4049/jimmunol.1300797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expressed on tissue-resident macrophages, the receptor tyrosine kinase, recepteur d'orgine nantais (RON), functions to maintain inflammation homeostasis by activating genes that promote wound repair and resolve inflammation while repressing genes that perpetuate tissue damage and cell death. Chronic HIV-1 infection is associated with dysregulated inflammation, and we hypothesize that diminished RON expression contributes to the development of end organ diseases such as HIV-1-associated CNS disease. To explore RON function in vivo, we used CNS tissue from a well-characterized SIV macaque model and examined the temporal regulation of RON in the brain during the course of infection. Following prolonged SIV infection, RON expression was inversely correlated with the development of CNS disease; RON was maintained in animals that did not develop CNS lesions and was reduced in SIV-infected macaques that demonstrated moderate to severe inflammatory lesions. Arginase-1 expression was reduced in the brain during late infection, whereas expression of the inflammatory genes, IL-12p40 and TNF-α, was elevated. To validate a role for RON in regulating HIV-1 in primary cells, we used human tissue-resident macrophages isolated from tonsil as a tractable cell model. RON signaling in tissue-resident macrophages, both ligand dependent and independent, limited HIV-1 replication. Furthermore, prolonged HIV-1 infection in vitro resulted in downregulation of RON. We propose a model in which, following chronic HIV-1 infection in the brain, RON expression is decreased, genes that quell inflammation are repressed, and inflammatory mediators are induced to promote tissue inflammation.
Collapse
Affiliation(s)
- Daniele C Cary
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | | | | |
Collapse
|
96
|
Xia J, Xiong H. Neuropathogenesis of HIV-1-associated neurocognitive disorders: a possible involvement of D-serine. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2013; 5:137-147. [PMID: 24044033 PMCID: PMC3773073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
A unique feature of N-methyl-D-aspartate receptors (NMDARs) that distinguishes them from other ionic receptors is that their activation requires more than one agonist to bind simultaneously to distinct binding sites on the receptor. D-serine, a co-agonist binding to the glycine site of NMDARs, has been implicated in several NMDAR-dependent physiological processes, and altered D-serine levels under certain pathophysiological conditions contribute to neural dysfunction via NMDARs in the central nervous system. Entry of HIV-1 in the brain causes neuronal injury leading to cognitive, behavioral and motor impairments known as HIV-associated neurocognitive disorders (HAND). As HIV-1 does not infect neurons, neuronal injury is believed to be primarily mediated by an indirect mechanism,that is, HIV-1-infected and/or immune-activated macrophages and microglial cells release soluble molecules leading to neuronal injury or death. Among the soluble factors is D-serine. In this article we try to address recent progresses on the role D-serine might play in the pathogenesis of neurodegenerative disorders with a particular emphasis of the involvement of D-serine in HIV-1-associated neurotoxicity.
Collapse
Affiliation(s)
- Jianxun Xia
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE 68198-5880, USA
| | | |
Collapse
|
97
|
Tovar-Y-Romo LB, Kolson DL, Bandaru VVR, Drewes JL, Graham DR, Haughey NJ. Adenosine triphosphate released from HIV-infected macrophages regulates glutamatergic tone and dendritic spine density on neurons. J Neuroimmune Pharmacol 2013; 8:998-1009. [PMID: 23686368 PMCID: PMC3740066 DOI: 10.1007/s11481-013-9471-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022]
Abstract
Despite wide spread use of combination antiretroviral therapy (cART) in developed countries, approximately half of HIV-infected patients will develop impairments in cognitive function. Accumulating evidence suggests that neuronal dysfunction can be precipitated by HIV-infection of macrophages by mechanisms that involve alterations in innate and adaptive immune responses. HIV-infection of macrophages is known to increase the release of soluble neurotoxins. However, the composition of products released from infected macrophages is complex and not fully known. In this study we provide evidence that ATP and other immuno-/neuromodulatory nucleotides are exported from HIV-infected macrophages and modify neuronal structure. Supernatants collected from HIV-infected macrophages (HIV/MDM) contained large amounts of ATP, ADP, AMP and small amounts of adenosine, in addition to glutamate. Dilutions of these supernatants that were sub-threshold for glutamate receptor activation evoked rapid calcium flux in neurons that were completely inhibited by the enzymatic degradation of ATP, or by blockade of calcium permeable purinergic receptors. Applications of these highly diluted HIV/MDM onto neuronal cultures increased the amount of extracellular glutamate by mechanisms dependent on purinergic receptor activation, and downregulated spine density on neurons by mechanisms dependent on purinergic and glutamate receptor activation. We conclude from these data that ATP released from HIV-infected macrophages downregulates dendritic spine density on neurons by a mechanism that involves purinergic receptor mediated modulation of glutamatergic tone. These data suggest that neuronal function may be depressed in HIV infected individuals by mechanisms that involve macrophage release of ATP that triggers secondary effects on glutamate handling.
Collapse
Affiliation(s)
- Luis B Tovar-Y-Romo
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Pathology 517, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
98
|
Spitsin S, Stevens KE, Douglas SD. Expression of substance P, neurokinin-1 receptor and immune markers in the brains of individuals with HIV-associated neuropathology. J Neurol Sci 2013; 334:18-23. [PMID: 23916293 DOI: 10.1016/j.jns.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
The tachykinin neuropeptide substance P (SP) has an important signaling role in both the nervous and the immune systems. Two naturally occurring variants of the neurokinin-1 receptor (NK1R) mediate the effects of SP, full-length receptor (NK1R-F) and a truncated form (NK1R-T) that lacks 96 amino acid residues at the C-terminus. We previously reported decreased expression of the NK1R-F in the CNS of HIV-positive individuals in comparison to HIV-negative control subjects. There were no differences in the expression of the NK1R-T in the same groups. In the current study, we quantified the expressions of SP precursor mRNA preprotachykinin (TAC1), NK1R (full and truncated forms), viral load (HIV-gag) and several proinflammatory and immune markers (CD4, CCR5, CXCR4, fractalkine, IL-6, IL-10, CCL2, CCL20 and CD163) in the frontal cortex of autopsied brains from HIV-1-positive individuals with or without HIV-associated neuropathology. The expressions of SP and, to lesser extent, NK1R-F were decreased while the expressions of CXCR4, CCR5 and CCL2 were increased in CNS of individuals with HIV-associated neuropathology. There was no change in HIV loads associated with neuropathology; however, we found a positive correlation between viral loads and the expression of haptoglobin-hemoglobin scavenger receptor CD163. An analysis of CSF from corresponding samples demonstrated an increase in proinflammatory markers (CCL2 MIP-1α and MIP-1β) associated with neuropathology. Although our data confirm the overall inflammatory nature of HIV-associated neuropathology, we observed a decrease in the expression of SP and NK1R-F, which is also associated with other forms of neuroinflammation.
Collapse
Affiliation(s)
- Sergei Spitsin
- Division of Allergy and Immunology, Research Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | |
Collapse
|
99
|
Jones MV, Nguyen TT, Ewaleifoh O, Lebson L, Whartenby KA, Griffin JW, Calabresi PA. Accelerated axon loss in MOG35-55 experimental autoimmune encephalomyelitis (EAE) in myelin-associated glycoprotein-deficient (MAGKO) mice. J Neuroimmunol 2013; 262:53-61. [PMID: 23899666 DOI: 10.1016/j.jneuroim.2013.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/10/2013] [Accepted: 06/20/2013] [Indexed: 01/16/2023]
Abstract
Myelin-associated glycoprotein (MAG) expressed by oligodendrocytes promotes the stability of axons but also impedes neural repair by inhibiting axon extension through lesioned white matter. We previously reported exacerbated axon losses in MAGKO as compared to wild type mice, 30days into experimental autoimmune encephalitis (EAE). Here, we report the time course of axon losses in EAE and show this occurs as early as 7days post-immunization, confirming MAG is protective against immune-mediated axon transection events. MAGKO mice also exhibit increased microglial activation prior to EAE, which is not seen in B4galnt1KO mice that also have axon loss, suggesting that the microglial activation may be a consequence of the loss of MAG inhibitory influence, and not a simple result of axonal degeneration.
Collapse
MESH Headings
- Animals
- Axons/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Male
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/metabolism
- Microglia/pathology
- Myelin-Associated Glycoprotein/deficiency
- Time Factors
Collapse
Affiliation(s)
- Melina V Jones
- Johns Hopkins University, Department of Neurology, Room 625, 600N. Wolfe Street, Baltimore 21287, MD, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Williams DW, Calderon TM, Lopez L, Carvallo-Torres L, Gaskill PJ, Eugenin EA, Morgello S, Berman JW. Mechanisms of HIV entry into the CNS: increased sensitivity of HIV infected CD14+CD16+ monocytes to CCL2 and key roles of CCR2, JAM-A, and ALCAM in diapedesis. PLoS One 2013; 8:e69270. [PMID: 23922698 PMCID: PMC3724935 DOI: 10.1371/journal.pone.0069270] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/06/2013] [Indexed: 11/19/2022] Open
Abstract
As HIV infected individuals live longer, the prevalence of HIV associated neurocognitive disorders is increasing, despite successful antiretroviral therapy. CD14(+)CD16(+) monocytes are critical to the neuropathogenesis of HIV as they promote viral seeding of the brain and establish neuroinflammation. The mechanisms by which HIV infected and uninfected monocytes cross the blood brain barrier and enter the central nervous system are not fully understood. We determined that HIV infection of CD14(+)CD16(+) monocytes resulted in their highly increased transmigration across the blood brain barrier in response to CCL2 as compared to uninfected cells, which did not occur in the absence of the chemokine. This exuberant transmigration of HIV infected monocytes was due, at least in part, to increased CCR2 and significantly heightened sensitivity to CCL2. The entry of HIV infected and uninfected CD14(+)CD16(+) monocytes into the brain was facilitated by significantly increased surface JAM-A, ALCAM, CD99, and PECAM-1, as compared to CD14(+) cells that are CD16 negative. Upon HIV infection, there was an additional increase in surface JAM-A and ALCAM on CD14(+)CD16(+) monocytes isolated from some individuals. Antibodies to ALCAM and JAM-A inhibited the transmigration of both HIV infected and uninfected CD14(+)CD16(+) monocytes across the BBB, demonstrating their importance in facilitating monocyte transmigration and entry into the brain parenchyma. Targeting CCR2, JAM-A, and ALCAM present on CD14(+)CD16(+) monocytes that preferentially infiltrate the CNS represents a therapeutic strategy to reduce viral seeding of the brain as well as the ongoing neuroinflammation that occurs during HIV pathogenesis.
Collapse
Affiliation(s)
- Dionna W. Williams
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tina M. Calderon
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Lillie Lopez
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Loreto Carvallo-Torres
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Peter J. Gaskill
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Eliseo A. Eugenin
- Public Health Research Institute, University of Medicine and Dentistry, New Jersey, Newark, New Jersey, United States of America
- Department of Immunology and Molecular Genetics, University of Medicine and Dentistry, New Jersey, Newark, New Jersey, United States of America
| | - Susan Morgello
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Pathology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Joan W. Berman
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|