51
|
Madhuchani D, Seneviratne SN, Ward LM. Bone health in childhood and adolescence: an overview on dual-energy X-ray absorptiometry scanning, fracture surveillance and bisphosphonate therapy for low-middle-income countries. Front Endocrinol (Lausanne) 2023; 14:1082413. [PMID: 37139332 PMCID: PMC10150014 DOI: 10.3389/fendo.2023.1082413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/16/2023] [Indexed: 05/05/2023] Open
Abstract
Bone accrual in childhood determines bone health in later life. Loss of bone strength in early life can lead to increased morbidity and reduced quality of life in childhood and adolescence. Increased availability of assessment tools and bisphosphonate therapy, together with increased awareness on the significance of fracture history and risk factors, have led to greater opportunities, to improve detection and optimize management of children and adolescents with bone fragility globally, including those in lower resource settings. Bone mineral density z-scores and bone mineral content are surrogate measures of bone strength, which can be measured by dual-energy X-ray absorptiometry (DXA), in growing individuals. DXA can aid in the diagnosis and management of primary and secondary bone fragility disorders in childhood. DXA helps evaluate children with clinically significant fractures, and monitor those with bone fragility disorders, or at high risk for compromised bone strength. Obtaining DXA images can however be challenging, especially in younger children, due to difficulty in positioning and movement artefacts, while paediatric DXA interpretation can be confounded by effects of growth and puberty. Furthermore, access to DXA facilities as well as appropriate paediatric reference norms and expertise for interpretation, may not be easily available especially in lower resource settings. Pediatric bone experts are now placing increasing emphasis on the fracture phenotype and clinical context to diagnose osteoporosis over bone mineral density (BMD) by DXA. Low trauma vertebral fractures are now recognized as a hallmark of bone fragility, and spinal fracture surveillance by either conventional lateral thoracolumbar radiographs or vertebral fracture assessment by DXA is gaining increasing importance in diagnosing childhood osteoporosis, and initiating bone protective therapy. Furthermore, it is now understood that even a single, low-trauma long bone fracture can signal osteoporosis in those with risk factors for bone fragility. Intravenous bisphosphonate therapy is the mainstay of treatment for childhood bone fragility disorders. Other supportive measures to improve bone strength include optimizing nutrition, encouraging weight bearing physical activity within the limits of the underlying condition, and treating any associated endocrinopathies. With this paradigm shift in childhood osteoporosis evaluation and management, lack of DXA facilities to assess BMD at baseline and/or provide serial monitoring is not a major barrier for initiating IV bisphosphonate therapy in children in whom it is clinically indicated and would benefit from its use. DXA is useful, however, to monitor treatment response and optimal timing for treatment discontinuation in children with transient risk factors for osteoporosis. Overall, there is lack of awareness and paucity of guidelines on utilizing and adopting available resources to manage paediatric bone disorders optimally in lower-resource settings. We provide an evidence-based approach to the assessment and management of bone fragility disorders in children and adolescents, with appropriate considerations for lower resource settings including LMIC countries.
Collapse
Affiliation(s)
| | - Sumudu Nimali Seneviratne
- Department of Paediatrics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- *Correspondence: Sumudu Nimali Seneviratne,
| | - Leanne M. Ward
- Department of Pediatrics, University of Ottawa and Division of Endocrinology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
52
|
Bergamo RR, Páscoa MA, Hespanhol JE, de Moraes AM, Guerra-Júnior G. Positive association of lean mass and negative association of protein intake on bone mass and bone geometry of adolescent soccer players. Nutrition 2023; 105:111857. [PMID: 36308916 DOI: 10.1016/j.nut.2022.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the association of food consumption and body composition on bone parameters in adolescent soccer players. METHODS There were 148 male soccer players 12 to 18 y who participated in the study. Body composition was assessed by dual energy x-ray absorptiometry, comprising bone mineral density (BMD) and bone mineral content (BMC) of total body without head (TBLH), lumbar spine (L1-L4), and right femoral neck (RFN). The bone geometry variables measured were femoral strength index (FSI), buckling ratio (BR), section modulus (Z), cross-sectional moment of inertia (CSMI), and cross-sectional area (CSA). Food intake was analyzed using the 24-h food recall. Somatic maturation was estimated by the peak height velocity equation. For the statistical analysis, the stepwise multiple linear regression was used, with P < 0.05. RESULTS Regarding food consumption, there was a high protein intake and low calcium intake. Lean mass was a predictor of BMC of TBLH (R2 = 0.524), L1-L4 (R2 = 0.492), and RFN (R2 = 0.405); BMD of L1-L4 (R2 = 0.407) and RFN (R2 = 0.27); Z (R2 = 0.683), CSMI (R2 = 0.630), and CSA (R2 = 0.640). There was a negative correlation between protein intake with bone mass and bone geometry parameters. CONCLUSION In adolescent soccer players, lean mass was a predictor of bone parameters, and high protein intake was negatively associated with bone mass and geometry.
Collapse
Affiliation(s)
- Raiany Rosa Bergamo
- Laboratory of Growth and Development (LabCreD), Pediatrics Research Center (CIPED), Faculty of Medical Sciences (FCM), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil.
| | - Mauro Alexandre Páscoa
- Laboratory of Growth and Development (LabCreD), Pediatrics Research Center (CIPED), Faculty of Medical Sciences (FCM), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | | | - Anderson Marques de Moraes
- Faculty of Physical Education (FEF), Pontifical Catholic University of Campinas (PUCCAMP), Campinas, Sao Paulo, Brazil
| | - Gil Guerra-Júnior
- Laboratory of Growth and Development (LabCreD), Pediatrics Research Center (CIPED), Faculty of Medical Sciences (FCM), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| |
Collapse
|
53
|
Ross J, Bowden MR, Yu C, Diaz-Thomas A. Transition of young adults with metabolic bone diseases to adult care. Front Endocrinol (Lausanne) 2023; 14:1137976. [PMID: 37008909 PMCID: PMC10064010 DOI: 10.3389/fendo.2023.1137976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
As more accurate diagnostic tools and targeted therapies become increasingly available for pediatric metabolic bone diseases, affected children have a better prognosis and significantly longer lifespan. With this potential for fulfilling lives as adults comes the need for dedicated transition and intentional care of these patients as adults. Much work has gone into improving the transitions of medically fragile children into adulthood, encompassing endocrinologic conditions like type 1 diabetes mellitus and congenital adrenal hyperplasia. However, there are gaps in the literature regarding similar guidance concerning metabolic bone conditions. This article intends to provide a brief review of research and guidelines for transitions of care more generally, followed by a more detailed treatment of bone disorders specifically. Considerations for such transitions include final adult height, fertility, fetal risk, heritability, and access to appropriately identified specialists. A nutrient-dense diet, optimal mobility, and adequate vitamin D stores are protective factors for these conditions. Primary bone disorders include hypophosphatasia, X-linked hypophosphatemic rickets, and osteogenesis imperfecta. Metabolic bone disease can also develop secondarily as a sequela of such diverse exposures as hypogonadism, a history of eating disorder, and cancer treatment. This article synthesizes research by experts of these specific disorders to describe what is known in this field of transition medicine for metabolic bone diseases as well as unanswered questions. The long-term objective is to develop and implement strategies for successful transitions for all patients affected by these various conditions.
Collapse
Affiliation(s)
- Jordan Ross
- Division of Pediatric Endocrinology, University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Jordan Ross,
| | - Michelle R. Bowden
- Division of General Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Le Bonheur Children’s Hospital, Memphis, TN, United States
| | - Christine Yu
- Endocrinology Division, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alicia Diaz-Thomas
- Division of Pediatric Endocrinology, University of Tennessee Health Science Center, Memphis, TN, United States
- Le Bonheur Children’s Hospital, Memphis, TN, United States
| |
Collapse
|
54
|
Bezerra A, Freitas L, Maciel L, Fonseca H. Bone Tissue Responsiveness To Mechanical Loading-Possible Long-Term Implications of Swimming on Bone Health and Bone Development. Curr Osteoporos Rep 2022; 20:453-468. [PMID: 36401774 DOI: 10.1007/s11914-022-00758-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE OF REVIEW To revisit the bone tissue mechanotransduction mechanisms behind the bone tissue response to mechanical loading and, within this context, explore the possible negative influence of regular swimming practice on bone health, particularly during the growth and development period. RECENT FINDINGS Bone is a dynamic tissue, responsive to mechanical loading and unloading, being these adaptative responses more intense during the growth and development period. Cross-sectional studies usually report a lower bone mass in swimmers compared to athletes engaged in weigh-bearing sports. However, studies with animal models show contradictory findings about the effect of swimming on bone health, highlighting the need for longitudinal studies. Due to its microgravity characteristics, swimming seems to impair bone mass, but mostly at the lower limbs. It is unkown if there is a causal relationship between swimming and low BMD or if other confounding factors, such as a natural selection whithin the sport, are the cause.
Collapse
Affiliation(s)
- Andréa Bezerra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal.
| | - Laura Freitas
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| | - Leonardo Maciel
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
- Department of Physiotherapy, Federal University of Sergipe, Campus Lagarto, Lagarto, Brazil
| | - Hélder Fonseca
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| |
Collapse
|
55
|
Bim MA, Pinto ADA, de Angelo HCC, Gonzaga I, Guimarães ACDA, Felden ÉPG, de Carvalho WRG, Hind K, Pelegrini A. Relationship between body composition and bone mass in normal-weight and overweight adolescents. PeerJ 2022; 10:e14108. [PMID: 36348662 PMCID: PMC9637351 DOI: 10.7717/peerj.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022] Open
Abstract
Adolescence is a period characterized by large accumulation of bone mass. Body composition is an important determinant of bone mass. This study aimed to assess the relationship of bone mass with lean mass (LM) and fat mass (FM) in normal-weight and overweight adolescents with consideration of sex, sexual maturation and physical activity covariates. A total of 118 adolescents (60 girls and 58 boys) aged between 10 and 14 years participated in the study. Individuals were classified as normal weight or overweight according to body mass index. Bone mineral density (BMD), bone mineral content (BMC), LM, and FM were measured by dual-energy X-ray absorptiometry. In normal-weight adolescents, LM (β = 0.725, p < 0.001) and FM (β = 0.185, p = 0.019) were associated with lumbar spine BMC, whereas in overweight adolescents only LM (β = 0.736, p < 0.001) was associated with lumbar spine BMC. Furthermore, in the normal-weight group, FM and LM were associated with total body less head BMD (LM, β = 0.792, p < 0.001; FM, β = 0.257, p = 0.007) and lumbar spine BMD (LM, β = 0.553, p < 0.001; FM, β = 0.199, p < 0.035). In the overweight group, only LM was associated with total body less head BMD (β = 0.682, p < 0.001) and lumbar spine BMD (β = 0.528, p < 0.001). LM was the main predictor of bone mass in normal-weight and overweight adolescents. FM was associated with bone mass in normal-weight adolescents only. LM may be considered an important and useful marker in adolescents, when investigating bone health in this population. Activities that promote LM gain to reduce the risk of bone fractures and diseases in adulthood are recommended.
Collapse
Affiliation(s)
| | | | | | - Isadora Gonzaga
- Universidade do Estado de Santa Catarina, Florianópolis, Brazil
| | | | | | | | - Karen Hind
- Durham University, Durham, United Kingdom
| | | |
Collapse
|
56
|
Both indirect maternal and direct fetal genetic effects reflect the observational relationship between higher birth weight and lower adult bone mass. BMC Med 2022; 20:361. [PMID: 36192722 PMCID: PMC9531399 DOI: 10.1186/s12916-022-02531-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Birth weight is considered not only to undermine future growth, but also to induce lifelong diseases; the aim of this study is to explore the relationship between birth weight and adult bone mass. METHODS We performed multivariable regression analyses to assess the association of birth weight with bone parameters measured by dual-energy X-ray absorptiometry (DXA) and by quantitative ultrasound (QUS), independently. We also implemented a systemic Mendelian randomization (MR) analysis to explore the causal association between them with both fetal-specific and maternal-specific instrumental variables. RESULTS In the observational analyses, we found that higher birth weight could increase the adult bone area (lumbar spine, β-coefficient= 0.17, P < 2.00 × 10-16; lateral spine, β-coefficient = 0.02, P = 0.04), decrease bone mineral content-adjusted bone area (BMCadjArea) (lumbar spine, β-coefficient= - 0.01, P = 2.27 × 10-14; lateral spine, β-coefficient = - 0.05, P = 0.001), and decrease adult bone mineral density (BMD) (lumbar spine, β-coefficient = - 0.04, P = 0.007; lateral spine; β-coefficient = - 0.03, P = 0.02; heel, β-coefficient = - 0.06, P < 2.00 × 10-16), and we observed that the effect of birth weight on bone size was larger than that on BMC. In MR analyses, the higher fetal-specific genetically determined birth weight was identified to be associated with higher bone area (lumbar spine; β-coefficient = 0.15, P = 1.26 × 10-6, total hip, β-coefficient = 0.15, P = 0.005; intertrochanteric area, β-coefficient = 0.13, P = 0.0009; trochanter area, β-coefficient = 0.11, P = 0.03) but lower BMD (lumbar spine, β-coefficient = - 0.10, P = 0.01; lateral spine, β-coefficient = - 0.12, P = 0.0003, and heel β-coefficient = - 0.11, P = 3.33 × 10-13). In addition, we found that the higher maternal-specific genetically determined offspring birth weight was associated with lower offspring adult heel BMD (β-coefficient = - 0.001, P = 0.04). CONCLUSIONS The observational analyses suggested that higher birth weight was associated with the increased adult bone area but decreased BMD. By leveraging the genetic instrumental variables with maternal- and fetal-specific effects on birth weight, the observed relationship could be reflected by both the direct fetal and indirect maternal genetic effects.
Collapse
|
57
|
Maliha E, Pinti A, Bassim P, Toumi H, El Hage R. Composite Indices of Femoral Neck Strength in Young Adult Male Handball Players. J Clin Densitom 2022; 25:637-640. [PMID: 34933782 DOI: 10.1016/j.jocd.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Elie Maliha
- Department of Physical Education, Division of Education, Faculty of Arts and Sciences, University of Balamand, Kelhat El-Koura, Lebanon; I3MTO, EA 4708, Université d'Orléans, Orléans, France
| | - Antonio Pinti
- Laboratoire DeVisu - Design, Visuel, Urbain, EA 2445, Université polytechnique Hauts-de-France (UPHF), Valenciennes, France
| | - Paméla Bassim
- Department of Physical Education, Division of Education, Faculty of Arts and Sciences, University of Balamand, Kelhat El-Koura, Lebanon
| | - Hechmi Toumi
- I3MTO, EA 4708, Université d'Orléans, Orléans, France
| | - Rawad El Hage
- Department of Physical Education, Division of Education, Faculty of Arts and Sciences, University of Balamand, Kelhat El-Koura, Lebanon.
| |
Collapse
|
58
|
Rossi F, Tortora C, Paoletta M, Marrapodi MM, Argenziano M, Di Paola A, Pota E, Di Pinto D, Di Martino M, Iolascon G. Osteoporosis in Childhood Cancer Survivors: Physiopathology, Prevention, Therapy and Future Perspectives. Cancers (Basel) 2022; 14:4349. [PMID: 36139510 PMCID: PMC9496695 DOI: 10.3390/cancers14184349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The improvement of chemotherapy, radiotherapy, and surgical interventions, together with hematopoietic stem cell transplantation, increased childhood cancer survival rate in the last decades, reaching 80% in Europe. Nevertheless, anti-cancer treatments are mainly responsible for the onset of long-term side effects in childhood cancer survivors (CCS), including alterations of the endocrine system function and activity. In particular, the most frequent dysfunction in CCS is a metabolic bone disorder characterized by low bone mineral density (BMD) with increased skeletal fragility. BMD loss is also a consequence of a sedentary lifestyle, malnutrition, and cancer itself could affect BMD, thus inducing osteopenia and osteoporosis. In this paper, we provide an overview of possible causes of bone impairment in CCS in order to propose management strategies for early identification and treatment of skeletal fragility in this population.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Chiara Tortora
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Maura Argenziano
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Elvira Pota
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Daniela Di Pinto
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
59
|
Kang S, Kim YA. Predictors of osteoporosis prevention behaviors in women in their 20s and 30s. Medicine (Baltimore) 2022; 101:e29260. [PMID: 35801757 PMCID: PMC9259147 DOI: 10.1097/md.0000000000029260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 01/04/2023] Open
Abstract
There is a need to provide insight into the management and health care fields for the prevention of osteoporosis in young women by analyzing the factors affecting the prevention of osteoporosis. This descriptive survey aimed to identify the predictors of osteoporosis prevention behaviors in women in their 20s and 30s by examining their body mass index (BMI), weight control experience, osteoporosis knowledge, osteoporosis self-efficacy, and osteoporosis prevention behaviors. One hundred fifty participants were conveniently sampled, and data were collected from August to September 2020. Participants in their 20s and 30s completed a questionnaire concerning the general characteristics, osteoporosis-related characteristics, osteoporosis knowledge, osteoporosis self-efficacy, and osteoporosis prevention behaviors. Approximately 82.6% of the participants had at least 1 type of weight control experience. The mean participants' age and BMI were 28.94 (±5.32) years and 21.62 (±3.21) kg/m2, respectively. No significant differences in weight control experience according to the participants' characteristics were observed. However, significant differences were noted in BMI and age, osteoporosis knowledge and educational background, osteoporosis prevention behavior and educational background, and household type. Osteoporosis prevention behaviors were significantly positively correlated with weight control experience, osteoporosis knowledge, and osteoporosis self-efficacy. Osteoporosis prevention behaviors increased with increasing osteoporosis self-efficacy (β = 0.53, P < .001), among multiperson households (β = 0.20, P = .003), and among those with a weight control experience (β = 0.18, P = .007), and these factors explained 47.2% of the variance (F = 23.11, P < .001). Based on the study results, further studies are needed to identify and analyze the predictors of osteoporosis prevention behaviors in women to increase the awareness of osteoporosis and osteoporosis prevention and management in this group and expand similar efforts.
Collapse
Affiliation(s)
- Suni Kang
- College of Nursing, Jeju National University, Jeju-do, Republic of Korea
| | - Young A Kim
- College of Nursing, Jeju National University, Jeju-do, Republic of Korea
| |
Collapse
|
60
|
Abstract
Osteoporosis is a skeletal disorder with enhanced bone fragility, usually affecting the elderly. It is very rare in children and young adults and the definition is not only based on a low BMD (a Z-score < - 2.0 in growing children and a Z-score ≤ - 2.0 or a T-score ≤ - 2.5 in young adults) but also on the occurrence of fragility fractures and/or the existence of underlying chronic diseases or secondary factors such as use of glucocorticoids. In the absence of a known chronic disease, fragility fractures and low BMD should prompt extensive screening for secondary causes, which can be found in up to 90% of cases. When fragility fractures occur in childhood or young adulthood without an evident secondary cause, investigations should explore the possibility of an underlying monogenetic bone disease, where bone fragility is caused by a single variant in a gene that has a major role in the skeleton. Several monogenic forms relate to type I collagen, but other forms also exist. Loss-of-function variants in LRP5 and WNT1 may lead to early-onset osteoporosis. The X-chromosomal osteoporosis caused by PLS3 gene mutations affects especially males. Another recently discovered form relates to disturbed sphingolipid metabolism due to SGMS2 mutations, underscoring the complexity of molecular pathology in monogenic early-onset osteoporosis. Management of young patients consists of treatment of secondary factors, optimizing lifestyle factors including calcium and vitamin D and physical exercise. Treatment with bone-active medication should be discussed on a personalized basis, considering the severity of osteoporosis and underlying disease versus the absence of evidence on anti-fracture efficacy and potential harmful effects in pregnancy.
Collapse
Affiliation(s)
- Outi Mäkitie
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Biomedicum Helsinki, P.O. Box 63, FI-00014, Helsinki, Finland.
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, 3015, Rotterdam, The Netherlands
| |
Collapse
|
61
|
Abstract
OBJECTIVE This article reviews how childhood cancers and related treatments affect bone integrity. Interventions related to exercise, hormone replacement, vitamin D and calcium supplementation, and bisphosphonate use are addressed. DATA SOURCES Literature was reviewed related to childhood cancers, treatment and side effects, assessment, and management to optimize bone health. CONCLUSIONS Cure rates of childhood cancer have dramatically improved due to new therapeutic advances allowing children diagnosed with cancer to live longer. Unfortunately, the cost of cure can be the increased development of chronic health issues. Since many children receive their treatment, including antineoplastic agents, radiation, surgery, and corticosteroid therapy, during time of active skeletal maturation and growth, their bone health may be negatively impacted. The development of bone mass can be impaired, bone density may be decreased, fractures may occur, growth may be restricted, and there may be poor bone repair. Review of the data indicates that more research is needed to understand what is necessary for optimal bone health in the pediatric population in general, specifically for the child affected by cancer. IMPLICATIONS FOR NURSING PRACTICE Nurses are integral to the development of comprehensive understanding of the bone health needs of the pediatric oncology patient population and educating the patient and family about the importance of bone health. Children and young adult survivors would benefit from collaborative care between all their health care providers. Steps to improve bone health before diagnosis, on treatment, and through to survivorship remain to be addressed by future research.
Collapse
|
62
|
Han X, Feng Z, Chen Y, Zhu L, Li X, Wang X, Sun H, Li J. Effects of High-Fructose Corn Syrup on Bone Health and Gastrointestinal Microbiota in Growing Male Mice. Front Nutr 2022; 9:829396. [PMID: 35433775 PMCID: PMC9005738 DOI: 10.3389/fnut.2022.829396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Here, we explored the correlation between gut microbiota and bone health and the effects of high-fructose corn syrup (HFCS) on both. Sixteen 3-week-old male C57BL/6J mice were randomly divided into two groups and given purified water (control group) or 30% HFCS in water (HFCS group) for 16 weeks. The effects of HFCS were assessed via enzyme-linked immunosorbent assays, histopathological assays of colon and bone, and 16S rDNA sequence analysis of gut microbiota. The serum of HFCS group mice had lower levels of bone alkaline phosphatase (BALP), bone Gla protein (BGP), insulin-like growth factor 1 (IGF-1), and testosterone, and higher levels of type I collagen carboxyl-terminal telopeptide (ICTP) and tartrate-resistant acid phosphatase (TRAP) than that of the control group. HFCS caused trabecular bone damage by decreasing trabecular number and thickness and increasing trabecular separation. The HFCS group colons were shorter than the control group colons. The HFCS-fed mice showed mild, localized shedding of epithelial cells in the mucosal layer, focal lymphocytic infiltration of the lamina propria, mild submucosal edema, and loosely arranged connective tissue. The HFCS group displayed lower abundance and altered composition of gut microbiota. The abundance of Defluviitaleaceae UCG-011, Erysipelatoclostridium, Ruminococcaceae UCG-009, Lactobacillus, Blautia, and Parasutterella increased, positively correlating with BALP, BGP, IGF-1, and testosterone levels, and negatively correlating with ICTP and TRAP levels. Our study revealed a potential diet-gut microbiota-bone health axis.
Collapse
Affiliation(s)
- Xiaoqiang Han
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhiguo Feng
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yizhang Chen
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Liying Zhu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoqiong Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haibiao Sun
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Haibiao Sun,
| | - Jinjun Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Jinjun Li,
| |
Collapse
|
63
|
Domenici R, Vierucci F. Exclusive Breastfeeding and Vitamin D Supplementation: A Positive Synergistic Effect on Prevention of Childhood Infections? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052973. [PMID: 35270666 PMCID: PMC8910000 DOI: 10.3390/ijerph19052973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023]
Abstract
Human milk is the best food for infants. Breastfeeding has been associated with a reduced risk of viral and bacterial infections. Breast milk contains the perfect amount of nutrients needed to promote infant growth, except for vitamin D. Vitamin D is crucial for calcium metabolism and bone health, and it also has extra-skeletal actions, involving innate and adaptive immunity. As exclusive breastfeeding is a risk factor for vitamin D deficiency, infants should be supplemented with vitamin D at least during the first year. The promotion of breastfeeding and vitamin D supplementation represents an important objective of public health.
Collapse
|
64
|
Cabral MD, Patel DR, Greydanus DE, Deleon J, Hudson E, Darweesh S. Medical perspectives on pediatric sports medicine–Selective topics. Dis Mon 2022; 68:101327. [DOI: 10.1016/j.disamonth.2022.101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
65
|
Lu L, Tang M, Li J, Xie Y, Li Y, Xie J, Zhou L, Liu Y, Yu X. Gut Microbiota and Serum Metabolic Signatures of High-Fat-Induced Bone Loss in Mice. Front Cell Infect Microbiol 2022; 11:788576. [PMID: 35004355 PMCID: PMC8727351 DOI: 10.3389/fcimb.2021.788576] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background Accumulating evidence indicates that high-fat diet (HFD) is a controllable risk factor for osteoporosis, but the underlying mechanism remains to be elucidated. As a primary biological barrier for nutrient entry into the human body, the composition and function of gut microbiota (GM) can be altered rapidly by HFD, which may trigger abnormal bone metabolism. In the current study, we analyzed the signatures of GM and serum metabolomics in HFD-induced bone loss and explored the potential correlations of GM and serum metabolites on HFD-related bone loss. Methods We conducted a mouse model with HFD-induced bone loss through a 12-week diet intervention. Micro-CT, Osmium-μCT, and histological analyses were used to observe bone microstructure and bone marrow adipose tissue. Quantitative Real-Time PCR was applied to analyze gene expression related to osteogenesis, adipogenesis, and osteoclastogenesis. Enzyme-linked immunosorbent assay was used to measure the biochemical markers of bone turnover. 16s rDNA sequencing was employed to analyze the abundance of GM, and UHPLC-MS/MS was used to identify serum metabolites. Correlation analysis was performed to explore the relationships among bone phenotypes, GM, and the metabolome. Results HFD induced bone loss accompanied by bone marrow adipose tissue expansion and bone formation inhibition. In the HFD group, the relative abundance of Firmicutes was increased significantly, while Bacteroidetes, Actinobacteria, Epsilonbacteraeota, and Patescibacteria were decreased compared with the ND group. Association analysis showed that thirty-two bacterial genera were significantly related to bone volume per tissue volume (BV/TV). One hundred and forty-five serum metabolites were identified as differential metabolites associated with HFD intervention, which were significantly enriched in five pathways, such as purine metabolism, regulation of lipolysis in adipocyte and cGMP-PKG signaling pathway. Sixty-four diffiential metabolites were matched to the MS2 spectra; and ten of them were positively correlated with BV/TV and five were negatively correlated with BV/TV. Conclusions These findings indicated that the alternations of GM and serum metabolites were related to HFD-induced bone loss, which might provide new insights into explain the occurrence and development of HFD-related osteoporosis. The regulatory effects of GM and metabolites associated with HFD on bone homeostasis required further exploration.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Department of Integrated Traditional Chinese and Western Medicine, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mengjia Tang
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xie
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujue Li
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Jinwei Xie
- Department of Orthopaedic Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhou
- Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
66
|
Kague E, Medina-Gomez C, Boyadjiev SA, Rivadeneira F. The genetic overlap between osteoporosis and craniosynostosis. Front Endocrinol (Lausanne) 2022; 13:1020821. [PMID: 36225206 PMCID: PMC9548872 DOI: 10.3389/fendo.2022.1020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is the most prevalent bone condition in the ageing population. This systemic disease is characterized by microarchitectural deterioration of bone, leading to increased fracture risk. In the past 15 years, genome-wide association studies (GWAS), have pinpointed hundreds of loci associated with bone mineral density (BMD), helping elucidate the underlying molecular mechanisms and genetic architecture of fracture risk. However, the challenge remains in pinpointing causative genes driving GWAS signals as a pivotal step to drawing the translational therapeutic roadmap. Recently, a skull BMD-GWAS uncovered an intriguing intersection with craniosynostosis, a congenital anomaly due to premature suture fusion in the skull. Here, we recapitulate the genetic contribution to both osteoporosis and craniosynostosis, describing the biological underpinnings of this overlap and using zebrafish models to leverage the functional investigation of genes associated with skull development and systemic skeletal homeostasis.
Collapse
Affiliation(s)
- Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
- *Correspondence: Erika Kague,
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Simeon A. Boyadjiev
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Fernando Rivadeneira
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
67
|
Duan X, Pan Q, Guo L. Chronic Sleep Deprivation Impaired Bone Formation in Growing Rats and Down-Regulated PI3K/AKT Signaling in Bone Tissues. Nat Sci Sleep 2022; 14:697-710. [PMID: 35444481 PMCID: PMC9015811 DOI: 10.2147/nss.s351850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND This study aimed to assess the effects of chronic sleep deprivation (CSD) on bone metabolism in growing rats and the likely underlying mechanism. METHODS Twenty 5-week-old male Wistar rats and randomly divided into the CSD and normal control (NC) groups after one-week acclimatization. After a 6-week intervention of sleep deprivation, the distal femurs of both groups were harvested for micro-computed tomography scans and histological analysis. Meanwhile, the femur tissues were measured the mRNA and protein expression via RNA sequencing and immunohistochemical analysis. Serum bone turnover markers were evaluated at 0, 2, 4, and 6 weeks. RESULTS CSD impaired the bone growth, showing an imbalance of bone turnover status, dysphasia in the metaphysis growth plate, and deterioration of bone microarchitecture. Further, CSD suppressed bone formation, showing that the expression of osteogenesis-related proteins (col1α1 and osteocalcin) and mRNA (igf1, bglap, runx2, col1α1, pth1r) are down-regulated. Differentially expressed genes were detected, and functional enrichment analyses revealed that the PI3K/AKT pathway was significantly down-regulated in the CSD group. CONCLUSION These results suggest that CSD can significantly impaire bone health, and it may exert these effects in part by suppressing bone formation and osteoblast differentiation, and inactivating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiaoye Duan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
68
|
Associations of Exercise Habits in Adolescence and Old Age with Risk of Osteoporosis in Older Adults: The Bunkyo Health Study. J Clin Med 2021; 10:jcm10245968. [PMID: 34945263 PMCID: PMC8707562 DOI: 10.3390/jcm10245968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022] Open
Abstract
We investigated effects of exercise habits (EHs) in adolescence and old age on osteoporosis prevalence and hip joint and lumbar spine bone mineral density (BMD). Body composition and BMD in 1596 people aged 65–84 years living in Bunkyo-ku, Tokyo, were measured using dual-energy X-ray absorptiometry. We divided participants into four groups by a combination of EHs in adolescence and old age: none in either period (None-None), only in adolescence (Active-None), only in old age (None-Active), and in both periods (Active-Active). Logistic regression models were employed to estimate multivariable-adjusted odds ratios (ORs) for osteoporosis determined by T-score (less than −2.5 SD) using the None-None reference group. In men, the combination of EHs in adolescence and old age was not associated with osteoporosis prevalence. However, the lumbar spine’s BMD was significantly higher in the Active-Active than the None-Active group (p = 0.043). In women, the Active-Active group had lower lumbar spine osteoporosis prevalence than the None-None group (OR 0.65; 95% CI, 0.42–1.00, p = 0.049). Furthermore, hip BMD was significantly higher in the Active-Active group than in the other three groups (p = 0.001). Older women with EHs in adolescence and old age had higher lumbar BMD and lower risk of osteoporosis.
Collapse
|
69
|
Eckert AJ, Semler O, Schnabel D, Köstner K, Wurm D, Bechtold-Dalla Pozza S, Schaaf K, Hörtenhuber T, Hammersen J, Holl RW. Bone Fractures in Children and Young Adults With Type 1 Diabetes: Age Distribution, Fracture Location, and the Role of Glycemic Control. J Bone Miner Res 2021; 36:2371-2380. [PMID: 34569646 DOI: 10.1002/jbmr.4451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1D) is a known risk factor for fractures, but the underlying pathophysiology is still not fully understood. This study aims to define age peaks and frequent fracture sites of children and young adults with T1D. Additionally, associations of fractures with metabolic and lifestyle factors as well as with additional complications in individuals with T1D were analyzed. A total of 750 individuals with T1D aged ≤25 years with fractures were matched to 3750 patients with T1D without fractures by demographics and insulin regimen. Hemoglobin A1c (HbA1c) values were compared using linear regression, and logistic regression was used to calculate odds ratios (OR) for fractures in individuals with acute complications and diseases. Median (Q1-Q3) age was 12.7 (9.9 to 14.9) years in individuals with fractures and 16.3 (12.6 to 17.8) years in the entire control group with 65% versus 53% males. Peak age for fractures was 7 to <15 years in males and 9 to <11 years in females, which is earlier than reported for the general population. HbA1c (%) was significantly higher in individuals with fractures than in controls (difference of estimated means: 0.26%; 95% confidence interval [CI] 0.07-0.46), especially in postpubertal females (0.68; 0.10-1.26). Significantly higher odds for fractures were observed in individuals with severe hypoglycemia (OR = 1.90; 95% CI 1.47-2.47), especially in prepubertal females (OR = 2.81; 1.21-6.52]) and postpubertal males (2.44; 1.11-5.38), celiac disease (2.02; 1.67-2.45), and with a history of smoking (1.38; 1.02-1.88). The age peak of fractures seems to be earlier in T1D than in the general population. Poor glycemic control is related to fractures, even before puberty. Associations of HbA1c and severe hypoglycemia with fractures highly depend on age and sex. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alexander J Eckert
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Oliver Semler
- Faculty of Medicine and University Hospital Cologne, Department of Paediatrics, University of Cologne, Cologne, Germany
| | - Dirk Schnabel
- Centre for Chronic Sick Children, Paediatric Endocrinology, Charité, University Medicine Berlin, Berlin, Germany
| | - Katharina Köstner
- Social Pediatric Center (SPZ) Garmisch-Partenkirchen, German Centre for Paediatric and Adolescent Rheumatology, Garmisch-Partenkirchen, Germany
| | - Donald Wurm
- Department of Paediatrics, Klinikum Saarbrücken, Saarbrücken, Germany
| | - Susanne Bechtold-Dalla Pozza
- Paediatric Endocrinology, iSPZ, Dr. von Haunersches Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katja Schaaf
- Department of Paediatric and Adolescent Medicine, Elisabeth-Hospital Essen, Essen, Germany
| | | | - Johanna Hammersen
- Department of Paediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
70
|
Association between Body Composition and Bone Mineral Density in Children and Adolescents: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212126. [PMID: 34831882 PMCID: PMC8618958 DOI: 10.3390/ijerph182212126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
Background: Bone mass acquisition during growth is a major determinant of the risk of developing osteoporosis later in life. Body composition is an anthropometric determinant of bone mineral density (BMD) and significantly influences its development during childhood and adolescence. Objective: This study aimed to systematically examine the association between body composition and bone mineral density in children and adolescents. Methods: Observational studies addressing this association were identified from PubMed (MEDLINE), Embase, Scopus and the Cochrane Library (up to January 2021). The study populations consisted of healthy children and adolescents. The DerSimonian and Laird method was used to compute pooled estimates of effect size and the respective 95% confidence intervals for upper limbs, femoral neck (FN), lumbar spine (LS) and total body, respectively. Subgroup analyses were further performed based on age, sex and ethnicity. Results: Thirty-one published studies were eligible for inclusion in this systematic review and meta-analysis, including three longitudinal studies. The combined population from all the studies amounted to 21,393 (11,205 males and 10,188 females). The pooled estimates of the correlation coefficients for lean mass (LM) and BMD ranged from 0.53 to 0.74 (p < 0.050), and the pooled regression coefficients ranged from 0.23 to 0.79 for FN, LS and total body (p < 0.050). For fat mass (FM), the pooled correlation coefficients ranged from 0.10 to 0.50 (p < 0.050) and the pooled regression coefficient was only significant for FN BMD with a weak strength (pooled β = 0.07, p < 0.050). The pooled regression coefficients for body fat percentage (BF%) were between −0.54 and −0.04 (p < 0.050). The subgroup analysis revealed a stronger association in Asians than in Caucasians for LM and in males compared to females for BF% (p < 0.050). Conclusions: This systematic review and meta-analysis supports a positive association between LM and BMD. BF% appears to have a deleterious effect on bone acquisition in children and adolescents.
Collapse
|
71
|
Costa SA, Ribeiro CCC, de Oliveira KR, Alves CMC, Thomaz EBAF, Casarin RCV, Souza SDFC. Low bone mineral density is associated with severe periodontitis at the end of the second decade of life: A population-based study. J Clin Periodontol 2021; 48:1322-1332. [PMID: 34288024 DOI: 10.1111/jcpe.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
AIM To evaluate the association between low bone mineral density (BMD) and severe periodontitis at the end of the second decade of life. MATERIALS AND METHODS This population-based study analysed 2032 youngers (18-19 years old) of the RPS cohort. BMD of lumbar spine (BMD-LS) and of the whole body (BMD-WB) were assessed by dual x-ray emission densitometry. Low BMD-LS (Z-score ≤ -2) and low BMD-WB (Z-score ≤ -1.5) were correlated with severe periodontitis. The extent of periodontal disease was also evaluated as the following outcomes: proportions of teeth affected by clinical attachment loss ≥5 mm and probing depth ≥5 mm. Multivariate models by sex, education, family income, risk of alcohol dependence, smoking, plaque, bleeding index, and body mass index were estimated through logistic regression (binary outcomes) and Poisson regression (continuous outcomes). RESULTS The prevalence of severe periodontitis was 10.97%. Low BMD-LS (odds ratio [OR] = 2.08, confidence interval [CI] = 1.12-3.85, p = .01) and low BMD-WB (OR = 1.34, CI = 1.001-1.81, p = .04) were associated with severe periodontitis in the final multivariate models. Low BMD-LS and BMD-WB were also associated with a greater extent of periodontitis (p < .05). CONCLUSIONS Low BMD was found to be associated with the severity and extent of periodontitis in adolescents. Adolescents at peak bone mass age presenting low BMD are more likely to be affected by severe periodontitis.
Collapse
|
72
|
Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 2021; 9:23. [PMID: 33927194 PMCID: PMC8085014 DOI: 10.1038/s41413-021-00143-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Osteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.
Collapse
|
73
|
Vogiatzi MG, Davis SM, Ross JL. Cortical Bone Mass is Low in Boys with Klinefelter Syndrome and Improves with Oxandrolone. J Endocr Soc 2021; 5:bvab016. [PMID: 33733020 PMCID: PMC7947965 DOI: 10.1210/jendso/bvab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
Context Klinefelter syndrome (KS) is the most common sex aneuploidy in men. Affected males have hypogonadism, and, as a result, face an increased risk for osteoporosis and fractures. Androgen therapy is standard in adolescents and adults with KS but has not been used earlier in childhood. Objective To determine the effects of androgen treatment on bone mass in children with KS. Methods Randomized, double-blind, placebo-controlled clinical trial of oxandrolone (OX; 0.06 mg/kg daily; n = 38) versus placebo (PL; n = 40) for 2 years in boys with KS (ages 4-12 years). Changes in bone mass were examined by digital x-ray radiogrammetry, which determines the Bone Health Index (BHI) and standard deviation score (SDS). Results BHI SDS was similar between groups at baseline (–0.46 ± 1.1 vs –0.34 ± 1.0 OX vs PL, P > .05) and higher in the OX group at 2 years (–0.1 ± 1.3 vs –0.53 ± 0.9, OX vs PL, P < .01). At baseline, BHI SDS values of all subjects were not normally distributed with 25.7% of subjects plotted below –1 SDS (P < .001), suggesting a deficit in bone mass. In total, 13.5% of subjects had sustained a fracture and their BHI SDS was lower than those with no fractures (–1.6 ± 1.3 vs –0.3 ± 1.0, P = .004). Conclusion Bone mass using BHI SDS is reduced in some children with KS and improves with OX. Since these individuals are at risk for osteoporosis, age-appropriate androgen replacement and future studies on bone health in children with KS should be further explored.
Collapse
Affiliation(s)
| | - Shanlee M Davis
- University of Colorado School of Medicine, Department of Pediatrics, Section of Endocrinology, Aurora, CO, USA
| | - Judith L Ross
- Thomas Jefferson University, Department of Pediatrics, Philadelphia, PA, United States.,A.I. DuPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
74
|
Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, Aubertin-Leheudre M, Bernabei R, Cadore EL, Cesari M, Chen LK, de Souto Barreto P, Duque G, Ferrucci L, Fielding RA, García-Hermoso A, Gutiérrez-Robledo LM, Harridge SDR, Kirk B, Kritchevsky S, Landi F, Lazarus N, Martin FC, Marzetti E, Pahor M, Ramírez-Vélez R, Rodriguez-Mañas L, Rolland Y, Ruiz JG, Theou O, Villareal DT, Waters DL, Won Won C, Woo J, Vellas B, Fiatarone Singh M. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J Nutr Health Aging 2021; 25:824-853. [PMID: 34409961 DOI: 10.1007/s12603-021-1665-8] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human ageing process is universal, ubiquitous and inevitable. Every physiological function is being continuously diminished. There is a range between two distinct phenotypes of ageing, shaped by patterns of living - experiences and behaviours, and in particular by the presence or absence of physical activity (PA) and structured exercise (i.e., a sedentary lifestyle). Ageing and a sedentary lifestyle are associated with declines in muscle function and cardiorespiratory fitness, resulting in an impaired capacity to perform daily activities and maintain independent functioning. However, in the presence of adequate exercise/PA these changes in muscular and aerobic capacity with age are substantially attenuated. Additionally, both structured exercise and overall PA play important roles as preventive strategies for many chronic diseases, including cardiovascular disease, stroke, diabetes, osteoporosis, and obesity; improvement of mobility, mental health, and quality of life; and reduction in mortality, among other benefits. Notably, exercise intervention programmes improve the hallmarks of frailty (low body mass, strength, mobility, PA level, energy) and cognition, thus optimising functional capacity during ageing. In these pathological conditions exercise is used as a therapeutic agent and follows the precepts of identifying the cause of a disease and then using an agent in an evidence-based dose to eliminate or moderate the disease. Prescription of PA/structured exercise should therefore be based on the intended outcome (e.g., primary prevention, improvement in fitness or functional status or disease treatment), and individualised, adjusted and controlled like any other medical treatment. In addition, in line with other therapeutic agents, exercise shows a dose-response effect and can be individualised using different modalities, volumes and/or intensities as appropriate to the health state or medical condition. Importantly, exercise therapy is often directed at several physiological systems simultaneously, rather than targeted to a single outcome as is generally the case with pharmacological approaches to disease management. There are diseases for which exercise is an alternative to pharmacological treatment (such as depression), thus contributing to the goal of deprescribing of potentially inappropriate medications (PIMS). There are other conditions where no effective drug therapy is currently available (such as sarcopenia or dementia), where it may serve a primary role in prevention and treatment. Therefore, this consensus statement provides an evidence-based rationale for using exercise and PA for health promotion and disease prevention and treatment in older adults. Exercise prescription is discussed in terms of the specific modalities and doses that have been studied in randomised controlled trials for their effectiveness in attenuating physiological changes of ageing, disease prevention, and/or improvement of older adults with chronic disease and disability. Recommendations are proposed to bridge gaps in the current literature and to optimise the use of exercise/PA both as a preventative medicine and as a therapeutic agent.
Collapse
Affiliation(s)
- M Izquierdo
- Mikel Izquierdo, PhD, Department of Health Sciences, Public University of Navarra, Av. De Barañain s/n 31008 Pamplona (Navarra) Spain, Tel + 34 948 417876
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Xia J, Xie SY, Liu KQ, Xu L, Zhao PP, Gai SR, Guan PL, Zhao JQ, Zhu YP, Tsoi LC, Stuart PE, Nair RP, Yang HQ, Liao YT, Mao K, Qiu MC, Ying ZM, Hu B, Yang ZH, Bai WY, Zhu XW, Cong PK, Elder JT, Ye ZM, Wang B, Zheng HF. Systemic evaluation of the relationship between psoriasis, psoriatic arthritis and osteoporosis: observational and Mendelian randomisation study. Ann Rheum Dis 2020; 79:1460-1467. [PMID: 32737104 PMCID: PMC7970448 DOI: 10.1136/annrheumdis-2020-217892] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVES AND METHODS With 432 513 samples from UK Biobank dataset, multivariable linear/logistic regression were used to estimate the relationship between psoriasis/psoriatic arthritis (PsA) and estimated bone mineral density (eBMD)/osteoporosis, controlling for potential confounders. Here, confounders were set in three ways: model0 (including age, height, weight, smoking and drinking), model1 (model0 +regular physical activity) and model2 (model1 +medication treatments). The eBMD was derived from heel ultrasound measurement. And 4904 patients with psoriasis and 847 patients with PsA were included in final analysis. Mendelian randomisation (MR) approach was used to evaluate the causal effect between them. RESULTS Lower eBMD were observed in patients with PsA than in controls in both model0 (β-coefficient=-0.014, p=0.0006) and model1 (β-coefficient=-0.013, p=0.002); however, the association disappeared when conditioning on treatment with methotrexate or ciclosporin (model2) (β-coefficient=-0.005, p=0.28), mediation analysis showed that 63% of the intermediary effect on eBMD was mediated by medication treatment (p<2E-16). Patients with psoriasis without arthritis showed no difference of eBMD compared with controls. Similarly, the significance of higher risk of osteopenia in patients with PsA (OR=1.27, p=0.002 in model0) could be eliminated by conditioning on medication treatment (p=0.244 in model2). Psoriasis without arthritis was not related to osteopenia and osteoporosis. The weighted Genetic Risk Score analysis found that genetically determined psoriasis/PsA were not associated with eBMD (p=0.24 and p=0.88). Finally, MR analysis showed that psoriasis/PsA had no causal effect on eBMD, osteoporosis and fracture. CONCLUSIONS The effect of PsA on osteoporosis was secondary (eg, medication) but not causal. Under this hypothesis, psoriasis without arthritis was not a risk factor for osteoporosis.
Collapse
Affiliation(s)
- Jiangwei Xia
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Shu-Yang Xie
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Ke-Qi Liu
- Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Lin Xu
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Pian-Pian Zhao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Si-Rui Gai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Peng-Lin Guan
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Jin-Qiu Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Ping Zhu
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States,Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States
| | - Philip E. Stuart
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States,Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States
| | - Rajan P. Nair
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States,Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States
| | - Han-Qi Yang
- School of Public Health, Boston University, Boston, Massachusetts, 02118, United States
| | - Yu-Ting Liao
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaijing Mao
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Mo-Chang Qiu
- Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Zhi-Min Ying
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Bin Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhi-Hua Yang
- Department of Orthopedic Surgery, Zhejiang Xiaoshan hospital, Hangzhou, Zhejiang, China
| | - Wei-Yang Bai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Xiao-Wei Zhu
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - James T. Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States,Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, United States
| | - Zhao-Ming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Bin Wang
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| |
Collapse
|