51
|
Drager LF, Li J, Reinke C, Bevans-Fonti S, Jun JC, Polotsky VY. Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity. Obesity (Silver Spring) 2011; 19:2167-74. [PMID: 21799478 PMCID: PMC4461029 DOI: 10.1038/oby.2011.240] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6-8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P < 0.01), and induced severe glucose intolerance. In DIO mice, CIH induced NAFLD, inflammation, and oxidative stress, which was not observed in lean mice. In conclusion, CIH exacerbates IR and induces steatohepatitis in DIO mice, suggesting that CIH may account for metabolic dysfunction in obesity.
Collapse
Affiliation(s)
- Luciano F. Drager
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianguo Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christian Reinke
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shannon Bevans-Fonti
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan C. Jun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vsevolod Y. Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
52
|
Effects of Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) on Weight Loss and Biomarker Parameters in Morbidly Obese Patients: A 12-Month Follow-Up. Obes Surg 2011; 21:1834-42. [DOI: 10.1007/s11695-011-0525-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Drager LF, Jun JC, Polotsky VY. Metabolic consequences of intermittent hypoxia: relevance to obstructive sleep apnea. Best Pract Res Clin Endocrinol Metab 2010; 24:843-51. [PMID: 21112030 PMCID: PMC3011976 DOI: 10.1016/j.beem.2010.08.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway leading to sleep fragmentation and intermittent hypoxia (IH) during sleep. There is growing evidence from animal models of OSA that IH is independently associated with metabolic dysfunction, including dyslipidemia and insulin resistance. The precise mechanisms by which IH induces metabolic disturbances are not fully understood. Over the last decade, several groups of investigators developed a rodent model of IH, which emulates the oxyhemoglobin profile in human OSA. In the mouse model, IH induces dyslipidemia, insulin resistance and pancreatic endocrine dysfunction, similar to those observed in human OSA. Recent reports provided new insights in possible mechanisms by which IH affects lipid and glucose metabolism. IH may induce dyslipidemia by up-regulating lipid biosynthesis in the liver, increasing adipose tissue lipolysis with subsequent free fatty acid flux to the liver, and inhibiting lipoprotein clearance. IH may affect glucose metabolism by inducing sympathetic activation, increasing systemic inflammation, increasing counter-regulatory hormones and fatty acids, and causing direct pancreatic beta-cell injury. IH models of OSA have improved our understanding of the metabolic impact of OSA, but further studies are needed before we can translate recent basic research findings to clinical practice.
Collapse
Affiliation(s)
- Luciano F Drager
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
54
|
Abstract
Obstructive sleep apnea (OSA) is a complex disorder that consists of upper airway obstruction, chronic intermittent hypoxia and sleep fragmentation. OSA is well known to be associated with hypoxia, insulin resistance and glucose intolerance, and these factors can occur in the presence or absence of obesity and metabolic syndrome. Although it is well established that insulin resistance, glucose intolerance and obesity occur frequently with non-alcoholic fatty liver disease (NAFLD), it is now becoming apparent that hypoxia might also be important in the development of NAFLD, and it is recognized that there is increased risk of NAFLD with OSA. This review discusses the association between OSA, NAFLD and cardiovascular disease, and describes the potential role of hypoxia in the development of NAFLD with OSA.
Collapse
|
55
|
Nonalcoholic Fatty Liver Disease Associated with Obstructive Sleep Apnea: Just a Coincidence? Obes Surg 2010; 20:1536-43. [DOI: 10.1007/s11695-010-0212-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
56
|
Abstract
NAFLD (non-alcoholic fatty liver disease), associated with obesity and the cardiometabolic syndrome, is an important medical problem affecting up to 20% of western populations. Evidence indicates that mitochondrial dysfunction plays a critical role in NAFLD initiation and progression to the more serious condition of NASH (non-alcoholic steatohepatitis). Herein we hypothesize that mitochondrial defects induced by exposure to a HFD (high fat diet) contribute to a hypoxic state in liver and this is associated with increased protein modification by RNS (reactive nitrogen species). To test this concept, C57BL/6 mice were pair-fed a control diet and HFD containing 35% and 71% total calories (1 cal≈4.184 J) from fat respectively, for 8 or 16 weeks and liver hypoxia, mitochondrial bioenergetics, NO (nitric oxide)-dependent control of respiration, and 3-NT (3-nitrotyrosine), a marker of protein modification by RNS, were examined. Feeding a HFD for 16 weeks induced NASH-like pathology accompanied by elevated triacylglycerols, increased CYP2E1 (cytochrome P450 2E1) and iNOS (inducible nitric oxide synthase) protein, and significantly enhanced hypoxia in the pericentral region of the liver. Mitochondria from the HFD group showed increased sensitivity to NO-dependent inhibition of respiration compared with controls. In addition, accumulation of 3-NT paralleled the hypoxia gradient in vivo and 3-NT levels were increased in mitochondrial proteins. Liver mitochondria from mice fed the HFD for 16 weeks exhibited depressed state 3 respiration, uncoupled respiration, cytochrome c oxidase activity, and mitochondrial membrane potential. These findings indicate that chronic exposure to a HFD negatively affects the bioenergetics of liver mitochondria and this probably contributes to hypoxic stress and deleterious NO-dependent modification of mitochondrial proteins.
Collapse
|
57
|
Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. HEPATOLOGY (BALTIMORE, MD.) 2009. [PMID: 19030170 DOI: 10.1002/hep.22569;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED The expression of microRNA in nonalcoholic steatohepatitis (NASH) and their role in the genesis of NASH are not known. The aims of this study were to: (1) identify differentially expressed microRNAs in human NASH, (2) tabulate their potential targets, and (3) define the effect of a specific differentially expressed microRNA, miR-122, on its targets and compare these effects with the pattern of expression of these targets in human NASH. The expression of 474 human microRNAs was compared in subjects with the metabolic syndrome and NASH versus controls with normal liver histology. Differentially expressed microRNAs were identified by the muParaflo microRNA microarray assay and validated using quantitative real-time polymerase chain reaction (PCR). The effects of a specific differentially expressed miRNA (miR-122) on its predicted targets were assessed by silencing and overexpressing miR-122 in vitro. A total of 23 microRNAs were underexpressed or overexpressed. The predicted targets of these microRNAs are known to affect cell proliferation, protein translation, apoptosis, inflammation, oxidative stress, and metabolism. The miR-122 level was significantly decreased in subjects with NASH (63% by real-time PCR, P < 0.00001). Silencing miR-122 led to an initial increase in mRNA levels of these targets (P < 0.05 for all) followed by a decrease by 48 hours. This was accompanied by an increase in protein levels of these targets (P < 0.05 for all). Overexpression of miR-122 led to a significant decrease in protein levels of these targets. CONCLUSIONS NASH is associated with altered hepatic microRNA expression. Underexpression of miR-122 potentially contributes to altered lipid metabolism implicated in the pathogenesis of NASH.
Collapse
Affiliation(s)
- Onpan Cheung
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
There is increasing evidence of a causal relationship between sleep-disordered breathing and metabolic dysfunction. Metabolic syndrome (MetS), a cluster of risk factors that promote atherosclerotic cardiovascular disease, comprises central obesity, insulin resistance, glucose intolerance, dyslipidemia, and hypertension, manifestations of altered total body energy regulation. Excess caloric intake is indisputably the key driver of MetS, but other environmental and genetic factors likely play a role; in particular, obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), may induce or exacerbate various aspects of MetS. Clinical studies show that OSA can affect glucose metabolism, cholesterol, inflammatory markers, and nonalcoholic fatty liver disease. Animal models of OSA enable scientists to circumvent confounders such as obesity in clinical studies. In the most widely used model, which involves exposing rodents to IH during their sleep phase, the IH alters circadian glucose homeostasis, impairs muscle carbohydrate uptake, induces hyperlipidemia, and upregulates cholesterol synthesis enzymes. Complicating factors such as obesity or a high-fat diet lead to progressive insulin resistance and liver inflammation, respectively. Mechanisms for these effects are not yet fully understood, but are likely related to energy-conserving adaptations to hypoxia, which is a strong catabolic stressor. Finally, IH may contribute to the morbidity of MetS by inducing inflammation and oxidative stress. Identification of OSA as a potential causative factor in MetS would have immense clinical impact and could improve the management and understanding of both disorders.
Collapse
Affiliation(s)
- Jonathan Jun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | |
Collapse
|
59
|
Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 2008; 48:1810-20. [PMID: 19030170 PMCID: PMC2717729 DOI: 10.1002/hep.22569] [Citation(s) in RCA: 536] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED The expression of microRNA in nonalcoholic steatohepatitis (NASH) and their role in the genesis of NASH are not known. The aims of this study were to: (1) identify differentially expressed microRNAs in human NASH, (2) tabulate their potential targets, and (3) define the effect of a specific differentially expressed microRNA, miR-122, on its targets and compare these effects with the pattern of expression of these targets in human NASH. The expression of 474 human microRNAs was compared in subjects with the metabolic syndrome and NASH versus controls with normal liver histology. Differentially expressed microRNAs were identified by the muParaflo microRNA microarray assay and validated using quantitative real-time polymerase chain reaction (PCR). The effects of a specific differentially expressed miRNA (miR-122) on its predicted targets were assessed by silencing and overexpressing miR-122 in vitro. A total of 23 microRNAs were underexpressed or overexpressed. The predicted targets of these microRNAs are known to affect cell proliferation, protein translation, apoptosis, inflammation, oxidative stress, and metabolism. The miR-122 level was significantly decreased in subjects with NASH (63% by real-time PCR, P < 0.00001). Silencing miR-122 led to an initial increase in mRNA levels of these targets (P < 0.05 for all) followed by a decrease by 48 hours. This was accompanied by an increase in protein levels of these targets (P < 0.05 for all). Overexpression of miR-122 led to a significant decrease in protein levels of these targets. CONCLUSIONS NASH is associated with altered hepatic microRNA expression. Underexpression of miR-122 potentially contributes to altered lipid metabolism implicated in the pathogenesis of NASH.
Collapse
Affiliation(s)
- Onpan Cheung
- Division of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Puneet Puri
- Division of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | | | - Melissa J Contos
- Dept. of Pathology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - James W. Maher
- Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - John M. Kellum
- Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Haeki Min
- Division of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Velimir A. Luketic
- Division of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| |
Collapse
|
60
|
Savransky V, Reinke C, Jun J, Bevans-Fonti S, Nanayakkara A, Li J, Myers AC, Torbenson MS, Polotsky VY. Chronic intermittent hypoxia and acetaminophen induce synergistic liver injury in mice. Exp Physiol 2008; 94:228-39. [PMID: 19028810 DOI: 10.1113/expphysiol.2008.044883] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Obstructive sleep apnoea (OSA) leads to chronic intermittent hypoxia (CIH) during sleep. Obstructive sleep apnoea has been associated with liver injury. Acetaminophen (APAP; known as paracetamol outside the USA) is one of the most commonly used drugs which has known hepatotoxicity. The goal of the present study was to examine whether CIH increases liver injury, hepatic oxidative stress and inflammation induced by chronic APAP treatment. Adult C57BL/6J mice were exposed to CIH or intermittent air (IA) for 4 weeks. Mice in both groups were treated with intraperitoneal injections of either APAP (200 mg kg(-1)) or normal saline daily. A combination of CIH and APAP caused liver injury, with marked increases in serum alanine aminotransferase, aspartate aminotransferase (AST), gamma-glutamyl transferase and total bilirubin levels, whereas CIH alone induced only elevation in serum AST levels. Acetaminophen alone did not affect serum levels of liver enzymes. Histopathology revealed hepatic necrosis and increased apoptosis in mice exposed to CIH and APAP, whereas the liver remained intact in all other groups. Mice exposed to CIH and APAP exhibited decreased hepatic glutathione in conjunction with a fivefold increase in nitrotyrosine levels, suggesting formation of toxic peroxynitrite in hepatocytes. Acetaminophen or CIH alone had no effect on either glutathione or nitrotyrosine. A combination of CIH and APAP caused marked increases in pro-inflammatory chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, which were not observed in mice exposed to CIH or APAP alone. We conclude that CIH and chronic APAP treatment lead to synergistic liver injury, which may have clinical implications for patients with OSA.
Collapse
Affiliation(s)
- Vladimir Savransky
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Polotsky VY, Patil SP, Savransky V, Laffan A, Fonti S, Frame LA, Steele KE, Schweizter MA, Clark JM, Torbenson MS, Schwartz AR. Obstructive sleep apnea, insulin resistance, and steatohepatitis in severe obesity. Am J Respir Crit Care Med 2008; 179:228-34. [PMID: 18990675 DOI: 10.1164/rccm.200804-608oc] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Obstructive sleep apnea is associated with insulin resistance and liver injury. It is unknown whether apnea contributes to insulin resistance and steatohepatitis in severe obesity. OBJECTIVES To examine whether sleep apnea and nocturnal hypoxemia predict the severity of insulin resistance, systemic inflammation, and steatohepatitis in severely obese individuals presenting for bariatric surgery. METHODS We performed sleep studies and measured fasting blood glucose, serum insulin, C-reactive protein, and liver enzymes in 90 consecutive severely obese individuals, 75 women and 15 men, without concomitant diabetes mellitus or preexistent diagnosis of sleep apnea or liver disease. Liver biopsies (n = 20) were obtained during bariatric surgery. MEASUREMENTS AND MAIN RESULTS Obstructive sleep apnea with a respiratory disturbance index greater than 5 events/hour was diagnosed in 81.1% of patients. The median respiratory disturbance index was 15 +/- 29 events/hour and the median oxygen desaturation during apneic events was 4.6 +/- 1.8%. All patients exhibited high serum levels of C-reactive protein, regardless of the severity of apnea, whereas liver enzymes were normal. Oxygen desaturation greater than 4.6% was associated with a 1.5-fold increase in insulin resistance, according to the homeostasis model assessment index. Histopathology data suggested that significant nocturnal desaturation might predispose to hepatic inflammation, hepatocyte ballooning, and liver fibrosis. Fasting blood glucose levels and steatosis scores were not affected by nocturnal hypoxia. There was no relationship between the respiratory disturbance index and insulin resistance or liver histopathology. CONCLUSIONS Hypoxic stress of sleep apnea may be implicated in the development of insulin resistance and steatohepatitis in severe obesity.
Collapse
Affiliation(s)
- Vsevolod Y Polotsky
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Bonsignore MR, Zito A. Metabolic effects of the obstructive sleep apnea syndrome and cardiovascular risk. Arch Physiol Biochem 2008; 114:255-60. [PMID: 18726787 DOI: 10.1080/13813450802307451] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The obstructive sleep apnea syndrome (OSAS) is characterized by collapse of the upper airway during sleep, recurring apneas, intermittent hypoxemia and daytime somnolence. OSAS is often associated with obesity, and its prevalence is expected to rise due to the obesity epidemics worldwide. OSAS is associated with increased cardiovascular risk which appears to be normalized by treatment with nasal continuous positive airway pressure (nCPAP) during sleep, suggesting an independent role of OSAS in accelerating atherosclerosis. Insulin resistance (IR) and the metabolic syndrome (MetS) are often found in OSAS patients, but the relative role played by OSAS and obesity is still unclear. Both OSAS and MetS may exert negative synergistic effects on the cardiovascular system through multiple mechanisms (hypoxemia, sleep disruption, activation of the sympathetic nervous system, inflammatory activation). Besides nCPAP treatment, pharmacologic interventions to treat obesity and the MetS could improve cardiovascular prevention in OSAS.
Collapse
|
63
|
Jun J, Savransky V, Nanayakkara A, Bevans S, Li J, Smith PL, Polotsky VY. Intermittent hypoxia has organ-specific effects on oxidative stress. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1274-81. [PMID: 18703411 DOI: 10.1152/ajpregu.90346.2008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Obstructive sleep apnea is characterized by upper airway collapse, leading to intermittent hypoxia (IH). It has been postulated that IH-induced oxidative stress may contribute to several chronic diseases associated with obstructive sleep apnea. We hypothesize that IH induces systemic oxidative stress by upregulating NADPH oxidase, a superoxide-generating enzyme. NADPH oxidase is regulated by a cytosolic p47(phox) subunit, which becomes phosphorylated during enzyme activation. Male C57BL/6J mice were exposed to IH with an inspired O(2) fraction nadir of 5% 60 times/h during the 12-h light phase (9 AM-9 PM) for 1 or 4 wk. In the aorta and heart, IH did not affect lipid peroxidation [malondialdehyde (MDA) level], nitrotyrosine level, or p47(phox) expression and phosphorylation. In contrast, in the liver, exposure to IH for 1 wk resulted in a trend to an increase in MDA levels, whereas IH for 4 wk resulted in a 38% increase in MDA levels accompanied by upregulation of p47(phox) expression and phosphorylation. Administration of an NADPH oxidase inhibitor, apocynin, during IH exposure attenuated IH-induced increases in hepatic MDA. In p47(phox)-deficient mice, MDA levels were higher at baseline and, unexpectedly, decreased during IH. In conclusion, oxidative stress levels and pathways under IH conditions are organ and duration specific.
Collapse
Affiliation(s)
- Jonathan Jun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Obstructive sleep apnea-hypopnea syndrome involves recurring episodes of total obstruction (apnea) or partial obstruction (hypopnea) of airways during sleep. Obstructive sleep apnea-hypopnea syndrome affects mainly obese individuals and it is defined by an apnea-hypopnea index of five or more episodes per hour associated with daytime somnolence. In addition to anatomical factors and neuromuscular and genetic factors, sleep disorders are also involved in the pathogenesis of sleep apnea. Obesity affects upper airway anatomy because of fat deposition and metabolic activity of adipose tissue. Obstructive sleep apnea-hypopnea syndrome and metabolic syndrome have several characteristics such as visceral obesity, hypertension and insulin resistance. Inflammatory cytokines might be related to the pathogenesis of sleep apnea and metabolic syndrome. Sleep apnea treatment includes obesity treatment, use of equipment such as continuous positive airway pressure, drug therapy and surgical procedures in selected patients. Currently, there is no specific drug therapy available with proven efficacy for the treatment of obstructive sleep apnea-hypopnea syndrome. Body-weight reduction results in improvement of sleep apnea, and obesity treatment must be emphasized, including lifestyle changes, anti-obesity drugs and bariatric surgery.
Collapse
Affiliation(s)
- A G P de Sousa
- Obesity and Metabolic Diseases Group, Endocrinology and Metabology Service, Clinics Hospital, University of São Paulo Medical School, São Paulo, Brazil.
| | | | | | | |
Collapse
|
65
|
Campos GM, Bambha K, Vittinghoff E, Rabl C, Posselt AM, Ciovica R, Tiwari U, Ferrel L, Pabst M, Bass NM, Merriman RB. A clinical scoring system for predicting nonalcoholic steatohepatitis in morbidly obese patients. Hepatology 2008; 47:1916-23. [PMID: 18433022 DOI: 10.1002/hep.22241] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) is common in morbidly obese persons. Liver biopsy is diagnostic but technically challenging in such individuals. This study was undertaken to develop a clinically useful scoring system to predict the probability of NASH in morbidly obese persons, thus assisting in the decision to perform liver biopsy. Consecutive subjects undergoing bariatric surgery without evidence of other liver disease underwent intraoperative liver biopsy. The outcome was pathologic diagnosis of NASH. Predictors evaluated were demographic, clinical, and laboratory variables. A clinical scoring system was constructed by rounding the estimated regression coefficients for the independent predictors in a multivariate logistic model for the diagnosis of NASH. Of 200 subjects studied, 64 (32%) had NASH. Median body mass index was 48 kg/m(2) (interquartile range, 43-55). Multivariate analysis identified six predictive factors for NASH: the diagnosis of hypertension (odds ratio [OR], 2.4; 95% confidence interval [CI], 1-5.6), type 2 diabetes (OR, 2.6; 95% CI, 1.1-6.3), sleep apnea (OR, 4.0; 95% CI, 1.3-12.2), AST > 27 IU/L (OR, 2.9; 95% CI, 1.2-7.0), alanine aminotransferase (ALT) > 27 IU/L (OR, 3.3; 95% CI, 1.4-8.0), and non-Black race (OR, 8.4; 95% CI, 1.9-37.1). A NASH Clinical Scoring System for Morbid Obesity was derived to predict the probability of NASH in four categories (low, intermediate, high, and very high). CONCLUSION The proposed clinical scoring can predict NASH in morbidly obese persons with sufficient accuracy to be considered for clinical use, identifying a very high-risk group in whom liver biopsy would be very likely to detect NASH, as well as a low-risk group in whom biopsy can be safely delayed or avoided.
Collapse
Affiliation(s)
- Guilherme M Campos
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143-0790, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Sabaté JM, Jouët P, Merrouche M, Pouzoulet J, Maillard D, Harnois F, Msika S, Coffin B. Gastroesophageal reflux in patients with morbid obesity: a role of obstructive sleep apnea syndrome? Obes Surg 2008; 18:1479-84. [PMID: 18418659 DOI: 10.1007/s11695-008-9508-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/18/2008] [Indexed: 01/11/2023]
Abstract
BACKGROUND Obesity is a risk factor for gastroesophageal reflux disease (GERD) and for obstructive sleep apnea (OSA). Our aim was to evaluate in morbidly obese patients the prevalence of OSA and GERD and their possible relationship. METHODS Morbidly obese patients [body mass index (BMI) >40 or >35 kg/m(2) in association with comorbidities] selected for bariatric surgery were prospectively included. Every patient underwent a 24-h pH monitoring, esophageal manometry, and nocturnal polysomnographic recording. RESULTS Sixty-eight patients [59 women and 9 men, age 39.1 +/- 11.1 years; BMI 46.5 +/- 6.4 kg/m(2) (mean +/- SD)] were included. Fifty-six percent of patients had an abnormal Demester score, 44% had abnormal time spent at pH <4, and 80.9% had OSA [apnea hypopnea index (AHI) >10] and 39.7% had both conditions. The lower esophageal sphincter (LES) pressure was lower in patients with GERD (11.6 +/- 3.4 vs 13.4 +/- 3.6 mm Hg, respectively; P = 0.039). There was a relationship between AHI and BMI (r = 0.337; P = 0.005). Patients with OSA were older (40.5 +/- 10.9 vs 33.5 +/- 10.4 years; P = 0.039). GERD tended to be more frequent in patients with OSA (49.1% vs 23.1%, respectively; P = 0.089). There was no significant relationship between pH-metric data and AHI in either the 24-h total recording time or the nocturnal recording time. In multivariate analysis, GERD was significantly associated with a low LES pressure (P = 0.031) and with OSA (P = 0.045) but not with gender, age, and BMI. CONCLUSION In this population of morbidly obese patients, OSA and GERD were frequent, associated in about 40% of patients. GERD was significantly associated with LES hypotonia and OSA independently of BMI.
Collapse
Affiliation(s)
- J M Sabaté
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Louis Mourier, Service d'Hépato-Gastroentérologie, Université Paris 7, 178 rue des Renouillers, 92700, Colombes Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas. Curr Opin Endocrinol Diabetes Obes 2008; 15:193-207. [PMID: 18316957 DOI: 10.1097/med.0b013e3282fba8b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|