51
|
Zhang G, Cai Q, Zhou H, He C, Chen Y, Zhang P, Wang T, Xu L, Yan J. OxLDL/β2GPI/anti‑β2GPI Ab complex induces inflammatory activation via the TLR4/NF‑κB pathway in HUVECs. Mol Med Rep 2020; 23:148. [PMID: 33355374 PMCID: PMC7789093 DOI: 10.3892/mmr.2020.11787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with antiphospholipid syndrome have been identified to have higher incidence rates of atherosclerosis (AS) due to the elevated levels of anti-β2-glycoprotein I (β2GPI) antibody (Ab). Our previous studies revealed that the anti-β2GPI Ab formed a stable oxidized low-density lipoprotein (oxLDL)/β2GPI/anti-β2GPI Ab complex, which accelerated AS development by promoting the accumulation of lipids in macrophages and vascular smooth muscle cell. However, the effects of the complex on endothelial cells, which drive the initiation and development of AS, remain unknown. Thus, the present study aimed to determine the proinflammatory roles of the oxLDL/β2GPI/anti-β2GPI Ab complex in human umbilical vein endothelial cells (HUVECs) in an attempt to determine the underlying mechanism. Reverse transcription-quantitative PCR, enzymy-linked immunosorbent assay, western blotting and immunofluorescence staining were performed to detect the expressions of inflammation related factors and adhesion molecules. Monocyte-binding assay was used to investigate the effects of oxLDL/β2GPI/anti-β2GPI Ab complex on monocyte adhesion to endothelial cells. The results demonstrated that the oxLDL/β2GPI/anti-β2GPI Ab complex upregulated the expression of Toll-like receptor (TLR)4 and the levels of NF-κB phosphorylation in HUVECs, and subsequently enhanced the expression levels of inflammatory cytokines, including TNF-α, IL-1β and IL-6, as well as those of adhesion molecules, such as intercellular adhesion molecule 1 and vascular adhesion molecule 1. In addition, the complex facilitated the recruitment of monocytes by promoting the secretion of monocyte chemotactic protein 1 in HUVECs. Notably, the described effects of the oxLDL/β2GPI/anti-β2GPI Ab complex in HUVECs were abolished by either TLR4 or NF-κB blockade. In conclusion, these findings suggested that the oxLDL/β2GPI/anti-β2GPI Ab complex may induce a hyper-inflammatory state in endothelial cells by promoting the secretion of proinflammatory cytokines and monocyte recruitment, which was discovered to be largely dependent on the TLR4/NK-κB signaling pathway.
Collapse
Affiliation(s)
- Guiting Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qianqian Cai
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hong Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Chao He
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yudan Chen
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Peng Zhang
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ting Wang
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Liangjie Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
52
|
Chia PY, Teo A, Yeo TW. Overview of the Assessment of Endothelial Function in Humans. Front Med (Lausanne) 2020; 7:542567. [PMID: 33117828 PMCID: PMC7575777 DOI: 10.3389/fmed.2020.542567] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
The endothelium is recognized to play an important role in various physiological functions including vascular tone, permeability, anticoagulation, and angiogenesis. Endothelial dysfunction is increasingly recognized to contribute to pathophysiology of many disease states, and depending on the disease stimuli, mechanisms underlying the endothelial dysfunction may be markedly different. As such, numerous techniques to measure different aspects of endothelial dysfunction have been developed and refined as available technology improves. Current available reviews on quantifying endothelial dysfunction generally concentrate on a single aspect of endothelial function, although diseases may affect more than one aspect of endothelial function. Here, we aim to provide an overview on the techniques available for the assessment of the different aspects of endothelial function in humans, human tissues or cells, namely vascular tone modulation, permeability, anticoagulation and fibrinolysis, and the use of endothelial biomarkers as predictors of outcomes.
Collapse
Affiliation(s)
- Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine and Radiology and Doherty Institute, University of Melbourne, Victoria, VIC, Australia
| | - Tsin Wen Yeo
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
53
|
Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev 2020; 158:116-139. [PMID: 32987094 PMCID: PMC7518978 DOI: 10.1016/j.addr.2020.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Current preclinical studies in drug development utilize high-throughput in vitro screens to identify drug leads, followed by both in vitro and in vivo models to predict lead candidates' pharmacokinetic and pharmacodynamic properties. The goal of these studies is to reduce the number of lead drug candidates down to the most likely to succeed in later human clinical trials. However, only 1 in 10 drug candidates that emerge from preclinical studies will succeed and become an approved therapeutic. Lack of efficacy or undetected toxicity represents roughly 75% of the causes for these failures, despite these parameters being the primary exclusion criteria in preclinical studies. Recently, advances in both biology and engineering have created new tools for constructing new preclinical models. These models can complement those used in current preclinical studies by helping to create more realistic representations of human tissues in vitro and in vivo. In this review, we describe current preclinical models to identify their value and limitations and then discuss select areas of research where improvements in preclinical models are particularly needed to advance drug development. Following this, we discuss design considerations for constructing preclinical models and then highlight recent advances in these efforts. Taken together, we aim to review the advances as of 2020 surrounding the prospect of biological and engineering tools for adding enhanced biological relevance to preclinical studies to aid in the challenges of failed drug candidates and the burden this poses on the drug development enterprise and thus healthcare.
Collapse
Affiliation(s)
- Andrew S Khalil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA.
| |
Collapse
|
54
|
Huang D, Gao W, Zhong X, Ge J. NLRP3 activation in endothelia promotes development of diabetes-associated atherosclerosis. Aging (Albany NY) 2020; 12:18181-18191. [PMID: 32966239 PMCID: PMC7585081 DOI: 10.18632/aging.103666] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
Abstract
Inflammatory damage to endothelial cells plays a pivotal role in the diabetes-provoked atherosclerosis (AS). PYD domains-containing protein 3 (NLRP3) induces formation of inflammasome activates caspase-1, which subsequently cleaves the precursor form of IL-1β (pro-IL-1β) into the processed, secreted form IL-1β to promote the immune responses in AS. However, it is not known whether NLRP3 activation specifically in endothelial cells causes AS. Here, in an in vitro model for AS, we showed that NLRP3-depleted human aortic endothelial cells (HAECs) became resistant to apoptotic cell death, maintained proliferative potential and reduced reactive oxygen species (ROS) production upon treatment with oxidized low-density lipoprotein (ox-LDL). Next, the role of NLRP3 in endothelial cells in the development of diabetes-associated AS was assessed in endothelial cell-specific NLRP3 mutant, ApoE (-/-) mice (APOEKO/Tie2p-Cre/NLRP3MKO), compared to control ApoE (-/-) mice (APOEKO), supplied with either high-fat diet (HFD), or normal diet (ND). We found that endothelia-specific NLRP3-depletion significantly attenuated AS severity in mice treated with HFD, likely through reduced apoptotic death of endothelial cells and production of ROS. Together, our data suggest that NLRP3 activation in endothelial cells promotes development of diabetes-associated AS.
Collapse
Affiliation(s)
- Dong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Wei Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
55
|
Sheng X, Sheng Y, Gao S, Fan F, Wang J. Low fluid shear stress promoted ciliogenesis via Dvl2 in hUVECs. Histochem Cell Biol 2020; 154:639-654. [PMID: 32776193 DOI: 10.1007/s00418-020-01908-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 01/30/2023]
Abstract
This study aims to explore the mechanism of fluid shear stress in regulating the primary cilia assembly or disassembly in human umbilical vein endothelial cells (hUVECs) using microfluidic chamber experiments. Immunofluorescence analysis showed that primary cilia assembled under disturbed fluid shear stress (DF) of 1 dyne/cm2, while disassembled under unidirectional shear stress (USS) of 15 dynes/cm2. Disheveled (Dvl2) in Wnt signaling pathway was effectively co-immunoprecipitated with Bardet-Biedl syndrome proteins 8 (Bbs8) and γ-tubulin. Compared with those in the control group, the percentages of ciliated cells with Dvl2 overexpression were found to be 67% and 59.667%, respectively, under USS and DF (an increment of 21-38.7%); while, those with Dvl2 silencing were 16% and 32.667%, respectively, under USS and DF (a decrement of 23-30%). Further, the expression of Bbs8 and γ-tubulin was decreased by RNA interference of Dvl2 but increased with Dvl2 overexpression. The results indicated that Dvl2 played a pivotal role during DF-induced primary cilia assembly, and was important for apical docking of basal bodies through Bbs8 and γ-tubulin.
Collapse
Affiliation(s)
- Xin Sheng
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China.
| | - Yan Sheng
- Laboratory of Basic Medical Morphology, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Shuanglin Gao
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Fang Fan
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Junhua Wang
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| |
Collapse
|
56
|
Ishikawa M, Toyomura J, Yagi T, Kuboki K, Morita T, Sugihara H, Hirose T, Minami S, Yoshino G. Role of growth hormone signaling pathways in the development of atherosclerosis. Growth Horm IGF Res 2020; 53-54:101334. [PMID: 32721858 DOI: 10.1016/j.ghir.2020.101334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The direct actions of growth hormone (GH) in the development of atherosclerosis are unclear. The goal of this study was to characterize GH-induced changes in expression of signaling pathway elements and other proteins that may be related to atherosclerosis. METHODS Human umbilical vein endothelial cells (HUVEC) and THP-1, a human acute monocytic leukemia cell line, were stimulated by exposure to 10-9 M or 10-8 M human GH with or without pretreatment with a mitogen-activated protein kinase kinase (MEK) 1 inhibitor. Levels of transcripts encoding vascular cell adhesion molecule (VCAM) -1, E-selectin, monocyte chemotactic protein (MCP-1), interleukin (IL) -6, and IL-8 were investigated by reverse transcription (RT) -PCR. For the quantitative adhesion assay, THP-1 cells or human primary monocytes were fluorescently labeled with 3'-O-acetyl-2',7'-bis(carboxyethyl) -4 diacetoxymethyl ester (BCECF/AM). HUVEC treated with human GH were co-incubated with BCECF-labeled THP-1 cells. One hour later, the number of BCECF-labeled THP-1 cells was assessed. An equivalent experiment was performed using BCECF-labeled primary monocytes, and the number of monocytes adhering to HUVEC was counted. RESULTS Treatment with hGH increased the levels of E-selectin- and VCAM-1-encoding mRNAs in HUVEC. This effect was attenuated by pretreatment with a MEK1 inhibitor. Furthermore, hGH treatment increased adhesion of BCECF-labeled THP-1 cells or primary monocytes to HUVEC, and this effect was attenuated by pretreatment with a MEK1 inhibitor. CONCLUSIONS VCAM-1 and E-selectin expression was stimulated by GH via the mitogen-activated protein kinase pathway, resulting in augmented adhesion of THP-1 cells and monocytes to HUVEC. These data suggested that GH directly stimulates the development of atherosclerosis.
Collapse
Affiliation(s)
- Mayumi Ishikawa
- Center of Endocrinology, Diabetes and Arteriosclerosis, Nippon Medical School Musashikosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| | - Junko Toyomura
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba-City, Ibaraki 305-8575, Japan
| | - Takashi Yagi
- Center of Endocrinology, Diabetes and Arteriosclerosis, Nippon Medical School Musashikosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan
| | - Koji Kuboki
- The Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| | - Toshisuke Morita
- Department of Laboratory Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Takahisa Hirose
- The Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| | - Shiro Minami
- Center of Endocrinology, Diabetes and Arteriosclerosis, Nippon Medical School Musashikosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan
| | - Gen Yoshino
- The Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| |
Collapse
|
57
|
Effects of circulating extracellular microvesicles from spinal cord-injured adults on endothelial cell function. Clin Sci (Lond) 2020; 134:777-789. [PMID: 32219341 DOI: 10.1042/cs20200047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
People with spinal cord injury (SCI) have three- to four-fold greater risk of cardiovascular disease (CVD) compared with those without SCI. Although circulating extracellular microvesicles are key effectors of vascular health and disease, how their functional phenotype might be altered with SCI is unknown. The aim of the present study was to determine the effects of microvesicles isolated from SCI adults on endothelial cell inflammation and oxidative stress as well as endothelial nitric oxide (NO) synthase (eNOS) activation and tissue-type plasminogen activator (t-PA) expression. Eighteen young and middle-aged adults were studied: 10 uninjured (7M/3F; age: 39 ± 3 years) and 8 cervical level spinal cord injured (SCI; 7M/1F; 46 ± 4 years; cervical injury: C3: n=1; C5: n=4; C6: n=3). Circulating microvesicles were isolated, enumerated and collected from plasma by flow cytometry. Human umbilical vein endothelial cells (HUVECs) were cultured and treated with microvesicles from either the uninjured or SCI adults. Microvesicles from SCI adults did not affect cellular markers or mediators of inflammation and oxidative stress. However, microvesicles from the SCI adults significantly blunted eNOS activation, NO bioavailability and t-PA production. Intercellular expression of phosphorylated eNOS at Ser1177 and Thr495 sites, specifically, were ∼65% lower and ∼85% higher, respectively, in cells treated with microvesicles from SCI compared with uninjured adults. Decreased eNOS activity and NO production as well as impaired t-PA bioavailability renders the vascular endothelium highly susceptible to atherosclerosis and thrombosis. Thus, circulating microvesicles may contribute to the increased risk of vascular disease and thrombotic events associated with SCI.
Collapse
|
58
|
Haguet H, Bouvy C, Delvigne AS, Modaffari E, Wannez A, Sonveaux P, Dogné JM, Douxfils J. The Risk of Arterial Thrombosis in Patients With Chronic Myeloid Leukemia Treated With Second and Third Generation BCR-ABL Tyrosine Kinase Inhibitors May Be Explained by Their Impact on Endothelial Cells: An In-Vitro Study. Front Pharmacol 2020; 11:1007. [PMID: 32719607 PMCID: PMC7350860 DOI: 10.3389/fphar.2020.01007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
BCR-ABL tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia, inducing deep molecular responses, largely improving patient survival and rendering treatment-free remission possible. However, three of the five BCR-ABL TKIs, dasatinib, nilotinib, and ponatinib, increase the risk of developing arterial thrombosis. Prior investigations reported that nilotinib and ponatinib affect the endothelium, but the mechanisms by which they exert their toxic effects are still unclear. The impact of dasatinib and bosutinib on endothelial cells has been poorly investigated. Here, we aimed to provide an in vitro homogenous evaluation of the effects of BCR-ABL TKIs on the endothelium, with a special focus on the type of cell death to elucidate the mechanisms responsible for the potential cytotoxic effects of BCR-ABL TKIs nilotinib and ponatinib on endothelial cells. We tested the five BCR-ABL TKIs at three concentrations on human umbilical venous endothelial cells (HUVECs). This study highlights the endothelial toxicity of ponatinib and provides insights about the mechanisms by which it affects endothelial cell viability. Ponatinib induced apoptosis and necrosis of HUVECs after 72 h. Dasatinib affected endothelial cells in vitro by inhibiting their proliferation and decreased wound closure as soon as 24 h of treatment and even at infra-therapeutic dose (0.005 µM). Comparatively, imatinib, nilotinib, and bosutinib had little impact on endothelial cells at therapeutic concentrations. They did not induce apoptosis nor necrosis, even after 72 h of treatment but they inhibited HUVEC proliferation. Overall, this study reports various effects of BCR-ABL TKIs on endothelial cells and suggests that ponatinib and dasatinib induce arterial thrombosis through endothelial dysfunction.
Collapse
Affiliation(s)
- Hélène Haguet
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | | | | | | | - Adeline Wannez
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Michel Dogné
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Jonathan Douxfils
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
- QUALIblood s.a., Namur, Belgium
| |
Collapse
|
59
|
Kandasamy M, Anusuyadevi M, Aigner KM, Unger MS, Kniewallner KM, de Sousa DMB, Altendorfer B, Mrowetz H, Bogdahn U, Aigner L. TGF-β Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia? Aging Dis 2020; 11:828-850. [PMID: 32765949 PMCID: PMC7390515 DOI: 10.14336/ad.2020.0222] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular dementia (VaD) is the second leading form of memory loss after Alzheimer's disease (AD). Currently, there is no cure available. The etiology, pathophysiology and clinical manifestations of VaD are extremely heterogeneous, but the impaired cerebral blood flow (CBF) represents a common denominator of VaD. The latter might be the result of atherosclerosis, amyloid angiopathy, microbleeding and micro-strokes, together causing blood-brain barrier (BBB) dysfunction and vessel leakage, collectively originating from the consequence of hypertension, one of the main risk factors for VaD. At the histopathological level, VaD displays abnormal vascular remodeling, endothelial cell death, string vessel formation, pericyte responses, fibrosis, astrogliosis, sclerosis, microglia activation, neuroinflammation, demyelination, white matter lesions, deprivation of synapses and neuronal loss. The transforming growth factor (TGF) β has been identified as one of the key molecular factors involved in the aforementioned various pathological aspects. Thus, targeting TGF-β signaling in the brain might be a promising therapeutic strategy to mitigate vascular pathology and improve cognitive functions in patients with VaD. This review revisits the recent understanding of the role of TGF-β in VaD and associated pathological hallmarks. It further explores the potential to modulate certain aspects of VaD pathology by targeting TGF-β signaling.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India.
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Group, Department of Biochemistry, School of Life Sciences, Bharathidhasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Kiera M Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michael S Unger
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Kathrin M Kniewallner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Diana M Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Ulrich Bogdahn
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Velvio GmbH, Regensburg, Germany.
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
60
|
Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med 2020; 9:jcm9061995. [PMID: 32630452 PMCID: PMC7355625 DOI: 10.3390/jcm9061995] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.
Collapse
|
61
|
Cinar I, Halici Z, Dincer B, Sirin B, Cadirci E. The role of 5-HT7 receptors on isoproterenol-induced myocardial infarction in rats with high-fat diet exacerbated coronary endothelial dysfunction. Hum Exp Toxicol 2020; 39:1005-1018. [PMID: 32329363 DOI: 10.1177/0960327120916821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of 5-HT7r's in both human and rat cardiovascular and immune tissues and their contribution to inflammatory conditions prompted us to hypothesize that these receptors contribute in acute myocardial infarction (MI) with underlying chronic endothelial dysfunction. We investigated the role of 5-HT7 receptors on heart tissue that damaged by isoproterenol (ISO)-induced MI in rats with high-fat diet (HFD). In vitro and in vivo effects of 5-HT7r agonist (LP44) and antagonist (SB269970) have been investigated on the H9C2 cell line and rats, respectively. For in vivo analyses, rats were fed with HFD for 8 weeks and after this period ISO-induced MI model has been applied to rat. To investigate the role of 5-HT7r's, two different doses of LP44 and SB269970 were evaluated and compared with standard hypolipidemic agent, atorvastatin. In vitro studies showed that LP44 has protective and proliferative effects on rat cardiomyocytes. Also in in vivo studies stimulating 5-HT7r's by LP44 improved blood lipid profile (decreased total cholesterol, low-density lipoprotein-C, and triglyceride, increased high-density lipoprotein), decreased cardiac damage markers (creatine kinase and troponin-I), and corrected inflammatory status (tumor necrosis factor-α, interleukin-6). Our results showed significant improvement in LP44 administered rats in terms of histopathologic analyses. In damaged tissues, 5-HT7 mRNA expression increased and agonist administration decreased this elevation significantly. We determined for the first time that 5-HT7r's are overexpressed in ISO-induced MI of rats with underlying HFD-induced endothelial dysfunction. Restoration of this overexpression by LP44, a 5-HT7r agonist, ameliorated heart tissue in physiopathologic, enzymatic, and molecular level, showing the cardiac role of these receptors and suggesting them as future potential therapeutic targets.
Collapse
Affiliation(s)
- I Cinar
- Department of Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Z Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - B Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - B Sirin
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - E Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
62
|
Brewster LM, Garcia VP, Levy MV, Stockelman KA, Goulding A, DeSouza NM, Greiner JJ, Hijmans JG, DeSouza CA. Endothelin-1-induced endothelial microvesicles impair endothelial cell function. J Appl Physiol (1985) 2020; 128:1497-1505. [PMID: 32324474 DOI: 10.1152/japplphysiol.00816.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to determine the effects of endothelin-1 (ET-1)-generated endothelial microvesicles (EMVs) on endothelial cell inflammation, apoptosis, and endothelial nitric oxide synthase (eNOS). Human umbilical vein endothelial cells (HUVECs) were treated with ET-1 for 24 h. EMVs released into the supernatant from cells treated with ET-1 or vehicle were isolated and quantified. EMV release was higher (P < 0.05) in cells treated with ET-1 compared with control (95 ± 15 vs. 54 ± 5 EMV/µL). Fresh HUVECs were then treated with either ET-1, ET-1-induced EMVs, or control EMVs for 24 h. ET-1-generated EMVs induced significantly higher release of IL-6 (181.0 ± 16.0 vs. 132.1 ± 8.1 pg/mL) and IL-8 (303.4 ± 37.4 vs. 211.8 ± 10.0 pg/mL), as well as greater total NF-κB p65 (76.0 ± 7.6 vs. 57.1 ± 2.1 AU) and active NF-κB p65 (Ser-536) (11.6 ± 0.9 vs. 6.8 ± 1.0 AU) expression than control EMVs. There were no significant differences in expression of caspase-9 (230.1 ± 24.3 vs. 243.6 ± 22.3 AU), caspase-3 (271.9 ± 22.7 vs. 265.1 ± 30.5 AU), and active caspase-3 (4.4 ± 0.4 vs. 4.3 ± 0.1 AU) in cells treated with ET-1-EMVs versus control EMVs. Total eNOS (108.4 ± 11.4 vs. 158.8 ± 1.6 AU) and activated eNOS (4.7 ± 0.5 vs. 9.6 ± 1.4 AU) were significantly lower in endothelial cells treated with ET-1-generated EMVs compared with control EMVs. The effects of ET-1-generated EMVs on cellular markers and mediators of endothelial inflammation, as well as eNOS function, was comparable to the effects of ET-1. In summary, ET-1 induces an EMV phenotype that adversely affects endothelial cell function. ET-1-generated EMVs may contribute to the atherogenic effect of ET-1.NEW & NOTEWORTHY Endothelin-1 (ET-1) is a potent vasoconstrictor peptide released by the endothelium that contributes to the regulation of vascular tone. Overexpression of ET-1 has been implicated in the etiology of atherosclerotic vascular disease. Endothelial cell-derived microvesicles (EMVs) play a pivotal role in vascular health and disease. Their functional phenotype is largely dictated by the stimulus for release. EMVs released in response to various pathological conditions have been shown to elicit deleterious vascular effects. In the present study, we determined, in vitro, the effect of ET-1 on EMV release from endothelial cells and the effects of ET-1-generated EMVs on endothelial cell inflammation, apoptosis, and endothelial nitric oxide synthase (eNOS). ET-1 induced a marked increase in EMV release. ET-1-generated EMVs significantly increased endothelial cell inflammation and reduced eNOS protein expression and activation. Moreover, the endothelial effects of ET-1-derived EMVs were similar to the direct effects of ET-1. ET-1-generated EMVs may contribute to the proatherogenic profile of ET-1.
Collapse
Affiliation(s)
- L Madden Brewster
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Ma'ayan V Levy
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Kelly A Stockelman
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Anabel Goulding
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Jamie G Hijmans
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
63
|
Hijmans JG, Stockelman KA, Garcia V, Levy MV, Brewster LM, Bammert TD, Greiner JJ, Stauffer BL, Connick E, DeSouza CA. Circulating Microparticles Are Elevated in Treated HIV -1 Infection and Are Deleterious to Endothelial Cell Function. J Am Heart Assoc 2020; 8:e011134. [PMID: 30779672 PMCID: PMC6405669 DOI: 10.1161/jaha.118.011134] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Circulating microparticles have emerged as biomarkers and effectors of vascular disease. Elevated rates of cardiovascular disease are seen in HIV -1-seropositive individuals. The aims of this study were to determine: (1) if circulating microparticles are elevated in antiretroviral therapy-treated HIV -1-seropositive adults; and (2) the effects of microparticles isolated from antiretroviral therapy -treated HIV -1-seropositive adults on endothelial cell function, in vitro. Methods and Results Circulating levels of endothelial-, platelet-, monocyte-, and leukocyte-derived microparticles were determined by flow cytometry in plasma from 15 healthy and 15 antiretroviral therapy-treated, virologically suppressed HIV -1-seropositive men. Human umbilical vein endothelial cells were treated with microparticles from individual subjects for 24 hours; thereafter, endothelial cell inflammation, oxidative stress, senescence, and apoptosis were assessed. Circulating concentrations of endothelial-, platelet-, monocyte-, and leukocyte-derived microparticles were significantly higher (≈35%-225%) in the HIV -1-seropositive compared with healthy men. Microparticles from HIV -1-seropositive men induced significantly greater endothelial cell release of interleukin-6 and interleukin-8 (≈20% and ≈35%, respectively) and nuclear factor-κB expression while suppressing anti-inflammatory microRNAs (miR-146a and miR-181b). Intracellular reactive oxygen species production and expression of reactive oxygen species -related heat shock protein 70 were both higher in cells treated with microparticles from the HIV -1-seropositive men. In addition, the percentage of senescent cells was significantly higher and sirtuin 1 expression lower in cells treated with HIV -1-related microparticles. Finally, caspase-3 was significantly elevated by microparticles from HIV -1-seropositive men. Conclusions Circulating concentrations of endothelial-, platelet-, monocyte-, and leukocyte-derived microparticles were higher in antiretroviral therapy-treated HIV -1-seropositive men and adversely affect endothelial cells promoting cellular inflammation, oxidative stress, senescence, and apoptosis. Circulating microparticles may contribute to the vascular risk associated with HIV -1 infection.
Collapse
Affiliation(s)
- Jamie G Hijmans
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Kelly A Stockelman
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Vinicius Garcia
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Ma'ayan V Levy
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - L Madden Brewster
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Tyler D Bammert
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Jared J Greiner
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Brian L Stauffer
- 2 Department of Medicine Anschutz Medical Center University of Colorado Denver Denver CO.,3 Denver Health Medical Center Denver CO
| | | | - Christopher A DeSouza
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO.,2 Department of Medicine Anschutz Medical Center University of Colorado Denver Denver CO
| |
Collapse
|
64
|
Tan SY, Leung Z, Wu AR. Recreating Physiological Environments In Vitro: Design Rules for Microfluidic-Based Vascularized Tissue Constructs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905055. [PMID: 31913580 DOI: 10.1002/smll.201905055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the model. Microfluidic technology has emerged as a promising tool that enables perfusion of the tissue constructs through engineered vasculatures and precise control of the vascular microenvironment cues in vitro. The tunable microenvironment includes i) biochemical cues such as coculture, supporting matrix, and growth factors and ii) engineering aspects such as vasculature engineering methods, fluid flow, and shear stress. In this systematic review, the design considerations of the microfluidic-based in vitro model are discussed, with an emphasis on microenvironment control to enhance the development of next-generation vascularized engineered tissues.
Collapse
Affiliation(s)
- Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ziuwin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Angela Ruohao Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
65
|
Xu J, Sun Y, Lu J. Knockdown of Long Noncoding RNA (lncRNA) AK094457 Relieved Angiotensin II Induced Vascular Endothelial Cell Injury. Med Sci Monit 2020; 26:e919854. [PMID: 32027625 PMCID: PMC7020760 DOI: 10.12659/msm.919854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Hypertension could induce many serious diseases, including damage to vascular endothelial cells. As a non-coding RNA, long noncoding RNA (lncRNA) has received much attention in scientific research and has a regulating efficacy on many critical life activities in human body. The level of lncRNA AK094457 is thought to be elevated in hypertensive rats. However, there is no research indicating the relationship between the level of lncRNA AK094457 and vascular endothelial injury. Material/Methods In our study, we used lentiviral to knockdown lncRNA AK094457, and the human umbilical vein endothelial cells (HUVECs) were stimulated by the Ang II to imitate the vascular endothelial cell damage caused by hypertension. The Cell Counting Kit-8 assays were used to detect the cells viability. Western blotting was performed to detect the endothelial nitric oxide synthase (eNOS), p-eNOS and endothelin-1 (ET-1). After that the production of the NO was monitored. At last, the reactive oxygen species (ROS) levels and apoptosis rates were detected in this study. Results According to the results, we found that knockdown lncRNA AK094457 could alleviate the decrease of vascular endothelial cell viability induced by angiotensin II (Ang II). The knockdown of lncRNA AK094457 also relieved the downregulation of eNOS and p-eNOS, and the decreasing of NO release. At the same time, the knockdown of lncRNA inhibited the levels of Ang II-induced proinflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1, and IL-6) and cell adhesion molecules (vascular cell adhesion molecule 1 [VCAM-1], intercellular adhesion molecule 1 [ICAM-1], and monocyte chemoattractant protein-1 [MCP-1]). The levels of ROS and apoptosis rates also decreased after the knockdown of lncRNA AK094457. Conclusions All these results indicated that lncRNA AK094457 could promote Ang II-induced vascular endothelial cell injury. On the contrary, knockdown of lncRNA AK094457 could alleviate this damage.
Collapse
Affiliation(s)
- JiaYi Xu
- Department of Gerontology, Minhang Hospital, Fudan University, Shanghai, China (mainland)
| | - Yingjie Sun
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai, China (mainland)
| | - Jie Lu
- Department of Gerontology, Minhang Hospital, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
66
|
Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030938] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and extensive research has been performed to understand this disease better, using various experimental models. The endothelium plays a crucial role in the development of CVD, since it is an interface between bloodstream components, such as monocytes and platelets, and other arterial wall components. Human umbilical vein endothelial cell (HUVEC) isolation from umbilical cord was first described in 1973. To date, this model is still widely used because of the high HUVEC isolation success rate, and because HUVEC are an excellent model to study a broad array of diseases, including cardiovascular and metabolic diseases. We here review the history of HUVEC isolation, the HUVEC model over time, HUVEC culture characteristics and conditions, advantages and disadvantages of this model and finally, its applications in the area of cardiovascular diseases.
Collapse
|
67
|
Hu R, Wang MQ, Ni SH, Wang M, Liu LY, You HY, Wu XH, Wang YJ, Lu L, Wei LB. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur J Pharmacol 2020; 867:172797. [DOI: 10.1016/j.ejphar.2019.172797] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 01/22/2023]
|
68
|
Sunitha P, Raju R, Sajil CK, Abhinand CS, Nair AS, Oommen OV, Sugunan VS, Sudhakaran PR. Temporal VEGFA responsive genes in HUVECs: Gene signatures and potential ligands/receptors fine-tuning angiogenesis. J Cell Commun Signal 2019; 13:561-571. [PMID: 31840205 DOI: 10.1007/s12079-019-00541-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular Endothelial Growth Factor-A (VEGFA) signaling is crucial to the cellular processes involved in angiogenesis. Previously, we assembled a network of molecular reactions induced by VEGFA in human umbilical vein endothelial cell populations. Considering transcriptome as a read-out of the transcriptional and epigenomic regulatory network, we now present an analysis of VEGFA-induced temporal transcriptome datasets from 6 non-synchronized studies. From these datasets, applying a confidence criterion, a set of early VEGFA-responsive signature genes were derived and evaluated for their co-expression potential with respect to multiple cancer gene expression datasets. Further, inclusive of a set of ligand-receptor pairs, a list of ligand and receptor signaling systems that potentially fine-tune the endothelial cell functions subsequent to VEGFA signaling were also derived. We believe that a number of these signaling systems would concurrently and/or hierarchically fine-tune the signaling network of endothelial cell populations towards the processes associated with angiogenesis through autocrine, paracrine, juxtacrine, and matricrine modes. By further analysis of published literature on VEGFA signaling, we also present an improved update-version of our previous VEGFA signaling network model in endothelial cells as a platform for analysis of cross-talk with these signaling systems.
Collapse
Affiliation(s)
- P Sunitha
- Department of Computational Biology & Bioinformatics, Research Centre, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Rajesh Raju
- Rajiv Gandhi Centre for Biotechnology, KINFRA Campus, Thiruvananthapuram, Kerala, 695585, India.
| | - C K Sajil
- Department of Computational Biology & Bioinformatics, Research Centre, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - C S Abhinand
- Department of Computational Biology & Bioinformatics, Research Centre, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Achuthsankar S Nair
- Department of Computational Biology & Bioinformatics, Research Centre, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Oommen V Oommen
- Department of Computational Biology & Bioinformatics, Research Centre, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - V S Sugunan
- Department of Computational Biology & Bioinformatics, Research Centre, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - P R Sudhakaran
- Department of Computational Biology & Bioinformatics, Research Centre, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
69
|
Seeger DR, Golovko SA, Golovko MY. Blood-Brain Barrier Is the Major Site for a Rapid and Dramatic Prostanoid Increase upon Brain Global Ischemia. Lipids 2019; 55:79-85. [PMID: 31814137 DOI: 10.1002/lipd.12205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
We and others have demonstrated a rapid and dramatic increase in brain prostanoids upon decapitation-induced brain global ischemia and injury. However, the mechanism for this induction, including the cell types involved, are unknown. In the present study, we have validated and applied a pharmacological approach to inhibit prostanoid synthesis in the blood-brain barrier including endothelial cells. Our results indicate that a nonspecific cyclooxygenase (COX) inhibitor, ketorolac, does not pass the blood-brain barrier and does not enter red blood cells but penetrates endothelial cells. Ketorolac treatment did not affect basal prostanoid levels but completely prevented prostanoid induction upon global ischemia. These data indicate that basal prostanoids are synthesized in brain parenchyma cells, while inducible prostanoids are synthesized in the blood-brain barrier, most likely in endothelial cells. However, future studies with cell and COX isoform-specific gene ablation are needed to further validate this conclusion. These findings identify endothelial cells as a possible target for the development of pharmacological approaches to selectively attenuate inducible prostanoid pools without affecting basal levels under brain ischemia, trauma, surgery, and other related conditions.
Collapse
Affiliation(s)
- Drew R Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA
| |
Collapse
|
70
|
Li L, Wei J, Mallampalli RK, Zhao Y, Zhao J. TRIM21 Mitigates Human Lung Microvascular Endothelial Cells' Inflammatory Responses to LPS. Am J Respir Cell Mol Biol 2019; 61:776-785. [PMID: 31184939 PMCID: PMC6890403 DOI: 10.1165/rcmb.2018-0366oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/16/2019] [Indexed: 01/16/2023] Open
Abstract
Endothelial cell (EC) inflammation is regarded as an important pathogenic feature of many inflammatory diseases, including acute lung injury and sepsis. An increase in EC inflammation results in neutrophil infiltration from the blood to the site of inflammation, further promoting EC permeability. The ubiquitin E3 ligase TRIM21 has been implicated in human disorders; however, the roles of TRIM21 in endothelial dysfunction and acute lung injury have not been reported. Here, we reveal an antiinflammatory property of TRIM21 in a mouse model of acute lung injury and human lung microvascular ECs. Overexpression of TRIM21 by lentiviral vector infection effectively dampened LPS-induced neutrophil infiltration, cytokine release, and edema in mice. TRIM21 inhibited human lung microvascular endothelial cell inflammatory responses as evidenced by attenuation of the NF-κB pathway, release of IL-8, expression of intercellular adhesion molecules, and adhesion of monocytes to ECs. Furthermore, we demonstrated that TRIM21 was predominantly degraded by an increase in its monoubiquitination and lysosomal degradation after inflammatory stimuli. Thus, inhibition of vascular endothelial inflammation by TRIM21 provides a novel therapeutic target to lessen pulmonary inflammation.
Collapse
Affiliation(s)
- Lian Li
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
- Department of Physiology and Cell Biology, and
| | - Jianxin Wei
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Yutong Zhao
- Department of Physiology and Cell Biology, and
| | - Jing Zhao
- Department of Physiology and Cell Biology, and
| |
Collapse
|
71
|
Yin C, Hu W, Wang M, Xiao Y. The role of the adipocytokines vaspin and visfatin in vascular endothelial function and insulin resistance in obese children. BMC Endocr Disord 2019; 19:127. [PMID: 31771561 PMCID: PMC6878710 DOI: 10.1186/s12902-019-0452-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/30/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We measured the concentrations of the adipocytokines vaspin and visfatin in obese Chinese children. Furthermore, we studied the correlation of these adipocytokines with early-onset metabolic and vascular sequelae among these children. METHODS A total of 244 children (160 obese and 84 lean) were included in this study. Vaspin and visfatin were detected using enzyme-linked immunosorbent assays. We also assayed other metabolic and cardiovascular parameters. The associations of serum vaspin and visfatin concentrations with metabolic and cardiovascular parameters were determined. RESULTS We found a significant elevation in the concentrations of vaspin and visfatin in obese children compared to the concentrations in lean children. Additionally, we found a significant positive correlation between visfatin and vaspin levels, as well as inflammatory cell infiltration and markers of endothelial activation, but these factors did not affect insulin resistance in obese children. Multiple regression analyses confirmed that vaspin is the strongest predictor of higher tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), angiotensin-2 (Ang-2), vascular cellular adhesion molecule-1 (VCAM-1), and E-selectin levels. We also found a significant association between visfatin and Ang-2, IL-6, VCAM-1, and E-selectin levels. CONCLUSION The adipocytokines vaspin and visfatin are significantly interrelated, and both adipocytokines play a role in vascular endothelial function and inflammation.
Collapse
Affiliation(s)
- Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 of West 5th Road, Xi'an, ShanXi, 710049, People's Republic of China
| | - Wei Hu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 of West 5th Road, Xi'an, ShanXi, 710049, People's Republic of China
| | - Ming Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 of West 5th Road, Xi'an, ShanXi, 710049, People's Republic of China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 of West 5th Road, Xi'an, ShanXi, 710049, People's Republic of China.
| |
Collapse
|
72
|
Fan M, Bai J, Ding T, Yang X, Si Q, Nie D. Adipose-Derived Stem Cell Transplantation Inhibits Vascular Inflammatory Responses and Endothelial Dysfunction in Rats with Atherosclerosis. Yonsei Med J 2019; 60:1036-1044. [PMID: 31637885 PMCID: PMC6813142 DOI: 10.3349/ymj.2019.60.11.1036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
PURPOSE This study aimed to investigate the effect of adipose-derived stem cell (ADSC) transplantation on atherosclerosis (AS) and its underlying mechanisms. MATERIALS AND METHODS In our study, rat AS model was established, and ADSCs were isolated and cultured. Atherosclerotic plaque and pathological symptoms of thoracic aorta were measured by Oil Red O staining and Hematoxylin-Eosin staining, respectively. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were measured by an automatic biochemical analyzer. Expressions of vascular endothelial growth factor (VEGF), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), aortic endothelin-1 (ET-1), interleukin-6 (IL-6), c-reactive protein (CRP), and tumor necrosis factor α (TNF-α) were measured by enzyme linked immunosorbent assay, VEGF, VCAM-1, ICAM-1, ET-1, respectively, and NF-κB p65 mRNA expressions were detected by quantitative real-time polymerase chain reaction. Protein expressions of VEGF, VCAM-1, ICAM-1, ET-1, NF-κB p65, p-NF-κB p65, and IκBα were measured by western blot. Moreover, NF-κB p65 expression was measured by immunofluorescence staining. RESULTS ADSC transplantation alleviated the pathological symptoms of aortic AS. ADSC transplantation decreased the levels of TC, TG, and LDL-C and increased serum HDL-C level. Meanwhile, ADSC transplantation decreased the levels of IL-6, CRP, and TNF-α in AS rats. Moreover, the expressions of VEGF, ET-1, VCAM-1, and ICAM-1 were decreased by ADSC transplantation. ADSC transplantation inhibited phosphorylation of NF-κB p65 and promoted IκBα expression in AS rats. CONCLUSION Our study demonstrated that ADSC transplantation could inhibit vascular inflammatory responses and endothelial dysfunction by suppressing NF-κB pathway in AS rats.
Collapse
Affiliation(s)
- Mingqiang Fan
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Jing Bai
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Tao Ding
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Xiangxiang Yang
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Qiaoke Si
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Dengmei Nie
- Department of Pathology, Second Provincial People's Hospital, Lanzhou, China.
| |
Collapse
|
73
|
The lncRNA DAPK-IT1 regulates cholesterol metabolism and inflammatory response in macrophages and promotes atherogenesis. Biochem Biophys Res Commun 2019; 516:1234-1241. [DOI: 10.1016/j.bbrc.2019.06.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 01/07/2023]
|
74
|
Jin G, Wang Q, Hu X, Li X, Pei X, Xu E, Li M. Profiling and functional analysis of differentially expressed circular RNAs in high glucose-induced human umbilical vein endothelial cells. FEBS Open Bio 2019; 9:1640-1651. [PMID: 31369204 PMCID: PMC6722901 DOI: 10.1002/2211-5463.12709] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/07/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Dysfunction of vascular endothelial cells often results in diabetic vascular complications. Circular RNAs (circRNAs) have been implicated in the pathogenesis of various diseases, including diabetes and many vascular diseases. This study aimed to explore the roles of circRNAs in high glucose‐induced human umbilical vein endothelial cells (HUVECs) to elucidate the contributions of circRNAs to diabetic vascular complications. We subjected control and high glucose‐induced HUVECs to RNA sequencing and identified 214 differentially expressed circRNAs (versus control HUVECs, fold change ≥ 2.0, P < 0.05). We then validated seven of these differentially expressed circRNAs by qPCR (hsa_circ_0008360, hsa_circ_0005741, hsa_circ_0003250, hsa_circ_0045462, hsa_circ_0064772, hsa_circ_0007976, and hsa_circ_0005263). A representative circRNA–microRNA (miRNA) network was constructed using the three most up‐regulated circRNAs (hsa_circ_0008360, hsa_circ_0000109, and hsa_circ_0002317) and their putative miRNA. Bioinformatic analysis indicated that these circRNAs regulate the expressions of genes involved in vascular endothelial function and angiogenesis through targeting miRNAs. Our work highlights the potential regulatory mechanisms of three crucial circRNAs in diabetes‐associated endothelial dysfunction.
Collapse
Affiliation(s)
- Guoxi Jin
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Qiong Wang
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Xiaolei Hu
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Xiaoli Li
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Xiaoyan Pei
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Erqin Xu
- Room of Physical Diagnostics, Bengbu Medical College, Anhui, China
| | - Minglong Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
75
|
Yang D, Xiao C, Long F, Su Z, Jia W, Qin M, Huang M, Wu W, Suguro R, Liu X, Zhu Y. HDAC4 regulates vascular inflammation via activation of autophagy. Cardiovasc Res 2019. [PMID: 29529137 DOI: 10.1093/cvr/cvy051] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aims Angiotensin II (Ang II) causes vascular inflammation, leading to vascular endothelial cell dysfunction, and is associated with the development of cardiovascular diseases. Therefore, interventions in inflammation may contribute to the reduction of cardiovascular diseases. Here, we aim to demonstrate that HDAC4, one of class IIa family histone de-acetylases (HDACs) members, promotes autophagy-dependent vascular inflammation. Methods and results By loss-of-function approaches, our study provides the first evidence that HDAC4 mediates Ang II-induced vascular inflammation in vitro and in vivo. In response to the Ang II, HDAC4 expression is up-regulated rapidly, with increased autophagic flux and inflammatory mediators in vascular endothelial cells (VECs). In turn, HDAC4 deficiency suppresses activation of autophagy, leading to reduced inflammation in Ang II-induced VECs. Consistently, using autophagy inhibitor or silencing LC3-II also alleviates vascular inflammation. Furthermore, HDAC4 regulates autophagy via facilitating transcription factor forkhead box O3a (FoxO3a) de-acetylation, thereby to increase its transcriptional activity. Loss of HDAC4 in VECs results in inhibition of FoxO3a de-acetylation to block its transcriptional activity, leading to downregulation of the downstream FoxO3a target, and hence reduces autophagy and vascular inflammation. FoxO3a silencing using siRNA approach significantly inhibits activation of autophagy. Finally, knockdown of HDAC4 in Ang II-infused mouse models ameliorates vascular inflammation, suggesting that inhibitor of HDAC4 may be potential therapeutics for vascular diseases associated with inflammation. Conclusion These results suggest that HDAC4-mediated FoxO3a acetylation regulates Ang II-induced autophagy activation, which in turn plays an essential role in causing vascular inflammation.
Collapse
Affiliation(s)
- Di Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - ChenXi Xiao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - Fen Long
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - ZhengHua Su
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - WanWan Jia
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - Ming Qin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - MengWei Huang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - WeiJun Wu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - Rinkiko Suguro
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - XinHua Liu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - YiZhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
76
|
Zhuo X, Wu Y, Yang Y, Gao L, Qiao X, Chen T. LncRNA AK094457 promotes AngII-mediated hypertension and endothelial dysfunction through suppressing of activation of PPARγ. Life Sci 2019; 233:116745. [PMID: 31404524 DOI: 10.1016/j.lfs.2019.116745] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Hypertension is one of the major risk factors for cardiovascular disease worldwide and is striking more young people, which is characterized by impaired vascular endothelial function. To find the functional lncRNAs associated with hypertension, high throughput lncRNA microarray were used to analyze expression profile of the lncRNAs in the aortic vascular endothelial cells (VECs) of spontaneously hypertensive rats (SHRs). The tail vein injection of siRNA was used to study the influence of lncRNA AK094457 inhibition on endothelial function in vivo. In vitro, endothelial function was studied in endothelial cells transfected with lncRNA AK094457-overexpressed vectors and siRNAs. pPPARγ and iNOS protein levels were detected with Western blot. Elisa assay was used to analyze the secretion of AngII, ET-1, ROS and LDH level. The nitrite/nitrate (NO2-/NO3-) concentration was measured using a colorimetric assay. LncRNA AK094457 was a most upregulated lncRNA in SHRs. It is showed that downregulation of AK094457 significantly reduced rat arterial pressure, increased activation of endothelial PPARγ, and suppressed serum contents of AngII and NO in vivo. Furthermore, results from gain-and-loss of function in primary aortic endothelial cells indicated that AK094457 negatively regulated activation of PPARγ and promoted AngII-mediated endothelial dysfunction, manifested by decreased capacities of cell proliferation and migration, and increased levels of ROS production and LDH release. In conclusion, lncRNA AK094457 is identified as a key regulator in blood pressure and endothelial function, which can increase AngII-induced hypertension and endothelial dysfunction via suppression of PPARγ.
Collapse
Affiliation(s)
- Xiaozhen Zhuo
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yan Wu
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanjie Yang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Li Gao
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiangrui Qiao
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tao Chen
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
77
|
Madugundu AK, Na CH, Nirujogi RS, Renuse S, Kim KP, Burns KH, Wilks C, Langmead B, Ellis SE, Collado‐Torres L, Halushka MK, Kim M, Pandey A. Integrated Transcriptomic and Proteomic Analysis of Primary Human Umbilical Vein Endothelial Cells. Proteomics 2019; 19:e1800315. [PMID: 30983154 PMCID: PMC6812510 DOI: 10.1002/pmic.201800315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/17/2019] [Indexed: 01/11/2023]
Abstract
Understanding the molecular profile of every human cell type is essential for understanding its role in normal physiology and disease. Technological advancements in DNA sequencing, mass spectrometry, and computational methods allow us to carry out multiomics analyses although such approaches are not routine yet. Human umbilical vein endothelial cells (HUVECs) are a widely used model system to study pathological and physiological processes associated with the cardiovascular system. In this study, next-generation sequencing and high-resolution mass spectrometry to profile the transcriptome and proteome of primary HUVECs is employed. Analysis of 145 million paired-end reads from next-generation sequencing confirmed expression of 12 186 protein-coding genes (FPKM ≥0.1), 439 novel long non-coding RNAs, and revealed 6089 novel isoforms that were not annotated in GENCODE. Proteomics analysis identifies 6477 proteins including confirmation of N-termini for 1091 proteins, isoforms for 149 proteins, and 1034 phosphosites. A database search to specifically identify other post-translational modifications provide evidence for a number of modification sites on 117 proteins which include ubiquitylation, lysine acetylation, and mono-, di- and tri-methylation events. Evidence for 11 "missing proteins," which are proteins for which there was insufficient or no protein level evidence, is provided. Peptides supporting missing protein and novel events are validated by comparison of MS/MS fragmentation patterns with synthetic peptides. Finally, 245 variant peptides derived from 207 expressed proteins in addition to alternate translational start sites for seven proteins and evidence for novel proteoforms for five proteins resulting from alternative splicing are identified. Overall, it is believed that the integrated approach employed in this study is widely applicable to study any primary cell type for deeper molecular characterization.
Collapse
Affiliation(s)
- Anil K. Madugundu
- Center for Molecular MedicineNational Institute of Mental Health and NeurosciencesHosur RoadBangalore560029KarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangalore560066KarnatakaIndia
- Manipal Academy of Higher EducationManipal576104KarnatakaIndia
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Center for Individualized Medicine and Department of Laboratory Medicine and PathologyMayo ClinicRochesterMN55905USA
| | - Chan Hyun Na
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMD21205USA
- NeurologyInstitute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Raja Sekhar Nirujogi
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Santosh Renuse
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Center for Individualized Medicine and Department of Laboratory Medicine and PathologyMayo ClinicRochesterMN55905USA
| | - Kwang Pyo Kim
- Department of Applied ChemistryKyung Hee UniversityYonginGyeonggi17104Republic of Korea
| | - Kathleen H. Burns
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Departments of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMD21205USA
- High Throughput Biology CenterJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Christopher Wilks
- Department of Computer ScienceJohns Hopkins UniversityBaltimoreMD21218USA
- Center for Computational BiologyJohns Hopkins UniversityBaltimoreMD21205USA
| | - Ben Langmead
- Department of Computer ScienceJohns Hopkins UniversityBaltimoreMD21218USA
- Center for Computational BiologyJohns Hopkins UniversityBaltimoreMD21205USA
| | - Shannon E. Ellis
- Center for Computational BiologyJohns Hopkins UniversityBaltimoreMD21205USA
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMD21205USA
| | - Leonardo Collado‐Torres
- Center for Computational BiologyJohns Hopkins UniversityBaltimoreMD21205USA
- Lieber Institute for Brain DevelopmentJohns Hopkins Medical CampusBaltimoreMD21205USA
| | - Marc K. Halushka
- Departments of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Min‐Sik Kim
- Department of Applied ChemistryKyung Hee UniversityYonginGyeonggi17104Republic of Korea
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Akhilesh Pandey
- Center for Molecular MedicineNational Institute of Mental Health and NeurosciencesHosur RoadBangalore560029KarnatakaIndia
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Center for Individualized Medicine and Department of Laboratory Medicine and PathologyMayo ClinicRochesterMN55905USA
- NeurologyInstitute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Departments of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Biological ChemistryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
78
|
Role of microRNA-15a-5p in the atherosclerotic inflammatory response and arterial injury improvement of diabetic by targeting FASN. Biosci Rep 2019; 39:BSR20181852. [PMID: 31182467 PMCID: PMC6603278 DOI: 10.1042/bsr20181852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 04/10/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
The present study aims to investigate the mechanism of miR-15a-5p in the atherosclerotic (AS) inflammatory response and arterial injury improvement in diabetic rats by regulating fatty acid synthase (FASN). Initially, bioinformatics tools were applied to evaluate miRNAs and genes correlating with AS, and the target relation between miRNAs and FASN was measured using the Dual-Luciferase Reporter Assay. Subsequently the diabetic AS rat model was established and the surviving rats were divided into: negative control (NC), miR-15a-5p mimic, miR-15a-5p inhibitor, sh-FASN and miR-15a-5p + sh-FASN groups. Then a series of experiments were performed to examine the degree of AS in each group. The results revealed that compared with the NC group, the expressions of C-reactive protein (CRP), interleukin 6 (IL-6), intercellular cell adhesion molecule-1 (ICAM1) in rat arterial tissue, as well as the levels of low-density lipoprotein cholesterol (LDL-C), blood glucose (BG), triglycerides (TG), total cholesterol (TC) and Homocysteine (Hcy) in rat serum, were increased after inhibiting miR-15a-5p, while the level of high-density lipoprotein cholesterol (HDL-C) was decreased and the fat storage area was enlarged after this treatment (P<0.05). In the miR-15a-5p mimic and sh-FASN groups, serum HDL-C levels were increased and the fat storage areas in arteries were reduced. The levels of CRP, IL-6, ICAM1 in rat arterial tissue, along with the levels of LDL-C, BG, TG, TC and Hcy in rat serum, were decreased (P<0.05). Hematoxylin and Eosin (HE) staining and transmission electron microscopy (TEM) results showed AS lesions to be apparent in the arteries of rats in both the NC and miR-15a-5p inhibitor groups, but that in miR-15a-5p and sh-FASN group were improved, the miR-15a-5p mimic + sh-FASN group showed the most obvious improvement. Taken together, miR-15a-5p alleviates the inflammation response and arterial injury in diabetic AS rats by targeting FASN.
Collapse
|
79
|
Gong L, Lei Y, Liu Y, Tan F, Li S, Wang X, Xu M, Cai W, Du B, Xu F, Zhou Y, Han H, Sun H, Qiu L. Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling. Am J Transl Res 2019; 11:2140-2154. [PMID: 31105824 PMCID: PMC6511755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial-mesenchymal transition (EndMT), inflammation and apoptosis in endothelial cells play crucial roles in the progression of cardiovascular diseases including atherosclerosis. Vaccarin is a flavonoid glycoside from vaccariae semen associated with powerful cardiovascular protective effects. However, the effects of vaccarin on human umbilical vein endothelial cells (HUVEC) injury in response to ox-LDL remain unknown. Herein, we showed that treatment with vaccarin significantly suppressed ox-LDL-induced HUVEC inflammation, EndMT and apoptosis. Mechanistically, the HUVECs exposed to ox-LDL exhibited enlarged reactive oxygen species (ROS) production and p38 MAPK phosphorylation, which was counteracted by vaccarin. Importantly, ROS activator hydrogen peroxide (H2O2) and p38 MAPK activator anisomycin pretreatment prevent the protective effect of vaccarin on endothelial injury induced by ox-LDL. Our study suggested that vaccarin impeded ox-LDL-triggered HUVEC inflammation, EndMT and apoptosis via inhibition of ROS/p38 MAPK signaling pathway. Vaccarin may have a therapeutic effect on endothelial injury-related disorders.
Collapse
Affiliation(s)
- Leilei Gong
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| | - Yueyue Lei
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| | - Yixiao Liu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| | - Fanggen Tan
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| | - Shuangshuang Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| | - Xinyue Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| | - Manlin Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| | - Fei Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| | - Yuetao Zhou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| | - Hongxiu Han
- Wuxi Hongqiao HospitalWuxi 214122, Jiangsu, PR China
| | - Haijian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore 117597, Singapore
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan UniversityWuxi 214122, Jiangsu, PR China
| |
Collapse
|
80
|
Rodriguez D, Nourizadeh S, De Tomaso AW. The biology of the extracorporeal vasculature of Botryllus schlosseri. Dev Biol 2019; 448:309-319. [PMID: 30760410 DOI: 10.1016/j.ydbio.2018.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023]
Abstract
The extracorporeal vasculature of the colonial ascidian Botryllus schlosseri plays a key role in several biological processes: transporting blood, angiogenesis, regeneration, self-nonself recognition, and parabiosis. The vasculature also interconnects all individuals in a colony and is composed of a single layer of ectodermally-derived cells. These cells form a tube with the basal lamina facing the lumen, and the apical side facing an extracellular matrix that consists of cellulose and other proteins, known as the tunic. Vascular tissue is transparent and can cover several square centimeters, which is much larger than any single individual within the colony. It forms a network that ramifies and expands to the perimeter of each colony and terminates into oval-shaped protrusions known as ampullae. Botryllus individuals replace themselves through a weekly budding cycle, and vasculature is added to ensure the interconnection of each new individual, thus there is continuous angiogenesis occurring naturally. The vascular tissue itself is highly regenerative; surgical removal of the ampullae and peripheral vasculature triggers regrowth within 24-48 h, which includes forming new ampullae. When two individuals, whether in the wild or in the lab, come into close contact and their ampullae touch, they can either undergo parabiosis through anastomosing vessels, or reject vascular fusion. The vasculature is easily manipulated by direct means such as microinjections, microsurgeries, and pharmacological reagents. Its transparent nature allows for in vivo analysis by bright field and fluorescence microscopy. Here we review the techniques and approaches developed to study the different biological processes that involve the extracorporeal vasculature.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Shane Nourizadeh
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
81
|
Tao Y, Yu S, Chao M, Wang Y, Xiong J, Lai H. SIRT4 suppresses the PI3K/Akt/NF‑κB signaling pathway and attenuates HUVEC injury induced by oxLDL. Mol Med Rep 2019; 19:4973-4979. [PMID: 31059091 DOI: 10.3892/mmr.2019.10161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/27/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yu Tao
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Songping Yu
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Min Chao
- Department of Internal Medicine, Shanggao Hospital of Traditional Chinese Medicine, Yichun, Jiangxi 336400, P.R. China
| | - Yang Wang
- Dexing Hospital of Traditional Chinese Medicine, Dexing, Jiangxi 334200, P.R. China
| | - Jianhua Xiong
- Department of Geriatrics, Fuzhou First People's Hospital, Fuzhou, Jiangxi 344000, P.R. China
| | - Hengli Lai
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
82
|
Lu W, He X, Su L, Miao J. Long Noncoding RNA-CERNA1 Stabilized Atherosclerotic Plaques in apolipoprotein E -/- Mice. J Cardiovasc Transl Res 2019; 12:425-434. [PMID: 30888631 DOI: 10.1007/s12265-019-09883-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/07/2019] [Indexed: 12/27/2022]
Abstract
Atherosclerosis is predicted to be the primary cause of death in the world by 2020. Changes in atherosclerotic plaque composition will lead to acute coronary syndromes. Although the studies on the molecular mechanisms of long noncoding RNA (lncRNA) are in-depth in molecular and cell levels, the in vivo research which studied the knowledge about lncRNAs in the regulation of plaque composition is still sparse. In this study, in order to investigate how a new lncRNA, CERNA1, regulates the composition of atherosclerotic plaques, we overexpressed CERNA1 in apolipoprotein E-/- (Apo E-/-) mice and analyzed the role of CERNA1 in atherosclerotic plaque stabilization. The results showed that CERNA1 inhibited the apoptosis of VSMCs and anti-inflammatory macrophages through increasing API5 level and further stabilized the atherosclerotic plaques. This discovery provided a novel therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Wei Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China.,Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xiaoying He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China. .,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, People's Republic of China. .,Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
83
|
Baselet B, Sonveaux P, Baatout S, Aerts A. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci 2019; 76:699-728. [PMID: 30377700 PMCID: PMC6514067 DOI: 10.1007/s00018-018-2956-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
Abstract
The endothelium, a tissue that forms a single layer of cells lining various organs and cavities of the body, especially the heart and blood as well as lymphatic vessels, plays a complex role in vascular biology. It contributes to key aspects of vascular homeostasis and is also involved in pathophysiological processes, such as thrombosis, inflammation, and hypertension. Epidemiological data show that high doses of ionizing radiation lead to cardiovascular disease over time. The aim of this review is to summarize the current knowledge on endothelial cell activation and dysfunction after ionizing radiation exposure as a central feature preceding the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Pierre Sonveaux
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
| |
Collapse
|
84
|
Wadey RM, Connolly KD, Mathew D, Walters G, Rees DA, James PE. Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis 2019; 283:19-27. [PMID: 30771557 DOI: 10.1016/j.atherosclerosis.2019.01.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Obesity is associated with an increased risk of cardiovascular disease, but the mechanisms involved are not completely understood. In obesity, the adipocyte microenvironment is characterised by both hypoxia and inflammation. Therefore, we sought to determine whether extracellular vesicles (EVs) derived from adipocytes in this setting might be involved in mediating cardiovascular disease, specifically by promoting leukocyte attachment to vascular endothelial cells. METHODS Mature 3T3-L1 adipocytes were incubated for 24 h under control, TNF-α (30 ng/mL), hypoxia (1% O2), or TNF-α+hypoxia (30 ng/mL, 1% O2) conditions. EVs were isolated by differential ultracentrifugation and analysed by nanoparticle tracking analysis. Primary human umbilical vein endothelial cells (HUVECs) were treated with EVs for 6 h before being lysed for Western blotting to investigate changes in adhesion molecule production, or for use in leukocyte attachment assays. RESULTS EVs from adipocytes treated with TNF-α and TNF-α+hypoxia increased vascular cell adhesion molecule (VCAM-1) production in HUVECs compared to basal level (4.2 ± 0.6 and 3.8 ± 0.3-fold increase, respectively (p < 0.05)), an effect that was inhibited by an anti-TNF-α neutralising antibody. Production of other adhesion molecules (E-selectin, P-selectin, platelet endothelial cell adhesion molecule and VE-Cadherin) was unchanged. Pre-incubating HUVECs with TNF-α+hypoxia EVs significantly increased leukocyte attachment compared to basal level (3.0 ± 0.4-fold increase (p < 0.05)). CONCLUSIONS Inflammatory adipocyte EVs induce VCAM-1 production in vascular endothelial cells, accompanied by enhanced leukocyte attachment. Preventing adipocyte derived EV-induced VCAM-1 upregulation may offer a novel therapeutic target in the prevention of obesity-driven cardiovascular disease.
Collapse
Affiliation(s)
- Rebecca M Wadey
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff, CF5 2YB, UK
| | - Katherine D Connolly
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff, CF5 2YB, UK
| | - Donna Mathew
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff, CF5 2YB, UK
| | - Gareth Walters
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff, CF5 2YB, UK
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Philip E James
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff, CF5 2YB, UK.
| |
Collapse
|
85
|
Therapeutic Targeting of the Proinflammatory IL-6-JAK/STAT Signalling Pathways Responsible for Vascular Restenosis in Type 2 Diabetes Mellitus. Cardiol Res Pract 2019; 2019:9846312. [PMID: 30719343 PMCID: PMC6334365 DOI: 10.1155/2019/9846312] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is increasing worldwide, and it is associated with increased risk of coronary artery disease (CAD). For T2DM patients, the main surgical intervention for CAD is autologous saphenous vein grafting. However, T2DM patients have increased risk of saphenous vein graft failure (SVGF). While the mechanisms underlying increased risk of vascular disease in T2DM are not fully understood, hyperglycaemia, insulin resistance, and hyperinsulinaemia have been shown to contribute to microvascular damage, whereas clinical trials have reported limited effects of intensive glycaemic control in the management of macrovascular complications. This suggests that factors other than glucose exposure may be responsible for the macrovascular complications observed in T2DM. SVGF is characterised by neointimal hyperplasia (NIH) arising from endothelial cell (EC) dysfunction and uncontrolled migration and proliferation of vascular smooth muscle cells (SMCs). This is driven in part by proinflammatory cytokines released from the activated ECs and SMCs, particularly interleukin 6 (IL-6). IL-6 stimulation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT) pathway is a key mechanism through which EC inflammation, SMC migration, and proliferation are controlled and whose activation might therefore be enhanced in patients with T2DM. In this review, we investigate how proinflammatory cytokines, particularly IL-6, contribute to vascular damage resulting in SVGF and how suppression of proinflammatory cytokine responses via targeting the JAK/STAT pathway could be exploited as a potential therapeutic strategy. These include the targeting of suppressor of cytokine signalling (SOCS3), which appears to play a key role in suppressing unwanted vascular inflammation, SMC migration, and proliferation.
Collapse
|
86
|
Song Y, Yang L, Guo R, Lu N, Shi Y, Wang X. Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. Biochem Biophys Res Commun 2018; 509:359-366. [PMID: 30591217 DOI: 10.1016/j.bbrc.2018.12.139] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 11/28/2022]
Abstract
Cell death and inflammation play critical roles in atherosclerosis. Pyroptosis, a novel proinflammatory programmed cell death process, participates in atherosclerosis pathogenesis. Recently, MALAT1 was identified as a pyroptosis-related long noncoding RNA (lncRNA). Here, we investigated the potential role and underlying mechanism of lncRNA MALAT1 in endothelial cells pyroptosis. We first established an endothelial cell pyroptosis model by stimulating EA.hy926 human endothelial cells (EA.hy926 cells) with high glucose. Then, we investigated lncRNA MALAT1 expression and found that it was upregulated in high glucose-treated EA.hy926 cells. Furthermore, lncRNA MALAT1 knockdown significantly inhibited high glucose-induced pyroptosis in EA.hy926 cells, which may critically influence atherosclerosis. Moreover, miR-22 was a target of lncRNA MALAT1 and was negatively correlated with lncRNA MALAT1. NLRP3 expression was significantly suppressed by transfection with a MALAT1-targeting antisense oligonucleotide (ASO). Ultimately, miR-22 overexpression abrogated the effect of MALAT1 on high glucose-induced EA.hy926 cells pyroptosis. Together, our results suggest that lncRNA MALAT1 promotes high glucose-induced pyroptosis of endothelial cells partly by affecting NLRP3 expression through competitively binding miR-22. Our findings indicate a new regulatory mechanism for endothelial cells pyroptosis under high-glucose stress, providing a novel therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yaxian Song
- Department of Postgraduate, Kunming Medical University, Yunnan, 650500, China
| | - Lixia Yang
- Department of Cardiology, The 920th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army, Yunnan, China.
| | - Ruiwei Guo
- Department of Cardiology, The 920th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army, Yunnan, China
| | - Nihong Lu
- Department of Postgraduate, Kunming Medical University, Yunnan, 650500, China
| | - Yankun Shi
- Department of Cardiology, The 920th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army, Yunnan, China
| | - Xianmei Wang
- Department of Cardiology, The 920th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army, Yunnan, China
| |
Collapse
|
87
|
Lehmann V, Andersen PL, Damodaran RG, Vermette P. Method for isolation of pancreatic blood vessels, their culture and coculture with islets of langerhans. Biotechnol Prog 2018; 35:e2745. [PMID: 30421867 DOI: 10.1002/btpr.2745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/17/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
The only cure available for Type 1 diabetes involves the transplantation of islets of Langerhans isolated from donor organs. However, success rates are relatively low. Disconnection from vasculature upon isolation and insufficient rate of revascularization upon transplantation are thought to be a major cause, as islet survival and function depend on extensive vascularization. Research has thus turned toward the development of pretransplantation culture techniques to enhance revascularization of islets, so far with limited success. With the aim to develop a technique to enhance islet revascularization, this work proposes a method to isolate and culture pancreas-derived blood vessels. Using a mild multistep digestion method, pancreatic blood vessels were retrieved from whole murine pancreata and cultured in collagen Type 1. After 8 days, 50% of tissue explants had formed anastomosed microvessels which extended up to 300 μm from the explant tissue and expressed endothelial cell marker CD31 but not ductal marker CK19. Cocultures with islets of Langerhans revealed survival of both tissues and insulin expression by islets up to 8 days post-embedding. Microvessels were frequently found to encapsulate islets, however no islet penetration could be detected. This study reports for the first time the isolation and culture of pancreatic blood vessels. The methods and results presented in this work provide a novel explant culture model for angiogenesis and tissue engineering research with relevance to islet biology. It opens the door for in vivo validation of the potential of these pancreatic blood vessel explants to improve islet transplantation therapies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2745, 2019.
Collapse
Affiliation(s)
- Vivian Lehmann
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, Québec, J1K 2R1, Canada.,Pharmacology Inst. of Sherbrooke, Faculté de médecine et des sciences de la santé, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, Québec, J1H 4C4, Canada
| | - Parker L Andersen
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, Québec, J1K 2R1, Canada.,Pharmacology Inst. of Sherbrooke, Faculté de médecine et des sciences de la santé, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, Québec, J1H 4C4, Canada
| | - Rajesh G Damodaran
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, Québec, J1K 2R1, Canada.,Pharmacology Inst. of Sherbrooke, Faculté de médecine et des sciences de la santé, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, Québec, J1H 4C4, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, Québec, J1K 2R1, Canada.,Pharmacology Inst. of Sherbrooke, Faculté de médecine et des sciences de la santé, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, Québec, J1H 4C4, Canada
| |
Collapse
|
88
|
Li S, Pan X, Yang S, Ma A, Yin S, Dong Y, Pei H, Bi X, Li W. LncRNA MALAT1 promotes oxidized low-density lipoprotein-induced autophagy in HUVECs by inhibiting the PI3K/AKT pathway. J Cell Biochem 2018; 120:4092-4101. [PMID: 30485490 DOI: 10.1002/jcb.27694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 08/27/2018] [Indexed: 01/01/2023]
Abstract
Emerging evidence suggests that long noncoding RNAs (lncRNAs) are involved in many biological processes, such as cell growth, differentiation, apoptosis, and autophagy. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), highly expressed in endothelial cells, is well conserved and implicated in endothelial cell migration and proliferation. However, whether MALAT1 participates in oxidized low-density lipoprotein (ox-LDL)-induced autophagy regulation in human umbilical vein endothelial cells (HUVECs) remains unknown. In this study, we observed that autophagy was upregulated and MALAT1 expression was markedly increased in HUVECs treated with ox-LDL. The ox-LDL-induced autophagy of HUVECs is significantly associated with the PI3K/AKT pathway. Furthermore, we found that MALAT1 overexpression inhibited PI3K, Akt and p70S6K phosphorylation and downregulated RHEB expression, simultaneously increasing ox-LDL-induced autophagy. MALAT1 silencing caused higher phosphorylated PI3K, Akt and p70S6K levels, upregulated RHEB expression and markedly suppressed autophagy. These results indicated that lncRNA MALAT1 promotes ox-LDL-induced autophagy in HUVECs partly through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Shu Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Aijun Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shuangshuang Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yi Dong
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haotian Pei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xinran Bi
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
89
|
Zhang Y, Zheng Y, Li J, Nie L, Hu Y, Wang F, Liu H, Fernandes SM, Zhong Q, Li X, Schnaar RL, Jia Y. Immunoregulatory Siglec ligands are abundant in human and mouse aorta and are up-regulated by high glucose. Life Sci 2018; 216:189-199. [PMID: 30471282 DOI: 10.1016/j.lfs.2018.11.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
AIM Inflammation is a driving force in development of atherosclerosis, and hyperglycemia is a significant risk factor for angiopathy. Siglec-9, expressed on human neutrophils and macrophages, engages specific glycan ligands on tissues to diminish ongoing inflammation. MATERIALS AND METHOD Siglec-9 ligands on human aorta were characterized and the effects of high glucose exposure on the expression of ligands for Siglec-9 on human umbilical vein endothelial cells (HUV-EC-C) in vitro and ligands for the comparable siglec (Siglec-E) on mouse aorta in vivo were studied. KEY FINDINGS Siglec-9 ligands were expressed broadly on human aorta, as well as on HUV-EC-C. Siglec-9 ligands on HUV-EC-C were sharply up-regulated under high glucose exposure in vitro, as were Siglec-E ligands on the aortas of hyperglycemic mice. Exposure of HUV-EC-C to high-glucose resulted in consistent inhibitory changes in co-cultured macrophages including increased apoptosis and decreased phagocytosis. Control of Siglec-9 ligand expression on HUV-EC-C was downstream of changes in an enzyme involved in their biosynthesis, UDP-galactose-4-epimerase (GALE) and increased cellular N-acetylgalactosamine. The alteration of GALE was associated with the regulatory microRNA hsa-let-7f. SIGNIFICANCE We conclude that exposure to high-glucose results in up-regulation of immune inhibitory Siglec-9 sialoglycan ligands on aorta and HUV-EC-C cells downstream of altered GALE and GalNAc expression, resulting in up-regulation of apoptosis and decrease of phagocytic activity of macrophages. Changes in Siglec-9 sialoglycan ligand expression on vascular endothelial cells may be a natural response to the initial steps of atherosclerosis and might be a potential target to regulate inflammation in diabetic angiopathy.
Collapse
Affiliation(s)
- Yingxian Zhang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China; Department of Pharmacy, The Third Affiliated Hospital, ChongQing Medical University, Yubei, Chongqing 401120, China
| | - Yu Zheng
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China; Department of Pharmacy, Hainan Western Central Hospital, Danzhou, Hainan 571799, China
| | - Jin Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China
| | - Ling Nie
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, ChongQing 400037, China
| | - Yijie Hu
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Fangjie Wang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China
| | - Hongmei Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China
| | - Steve M Fernandes
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qianjin Zhong
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China.
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, ChongQing 400038, China.
| |
Collapse
|
90
|
Tang ZH, Li TH, Peng J, Zheng J, Li TT, Liu LS, Jiang ZS, Zheng XL. PCSK9: A novel inflammation modulator in atherosclerosis? J Cell Physiol 2018; 234:2345-2355. [PMID: 30246446 DOI: 10.1002/jcp.27254] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) is the ninth member of the secretory serine protease family. It binds to low-density lipoprotein receptor (LDLR) for endocytosis and lysosome degradation in the liver, resulting in an increasing in circulating LDL-cholesterol (LDL-c) level. Since a PCSK9 induced increase in plasma LDL-c contributes to atherosclerosis, PCSK9 inhibition has become a new strategy in preventing and treating atherosclerosis. However, in addition to the effect of PCSK9 on elevating blood LDL-c levels, accumulating evidence shows that PCSK9 plays an important role in inflammation, likely representing another major mechanism for PCSK9 to promote atherosclerosis. In this review, we discuss the association of PCSK9 and inflammation, and highlight the specific effects of PCSK9 on different vascular cellular components involved in the atherosclerotic inflammation. We also discuss the clinical evidence for the association between PCSK9 and inflammation in atherosclerotic cardiovascular disease. A better understanding of the direct association of PCSK9 with atherosclerotic inflammation might help establish a new role for PCSK9 in vascular biology and identify a novel molecular mechanism for PCSK9 therapy.
Collapse
Affiliation(s)
- Zhi-Han Tang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China.,Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| | - Tao-Hua Li
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Juan Peng
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China.,Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| | - Jie Zheng
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Ting-Ting Li
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Lu-Shan Liu
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Zhi-Sheng Jiang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| |
Collapse
|
91
|
Banarjee R, Sharma A, Bai S, Deshmukh A, Kulkarni M. Proteomic study of endothelial dysfunction induced by AGEs and its possible role in diabetic cardiovascular complications. J Proteomics 2018; 187:69-79. [DOI: 10.1016/j.jprot.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022]
|
92
|
Meng X, Gao X, Zhang Z, Zhou X, Wu L, Yang M, Wang K, Ren H, Sun B, Wang T. Protective effect and mechanism of rat recombinant S100 calcium-binding protein A4 on oxidative stress injury of rat vascular endothelial cells. Oncol Lett 2018; 16:3614-3622. [PMID: 30127969 PMCID: PMC6096077 DOI: 10.3892/ol.2018.9135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/24/2017] [Indexed: 11/10/2022] Open
Abstract
The aim of the present study was to examine the protective effects and mechanisms of S100 calcium-binding protein A4 (S100A4) on endothelial cell apoptosis induced by oxidative stress injury. Endothelial cells were cultured and divided into control and oxidative stress injury groups, with the latter state induced by H2O2. Endothelial cells in every group were incubated with or without 50 or 100 µM S100A4. The cell viability and amounts of malondialdehyde, nitric oxide and lactate dehydrogenase in the culture medium were measured. The apoptotic index was detected by TUNEL staining. Western blot and immunoprecipitation analyses were used to detect the expression levels and the association between S100A4 and P53. H2O2 treatment led to oxidative stress injury in the cultured vascular endothelial cells, a decrease in the cell viability and an increase in the rate of apoptosis of vascular endothelial cells compared with the negative control group. Exogenous S100A4 serves a significant function against oxidative stress injury (P<0.05), increasing the viability and attenuating the apoptotic rate of endothelial cells. Western blotting results suggested that the protein levels of S100A4 and P53 increased subsequent to oxidative stress injury and that exogenous S100A4 increased the expression of P53 in the cytoplasm and decreased the expression of P53 in nucleus. The immunoprecipitation assay results revealed a protein-protein interaction between S100A4 and P53. These results suggested that rat recombinant S100A4 serves an anti-apoptotic function in oxidative stress injury. This effect of S100A4 is mediated, at least in part, via the inhibition of the translocation of P53 to the nucleus.
Collapse
Affiliation(s)
- Xiangyan Meng
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China.,Department of Physiology and Pathophysiology, Logistics College of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Xiujie Gao
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Zhiqing Zhang
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Xuesi Zhou
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Lei Wu
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Miaomiao Yang
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China.,Department of Health and Exercise Sciences, Tian Jin University of Sport, Tianjin 300381, P.R. China
| | - Kun Wang
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Hanlin Ren
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Department of Physiology, Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Tianhui Wang
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| |
Collapse
|
93
|
Krga I, Tamaian R, Mercier S, Boby C, Monfoulet LE, Glibetic M, Morand C, Milenkovic D. Anthocyanins and their gut metabolites attenuate monocyte adhesion and transendothelial migration through nutrigenomic mechanisms regulating endothelial cell permeability. Free Radic Biol Med 2018; 124:364-379. [PMID: 29964169 DOI: 10.1016/j.freeradbiomed.2018.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Cardioprotective effects of dietary anthocyanins are partly attributed to their ability to maintain endothelial function. However, the underlying cellular and molecular mechanisms of action are not fully understood. This study aimed to evaluate the effect of anthocyanins and their gut metabolites, at physiologically-relevant conditions, on endothelial cell (EC) function and decipher the underlying molecular mechanisms of action using integrated omics approaches. Primary EC were treated with a mixture of 0.1 μM cyanidin-3-arabinoside, 0.1 μM cyanidin-3-galactoside, 0.1 μM cyanidin-3-glucoside, 0.1 μM delphinidin-3-glucoside, 0.1 μM peonidin-3-glucoside and 0.5 μM 4-hydroxybenzaldehyde for 3 h or a mixture of gut metabolites: 0.2 μM protocatechuic, 2 μM vanillic, 1 μM ferulic and 2 μM hippuric acids for 18 h. Also, successive exposure of EC to both mixtures was performed to mimic anthocyanin pharmacokinetics following their intake. Inflammatory stress was induced using TNFα and monocytes added to assess adhesion and transmigration. Effects of these mixtures on gene, miRNA expression and their potential interaction with cell signalling were investigated. Anthocyanins and their gut metabolites significantly reduced monocyte adhesion and transendothelial migration. Gene expression analysis, using macroarrays, showed that tested compounds modulated the expression of genes involved in cell-cell adhesion, cytoskeleton organisation or focal adhesion. Bioinformatics analyses of gene expression data identified potential transcription factors involved in the observed nutrigenomic effects and signalling proteins regulating their activity. Molecular docking revealed cell signalling proteins to which these bioactives may bind to and potentially affect their activity and the activation of downstream signalling, effects that were in agreement with the results of Western blot analyses. Microarray analysis showed that anthocyanins and their gut metabolites affected miRNA expression in EC, especially those involved in regulation of EC permeability, contributing to the observed changes in EC function. Integration of these results revealed endothelial-protective properties of anthocyanins and their gut metabolites and deciphered new underlying multi-target and multi-layered mode of action.
Collapse
Affiliation(s)
- Irena Krga
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France; Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Radu Tamaian
- Research and Development Department, National Institute for Research and Development for Cryogenic and Isotopic Technologies, RO-240050 Râmnicu Vâlcea, Romania; SC Biotech Corp SRL, RO-240050 Râmnicu Vâlcea, Romania.
| | - Sylvie Mercier
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Celine Boby
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Metabolism Exploration Platform, F-63122 Saint-Genès-Champanelle, France
| | | | - Marija Glibetic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christine Morand
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France; Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, United States of America.
| |
Collapse
|
94
|
Zhang W, Feng J, Cheng B, Lu Q, Chen X. Oleanolic acid protects against oxidative stress‑induced human umbilical vein endothelial cell injury by activating AKT/eNOS signaling. Mol Med Rep 2018; 18:3641-3648. [PMID: 30106101 PMCID: PMC6131357 DOI: 10.3892/mmr.2018.9354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/20/2018] [Indexed: 02/05/2023] Open
Abstract
Oxidative injury of vascular endothelial cells in the initial event of atherosclerosis (AS) in diabetes was assessed in the present study. The antioxidant effect of oleanolic acid (OA) has attracted much attention. In the present study the potential effects of OA on human umbilical vein endothelial cells (HUVECs) were investigated. Cell viability was examined using the CCK‑8 assay. The activity of oxidative stress parameters was determined using commercial kits. Flow cytometry analysis was performed to detect the level of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and cell apoptosis. The expression levels of target genes and proteins were examined by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis. It was indicated that cell viability that was suppressed by high glucose was increased by the pretreatment of OA, and nitric oxide (NO) generation, the activities of superoxide dismutase (SOD) and catalase (CAT) were recovered by OA. By contrast, it was observed that OA decreased the MDA content. Notably, the pretreatment of OA alleviated mitochondria damage by reducing the level of ROS and maintaining MMP. In addition, apoptosis that was caused by high glucose was reduced by OA. Pro‑apoptotic genes (caspase‑3, Fas, Fasl) and anti‑apoptotic gene (Bcl‑2) expression levels were decreased and increased in the OA groups, respectively. Furthermore, the activity of AKT/endothelial nitric oxide synthase (eNOS) signaling was elevated by OA. Taken together, it was suggested that OA could protect against oxidative stress‑induced apoptosis of HUVECs, which was associated with AKT/eNOS signaling pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Geriatric Cardiovascular Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Jian Feng
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Biao Cheng
- Department of Geriatric Cardiovascular Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Qing Lu
- Department of Geriatric Cardiovascular Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xiaoping Chen
- Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
95
|
Matrix Signaling Subsequent to a Myocardial Infarction: A Proteomic Profile of Tissue Factor Microparticles. JACC Basic Transl Sci 2018; 2:529-542. [PMID: 30062169 PMCID: PMC6058924 DOI: 10.1016/j.jacbts.2017.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 11/24/2022]
Abstract
The occurrence of an MI activates production of TFMPs. We induced an MI in Yucatan miniswine and collected plasma samples over a 6-month period post-MI. Experimental groups consisted of infarcted but untreated animals and infarcted animals treated with CRT plus β-blocker. Using proteomic profiling, we confirm the heterogeneity of TFMP protein content with respect to physiological status of the host temporally. Spatially, the contents of the TFMPs provided information about multiple entities supplemental to what we obtained from assessing a set of 8 currently used cardiac biomarkers. The results from this study support recommending TFMP protein content profiling be used prospectively as a viable investigative methodology for chronic ischemic cardiomyopathy to help improve our understanding of β-adrenergic receptor signaling after an MI.
This study investigated the release and proteomic profile of tissue factor microparticles (TFMPs) prospectively (up to 6 months) following a myocardial infarction (MI) in a chronic porcine model to establish their utility in tracking cellular level activities that predict physiologic outcomes. Our animal groups (n = 6 to 8 each) consisted of control, noninfarcted (negative control); infarcted only (positive control); and infarcted animals treated with cardiac resynchronization therapy (CRT) and a β-blocker (BB) (metoprolol succinate). The authors found different protein profiles in TFMPs between the control, infarcted only group, and the CRT + BB treated group with predictive impact on the outward phenotype of pathological remodeling after an MI within and between groups. This novel approach of monitoring cellular level activities by profiling the content of TFMPs has the potential of addressing a shortfall of the current crop of cardiac biomarkers, which is the inability to capture composite molecular changes associated with chronic maladaptive signaling in a spatial and temporal manner.
Collapse
Key Words
- ADRB1, β1-adrenergic receptor
- ADRB2, β2-adrenergic receptor
- AR, adrenergic receptor
- ARRB1, β1-arrestin
- BB, β-blocker
- CRT, cardiac resynchronization therapy
- EDV, end-diastolic volume
- EF, ejection fraction
- ELISA, enzyme-linked immunosorbent assay
- ESV, end-systolic volume
- FACS, fluorescence-activated cell sorting
- GRK, G-protein receptor kinase
- HSP, heat shock protein
- HUVEC, human umbilical vein endothelial cell
- LVAd MV, left ventricular area around the mitral valve at diastole
- LVAd PM, left ventricular area around the papillary muscle at diastole
- LVAs MV, left ventricular area around the mitral valve at systole
- LVAs PM, left ventricular area around the papillary muscle at systole
- MI, myocardial infarction
- MP, microparticle
- PCR, polymerase chain reaction
- TF, tissue factor
- TFMP, tissue factor–bearing microparticle
- TnT, troponin T
- Yucatan mini swine
- cAMP, cyclic adenosine monophosphate
- chronic ischemic cardiomyopathy
- matrix signaling
- myocardial infarction
- tissue factor-bearing microparticles
- βAR signaling
Collapse
|
96
|
Jaff N, Grankvist R, Muhl L, Chireh A, Sandell M, Jonsson S, Arnberg F, Eriksson U, Holmin S. Transcriptomic analysis of the harvested endothelial cells in a swine model of mechanical thrombectomy. Neuroradiology 2018; 60:759-768. [PMID: 29761220 PMCID: PMC5995995 DOI: 10.1007/s00234-018-2033-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/04/2018] [Indexed: 01/03/2023]
Abstract
Purpose In mechanical thrombectomy (MT) for ischemic stroke, endothelial cells (ECs) from intracranial blood vessels adhere to the stent retriever device and can be harvested. However, understanding the molecular biology and the role of the endothelium in different pathological conditions remains insufficient. The purpose of the study was to characterize and analyze the molecular aspect of harvested ECs using cell culture and transcriptomic techniques in an MT swine model relevant to clinical ischemic stroke. Methods In swine, preformed thrombi were injected into the external carotid and subclavian arteries to occlude their branches. MT was performed according to clinical routine. The stent retriever device and thrombus were treated with cell dissociation buffer. The resulting cell suspension was analyzed by immunohistochemistry and was cultured. Cultured cells were analyzed using single-cell RNA sequencing (scRNA-seq) after fluorescence-activated cell sorting (FACS). Results A total number of 37 samples were obtained containing CD31-positive cells. Cell culture was successful in 90% of samples, and the cells expressed multiple typical EC protein markers. Eighty-nine percent of the sorted cells yielded high-quality transcriptomes, and single-cell transcriptomes from cultured cells showed that they expressed typical endothelial gene patterns. Gene expression analysis of ECs from an occluded artery did not show distinctive clustering into subtypes. Conclusion ECs harvested during MT can be cultured and analyzed using single-cell transcriptomic techniques. This analysis can be implemented in clinical practice to study the EC gene expression of comorbidities, such as hypertension, diabetes mellitus, and metabolic syndrome, in patients suffering from acute ischemic stroke.
Collapse
Affiliation(s)
- Nasren Jaff
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Rikard Grankvist
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Lars Muhl
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Arvin Chireh
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Mikael Sandell
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Stefan Jonsson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Department of Materials Science, Royal Institute of Technology, Stockholm, Sweden
| | - Fabian Arnberg
- Department of Neuroradiology, Karolinska University Hospital, Solna, SE-171 76, Stockholm, Sweden
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
- Department of Neuroradiology, Karolinska University Hospital, Solna, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
97
|
Protective Role of Antioxidant Huskless Barley Extracts on TNF- α-Induced Endothelial Dysfunction in Human Vascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3846029. [PMID: 29861828 PMCID: PMC5971280 DOI: 10.1155/2018/3846029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/17/2018] [Accepted: 03/27/2018] [Indexed: 12/01/2022]
Abstract
Oxidative stress and inflammation are considered as two key factors that contribute to the development of atherosclerosis. This study was to investigate the antioxidant capacity of huskless barley and to explore its protective functions through the regulation of the antioxidant defense and inflammatory response in human umbilical vein endothelial cells (HUVEC). The oxygen radical absorbance capacity (ORAC), ferric-reducing antioxidant power (FRAP), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) scavenging capacity of water and alkali extracts of the polysaccharides from nine huskless barley varieties were investigated in vitro. The antioxidant properties of the alkaline extracts were more pronounced than those of the water extracts. The results from the cell model showed that pretreatment of HUVEC with the water or alkaline extracts of the polysaccharides from the huskless barley cultivars QHH and NLGL decreased the levels of reactive oxygen species (ROS), monocyte chemotactic protein 1 (MCP-1), and vascular cell adhesion molecule 1 (VCAM-1) but increased the level of superoxide dismutase (SOD) and maintained cell viability. Huskless barley polysaccharide extracts exhibited the vasodilatory effect of inhibiting angiotensin-converting enzyme (ACE) production. These discoveries revealed the potent protective functions of barley in oxidative damage and a potential role for barley in preventing chronic inflammation in cardiovascular diseases.
Collapse
|
98
|
Chen C, Peng S, Chen F, Liu L, Li Z, Zeng G, Huang Q. Protective effects of pioglitazone on vascular endothelial cell dysfunction induced by high glucose via inhibition of IKKα/β–NFκB signaling mediated by PPARγ in vitro. Can J Physiol Pharmacol 2017; 95:1480-1487. [DOI: 10.1139/cjpp-2016-0574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PIO, a synthetic ligand for PPARγ, is used clinically to treat T2DM. However, little is known about its protective effects on endothelium and the underlying mechanisms. In this study, we sought to investigate the protective effects of PIO on endothelium and its probable mechanisms: 95% confluent wild type (WT) HUVECs and PPARγLow-HUVECs that we first injured with HG (33 mmol·L–1) were first pretreated with 10 μmol·L–1 of GW9662 for 30 min, and then treated the cells with different concentrations of PIO (5, 10, or 20 μmol·L–1) for 24 h. Finally, we measured the levels of NO, ET1, TNFα, and IL6 in the cell culture supernatant. These cells were then used to determine cell viability, caspase3 activity, the levels of IKKα/β mRNA, IKKα/β, and NFκB-p65. Severe dysfunction and activation of IKKα/β–NFκB signaling occurred after we exposed HUVECs to HG. Conversely, treatment with PIO significantly attenuated the dysfunction and the activation of IKKα/β–NFκB signaling induced by HG in a dose-dependent manner. Moreover, the protective effects of PIO were completely abrogated by GW9662 or down-regulation of PPARγ. Taken together, the results indicate that PIO protects HUVECs against the HG-induced dysfunction through the inhibition of IKKα/β–NFκB signaling mediated by PPARγ.
Collapse
Affiliation(s)
- Chunxiang Chen
- Key Provincial Laboratory of Basic Pharmacology, Nanching University
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Shaorong Peng
- Key Provincial Laboratory of Basic Pharmacology, Nanching University
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Fanghui Chen
- Key Provincial Laboratory of Basic Pharmacology, Nanching University
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Lili Liu
- Key Provincial Laboratory of Basic Pharmacology, Nanching University
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Zhouxue Li
- Key Provincial Laboratory of Basic Pharmacology, Nanching University
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Guohua Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanching University
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanching University
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| |
Collapse
|
99
|
Cerny V, Astapenko D, Brettner F, Benes J, Hyspler R, Lehmann C, Zadak Z. Targeting the endothelial glycocalyx in acute critical illness as a challenge for clinical and laboratory medicine. Crit Rev Clin Lab Sci 2017; 54:343-357. [PMID: 28958185 DOI: 10.1080/10408363.2017.1379943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of this manuscript is to review the role of endothelial glycocalyx (EG) in the field of critical and perioperative medicine and to discuss possible future directions for investigations in this area. Under physiological conditions, EG has several well-defined functions aimed to prevent the disruption of vessel wall integrity. Under pathological conditions, the EG represent one of the earliest sites of injury during inflammation. EG structure and function distortion contribute to organ dysfunction related to sepsis, trauma, or global ischemia of any origin. Discovering new therapeutic approaches (either pharmacological or non-pharmacological) aimed to protect the EG against injury represents a promising direction in clinical medicine. Further, the currently-used common interventions in the acutely ill - fluids, blood products, nutritional support, organ-supporting techniques (e.g. continuous renal replacement therapy, extracorporeal circulation), temperature modulation and many others - should be re-evaluated during acute illness in terms of their EG "friendliness". To assess new therapies that protect the EG, or to evaluate the effect of currently-used interventions on EG integrity, a relevant marker or method to determine EG damage is needed. Such marker or method should be available to clinicians within hours, preferably in the form of a point-of-care test at the bedside. Collaborative research between clinical disciplines and laboratory medicine is warranted, and targeting the EG represents major challenges for both.
Collapse
Affiliation(s)
- Vladimir Cerny
- a Department of Anaesthesiology, Perioperative Medicine and Intensive Care , JE Purkinje University, Masaryk Hospital , Usti nad Labem , Czech Republic.,b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic.,c Department of Anaesthesiology and Intensive Care , Charles University, Faculty of Medicine in Hradec Kralove , Hradec Kralove , Czech Republic.,d Department of Anaesthesia, Pain Management and Perioperative Medicine , Dalhousie University , Halifax , Canada
| | - David Astapenko
- c Department of Anaesthesiology and Intensive Care , Charles University, Faculty of Medicine in Hradec Kralove , Hradec Kralove , Czech Republic
| | - Florian Brettner
- e Department of Anaesthesiology , University Hospital of Munich, Ludwig-Maximilians University , Munich , Germany
| | - Jan Benes
- f Department of Anaesthesiology and Intensive Care Medicine , Charles University, Faculty of Medicine in Plzen , Plzen , Czech Republic.,g Biomedical Centre, Charles University, Faculty of Medicine in Plzen , Plzen , Czech Republic
| | - Radomir Hyspler
- b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic
| | - Christian Lehmann
- d Department of Anaesthesia, Pain Management and Perioperative Medicine , Dalhousie University , Halifax , Canada.,h Department of Microbiology and Immunology , Dalhousie University , Halifax , Canada.,i Department of Pharmacology , Dalhousie University , Halifax , Canada
| | - Zdenek Zadak
- b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic
| |
Collapse
|
100
|
Alberio T, Pieroni L, Ronci M, Banfi C, Bongarzone I, Bottoni P, Brioschi M, Caterino M, Chinello C, Cormio A, Cozzolino F, Cunsolo V, Fontana S, Garavaglia B, Giusti L, Greco V, Lucacchini A, Maffioli E, Magni F, Monteleone F, Monti M, Monti V, Musicco C, Petrosillo G, Porcelli V, Saletti R, Scatena R, Soggiu A, Tedeschi G, Zilocchi M, Roncada P, Urbani A, Fasano M. Toward the Standardization of Mitochondrial Proteomics: The Italian Mitochondrial Human Proteome Project Initiative. J Proteome Res 2017; 16:4319-4329. [DOI: 10.1021/acs.jproteome.7b00350] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tiziana Alberio
- Department
of Science and High Technology, Università degli Studi dell’Insubria, Busto Arsizio I-21052, Italy
| | | | - Maurizio Ronci
- IRCCS-Santa Lucia
Foundation, Rome I-00143, Italy
- Department
of Medical, Oral, and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti I-66013, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Milan I-20138, Italy
| | - Italia Bongarzone
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133, Italy
| | - Patrizia Bottoni
- Institute
of Biochemistry and Clinical Biochemistry, School of Medicine - Catholic University, Rome I-00168, Italy
| | - Maura Brioschi
- Centro Cardiologico Monzino, IRCCS, Milan I-20138, Italy
| | - Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples I-80131, Italy
- CEINGE Biotecnologie
Avanzate s.c.a.r.l., Naples I-80145, Italy
| | - Clizia Chinello
- Department
of Medicine and Surgery, University of Milano-Bicocca, Monza I-20900, Italy
| | - Antonella Cormio
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Bari I-70125, Italy
| | - Flora Cozzolino
- CEINGE Biotecnologie
Avanzate s.c.a.r.l., Naples I-80145, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Naples I-80126, Italy
| | - Vincenzo Cunsolo
- Department
of Chemical Sciences, University of Catania, Catania I-95125, Italy
| | - Simona Fontana
- Dipartimento
di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo I-90123, Italy
| | - Barbara Garavaglia
- Molecular
Neurogenetics Unit, IRCCS Foundation Neurological Institute C. Besta, Milan I-20126, Italy
| | - Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa I-56126, Italy
| | | | | | - Elisa Maffioli
- Department
of Veterinary Medicine (DiMeVet), University of Milan, Milan I-20133, Italy
| | - Fulvio Magni
- Department
of Medicine and Surgery, University of Milano-Bicocca, Monza I-20900, Italy
| | - Francesca Monteleone
- Dipartimento
di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo I-90123, Italy
| | - Maria Monti
- CEINGE Biotecnologie
Avanzate s.c.a.r.l., Naples I-80145, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Naples I-80126, Italy
| | - Valentina Monti
- Molecular
Neurogenetics Unit, IRCCS Foundation Neurological Institute C. Besta, Milan I-20126, Italy
| | - Clara Musicco
- Bioenergetics
and Molecular Biotechnologies (IBIOM), CNR - Institute of Biomembranes, Bari I-70126, Italy
| | - Giuseppe Petrosillo
- Bioenergetics
and Molecular Biotechnologies (IBIOM), CNR - Institute of Biomembranes, Bari I-70126, Italy
| | - Vito Porcelli
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Bari I-70125, Italy
| | - Rosaria Saletti
- Department
of Chemical Sciences, University of Catania, Catania I-95125, Italy
| | - Roberto Scatena
- Institute
of Biochemistry and Clinical Biochemistry, School of Medicine - Catholic University, Rome I-00168, Italy
| | - Alessio Soggiu
- Department
of Veterinary Medicine (DiMeVet), University of Milan, Milan I-20133, Italy
| | - Gabriella Tedeschi
- Department
of Veterinary Medicine (DiMeVet), University of Milan, Milan I-20133, Italy
- Fondazione Filarete, Milan I-20139, Italy
| | - Mara Zilocchi
- Department
of Science and High Technology, Università degli Studi dell’Insubria, Busto Arsizio I-21052, Italy
| | - Paola Roncada
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Rivolta d’Adda I-26027, Italy
| | - Andrea Urbani
- IRCCS-Santa Lucia
Foundation, Rome I-00143, Italy
- Institute
of Biochemistry and Clinical Biochemistry, School of Medicine - Catholic University, Rome I-00168, Italy
| | - Mauro Fasano
- Department
of Science and High Technology, Università degli Studi dell’Insubria, Busto Arsizio I-21052, Italy
| |
Collapse
|