51
|
Wasserman V, Emrani S, Matusz EF, Peven J, Cleary S, Price CC, Ginsberg TB, Swenson R, Heilman KM, Lamar M, Libon DJ. Visuospatial performance in patients with statistically-defined mild cognitive impairment. J Clin Exp Neuropsychol 2020; 42:319-328. [PMID: 31973657 PMCID: PMC7224008 DOI: 10.1080/13803395.2020.1714550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
Abstract
Introduction: The Oblique Effect denotes superior performance for perceiving horizontal or vertical rather than diagonal or oblique stimuli. The current research investigated responding to oblique test stimuli in patients with mild cognitive impairment (MCI).Method: Four statistically-determined groups (n = 112) were studied; patients with little to no cognitive impairment (non-MCI, n = 39); subtle cognitive impairment (SCI, n = 15); amnestic MCI (aMCI, n = 28); and a combined mixed/dysexecutive MCI (mixed/dys MCI, n = 30). The ability to respond to oblique versus non-oblique test stimuli was assessed using the Judgment of Line Orientation Test (JOLO). Comprehensive neuropsychological assessment was also obtained. Between-group differences for JOLO oblique and non-oblique test stimuli were analyzed. Hierarchical linear regression models were constructed to identify relations between accuracy for oblique and non-oblique test items and neurocognitive domains.Results: The mixed/dys MCI group demonstrated lower accuracy for oblique test items compared to non-MCI patients. Accurate responding to oblique test items was associated with better performance on tests measuring executive control, processing speed, naming/lexical retrieval, and verbal concept formation. No between-group differences were seen for non-oblique items and these items were not associated with cognition.Conclusions:Significant impairment on oblique test items distinguished patients with multi-domain/dysexecutive MCI from non-MCI patients. Accurate responding to oblique test items was associated with a complex array of neuropsychological tests suggesting that multidimensional neuropsychological skills underlie the visuospatial reasoning abilities necessary for successful oblique line identification. Research associating responding to oblique versus non-oblique test stimuli using additional neuropsychological test paradigms, and MRI-defined neuroanatomical regions of interest may provide additional information about the brain-behavior relations that underlie MCI subtypes.
Collapse
Affiliation(s)
| | - Sheina Emrani
- Department of Psychology, Rowan University, Stratford, NF
| | - Emily F. Matusz
- New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ
| | - Jamie Peven
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA
| | - Seana Cleary
- New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Terrie Beth Ginsberg
- New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ
| | - Rod Swenson
- University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Kenneth M. Heilman
- Department of Neurology, University of Florida College of Medicine, Neurologist-Geriatric Research, Education and Clinical Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Melissa Lamar
- Department of Behavioral Sciences and the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL
| | - David J. Libon
- Department of Psychology, Rowan University, Stratford, NF
- New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ
| |
Collapse
|
52
|
Neurovascular unit dysregulation, white matter disease, and executive dysfunction: the shared triad of vascular cognitive impairment and Alzheimer disease. GeroScience 2020; 42:445-465. [PMID: 32002785 DOI: 10.1007/s11357-020-00164-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/22/2020] [Indexed: 01/07/2023] Open
Abstract
Executive dysfunction is the most important predictor for loss of independence in dementia. As executive function involves the coordination of distributed cerebral functions, executive function requires healthy white matter. However, white matter is highly vulnerable to cerebrovascular insults, with executive dysfunction being a core feature of vascular cognitive impairment (VCI). At the same time, cerebrovascular pathology, white matter disease, and executive dysfunction are all increasingly recognized as features of Alzheimer disease (AD). Recent studies have characterized the crucial role of glial cells in the pathological changes observed in both VCI and AD. In comorbid VCI and AD, the glial cells of the neurovascular unit (NVU) emerge as important therapeutic targets for the preservation of white matter integrity and executive function. Our synthesis from current research identifies dysregulation of the NVU, white matter disease, and executive dysfunction as a fundamental triad that is common to both VCI and AD. Further study of this triad will be critical for advancing the prevention and management of dementia.
Collapse
|
53
|
Rizvi B, Lao PJ, Colón J, Hale C, Igwe KC, Narkhede A, Budge M, Manly JJ, Schupf N, Brickman AM. Tract-defined regional white matter hyperintensities and memory. NEUROIMAGE-CLINICAL 2019; 25:102143. [PMID: 31887716 PMCID: PMC6939088 DOI: 10.1016/j.nicl.2019.102143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 01/08/2023]
Abstract
White matter hyperintensity volume in association and projection tracts was related to memory in older adults. The relationship of WMH volumes in association and projection tracts with cognition was specific to memory, and not to a global cognition measure that excluded memory. Within projection tracts, WMH volumes affecting the anterior thalamic and the corticospinal tracts were most reliably associated with poorer memory. Within association tracts, WMH volume affecting the inferior fronto-occipital fasciculus, the superior longitudinal fasciculus, and the uncinate fasciculus were most reliably associated with poorer memory.
White matter hyperintensities (WMH) are common radiological findings among older adults and strong predictors of age-related cognitive decline. Recent work has implicated WMH in the pathogenesis and symptom presentation of Alzheimer's disease (AD), which is characterized clinically primarily by a deficit in memory. The severity of WMH volume is typically quantified globally or by lobe, whereas white matter itself is organized by tracts and fiber classes. We derived WMH volumes within white matter tract classes, including association, projection, and commissural tracts, in 519 older adults and tested whether WMH volume within specific fiber classes is related to memory performance. We found that increased association and projection tract defined WMH volumes were related to worse memory function but not to a global cognition summary score that excluded memory. We conclude that macrostructural damage to association and projection tracts, manifesting as WMH, may result in memory decline among older adults.
Collapse
Affiliation(s)
- Batool Rizvi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Juliet Colón
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Christiane Hale
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Kay C Igwe
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Atul Narkhede
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Mariana Budge
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
54
|
Lao PJ, Vorburger RS, Narkhede A, Gazes Y, Igwe KC, Colón J, Amarante E, Guzman VA, Last BS, Habeck C, Stern Y, Brickman AM. White Matter Regions With Low Microstructure in Young Adults Spatially Coincide With White Matter Hyperintensities in Older Adults. Front Aging Neurosci 2019; 11:345. [PMID: 31920625 PMCID: PMC6914698 DOI: 10.3389/fnagi.2019.00345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Microstructural and macrostructural white matter damage occurs frequently with aging, is associated with negative health outcomes, and can be imaged non-invasively as fractional anisotropy (FA) and white matter hyperintensities (WMH), respectively. The extent to which diminished microstructure precedes or results from macrostructural white matter damage is poorly understood. This study evaluated the hypothesis that white matter areas with normatively lower microstructure in young adults are most susceptible to develop WMH in older adults. Forty-nine younger participants (age = 25.8 ± 2.8 years) underwent diffusion-weighted imaging (DWI), and 557 older participants (age = 73.9 ± 5.7 years) underwent DWI and T2-weighted magnetic resonance imaging (MRI). In older adults, WMH had a mostly periventricular distribution with higher frequency in frontal regions. We found lower FA in areas of frank WMH compared to normal-appearing white matter (NAWM) in older adults. Then, to determine if areas of normatively lower white matter microstructure spatially overlap with areas that frequently develop macrostructural damage in older age, we created a WMH frequency map in which each voxel represented the percentage of older adults with a WMH in that voxel. We found lower normative FA in young adults with regions frequently segmented as WMH in older adults. We conclude that low white matter microstructure is observed in areas of white matter macrostructural damage, but white matter microstructure is also normatively low (i.e., at ages 20-30) in regions with high WMH frequency, prior to white matter macrostructural damage.
Collapse
Affiliation(s)
- Patrick J. Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Robert S. Vorburger
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Institute of Applied Simulation, School of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Atul Narkhede
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Yunglin Gazes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Kay C. Igwe
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Juliet Colón
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Erica Amarante
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Vanessa A. Guzman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Briana S. Last
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Christian Habeck
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
55
|
Bateman JR, Filley CM, Kaplan RI, Heffernan KS, Bettcher BM. Lifetime surgical exposure, episodic memory, and forniceal microstructure in older adults. J Clin Exp Neuropsychol 2019; 41:1048-1059. [PMID: 31370773 PMCID: PMC6764849 DOI: 10.1080/13803395.2019.1647151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/14/2019] [Indexed: 12/14/2022]
Abstract
Introduction: Aging is associated with heterogeneous cognitive trajectories. There is considerable interest in identifying risk factors for pathological aging, with recent studies demonstrating a link between surgical procedures and proximal cognitive decline; however, the role of lifetime exposure to surgical procedures and cognitive function has been relatively unexplored. This pilot study aimed to evaluate the association between total lifetime surgical procedures and memory function in older adults. Methods: A cohort of 62 older adults underwent a neuropsychological evaluation and health history assessment. Self-reported lifetime surgical history was categorized as "cardiac" or "non-cardiac." General linear models were fit with demographics as nuisance covariates, and the total number of non-cardiac surgeries as our predictor of interest. Total scores on measures of episodic memory, language, working memory, fluency, and visuospatial function were separate outcome variables. In a secondary analysis, vascular risk factors were included as covariates. Diffusion tensor imaging was obtained for exploratory analyses of selected regions of interest. Results: The mean age of participants was 70, and 0-13 lifetime non-cardiac surgical procedures were reported. Higher numbers of lifetime non-cardiac surgical procedures were associated with worse verbal learning and memory (p = .04). The negative association between lifetime non-cardiac procedures and cognition was specific to memory. Exploratory analyses showed that higher number of lifetime non-cardiac procedures was related to lower FA in the fornix body (p = .02). Conclusions: These results of this pilot study suggest that greater lifetime exposure to surgery may be associated with worse verbal learning and memory in healthy older adults. These findings add to a growing body of literature suggesting that cumulative medical events may be risk factors for negative cognitive outcomes.
Collapse
Affiliation(s)
- James R. Bateman
- Department of Neurology, Wake Forest Baptist Medical Center, Winston-Salem, NC; Mid-Atlantic Mental Illness Research Education and Clinical Center (MIRECC), Research and Education Service Line, W.G. (Bill) Hefner VA Medical Center, Salisbury, NC
| | - Christopher M. Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, Marcus Institute for Brain Health, Rocky Mountain Alzheimer’s Disease Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rini I. Kaplan
- Department of Neurology, Rocky Mountain Alzheimer’s Disease Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kate S. Heffernan
- Behavioral Neurology Section, Departments of Neurology and Neurosurgery, Rocky Mountain Alzheimer’s Disease Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Brianne M. Bettcher
- Behavioral Neurology Section, Departments of Neurology and Neurosurgery, Rocky Mountain Alzheimer’s Disease Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
56
|
Weaver NA, Doeven T, Barkhof F, Biesbroek JM, Groeneveld ON, Kuijf HJ, Prins ND, Scheltens P, Teunissen CE, van der Flier WM, Biessels GJ. Cerebral amyloid burden is associated with white matter hyperintensity location in specific posterior white matter regions. Neurobiol Aging 2019; 84:225-234. [DOI: 10.1016/j.neurobiolaging.2019.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/24/2022]
|
57
|
Shih EJ, Lee WJ, Hsu JL, Wang SJ, Fuh JL. Effect of vitamin D on cognitive function and white matter hyperintensity in patients with mild Alzheimer's disease. Geriatr Gerontol Int 2019; 20:52-58. [PMID: 31773862 DOI: 10.1111/ggi.13821] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/04/2019] [Accepted: 11/02/2019] [Indexed: 12/20/2022]
Abstract
AIM To examine the effect of vitamin D level on cognitive function and white matter hyperintensity (WMH) in patients with mild Alzheimer's disease (AD). METHODS We recruited patients with mild AD, and carried out clinical interviews, neuropsychological assessments, laboratory tests and brain magnetic resonance imaging. RESULTS In total, 146 patients with mild AD (68 men, 78 women; mean age 79.1 ± 7.0 years; mean education 10.2 ± 4.3 years) were enlisted. The mean Mini-Mental State Examination (MMSE) score was 21.0 ± 3.8. The 25-hydroxy vitamin D (25[OH]D) level was correlated negatively with the WMH volume (β = -0.219, P = 0.004) after adjusting for age, sex, years of education, apolipoprotein ε4 allele status, seasons of blood sampling, hypertension, diabetes mellitus, hyperlipidemia, coronary heart disease and total brain volume. The 25(OH)D level was correlated positively with the MMSE score (β = 0.309, P < 0.001) after adjusting for the same covariates. Multivariate regression analysis with the MMSE score serving as the dependent variable and adjustment for covariates showed that the 25(OH)D level was an independent predictor of the MMSE score (β = 0.322, P < 0.001), but the WMH volume was not (β = 0.056, P = 0.587). These findings suggest that WMH has no mediation effect between the 25(OH)D level and the MMSE score. CONCLUSIONS Reduced plasma 25(OH)D levels were associated with low MMSE scores in patients with mild AD, but the underlying mechanism is not attributable to WMH. Thus, it suggested that the presence of another pathomechanism exists. Geriatr Gerontol Int 2020; 20: 52-58.
Collapse
Affiliation(s)
- En-Jie Shih
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Wei-Ju Lee
- Faculty of Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan.,Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia and Parkinson's Disease Integrated Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jung-Lung Hsu
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Research Center for Brain and Consciousness, Taipei Medical University, Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Shuu-Jiun Wang
- Faculty of Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jong-Ling Fuh
- Faculty of Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
58
|
Cramer CK, Cummings TL, Andrews RN, Strowd R, Rapp SR, Shaw EG, Chan MD, Lesser GJ. Treatment of Radiation-Induced Cognitive Decline in Adult Brain Tumor Patients. Curr Treat Options Oncol 2019; 20:42. [PMID: 30963289 DOI: 10.1007/s11864-019-0641-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OPINION STATEMENT Patients with either primary or metastatic brain tumors quite often have cognitive impairment. Maintaining cognitive function is important to brain tumor patients and a decline in cognitive function is generally accompanied by a decline in functional independence and performance status. Cognitive decline can be a result of tumor progression, depression/anxiety, fatigue/sleep dysfunction, or the treatments they have received. It is our opinion that providers treating brain tumor patients should obtain pre-treatment and serial cognitive testing in their patients and offer mitigating and therapeutic interventions when appropriate. They should also support cognition-focused clinical trials.
Collapse
Affiliation(s)
- Christina K Cramer
- Department of Radiation Oncology, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Tiffany L Cummings
- Department of Neurology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Rachel N Andrews
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Roy Strowd
- Department of Hematology/Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Stephen R Rapp
- Department of Psychiatry and Behavioral Medicine and Division Public Health Sciences (Social Sciences and Health Policy), Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, USA
| | - Edward G Shaw
- Memory Counseling Program, Section on Gerontology and Geriatric Medicine, Sticht Center on Healthy Aging and Alzheimer's Prevention, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Glenn J Lesser
- Oncology, Medical Neuro-Oncology and Neuro-Oncology Research Program, Wake Forest Baptist Comprehensive Cancer Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1082, USA
| |
Collapse
|
59
|
Wu D, Albert M, Soldan A, Pettigrew C, Oishi K, Tomogane Y, Ye C, Ma T, Miller MI, Mori S. Multi-atlas based detection and localization (MADL) for location-dependent quantification of white matter hyperintensities. NEUROIMAGE-CLINICAL 2019; 22:101772. [PMID: 30927606 PMCID: PMC6444296 DOI: 10.1016/j.nicl.2019.101772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/05/2019] [Accepted: 03/10/2019] [Indexed: 02/07/2023]
Abstract
The extent and spatial location of white matter hyperintensities (WMH) on brain MRI may be relevant to the development of cognitive decline in older persons. Here, we introduce a new method, known as the Multi-atlas based Detection and Localization (MADL), to evaluate WMH on fluid-attenuated inversion recovery (FLAIR) data. This method simultaneously parcellates the whole brain into 143 structures and labels hyperintense areas within each WM structure. First, a multi-atlas library was established with FLAIR data of normal elderly brains; and then a multi-atlas fusion algorithm was developed by which voxels with locally abnormal intensities were detected as WMH. At the same time, brain segmentation maps were generated from the multi-atlas fusion process to determine the anatomical location of WMH. Areas identified using the MADL method agreed well with manual delineation, with an interclass correlation of 0.97 and similarity index (SI) between 0.55 and 0.72, depending on the total WMH load. Performance was compared to other state-of-the-art WMH detection methods, such as BIANCA and LST. MADL-based analyses of WMH in an older population revealed a significant association between age and WMH load in deep WM but not subcortical WM. The findings also suggested increased WMH load in selective brain regions in subjects with mild cognitive impairment compared to controls, including the inferior deep WM and occipital subcortical WM. The proposed MADL approach may facilitate location-dependent characterization of WMH in older individuals with memory impairment. We proposed a multi-atlas based method for simultaneous detection and location of WMH on FLAIR images. The method generates whole-brain segmentation for location-dependent WMH analysis. The method showed reasonably high detection accuracy in comparison with other methods. Results revealed a selective association between deep brain WMH and subject age. Results suggested increased WMH in the inferior white matter in MCI patients.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenichi Oishi
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yusuke Tomogane
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenfei Ye
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ting Ma
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael I Miller
- Department of Biomedicine Engineering, Johns Hopkins University, Baltimore, MD, USA; Center of Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
60
|
Babulal GM, Quiroz YT, Albensi BC, Arenaza-Urquijo E, Astell AJ, Babiloni C, Bahar-Fuchs A, Bell J, Bowman GL, Brickman AM, Chételat G, Ciro C, Cohen AD, Dilworth-Anderson P, Dodge HH, Dreux S, Edland S, Esbensen A, Evered L, Ewers M, Fargo KN, Fortea J, Gonzalez H, Gustafson DR, Head E, Hendrix JA, Hofer SM, Johnson LA, Jutten R, Kilborn K, Lanctôt KL, Manly JJ, Martins RN, Mielke MM, Morris MC, Murray ME, Oh ES, Parra MA, Rissman RA, Roe CM, Santos OA, Scarmeas N, Schneider LS, Schupf N, Sikkes S, Snyder HM, Sohrabi HR, Stern Y, Strydom A, Tang Y, Terrera GM, Teunissen C, Melo van Lent D, Weinborn M, Wesselman L, Wilcock DM, Zetterberg H, O'Bryant SE. Perspectives on ethnic and racial disparities in Alzheimer's disease and related dementias: Update and areas of immediate need. Alzheimers Dement 2019; 15:292-312. [PMID: 30555031 PMCID: PMC6368893 DOI: 10.1016/j.jalz.2018.09.009] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease and related dementias (ADRDs) are a global crisis facing the aging population and society as a whole. With the numbers of people with ADRDs predicted to rise dramatically across the world, the scientific community can no longer neglect the need for research focusing on ADRDs among underrepresented ethnoracial diverse groups. The Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART; alz.org/ISTAART) comprises a number of professional interest areas (PIAs), each focusing on a major scientific area associated with ADRDs. We leverage the expertise of the existing international cadre of ISTAART scientists and experts to synthesize a cross-PIA white paper that provides both a concise "state-of-the-science" report of ethnoracial factors across PIA foci and updated recommendations to address immediate needs to advance ADRD science across ethnoracial populations.
Collapse
Affiliation(s)
- Ganesh M Babulal
- Department of Neurology and Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yakeel T Quiroz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Arlene J Astell
- Department of Occupational Sciences & Occupational Therapy, University of Toronto, CA; School of Psychology and Clinical Language Sciences, University of Reading, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Department of Neuroscience, IRCCS-Hospital San Raffaele Pisana of Rome and Cassino, Rome and Cassino, Italy
| | - Alex Bahar-Fuchs
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, the University of Melbourne, Australia
| | | | - Gene L Bowman
- Nutrition and Brain Health Laboratory, Nestlé Institute of Health Sciences, Lausanne, Switzerland; Department of Neurology, Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
| | - Adam M Brickman
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA
| | - Gaël Chételat
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | - Carrie Ciro
- Department of Occupational Therapy Education, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Hiroko H Dodge
- Department of Neurology, Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
| | - Simone Dreux
- Undergraduate Program of History and Science, Harvard College, Cambridge, MA, USA
| | - Steven Edland
- Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | - Anna Esbensen
- Department of Pediatrics, University of Cincinnati College of Medicine & Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lisbeth Evered
- Melbourne Medical School, University of Melbourne, Australia
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Keith N Fargo
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Hector Gonzalez
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Research Center, University of San Diego, CA, USA
| | - Deborah R Gustafson
- Department of Neurology, Section for NeuroEpidemiology, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
| | - Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - James A Hendrix
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Scott M Hofer
- Adult Development and Aging, University of Victoria, British Columbia, CA, USA
| | - Leigh A Johnson
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Roos Jutten
- VU University Medical Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Kerry Kilborn
- Department of Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Krista L Lanctôt
- Sunnybrook Research Institute of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Jennifer J Manly
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA
| | - Ralph N Martins
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Michelle M Mielke
- Department of Epidemiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Esther S Oh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mario A Parra
- School of Social Sciences, Department of Psychology, Heriot-Watt University, UK; Universidad Autónoma del Caribe, Barranquilla, Colombia; Neuroprogressive and Dementia Network, UK
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego School of Medicine, CA, USA
| | - Catherine M Roe
- Department of Neurology and Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Octavio A Santos
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Nikolaos Scarmeas
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA; Aiginition Hospital, 1st Neurology Clinic, Department of Social Medicine, Psychiatry and Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Lon S Schneider
- Department of Psychiatry and The Behavioral Sciences, University of Southern California, CA, USA
| | - Nicole Schupf
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Sietske Sikkes
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Heather M Snyder
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Hamid R Sohrabi
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Yaakov Stern
- Department of Neurology, Columbia University, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Yi Tang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Graciela Muniz Terrera
- Centers for Clinical Brain Sciences and Dementia Prevention, University in Edinburgh, Scotland, UK
| | - Charlotte Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit University Medical Center, Amsterdam, the Netherlands
| | - Debora Melo van Lent
- Department of Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Weinborn
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | | | - Donna M Wilcock
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit University Medical Center, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Sid E O'Bryant
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
61
|
Brickman AM, Tosto G, Gutierrez J, Andrews H, Gu Y, Narkhede A, Rizvi B, Guzman V, Manly JJ, Vonsattel JP, Schupf N, Mayeux R. An MRI measure of degenerative and cerebrovascular pathology in Alzheimer disease. Neurology 2018; 91:e1402-e1412. [PMID: 30217936 PMCID: PMC6177275 DOI: 10.1212/wnl.0000000000006310] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/28/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To develop, replicate, and validate an MRI-based quantitative measure of both cerebrovascular and neurodegeneration in Alzheimer disease (AD) for clinical and potentially research purposes. METHODS We used data from a cross-sectional and longitudinal community-based study of Medicare-eligible residents in northern Manhattan followed every 18-24 months (n = 1,175, mean age 78 years). White matter hyperintensities, infarcts, hippocampal volumes, and cortical thicknesses were quantified from MRI and combined to generate an MRI measure associated with episodic memory. The combined MRI measure was replicated and validated using autopsy data, clinical diagnoses, and CSF biomarkers and amyloid PET from the Alzheimer's Disease Neuroimaging Initiative. RESULTS The quantitative MRI measure was developed in a group of community participants (n = 690) and replicated in a similar second group (n = 485). Compared with healthy controls, the quantitative MRI measure was lower in patients with mild cognitive impairment and lower still in those with clinically diagnosed AD. The quantitative MRI measure correlated with neurofibrillary tangles, neuronal loss, atrophy, and infarcts at postmortem in an autopsy subset and was also associated with PET amyloid imaging and CSF levels of total tau, phosphorylated tau, and β-amyloid 42. The MRI measure predicted conversion to MCI and clinical AD among healthy controls. CONCLUSION We developed, replicated, and validated an MRI measure of cerebrovascular and neurodegenerative pathologies that are associated with clinical and neuropathologic diagnosis of AD and related to established biomarkers.
Collapse
Affiliation(s)
- Adam M Brickman
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY
| | - Giuseppe Tosto
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY
| | - Jose Gutierrez
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY
| | - Howard Andrews
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY
| | - Yian Gu
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY
| | - Atul Narkhede
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY
| | - Batool Rizvi
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY
| | - Vanessa Guzman
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY
| | - Jennifer J Manly
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY
| | - Jean Paul Vonsattel
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY
| | - Nicole Schupf
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY
| | - Richard Mayeux
- From the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., G.T., H.A., Y.G., A.N., B.R., V.G., J.J.M., J.P.V., N.S., R.M.), The Gertrude H. Sergievsky Center (A.M.B., G.T., H.A., Y.G., J.J.M., N.S., R.M.), and the Departments of Neurology (A.M.B., G.T., J.G., Y.G., J.J.M., N.S., R.M.), Pathology and Cell Biology (J.P.V.), and Psychiatry (R.M.), College of Physicians and Surgeons, and Departments of Biostatistics (H.A.) and Epidemiology (N.S., R.M.), Mailman School of Public Health, Columbia University, New York, NY.
| |
Collapse
|
62
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
63
|
Lao PJ, Brickman AM. Multimodal neuroimaging study of cerebrovascular disease, amyloid deposition, and neurodegeneration in Alzheimer's disease progression. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:638-646. [PMID: 30417071 PMCID: PMC6215981 DOI: 10.1016/j.dadm.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction Cerebrovascular disease (CVD) is not currently considered a core pathological feature of Alzheimer's disease (AD), but mounting evidence suggests that concurrent CVD may exacerbate AD progression. The purpose of this study was first to examine the relationship among amyloid, CVD, and neurodegeneration and second to examine the extent to which amyloid and CVD pathology drive subsequent neurodegeneration over time. Methods Six hundred eight (224 normal controls, 291 mild cognitive impairment, 93 AD) subjects from the Alzheimer's Disease Neuroimaging Initiative with longitudinal AV45 positron emission tomography imaging and MR imaging were investigated. Results Amyloid and white matter hyperintensity (WMH) burden increased across clinical diagnosis groups (normal control < mild cognitive impairment < AD). Amyloid pathology and WMH volume were related to lower cortical thickness, while WMH burden was associated with neurodegenerative/atrophic changes over time in key AD-related brain regions. Discussion CVD and AD may be etiologically independent, but our findings suggest that CVD should be considered explicitly for its effect on AD progression. There is a pathological overlap between small vessel cerebrovascular disease, as measured by white matter hyperintensities, and Alzheimer's disease, as measured by amyloid positron emission tomography, even in a cohort with low-to-moderate vascular risk. Amyloid deposition and white matter hyperintensities additively contribute to the cortical thickness in key Alzheimer's disease–associated brain regions, and high white matter hyperintensity burden may promote cortical thinning over time.
Collapse
Affiliation(s)
- Patrick J. Lao
- Corresponding author. Tel.: +1 212-342-1399; Fax: +1 212-342-1838.
| | | |
Collapse
|
64
|
Gavett BE, Fletcher E, Harvey D, Farias ST, Olichney J, Beckett L, DeCarli C, Mungas D. Ethnoracial differences in brain structure change and cognitive change. Neuropsychology 2018; 32:529-540. [PMID: 29648842 PMCID: PMC6023745 DOI: 10.1037/neu0000452] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The purpose of this study was to examine longitudinal associations between structural MRI and cognition in a diverse sample. METHOD Older adults (n = 444; Mage = 74.5)-121 African Americans, 212 Whites, and 111 Hispanics-underwent an average of 5.3 annual study visits. Approximately half were cognitively normal at baseline (global Clinical Dementia Rating M = 0.5). Of the patients with dementia, most (79%) were diagnosed with Alzheimer's disease (AD). MRI measures of gray matter volume (baseline and change), and hippocampal and white matter hyperintensity (WMH) volumes (baseline), were used to predict change in global cognition. Multilevel latent variable modeling was used to test the hypothesis that brain effects on cognitive change differed across ethnoracial groups. RESULTS In a multivariable model, global gray matter change was the strongest predictor of cognitive decline in Whites and African Americans and specific temporal lobe change added incremental explanatory power in Whites. Baseline WMH volume was the strongest predictor of cognitive decline in Hispanics and made an incremental contribution in Whites. CONCLUSIONS We found ethnoracial group differences in associations of brain variables with cognitive decline. The unique patterns in Whites appeared to suggest a greater influence of AD in this group. In contrast, cognitive decline in African Americans and Hispanics was most uniquely attributable to global gray matter change and baseline WMH, respectively. Brain changes underlying cognitive decline in older adults are heterogeneous and depend on fixed and modifiable risk factors that differ based on ethnicity and race. (PsycINFO Database Record
Collapse
Affiliation(s)
- Brandon E. Gavett
- Department of Psychology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Evan Fletcher
- Department of Neurology, University of California Davis, Davis, CA, USA
| | - Danielle Harvey
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | | | - John Olichney
- Department of Neurology, University of California Davis, Davis, CA, USA
| | - Laurel Beckett
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Charles DeCarli
- Department of Neurology, University of California Davis, Davis, CA, USA
| | - Dan Mungas
- Department of Neurology, University of California Davis, Davis, CA, USA
| |
Collapse
|
65
|
Molecular Mechanisms of Oligodendrocyte Regeneration in White Matter-Related Diseases. Int J Mol Sci 2018; 19:ijms19061743. [PMID: 29895784 PMCID: PMC6032201 DOI: 10.3390/ijms19061743] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Even in adult brains, restorative mechanisms are still retained to maintain the microenvironment. Under the pathological conditions of central nervous system (CNS) diseases, several immature cells in the brain would be activated as a compensative response. As the concept of the neurovascular unit emphasizes, cell-cell interactions play important roles in this restorative process. White matter damage and oligodendrocyte loss are representative characteristics for many neurodegenerative diseases. In response to oligodendrocyte damage, residual oligodendrocyte precursor cells (OPCs) initiate their proliferation and differentiation for the purpose of remyelination. Although mechanisms of oligodendrogenesis and remyelination in CNS diseases are still mostly unknown and understudied, accumulated evidence now suggests that support from neighboring cells is necessary for OPC proliferation and differentiation. In this review, we first overview basic mechanisms of interaction between oligodendrocyte lineage cells and neighboring cells, and then introduce how oligodendrogenesis occurs under the conditions of neurodegenerative diseases, focusing on vascular cognitive impairment syndrome, Alzheimer’s disease, and multiple sclerosis.
Collapse
|
66
|
Eldholm RS, Persson K, Barca ML, Knapskog AB, Cavallin L, Engedal K, Selbaek G, Skovlund E, Saltvedt I. Association between vascular comorbidity and progression of Alzheimer's disease: a two-year observational study in Norwegian memory clinics. BMC Geriatr 2018; 18:120. [PMID: 29788900 PMCID: PMC5964736 DOI: 10.1186/s12877-018-0813-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/09/2018] [Indexed: 11/30/2022] Open
Abstract
Background Vascular risk factors increase the risk of Alzheimer’s disease (AD), but there is limited evidence on whether comorbid vascular conditions and risk factors have an impact on disease progression. The aim of this study was to examine the association between vascular disease and vascular risk factors and progression of AD. Methods In a longitudinal observational study in three Norwegian memory clinics, 282 AD patients (mean age 73.3 years, 54% female) were followed for mean 24 (16–37) months. Vascular risk factors and vascular diseases were registered at baseline, and the vascular burden was estimated by the Framingham Stroke Risk Profile (FSRP). Cerebral medical resonance images (MRIs) were assessed for white matter hyperintensities (WMH), lacunar and cortical infarcts. The associations between vascular comorbidity and progression of dementia as measured by annual change in Clinical Dementia Rating Sum of Boxes (CDR-SB) scores were analysed by multiple regression analyses, adjusted for age and sex. Results Hypertension occurred in 83%, hypercholesterolemia in 53%, diabetes in 9%, 41% were overweight, and 10% were smokers. One third had a history of vascular disease; 16% had heart disease and 15% had experienced a cerebrovascular event. MRI showed lacunar infarcts in 16%, WMH with Fazekas score 2 in 26%, and Fazekas score 3 in 33%. Neither the vascular risk factors and diseases, the FSRP score, nor cerebrovascular disease was associated with disease progression in AD. Conclusions Although vascular risk factors and vascular diseases were prevalent, no impact on the progression of AD after 2 years was shown.
Collapse
Affiliation(s)
- Rannveig Sakshaug Eldholm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway. .,Department of Geriatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Karin Persson
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Maria Lage Barca
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Lena Cavallin
- Department of Clinical Science, Intervention, and Technology, Division of Medical Imaging and Technology, Karolinska Institute, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Knut Engedal
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Geir Selbaek
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Centre for Old Age Psychiatric Research, Innlandet Hospital Trust, Ottestad, Norway.,Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,Department of Geriatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
67
|
Fletcher E, Gavett B, Harvey D, Farias ST, Olichney J, Beckett L, DeCarli C, Mungas D. Brain volume change and cognitive trajectories in aging. Neuropsychology 2018; 32:436-449. [PMID: 29494196 PMCID: PMC6525569 DOI: 10.1037/neu0000447] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Examine how longitudinal cognitive trajectories relate to brain baseline measures and change in lobar volumes in a racially/ethnically and cognitively diverse sample of older adults. METHOD Participants were 460 older adults enrolled in a longitudinal aging study. Cognitive outcomes were measures of episodic memory, semantic memory, executive function, and spatial ability derived from the Spanish and English Neuropsychological Assessment Scales (SENAS). Latent variable multilevel modeling of the four cognitive outcomes as parallel longitudinal processes identified intercepts for each outcome and a second order global change factor explaining covariance among the highly correlated slopes. We examined how baseline brain volumes (lobar gray matter, hippocampus, and white matter hyperintensity) and change in brain volumes (lobar gray matter) were associated with cognitive intercepts and global cognitive change. Lobar volumes were dissociated into global and specific components using latent variable methods. RESULTS Cognitive change was most strongly associated with brain gray matter volume change, with strong independent effects of global gray matter change and specific temporal lobe gray matter change. Baseline white matter hyperintensity and hippocampal volumes had significant incremental effects on cognitive decline beyond gray matter change. Baseline lobar gray matter was related to cognitive decline, but did not contribute beyond gray matter change. CONCLUSION Cognitive decline was strongly influenced by gray matter volume change and, especially, temporal lobe change. The strong influence of temporal lobe gray matter change on cognitive decline may reflect involvement of temporal lobe structures that are critical for late life cognitive health but also are vulnerable to diseases of aging. (PsycINFO Database Record
Collapse
|
68
|
Rizvi B, Narkhede A, Last BS, Budge M, Tosto G, Manly JJ, Schupf N, Mayeux R, Brickman AM. The effect of white matter hyperintensities on cognition is mediated by cortical atrophy. Neurobiol Aging 2018; 64:25-32. [PMID: 29328963 PMCID: PMC5831564 DOI: 10.1016/j.neurobiolaging.2017.12.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/13/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022]
Abstract
White matter hyperintensities (WMH) have been linked to cognitive dysfunction and dementia, although the reasons are unclear. One possibility is that WMH promote neurodegeneration, which, in turn, affects cognition. We examined whether cortical thickness, a marker of neurodegeneration, mediates the relationship between WMH and cognition among 519 older adults. Using conditional process analysis modeling techniques, we examined the association between WMH volume and global cognition and tested whether cortical thickness mediates this relationship statistically. We also tested specific regional hypotheses to determine whether cortical thickness or volume in the medial temporal lobe mediates the relationship between WMH volume and memory. Increased total WMH volume was associated with poorer global cognition and memory. Global cortical thickness and medial temporal lobe thickness/volume mediated the relationship of WMH volume on global cognition and memory functioning. The mediating relationship was similar across racial and ethnic groups and across diagnostic groups (i.e., mild cognitive impairment/Alzheimer's disease). The findings suggest that WMH promote atrophy, which, in turn, drives cognitive decline and highlight a potential pathway in which small vessel cerebrovascular disease affects cognition by promoting neurodegenerative changes directly.
Collapse
Affiliation(s)
- Batool Rizvi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Atul Narkhede
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Briana S Last
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mariana Budge
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
69
|
Pietroboni AM, Scarioni M, Carandini T, Basilico P, Cadioli M, Giulietti G, Arighi A, Caprioli M, Serra L, Sina C, Fenoglio C, Ghezzi L, Fumagalli GG, De Riz MA, Calvi A, Triulzi F, Bozzali M, Scarpini E, Galimberti D. CSF β-amyloid and white matter damage: a new perspective on Alzheimer's disease. J Neurol Neurosurg Psychiatry 2018; 89:352-357. [PMID: 29054920 DOI: 10.1136/jnnp-2017-316603] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To assess the connection between amyloid pathology and white matter (WM) macrostructural and microstructural damage in demented patients compared with controls. METHODS Eighty-five participants were recruited: 65 with newly diagnosed Alzheimer's disease (AD), non-AD dementia or mild cognitive impairment and 20 age-matched and sex-matched healthy controls. β-amyloid1-42 (Aβ) levels were determined in cerebrospinal fluid (CSF) samples from all patients and five controls. Among patients, 42 had pathological CSF Aβ levels (Aβ(+)), while 23 had normal CSF Aβ levels (Aβ(-)). All participants underwent neurological examination, neuropsychological testing and brain MRI. We used T2-weighted scans to quantify WM lesion loads (LLs) and diffusion-weighted images to assess their microstructural substrate. Non-parametric statistical tests were used for between-group comparisons and multiple regression analyses. RESULTS We found an increased WM-LL in Aβ(+) compared with both, healthy controls (p=0.003) and Aβ(-) patients (p=0.02). Interestingly, CSF Aβ concentration was the best predictor of patients' WM-LL (r=-0.30, p<0.05) when using age as a covariate. Lesion apparent diffusion coefficient value was higher in all patients than in controls (p=0.0001) and correlated with WM-LL (r=0.41, p=0.001). In Aβ(+), WM-LL correlated with WM microstructural damage in the left peritrigonal WM (p<0.0001). CONCLUSIONS WM damage is crucial in AD pathogenesis. The correlation between CSF Aβ levels and WM-LL suggests a direct link between amyloid pathology and WM macrostructural and microstructural damage.
Collapse
Affiliation(s)
- Anna M Pietroboni
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Scarioni
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Basilico
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcello Cadioli
- Department of Pathophysiology and Transplantation, Neuroradiology Unit, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Andrea Arighi
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Caprioli
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Serra
- Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Clara Sina
- Department of Pathophysiology and Transplantation, Neuroradiology Unit, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Ghezzi
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio G Fumagalli
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Milena A De Riz
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Calvi
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Pathophysiology and Transplantation, Neuroradiology Unit, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Bozzali
- Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Elio Scarpini
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
70
|
Nasrabady SE, Rizvi B, Goldman JE, Brickman AM. White matter changes in Alzheimer's disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Commun 2018; 6:22. [PMID: 29499767 PMCID: PMC5834839 DOI: 10.1186/s40478-018-0515-3] [Citation(s) in RCA: 387] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is conceptualized as a progressive consequence of two hallmark pathological changes in grey matter: extracellular amyloid plaques and neurofibrillary tangles. However, over the past several years, neuroimaging studies have implicated micro- and macrostructural abnormalities in white matter in the risk and progression of AD, suggesting that in addition to the neuronal pathology characteristic of the disease, white matter degeneration and demyelination may be also important pathophysiological features. Here we review the evidence for white matter abnormalities in AD with a focus on myelin and oligodendrocytes, the only source of myelination in the central nervous system, and discuss the relationship between white matter changes and the hallmarks of Alzheimer's disease. We review several mechanisms such as ischemia, oxidative stress, excitotoxicity, iron overload, Aβ toxicity and tauopathy, which could affect oligodendrocytes. We conclude that white matter abnormalities, and in particular myelin and oligodendrocytes, could be mechanistically important in AD pathology and could be potential treatment targets.
Collapse
Affiliation(s)
- Sara E Nasrabady
- Department of Psychiatry, Columbia University, New York, NY, USA.
| | - Batool Rizvi
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Adam M Brickman
- Department of Neurology, Columbia University, New York, NY, USA
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
71
|
Abstract
The fundamental pathology in Alzheimer's disease (AD) is neuronal dysfunction leading to cognitive impairment. The amyloid-β peptide (Aβ), derived from amyloid precursor protein, is one driver of AD, but how it leads to neuronal dysfunction is not established. In this Review, I discuss the complexity of AD and possible cause-and-effect relationships between Aβ and the vascular and hemostatic systems. AD can be considered a multifactorial syndrome with various contributing pathological mechanisms. Therefore, as is routinely done with cancer, it will be important to classify patients with respect to their disease signature so that specific pathologies, including vascular pathways, can be therapeutically targeted.
Collapse
|
72
|
Mito R, Raffelt D, Dhollander T, Vaughan DN, Tournier JD, Salvado O, Brodtmann A, Rowe CC, Villemagne VL, Connelly A. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain 2018; 141:888-902. [DOI: 10.1093/brain/awx355] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Remika Mito
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3084, Australia
| | - David Raffelt
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
| | - Thijs Dhollander
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
| | - David N Vaughan
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3084, Australia
- Department of Neurology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - J-Donald Tournier
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, WC2R 2LS, UK
- Centre for the Developing Brain, King’s College London, London, WC2R 2LS, UK
| | - Olivier Salvado
- CSIRO, Health and Biosecurity, The Australian eHealth Research Centre, Brisbane, Queensland, 4029, Australia
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3084, Australia
- Eastern Clinical Research Unit, Monash University, Box Hill Hospital, Melbourne, Victoria, 3128, Australia
| | - Christopher C Rowe
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Victor L Villemagne
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3084, Australia
| |
Collapse
|
73
|
Haller S, Zanchi D, Rodriguez C, Giannakopoulos P. Brain Structural Imaging in Alzheimer’s Disease. NEUROMETHODS 2018. [DOI: 10.1007/978-1-4939-7674-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
Mechanisms of vascular disease in dementia: what does industry want to know? Clin Sci (Lond) 2017; 131:799-802. [PMID: 28424374 DOI: 10.1042/cs20160724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 11/17/2022]
Abstract
Despite recent advances in basic and clinical science, dementia remains an area of high unmet medical need. The role of cerebrovascular mechanisms in the pathogenesis and progression of cognitive and functional impairment in dementia is being revived. In order to facilitate the development of therapeutic approaches, it is critical that a number of fundamental elements are integrated into research strategies investigating cerebrovascular pathologies as these will maximize the opportunity of bringing medicines to patients in a timely manner.
Collapse
|
75
|
Fukui Y, Hishikawa N, Ichinose J, Sato K, Nakano Y, Morihara R, Ohta Y, Yamashita T, Abe K. Different clinical effect of four antidementia drugs for Alzheimer's disease patients depending on white matter severity. Geriatr Gerontol Int 2017; 17:1991-1999. [PMID: 28276131 DOI: 10.1111/ggi.13007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/28/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022]
Abstract
AIM To examine the clinical effect of four antidementia drugs (donepezil, galantamine, rivastigmine and memantine) in Alzheimer's disease patients who were divided into subgroups based on their periventricular hyperintensity (PVH) severity. METHODS A total of 551 Alzheimer's disease patients (201 men and 350 women) were divided into four subgroups based on their PVH severity (0-III). They received monotherapy for 12 months. We compared the clinical effects at the baseline, and at 3, 6 and 12 months after initiation. RESULTS The baseline age became higher with PVH grades, and the Mini-Mental State Examination and Hasegawa Dementia Scale-Revised showed a decrease that was dependent on white matter severity. Although the PVH 0 subgroup showed stable cognitive, affective and ADL functions until 12 months in all four drug groups, the PVH I subgroup showed an improved Apathy Scale from the baseline in response to memantine at 3 and 9 months (P < 0.05), and galantamine at 9 months (P < 0.01). In the PVH II subgroup, the Mini-Mental State Examination showed a significant improvement from the baseline in response to galantamine (P < 0.05) at 9 months and Hasegawa Dementia Scale-Revised (P < 0.05) at 3 months. In the PVH III subgroup, cognitive and affective functions were preserved in all four drug groups until 12 months, but activities of daily living deteriorated in the riverstigmine group at 6 and 12 months (P < 0.05). CONCLUSIONS The present study shows that these four drugs showed sensitivity dependent on white matter severity that clinically affected cognitive, affective and activities of daily living functions. Geriatr Gerontol Int 2017; 17: 1991-1999.
Collapse
Affiliation(s)
- Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jin Ichinose
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
76
|
Haller S, Barkhof F. Interaction of Vascular Damage and Alzheimer Dementia: Focal Damage and Disconnection. Radiology 2017; 282:311-313. [PMID: 28099102 DOI: 10.1148/radiol.2016161564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sven Haller
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Department of Surgical Sciences, Division of Radiology, Uppsala University, Uppsala, Sweden (S.H.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Faculty of Medicine of the University of Geneva, Geneva, Switzerland (S.H.); Department of Radiology & Nuclear Medicine and PET Research, VU University Medical Centre, Amsterdam, the Netherlands (F.B.); and Institutes of Neurology and Healthcare Engineering, University College London, London, England (F.B.)
| | - Frederik Barkhof
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Department of Surgical Sciences, Division of Radiology, Uppsala University, Uppsala, Sweden (S.H.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Faculty of Medicine of the University of Geneva, Geneva, Switzerland (S.H.); Department of Radiology & Nuclear Medicine and PET Research, VU University Medical Centre, Amsterdam, the Netherlands (F.B.); and Institutes of Neurology and Healthcare Engineering, University College London, London, England (F.B.)
| |
Collapse
|
77
|
Law LL, Schultz SA, Boots EA, Einerson JA, Dougherty RJ, Oh JM, Korcarz CE, Edwards DF, Koscik RL, Dowling NM, Gallagher CL, Bendlin BB, Carlsson CM, Asthana S, Hermann BP, Sager MA, Johnson SC, Cook DB, Stein JH, Okonkwo OC. Chronotropic Response and Cognitive Function in a Cohort at Risk for Alzheimer's Disease. J Alzheimers Dis 2016; 56:351-359. [PMID: 27911299 DOI: 10.3233/jad-160642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to examine the association of chronotropic response (CR) and heart rate (HR) recovery- two indices of cardiovascular function within the context of a graded exercise test- with cognitive performance in a cognitively healthy, late-middle-aged cohort at risk for Alzheimer's disease (AD). Ninety participants (age = 63.52±5.86 years; 65.6% female) from the Wisconsin Registry for Alzheimer's Prevention participated in this study. They underwent graded exercise testing and a comprehensive neuropsychological assessment that assessed the following four cognitive domains: Immediate Memory, Verbal & Learning Memory, Working Memory, and Speed & Flexibility. Regression analyses, adjusted for age, sex, and education, were used to examine the association between CR, HR recovery, and cognition. We found significant associations between CR and cognitive performance in the domains of Immediate Memory, Verbal Learning & Memory, and Speed & Flexibility. In contrast, HR recovery was not significantly associated with cognitive function. The association between CR and cognition persisted even after controlling for HR recovery. Together, these findings indicatethat, in a cognitively normal, late-middle-aged cohort, CR is a stronger correlate of cognitive performance than HR recovery. Overall, this study reinforces the idea that cardiovascular health plays an important role in cognitive function, specifically in a cohort at risk for AD; and that interventions that promote vascular health may be a viable pathway to preventing or slowing cognitive decline due to AD.
Collapse
Affiliation(s)
- Lena L Law
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephanie A Schultz
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Elizabeth A Boots
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jean A Einerson
- Division of Cardiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ryan J Dougherty
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, USA
| | - Jennifer M Oh
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Claudia E Korcarz
- Division of Cardiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Dorothy F Edwards
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, USA
| | - Rebecca L Koscik
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - N Maritza Dowling
- Department of Biostatistics & Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Catherine L Gallagher
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Barbara B Bendlin
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce P Hermann
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A Sager
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Dane B Cook
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - James H Stein
- Division of Cardiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ozioma C Okonkwo
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
78
|
Rogne S, Vangberg T, Eldevik P, Wikran G, Mathiesen EB, Schirmer H. Magnetic Resonance Volumetry: Prediction of Subjective Memory Complaints and Mild Cognitive Impairment, and Associations with Genetic and Cardiovascular Risk Factors. Dement Geriatr Cogn Dis Extra 2016; 6:529-540. [PMID: 28101099 PMCID: PMC5216191 DOI: 10.1159/000450885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022] Open
Abstract
Background/Aims Subjective memory complaints (SMC) are strong predictors of mild cognitive impairment (MCI) and subsequent Alzheimer's disease. Our aims were to see if fully automated cerebral MR volume measurements could distinguish subjects with SMC and MCI from controls, and if probable parental late-onset Alzheimer's disease (LOAD), apolipoprotein E ε4 genotype, total plasma homocysteine, and cardiovascular risk factors were associated with MR volumetric findings. Methods 198 stroke-free subjects comprised the control (n = 58), the SMC (n = 25) and the MCI (n = 115) groups. Analysis of covariance and receiver operating characteristic curve was used to see if MR volumetry distinguished subjects with SMC and MCI from controls. Results Subjects with SMC and MCI had significantly larger lateral ventricles and smaller hippocampal volumes than controls. The area under the curve in subjects with SMC and MCI compared to that of controls was less than 0.68 for all volumes of intracranial structures. There was an interaction between sex and probable parental LOAD for hippocampal volume, with a significant association between probable parental LOAD and hippocampal volume in women. Conclusions Fully automated MR volumetry can distinguish subjects with SMC and MCI from controls in a general population, but insufficiently to assume a clear clinical role. Research on sporadic LOAD might benefit from a sex-specific search for genetic risk factors.
Collapse
Affiliation(s)
- Sigbjørn Rogne
- Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Torgil Vangberg
- Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Petter Eldevik
- Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Gry Wikran
- Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Ellisiv B Mathiesen
- Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Neurology and Neurophysiology, University Hospital of North Norway, Tromsø, Norway
| | - Henrik Schirmer
- Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Cardiology, Division of Cardiothoracic and Respiratory Disease, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
79
|
Cerebral amyloid is associated with greater white-matter hyperintensity accrual in cognitively normal older adults. Neurobiol Aging 2016; 48:48-52. [PMID: 27639120 DOI: 10.1016/j.neurobiolaging.2016.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/29/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022]
Abstract
Cross-sectional studies show that elevated cerebral amyloid is associated with greater white-matter hyperintensity (WMH) burden in cognitively normal (CN) older adults. However, the relative time courses of amyloid and WMH accrual are unclear. To address this, we tested the associations between known WMH correlates-age, hypertension, and amyloid-with WMH accrual rate. We used brain magnetic resonance imaging to measure WMH change in 112 CN Alzheimer's Disease Neuroimaging Initiative (GO/2) participants over a 2-year period. A linear mixed effects model assessed baseline cerebrospinal fluid amyloid beta (Aβ) 1-42, hypertension, age, and their interactions, as predictors of greater WMH accrual. Greater amyloid burden was associated with greater WMH accrual over time. Those with hypertension showed a stronger association between greater amyloid burden and WMH accrual rate. Greater age was not significantly associated with greater WMH accrual in this model. Although the direction of the relationship cannot be tested in this model, CN individuals harboring cerebral amyloid had greater accrual of WMH over a 2-year period after accounting for hypertension and age. Impaired amyloid clearance and cerebral small vessel disease may both underlie the more rapid emergence of WM lesions. The role of cerebral amyloid burden in white-matter injury should thus be considered as a relevant factor when WMHs are detected clinically.
Collapse
|
80
|
Filley CM, Fields RD. White matter and cognition: making the connection. J Neurophysiol 2016; 116:2093-2104. [PMID: 27512019 DOI: 10.1152/jn.00221.2016] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022] Open
Abstract
Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society.
Collapse
Affiliation(s)
- Christopher M Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora, Colorado; .,Denver Department of Veterans Affairs Medical Center, Denver, Colorado; and
| | - R Douglas Fields
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
81
|
Glutamate signalling: A multifaceted modulator of oligodendrocyte lineage cells in health and disease. Neuropharmacology 2016; 110:574-585. [PMID: 27346208 DOI: 10.1016/j.neuropharm.2016.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 01/10/2023]
Abstract
Myelin is essential for the mammalian brain to function efficiently. Whilst many factors have been associated with regulating the differentiation of oligodendroglia and myelination, glutamate signalling might be particularly important for learning-dependent myelination. The majority of myelinated projection neurons are glutamatergic. Oligodendrocyte precursor cells receive glutamatergic synaptic inputs from unmyelinated axons and oligodendrocyte lineage cells express glutamate receptors which enable them to monitor and respond to changes in neuronal activity. Yet, what role glutamate plays for oligodendroglia is not fully understood. Here, we review glutamate signalling and its effects on oligodendrocyte lineage cells, and myelination in health and disease. Furthermore, we discuss whether glutamate signalling between neurons and oligodendroglia might lay the foundation to activity-dependent white matter plasticity. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
|
82
|
Rieckmann A, Van Dijk KRA, Sperling RA, Johnson KA, Buckner RL, Hedden T. Accelerated decline in white matter integrity in clinically normal individuals at risk for Alzheimer's disease. Neurobiol Aging 2016; 42:177-88. [PMID: 27143434 PMCID: PMC4857135 DOI: 10.1016/j.neurobiolaging.2016.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022]
Abstract
Prior studies have identified white matter abnormalities in Alzheimer's disease (AD). Yet, cross-sectional studies in normal older individuals show little evidence for an association between markers of AD risk (APOE4 genotype and amyloid deposition), and white matter integrity. Here, 108 normal older adults (age, 66-87) with assessments of apolipoprotein e4 (APOE4) genotype and assessment of amyloid burden by positron emission tomography underwent diffusion tensor imaging scans for measuring white matter integrity at 2 time points, on average 2.6 years apart. Linear mixed-effects models showed that amyloid burden at baseline was associated with steeper decline in fractional anisotropy in the parahippocampal cingulum (p < 0.05). This association was not significant between baseline measures suggesting that longitudinal analyses can provide novel insights that are not detectable in cross-sectional designs. Amyloid-related changes in hippocampus volume did not explain the association between amyloid burden and change in fractional anisotropy. The results suggest that accumulation of cortical amyloid and white matter changes in parahippocampal cingulum are not independent processes in individuals at increased risk for AD.
Collapse
Affiliation(s)
- Anna Rieckmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Koene R A Van Dijk
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Reisa A Sperling
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Randy L Buckner
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Trey Hedden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
83
|
Kapasi A, Schneider JA. Vascular contributions to cognitive impairment, clinical Alzheimer's disease, and dementia in older persons. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:878-86. [PMID: 26769363 PMCID: PMC11062590 DOI: 10.1016/j.bbadis.2015.12.023] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022]
Abstract
There is growing evidence suggesting that vascular pathologies and dysfunction play a critical role in cognitive impairment, clinical Alzheimer's disease, and dementia. Vascular pathologies such as macroinfarcts, microinfarcts, microbleeds, small and large vessel cerebrovascular disease, and white matter disease are common especially in the brains of older persons where they contribute to cognitive impairment and lower the dementia threshold. Vascular dysfunction resulting in decreased cerebral blood flow, and abnormalities in the blood brain barrier may also contribute to the Alzheimer's disease (AD) pathophysiologic process and AD dementia. This review provides a clinical-pathological perspective on the role of vessel disease, vascular brain injury, alterations of the neurovascular unit, and mixed pathologies in the Alzheimer's disease pathophysiologic process and Alzheimer's dementia. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- A Kapasi
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S. Paulina Street, IL 60612, Chicago, USA.
| | - J A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S. Paulina Street, IL 60612, Chicago, USA.
| |
Collapse
|
84
|
Lee S, Viqar F, Zimmerman ME, Narkhede A, Tosto G, Benzinger TLS, Marcus DS, Fagan AM, Goate A, Fox NC, Cairns NJ, Holtzman DM, Buckles V, Ghetti B, McDade E, Martins RN, Saykin AJ, Masters CL, Ringman JM, Ryan NS, Förster S, Laske C, Schofield PR, Sperling RA, Salloway S, Correia S, Jack C, Weiner M, Bateman RJ, Morris JC, Mayeux R, Brickman AM. White matter hyperintensities are a core feature of Alzheimer's disease: Evidence from the dominantly inherited Alzheimer network. Ann Neurol 2016; 79:929-39. [PMID: 27016429 DOI: 10.1002/ana.24647] [Citation(s) in RCA: 383] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE White matter hyperintensities (WMHs) are areas of increased signal on T2-weighted magnetic resonance imaging (MRI) scans that most commonly reflect small vessel cerebrovascular disease. Increased WMH volume is associated with risk and progression of Alzheimer's disease (AD). These observations are typically interpreted as evidence that vascular abnormalities play an additive, independent role contributing to symptom presentation, but not core features of AD. We examined the severity and distribution of WMH in presymptomatic PSEN1, PSEN2, and APP mutation carriers to determine the extent to which WMH manifest in individuals genetically determined to develop AD. METHODS The study comprised participants (n = 299; age = 39.03 ± 10.13) from the Dominantly Inherited Alzheimer Network, including 184 (61.5%) with a mutation that results in AD and 115 (38.5%) first-degree relatives who were noncarrier controls. We calculated the estimated years from expected symptom onset (EYO) by subtracting the affected parent's symptom onset age from the participant's age. Baseline MRI data were analyzed for total and regional WMH. Mixed-effects piece-wise linear regression was used to examine WMH differences between carriers and noncarriers with respect to EYO. RESULTS Mutation carriers had greater total WMH volumes, which appeared to increase approximately 6 years before expected symptom onset. Effects were most prominent for the parietal and occipital lobe, which showed divergent effects as early as 22 years before estimated onset. INTERPRETATION Autosomal-dominant AD is associated with increased WMH well before expected symptom onset. The findings suggest the possibility that WMHs are a core feature of AD, a potential therapeutic target, and a factor that should be integrated into pathogenic models of the disease. Ann Neurol 2016;79:929-939.
Collapse
Affiliation(s)
- Seonjoo Lee
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY.,Division of Biostatistics, New York State Psychiatric Institute, New York, NY
| | - Fawad Viqar
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY.,Psychology Department, Fordham University, Bronx, NY
| | - Molly E Zimmerman
- Psychology Department, Fordham University, Bronx, NY.,Department of Neurology, Albert Einstein College of Medicine, Bronx, NY
| | - Atul Narkhede
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Neurology, Columbia University Medical Center and the New York Presbyterian Hospital, Columbia University, New York, NY
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nick C Fox
- Dementia Research Center, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Nigel J Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Virginia Buckles
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Ralph N Martins
- Center of Excellence of Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Andrew J Saykin
- Indiana Alzheimer Disease Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Colin L Masters
- The Florey Institute, University of Melbourne, Parkville, Australia
| | - John M Ringman
- Memory and Aging Center, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Natalie S Ryan
- Dementia Research Center, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Stefan Förster
- German Center for Neurodegenerative Diseases (DZNE) München and Tübingen and Department of Nuclear Medicine, Technische Universität München (TUM), Munich, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE) and the Section for Dementia Research, Department of Cellular Neurology, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Peter R Schofield
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | - Reisa A Sperling
- Center for Alzheimer Research and Treatment, Brigham and Women's Hospital and Massachusetts General Hospital, Boston, MA
| | - Stephen Salloway
- Butler Hospital and Department of Neurology, Alpert Medical School, Brown University, Providence, RI
| | - Stephen Correia
- Department of Psychiatry, Alpert Medical School, Brown University, Providence, RI
| | | | - Michael Weiner
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center and Departments of Psychiatry, Radiology, Medicine, and Neurology, University of California at San Francisco, San Francisco, CA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Neurology, Columbia University Medical Center and the New York Presbyterian Hospital, Columbia University, New York, NY.,Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Neurology, Columbia University Medical Center and the New York Presbyterian Hospital, Columbia University, New York, NY.,Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY
| | | |
Collapse
|
85
|
Rostanski SK, Zimmerman ME, Schupf N, Manly JJ, Westwood AJ, Brickman AM, Gu Y. Sleep Disordered Breathing and White Matter Hyperintensities in Community-Dwelling Elders. Sleep 2016; 39:785-91. [PMID: 27071695 DOI: 10.5665/sleep.5628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES To examine the association between markers of sleep-disordered breathing (SDB) and white matter hyperintensity (WMH) volume in an elderly, multiethnic, community-dwelling cohort. METHODS This is a cross-sectional analysis from the Washington Heights-Inwood Columbia Aging Project (WHICAP), a community-based epidemiological study of older adults. Structural magnetic resonance imaging was obtained starting in 2004; the Medical Outcomes Study-Sleep Scale (MOS-SS) was administered to participants starting in 2007. Linear regression models were used to assess the relationship between the two MOS-SS questions that measure respiratory dysfunction during sleep and quantified WMH volume among WHICAP participants with brain imaging. RESULTS A total of 483 older adults had both structural magnetic resonance imaging and sleep assessment. Self-reported SDB was associated with WMH. After adjusting for demographic and vascular risk factors, WMH volumes were larger in individuals with frequent snoring (β = 2.113, P = 0.004) and among those who reported waking short of breath or with headache (β = 1.862, P = 0.048). CONCLUSIONS In community-dwelling older adults, self-reported measures of SDB are associated with larger WMH volumes. The cognitive effects of SDB that are increasingly being recognized may be mediated at the small vessel level.
Collapse
Affiliation(s)
- Sara K Rostanski
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Molly E Zimmerman
- Department of Psychology, Fordham University, Bronx, NY.,Department of Neurology, Albert Einstein College of Medicine, Bronx, NY
| | - Nicole Schupf
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY.,The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jennifer J Manly
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY.,The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Andrew J Westwood
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Adam M Brickman
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY.,The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Yian Gu
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
86
|
Felsky D, De Jager PL, Schneider JA, Arfanakis K, Fleischman DA, Arvanitakis Z, Honer WG, Pouget JG, Mizrahi R, Pollock BG, Kennedy JL, Bennett DA, Voineskos AN. Cerebrovascular and microglial states are not altered by functional neuroinflammatory gene variant. J Cereb Blood Flow Metab 2016; 36:819-30. [PMID: 26762507 PMCID: PMC4821029 DOI: 10.1177/0271678x15626719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023]
Abstract
The translocator protein, a microglial-expressed marker of neuroinflammation, has been implicated in Alzheimer's disease, which is characterized by alterations in vascular and inflammatory states. ATSPOvariant, rs6971, determines binding affinity of exogenous radioligandsin vivo; however, the effect of these altered binding characteristics on inflammatory and cerebrovascular biomarkers has not been assessed. In 2345 living subjects (Alzheimer's Disease Neuroimaging Initiative, n = 1330) and postmortem brain samples (Religious Orders Study and Memory and Aging Project, n = 1015), we analyzed effects of rs6971 on white matter hyperintensisites, cerebral infarcts, circulating inflammatory biomarkers, amyloid angiopathy, and microglial activation. We found that rs6971 does not alter translocator protein in a way that impacts cerebrovascular and inflammatory states known to be affected in dementia.
Collapse
Affiliation(s)
- Daniel Felsky
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada Institute of Medical Science, University of Toronto, King's College Circle, Toronto, ON, Canada
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA Department of Biomedical Engineering, Illinois Institute of Technology, IL, USA
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - William G Honer
- BC Mental Health and Addictions Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada Institute of Medical Science, University of Toronto, King's College Circle, Toronto, ON, Canada
| | - Romina Mizrahi
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada Institute of Medical Science, University of Toronto, King's College Circle, Toronto, ON, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada Institute of Medical Science, University of Toronto, King's College Circle, Toronto, ON, Canada
| | - James L Kennedy
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada Institute of Medical Science, University of Toronto, King's College Circle, Toronto, ON, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Aristotle N Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada Institute of Medical Science, University of Toronto, King's College Circle, Toronto, ON, Canada
| |
Collapse
|
87
|
van Westen D, Lindqvist D, Blennow K, Minthon L, Nägga K, Stomrud E, Zetterberg H, Hansson O. Cerebral white matter lesions - associations with Aβ isoforms and amyloid PET. Sci Rep 2016; 6:20709. [PMID: 26856756 PMCID: PMC4746584 DOI: 10.1038/srep20709] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/11/2016] [Indexed: 01/06/2023] Open
Abstract
Small vessel disease (SVD) and amyloid deposition may promote each other, with a potential association between SVD and altered production or clearance of β-amyloid (Aβ) affecting its cleavage products. We investigated the relationship between SVD, multiple isoforms of Aβ in cerebrospinal fluid (CSF) and cortical Aβ in 831 subjects with cognitive performance ranging from normal to Alzheimer’s disease (AD) (the Swedish BioFINDER study). SVD was estimated as white matter lesions (WML) and lacunes. 18F-flutemetamol PET was performed in 321 subjects. Lower CSF levels of Aβ38 and Aβ40 were consistently associated with increased WML in all subgroups, while lower levels of CSF Aβ42 were associated with WML mainly in AD. CSF Aβ38 and Aβ40 were associated with regional WML in all regions, while CSF Aβ42 was associated with temporal WML only. A composite measure of 18F-flutemetamol uptake was not associated with WML, and regional 18F-flutemetamol uptake only with temporal WML. Lacunes were not associated with Aβ isoforms nor 18F-flutemetamol uptake. Our results suggest that WML may be associated with alterations in the production or clearance of Aβ species, particularly of Aβ38 and Aβ40. However, in AD cases, Aβ42 pathology might be associated with WML, especially in the temporal lobe.
Collapse
Affiliation(s)
- Danielle van Westen
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University.,Imaging and Function, Skåne University Health Care, Lund Sweden
| | - Daniel Lindqvist
- Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Division of Psychiatry Skåne, Lund, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Lennart Minthon
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden.,Memory Clinic, Skåne University Health Care, Malmö, Sweden
| | - Katarina Nägga
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden.,Memory Clinic, Skåne University Health Care, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden.,Memory Clinic, Skåne University Health Care, Malmö, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden.,Memory Clinic, Skåne University Health Care, Malmö, Sweden
| |
Collapse
|
88
|
Lee SJ, Lee DG. The cross-sectional and longitudinal relationships between white matter hyperintensities and dementia in patients with Parkinson’s disease: A retrospective analysis of 132 patients in a single center. Arch Gerontol Geriatr 2016; 62:133-7. [DOI: 10.1016/j.archger.2015.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/18/2015] [Accepted: 10/19/2015] [Indexed: 11/26/2022]
|
89
|
Tosto G, Zimmerman ME, Hamilton JL, Carmichael OT, Brickman AM. The effect of white matter hyperintensities on neurodegeneration in mild cognitive impairment. Alzheimers Dement 2015; 11:1510-1519. [PMID: 26079417 PMCID: PMC4677059 DOI: 10.1016/j.jalz.2015.05.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/19/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION It is unclear whether white matter hyperintensities (WMHs), magnetic resonance imaging markers of small-vessel cerebrovascular disease, promote neurodegeneration and associated clinical decline in Alzheimer's disease (AD), or simply co-occur with recognized pathogenic processes. METHODS In 169 patients with mild cognitive impairment, followed for 3 years, we examined the association of (1) baseline regional WMH and cerebral spinal fluid-derived t-tau (total tau) with entorhinal cortex atrophy rates, as a marker of AD-related neurodegeneration, and conversion to AD; and (2) baseline regional WMH with change in t-tau level. RESULTS In participants with low baseline t-tau, higher regional WMH volumes were associated with faster entorhinal cortex atrophy. Higher parietal WMH volume predicted conversion to AD in those with high t-tau. Higher parietal and occipital WMH volumes predicted increasing t-tau. DISCUSSION WMHs affect AD clinical and pathologic processes both directly and interacting with tau.
Collapse
Affiliation(s)
- Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Molly E Zimmerman
- Department of Psychology, Fordham University, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jamie L Hamilton
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
90
|
Scott JA, Braskie MN, Tosun D, Thompson PM, Weiner M, DeCarli C, Carmichael OT. Cerebral Amyloid and Hypertension are Independently Associated with White Matter Lesions in Elderly. Front Aging Neurosci 2015; 7:221. [PMID: 26648866 PMCID: PMC4664630 DOI: 10.3389/fnagi.2015.00221] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 01/18/2023] Open
Abstract
In cognitively normal (CN) elderly individuals, white matter hyperintensities (WMH) are commonly viewed as a marker of cerebral small vessel disease (SVD). SVD is due to exposure to systemic vascular injury processes associated with highly prevalent vascular risk factors (VRFs) such as hypertension, high cholesterol, and diabetes. However, cerebral amyloid accumulation is also prevalent in this population and is associated with WMH accrual. Therefore, we examined the independent associations of amyloid burden and VRFs with WMH burden in CN elderly individuals with low to moderate vascular risk. Participants (n = 150) in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) received fluid attenuated inversion recovery (FLAIR) MRI at study entry. Total WMH volume was calculated from FLAIR images co-registered with structural MRI. Amyloid burden was determined by cerebrospinal fluid Aβ1-42 levels. Clinical histories of VRFs, as well as current measurements of vascular status, were recorded during a baseline clinical evaluation. We tested ridge regression models for independent associations and interactions of elevated blood pressure (BP) and amyloid to total WMH volume. We found that greater amyloid burden and a clinical history of hypertension were independently associated with greater WMH volume. In addition, elevated BP modified the association between amyloid and WMH, such that those with either current or past evidence of elevated BP had greater WMH volumes at a given burden of amyloid. These findings are consistent with the hypothesis that cerebral amyloid accumulation and VRFs are independently associated with clinically latent white matter damage represented by WMHs. The potential contribution of amyloid to WMHs should be further explored, even among elderly individuals without cognitive impairment and with limited VRF exposure.
Collapse
Affiliation(s)
- Julia A Scott
- IDeA Laboratory, Department of Neurology, University of California, Davis Davis, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Keck School of Medicine, University of Southern California Marina del Rey, CA, USA
| | - Duygu Tosun
- Center for Imaging Neurodegenerative Diseases, VA Medical Center, University of California, San Francisco San Francisco, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Keck School of Medicine, University of Southern California Marina del Rey, CA, USA
| | - Michael Weiner
- Center for Imaging Neurodegenerative Diseases, VA Medical Center, University of California, San Francisco San Francisco, CA, USA
| | - Charles DeCarli
- IDeA Laboratory, Department of Neurology, University of California, Davis Davis, CA, USA
| | - Owen T Carmichael
- Brain and Metabolism Imaging in Chronic Disease Lab, Pennington Biomedical Research Center, Louisiana State University Baton Rouge, LA, USA
| | | |
Collapse
|
91
|
Cai Z, Wang C, He W, Tu H, Tang Z, Xiao M, Yan LJ. Cerebral small vessel disease and Alzheimer's disease. Clin Interv Aging 2015; 10:1695-704. [PMID: 26604717 PMCID: PMC4629951 DOI: 10.2147/cia.s90871] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a group of pathological processes with multifarious etiology and pathogenesis that are involved into the small arteries, arterioles, venules, and capillaries of the brain. CSVD mainly contains lacunar infarct or lacunar stroke, leukoaraiosis, Binswanger's disease, and cerebral microbleeds. CSVD is an important cerebral microvascular pathogenesis as it is the cause of 20% of strokes worldwide and the most common cause of cognitive impairment and dementia, including vascular dementia and Alzheimer's disease (AD). It has been well identified that CSVD contributes to the occurrence of AD. It seems that the treatment and prevention for cerebrovascular diseases with statins have such a role in the same function for AD. So far, there is no strong evidence-based medicine to support the idea, although increasing basic studies supported the fact that the treatment and prevention for cerebrovascular diseases will benefit AD. Furthermore, there is still lack of evidence in clinical application involved in specific drugs to benefit both AD and CSVD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Chuanling Wang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Hanjun Tu
- Department of Basic Research Center, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Zhengang Tang
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
92
|
Henstridge CM, Jackson RJ, Kim JM, Herrmann AG, Wright AK, Harris SE, Bastin ME, Starr JM, Wardlaw J, Gillingwater TH, Smith C, McKenzie CA, Cox SR, Deary IJ, Spires-Jones TL. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun 2015; 3:53. [PMID: 26335101 PMCID: PMC4559320 DOI: 10.1186/s40478-015-0232-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Non-pathological, age-related cognitive decline varies markedly between individuals andplaces significant financial and emotional strain on people, their families and society as a whole.Understanding the differential age-related decline in brain function is critical not only for the development oftherapeutics to prolong cognitive health into old age, but also to gain insight into pathological ageing suchas Alzheimer's disease. The Lothian Birth Cohort of 1936 (LBC1936) comprises a rare group of people forwhom there are childhood cognitive test scores and longitudinal cognitive data during older age, detailedstructural brain MRI, genome-wide genotyping, and a multitude of other biological, psycho-social, andepidemiological data. Synaptic integrity is a strong indicator of cognitive health in the human brain;however, until recently, it was prohibitively difficult to perform detailed analyses of synaptic and axonalstructure in human tissue sections. We have adapted a novel method of tissue preparation at autopsy toallow the study of human synapses from the LBC1936 cohort in unprecedented morphological andmolecular detail, using the high-resolution imaging techniques of array tomography and electronmicroscopy. This allows us to analyze the brain at sub-micron resolution to assess density, proteincomposition and health of synapses. Here we present data from the first donated LBC1936 brain andcompare our findings to Alzheimer's diseased tissue to highlight the differences between healthy andpathological brain ageing. RESULTS Our data indicates that compared to an Alzheimer's disease patient, the cognitively normalLBC1936 participant had a remarkable degree of preservation of synaptic structures. However,morphological and molecular markers of degeneration in areas of the brain associated with cognition(prefrontal cortex, anterior cingulate cortex, and superior temporal gyrus) were observed. CONCLUSIONS Our novel post-mortem protocol facilitates high-resolution neuropathological analysis of the well-characterized LBC1936 cohort, extending phenotyping beyond cognition and in vivo imaging to nowinclude neuropathological changes, at the level of single synapses. This approach offers an unprecedentedopportunity to study synaptic and axonal integrity during ageing and how it contributes to differences in agerelatedcognitive change.
Collapse
Affiliation(s)
- Christopher M Henstridge
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Rosemary J Jackson
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - JeeSoo M Kim
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Abigail G Herrmann
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Ann K Wright
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Geriatric Medicine Unit, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Joanna Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Thomas H Gillingwater
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Colin Smith
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Chris-Anne McKenzie
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Department of Psychology, CCACE, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
- Department of Psychology, CCACE, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK.
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
93
|
Maher-Edwards G, De'Ath J, Barnett C, Lavrov A, Lockhart A. A 24-week study to evaluate the effect of rilapladib on cognition and cerebrospinal fluid biomarkers of Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2015; 1:131-140. [PMID: 29854933 PMCID: PMC5975052 DOI: 10.1016/j.trci.2015.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background The lipoprotein-associated phospholipase A2 inhibitor (Lp-PLA2), rilapladib (SB659032), is being evaluated as a potential treatment to slow the progression of Alzheimer's disease (AD). Methods One hundred twenty-four subjects with possible mild AD and with neuroimaging evidence of cerebrovascular disease were randomized to placebo or 250-mg rilapladib once daily, for 24 weeks, in addition to stable background acetylcholinesterase inhibitor and/or memantine. The study assessed the safety and tolerability of rilapladib and its effects on cognition, mechanistic, and disease-related biomarkers. Although the overall intent behind the study was to take a broad exploratory view of the data, two primary end points of interest (cerebrospinal fluid [CSF] amyloid beta peptide 1–42 [Aβ1–42] and CogState executive function/working memory [EF/WM] composite score at week 24) were prespecified in the analysis plan for inferential statistical analysis. Results Rilapladib was well tolerated with no significant safety concerns. A significant difference from placebo was observed for rilapladib on change from baseline in EF/WM (effect size, 0.45; P = .026). There was no significant difference between groups on the change from baseline in CSF Aβ1–42 (P = .133). Preliminary evidence of effects was detected on other mechanistic (albumin quotient) and disease-related biomarkers (tau/P-tau and neurofilament light chain). Conclusion These data provide initial evidence supporting Lp-PLA2 inhibition as a novel treatment for dementia. Clinical Trial Registration Clinicaltrials.gov identifier: NCT01428453.
Collapse
Affiliation(s)
| | - Jeni De'Ath
- Neurosciences, GlaxoSmithKline, Uxbridge, Middlesex, UK
| | - Carly Barnett
- Neurosciences, GlaxoSmithKline, Uxbridge, Middlesex, UK
| | | | - Andrew Lockhart
- Neurosciences, GlaxoSmithKline, Clinical Unit Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
94
|
Brickman AM, Guzman VA, Gonzalez-Castellon M, Razlighi Q, Gu Y, Narkhede A, Janicki S, Ichise M, Stern Y, Manly JJ, Schupf N, Marshall RS. Cerebral autoregulation, beta amyloid, and white matter hyperintensities are interrelated. Neurosci Lett 2015; 592:54-8. [PMID: 25748319 PMCID: PMC4430835 DOI: 10.1016/j.neulet.2015.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 12/12/2022]
Abstract
Emerging studies link vascular risk factors and cerebrovascular health to the prevalence and rates of progression in Alzheimer's disease (AD). The brain's ability to maintain constant blood flow across a range of cerebral perfusion pressures, or autoregulation, may both promote and result from small vessel cerebrovascular disease and AD-related amyloid pathology. Here, we examined the relationship among cerebral autoregulation, small vessel cerebrovascular disease, and amyloid deposition in 14 non-demented older adults. Reduced cerebral autoregulation, was associated with increased amyloid deposition and increased white matter hyperintensity volume, which, in turn were positively associated with each other. For the first time in humans, we demonstrate an interrelationship among AD pathology, small vessel cerebrovascular disease, and cerebral autoregulation. Vascular factors and AD pathology are not independent but rather appear to interact.
Collapse
Affiliation(s)
- Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA.
| | - Vanessa A Guzman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA
| | | | - Qolamreza Razlighi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| | - Yian Gu
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| | - Atul Narkhede
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA
| | - Sarah Janicki
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| | - Masanori Ichise
- Department of Radiology, College of Physicians and Surgeons, Columbia University, USA
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, USA
| | - Randolph S Marshall
- Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| |
Collapse
|
95
|
Cohen RA, Seider TR, Navia B. HIV effects on age-associated neurocognitive dysfunction: premature cognitive aging or neurodegenerative disease? ALZHEIMERS RESEARCH & THERAPY 2015; 7:37. [PMID: 25848401 PMCID: PMC4386102 DOI: 10.1186/s13195-015-0123-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Marked improvements in survival and health outcome for people infected with HIV have occurred since the advent of combination antiretroviral therapy over a decade ago. Yet HIV-associated neurocognitive disorders continue to occur with an alarming prevalence. This may reflect the fact that infected people are now living longer with chronic infection. There is mounting evidence that HIV exacerbates age-associated cognitive decline. Many middle-aged HIV-infected people are experiencing cognitive decline similar that to that found among much older adults. An increased prevalence of vascular and metabolic comorbidities has also been observed and is greatest among older adults with HIV. Premature age-associated neurocognitive decline appears to be related to structural and functional brain changes on neuroimaging, and of particular concern is the fact that pathology indicative of neurodegenerative disease has been shown to occur in the brains of HIV-infected people. Yet notable differences also exist between the clinical presentation and brain disturbances occurring with HIV and those occurring in neurodegenerative conditions such as Alzheimer’s disease. HIV interacts with the aging brain to affect neurological structure and function. However, whether this interaction directly affects neurodegenerative processes, accelerates normal cognitive aging, or contributes to a worsening of other comorbidities that affect the brain in older adults remains an open question. Evidence for and against each of these possibilities is reviewed.
Collapse
Affiliation(s)
- Ronald A Cohen
- Departments of Neurology, Cognitive Aging and Memory Program, Institute on Aging, Psychiatry, and Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32610 USA
| | - Talia R Seider
- Departments of Neurology, Cognitive Aging and Memory Program, Institute on Aging, Psychiatry, and Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32610 USA ; Department of Clinical and Health Psychology, University of Florida, 1225 Center Drive, Room 3151, Gainesville, FL 32611 USA
| | - Bradford Navia
- Department of Public Health and Community Medicine, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111 USA
| |
Collapse
|
96
|
Clark LR, Nation DA, Wierenga CE, Bangen KJ, Dev SI, Shin DD, Delano-Wood L, Liu TT, Rissman RA, Bondi MW. Elevated cerebrovascular resistance index is associated with cognitive dysfunction in the very-old. ALZHEIMERS RESEARCH & THERAPY 2015; 7:3. [PMID: 27391477 PMCID: PMC4942967 DOI: 10.1186/s13195-014-0080-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Age-related vascular changes, including blood pressure elevation and cerebral blood flow (CBF) reduction, are associated with cognitive decline and Alzheimer's disease (AD). Evidence suggests that the relationship between blood pressure and dementia risk varies between younger and older samples within the elderly population. METHODS We examined the relationship between mean arterial pressure (MAP), CBF, and cognition in young-old (60 to 75 years of age) versus very-old (80+ years of age) adults. Fifty-eight non-demented older adults completed an arterial spin labeling MRI scan, and an index of cerebrovascular resistance (CVRi) was estimated for each participant by calculating the ratio of MAP and CBF. RESULTS Results demonstrated a similar negative relationship between MAP and CBF across both age groups. However, very-old participants exhibited elevated CVRi and reduced CBF compared to young-old participants in regions implicated in AD and cerebral small vessel disease. Furthermore, significant age by CVRi interactions revealed that elevated CVRi in the thalamus was inversely related to verbal fluency performance in the very-old group. CONCLUSIONS Findings support CVRi as a potential vascular biomarker and suggest that regionally-specific vascular changes may contribute to cognitive decline, particularly in the very-old.
Collapse
Affiliation(s)
- Lindsay R Clark
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA. .,Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Daniel A Nation
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Christina E Wierenga
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.,Department of Veterans Affairs, San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J Bangen
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Sheena I Dev
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - David D Shin
- Center for Functional MRI, University of California San Diego, San Diego, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.,Department of Veterans Affairs, San Diego Healthcare System, San Diego, CA, USA
| | - Thomas T Liu
- Center for Functional MRI, University of California San Diego, San Diego, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA. .,Department of Veterans Affairs, San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
97
|
Brickman AM, Zahodne LB, Guzman VA, Narkhede A, Meier IB, Griffith EY, Provenzano FA, Schupf N, Manly JJ, Stern Y, Luchsinger JA, Mayeux R. Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts Alzheimer's disease incidence. Neurobiol Aging 2015; 36:27-32. [PMID: 25155654 PMCID: PMC4268124 DOI: 10.1016/j.neurobiolaging.2014.07.019] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 01/27/2023]
Abstract
Accumulating evidence implicates small vessel cerebrovascular disease, visualized as white matter hyperintensities (WMH) on T2-weighted magnetic resonance imaging, in the pathogenesis and diagnosis of Alzheimer's disease (AD). Cross-sectional volumetric measures of WMH, particularly in the parietal lobes, are associated with increased risk of AD. In the present study, we sought to determine whether the longitudinal regional progression of WMH predicts incident AD above-and-beyond traditional radiological markers of neurodegeneration (i.e., hippocampal atrophy and cortical thickness). Three hundred three nondemented older adults (mean age = 79.24 ± 5.29) received high-resolution magnetic resonance imaging at baseline and then again 4.6 years (standard deviation = 1.01) later. Over the follow-up interval 26 participants progressed to AD. Using structural equation modeling, we calculated latent difference scores of parietal and nonparietal WMH, hippocampus volumes, and cortical thickness values in AD-related regions. Within the structural equation modeling framework, we determined whether baseline or change scores or both predicted AD conversion, while controlling for several time-invariant relevant variables. Smaller baseline hippocampus volume, change in hippocampus volume (i.e., atrophy), higher baseline parietal lobe WMH, and increasing parietal lobe WMH volume but not WMH in other regions or measures of cortical thickness, independently predicted progression to AD. The findings provide strong evidence that regionally accumulating WMH predict AD onset in addition to hallmark neurodegenerative changes typically associated with AD.
Collapse
Affiliation(s)
- Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Laura B Zahodne
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vanessa A Guzman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Atul Narkhede
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Irene B Meier
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Erica Y Griffith
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Frank A Provenzano
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - José A Luchsinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
98
|
Huey ED. Clinical-pathological agreement in dementing disorders: embracing the complexity. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4:268. [PMID: 25469310 PMCID: PMC4245484 DOI: 10.7916/d84j0cdq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022]
Abstract
In Response to: Giorelli M, Losignore NA, Bagnoli J, et al. The progression of posterior cortical atrophy to corticobasal syndrome: Lumping or splitting neurodegenerative diseases? Tremor Other Hyperkinet Mov. 2014; 4. doi: 10.7916/D81G0JCQ.
Collapse
Affiliation(s)
- Edward D Huey
- Departments of Psychiatry and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
99
|
Wiegman AF, Meier IB, Provenzano FA, Schupf N, Manly JJ, Stern Y, Luchsinger JA, Brickman AM. Regional white matter hyperintensity volume and cognition predict death in a multiethnic community cohort of older adults. J Am Geriatr Soc 2013; 61:2246-2248. [PMID: 24329833 PMCID: PMC3874729 DOI: 10.1111/jgs.12568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anne F Wiegman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Irene B Meier
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Frank A Provenzano
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
| | - José A Luchsinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|