51
|
Li J, Zhang X, Liu Q, Yang M, Zhou Z, Ye Y, Zhou Z, He X, Wang L. Myeloid-derived suppressor cells accumulate among myeloid cells contributing to tumor growth in matrix metalloproteinase 12 knockout mice. Cell Immunol 2017; 327:1-12. [PMID: 29555056 DOI: 10.1016/j.cellimm.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are found frequently in patients and mice bearing tumors, which derived from immature myeloid cells. In healthy individuals, immature myeloid cells formed in the bone marrow differentiating to dendritic cells, macrophages and neutrophils. However, it is unclear whether some gene deficiency will lead to MDSCs accumulation in mice without bearing tumor. Here, we observed that MDSCs accumulated in the bone marrow of matrix metalloproteinase 12 knockout mice (MMP12-/- mice) compared with wild type mice (MMP12+/+ mice). And the number of CD4+ cells dramatically decreased, regulatory T cells was up-regulation and MDSCs function were determined. The results suggested that immune surveillance have been impaired in MMP12-/- transgenic mice. After intravenous administration of B16 murine melanoma cells, MMP12-/- mice developed more metastatic pulmonary nodules than MMP12+/+ mice. Meanwhile, more MDSCs appeared in the tumors of MMP12-/- mice compared with those of MMP12+/+ mice. Mechanistically, we performed a MDSC blocking assay, finding that blockade of MDSCs resulted in reducing growth of tumors in MMP12-/- mice. Furthermore, we ascertained that macrophages in MMP12-/- mice abundantly secrete IL-1β in bone marrow which induce the accumulation of MDSCs in the bone marrow. Together, these results demonstrated that the macrophages in MMP12-/- mice could crosstalk with myeloid cells through IL-1β, inducing MDSCs accumulation, then contributing to tumor growth. It has revealed that the critical roles of macrophage in myeloid cells differentiation.
Collapse
Affiliation(s)
- Jiangchao Li
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaohan Zhang
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qing Liu
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Yang
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zijun Zhou
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuxiang Ye
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zeqi Zhou
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaodong He
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
52
|
Owen KL, Parker BS. Beyond the vicious cycle: The role of innate osteoimmunity, automimicry and tumor-inherent changes in dictating bone metastasis. Mol Immunol 2017; 110:57-68. [PMID: 29191489 DOI: 10.1016/j.molimm.2017.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
Bone metastasis is a fatal consequence of a subset of solid malignancies that fail to respond to conventional therapies. While a myriad of factors contribute to osteotropism and disseminated cell survival and outgrowth in bone, efforts to inhibit tumor cell growth in the bone-metastatic niche have largely relied on measures that disrupt the bi-directional interactions between bone resident and tumor cells. However, the targeting of isolated stromal interactions has proven ineffective to date in inhibiting bone-metastatic progression and patient mortality. Osteoimmune regulation is now emerging as a critical determinant of metastatic growth in the bone microenvironment. While this has highlighted the importance of innate immune populations in dictating the temporal development of overt bone metastases, the osteoimmunological processes that underpin tumor cell progression in bone remain severely underexplored. Along with tumor-intrinsic alterations that occur specifically within the bone microenvironment, innate osteoimmunological crosstalk poses an exciting area of future discovery and therapeutic development. Here we review current knowledge of the unique exchange that occurs between bone resident cells, innate immune populations and tumor cells that leads to the establishment of a tumor-permissive milieu.
Collapse
Affiliation(s)
- Katie L Owen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Belinda S Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
53
|
Liu Q, Zhu H, Liu Y, Musetti S, Huang L. BRAF peptide vaccine facilitates therapy of murine BRAF-mutant melanoma. Cancer Immunol Immunother 2017; 67:299-310. [PMID: 29094184 DOI: 10.1007/s00262-017-2079-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Approximately, 50% of human melanomas are driven by BRAF mutations, which produce tumors that are highly immunosuppressive and often resistant to vaccine therapy. We introduced lipid-coated calcium phosphate nanoparticles (LCP NPs) as a carrier to efficiently deliver a tumor-specific antigen, the BRAFV600E peptide, to drive dendritic cell (DC) maturation and antigen presentation in C57BL6 mice. The BRAF peptide vaccine elicited a robust, antigen-specific cytotoxic T cell response and potent tumor growth inhibition in a murine BRAF-mutant melanoma model. Advanced BRAF-specific immune response was illustrated by IFN-γ production assay and cytotoxic T lymphocyte (CTL) assay. Remodeling of immunosuppressive modules within the tumor microenvironment further facilitated CTL infiltration. Thus, using LCP NPs to deliver the BRAF peptide vaccine is a promising strategy for the BRAF-mutant melanoma therapy.
Collapse
Affiliation(s)
- Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 1315 Kerr Hall, Campus Box 7571, Chapel Hill, NC, 27599, USA
| | - Hongda Zhu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 1315 Kerr Hall, Campus Box 7571, Chapel Hill, NC, 27599, USA.,School of Food and Biology Engineering, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 1315 Kerr Hall, Campus Box 7571, Chapel Hill, NC, 27599, USA
| | - Sara Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 1315 Kerr Hall, Campus Box 7571, Chapel Hill, NC, 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 1315 Kerr Hall, Campus Box 7571, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
54
|
Santibanez JF, Bjelica S. Transforming Growth Factor-Beta1 and Myeloid-Derived Suppressor Cells Interplay in Cancer. ACTA ACUST UNITED AC 2017. [DOI: 10.2174/1876401001706010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
Transforming growth factor-beta1 (TGF-β1) is a pleiotropic cytokine with a double role in cancer through its capacity to inhibit early stages of tumors while enhancing tumor progression at late stages of tumor progression. Moreover, TGF-β1 is a potent immunosuppressive cytokine within the tumor microenvironment that allows cancer cells to escape from immune surveillance, which largely contributes to the tumor progression.
Method:
It has been established that the cancer progression is commonly associated with increased number of Myeloid-derived suppressor cells (MDSC) that are a hallmark of cancer and a key mechanism of immune evasion.
Result:
MDSC represent a population of heterogeneous myeloid cells comprised of macrophages, granulocytes and dendritic cells at immature stages of development. MDSC promote tumor progression by regulating immune responses as well as tumor angiogenesis and cancer metastasis.
Conclusion:
In this review, we present an overview of the main key functions of both TGF-β1 and MDSC in cancer and in the immune system. Furthermore, the mutual contribution between TGF-β1 and MDSC in the regulation of immune system and cancer development will be analyzed.
Collapse
|
55
|
Tianyi L, Zhiyuan S. [Role of CCL5/CCR5 in the perineural invasion of salivary adenoid cystic carcinoma cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:479-483. [PMID: 29188641 DOI: 10.7518/hxkq.2017.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed the role of the CCL5/CCR5 axis in the perineural invasion of salivary adenoid cystic carcinoma (SACC) cells. METHODS Immunohistochemical analysis and flow cytometric analysis were conducted to detect the expression of the chemokine receptor CCR5 in SACC cells. Enzyme linked immunosorbent assay (ELISA) was performed to determine the expression of CCL5 in the supernate of human nerve cells. The flow cytometric analysis was applied to observe the changes in F-actin in SACC-LM cells, which were pretreated with CCL5. To assess the effects of the CCL5/CCR5 axis on the migration and invasion of SACC-LM cells, we performed a scratch test and invasion assay under CCL5 stimulation. RESULTS CCR5 was highly expressed in SACC cells. The concentration of CCL5 in the supernatant of human nerve cells was (359.2±15.8), (696.4±22.6) pg·mL⁻¹. The CCL5/CCR5 axis promoted the migration and invasion of SACC-LM cells. CONCLUSIONS The CCL5/CCR5 axis may be involved in the perineural invasion of SACC cells.
Collapse
Affiliation(s)
- Li Tianyi
- Dept. of Pediatric Dentistry, Stomatological Hospital of Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Shen Zhiyuan
- Dept. of Oral and Maxillofacial Surgery, Stomatological Hospital of Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| |
Collapse
|
56
|
Forghani P, Petersen CT, Waller EK. Activation of VIP signaling enhances immunosuppressive effect of MDSCs on CMV-induced adaptive immunity. Oncotarget 2017; 8:81873-81879. [PMID: 29137229 PMCID: PMC5669855 DOI: 10.18632/oncotarget.20704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is recognized as a potent anti-inflammatory factor which affects both the innate and adaptive arms of the immune system. These effects include, but are not limited to, inhibition of T cell proliferation and disruption of immune homeostasis. Myeloid-derived suppressor cells (MDSC) are an immune regulatory cell type that has been described in settings of cancer and infectious disease._Here we demonstrate a reduced circulating monocytic MDSCs in the VIP -/-vs. wild type MCMV. VIP-/- MDSCs secretes less NO upon stimulation with LPS and interferon that relatively lose the ability to suppress T cells activation in vitro compared to wild type MDSCs._Considering the importance of VIP in immunomodulation, the possible effect of VIP in the suppressive function of MDSC populations following CMV infection remains unknown. We describe the possible role of VIP in the regulation of anti-CMV activity of T cells through the activation of MDSCs.
Collapse
Affiliation(s)
- Parvin Forghani
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christopher T Petersen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
57
|
Salem ML, Zidan AAA, Attia M, El-Naggar RE, Nassef M, Abou El-Azm AR, El-Bate H, Yussif M, Galal S, Abo Senna M, El Demellawy M. IFN-α-based treatment of patients with chronic HCV show increased levels of cells with myeloid-derived suppressor cell phenotype and of IDO and NOS. Immunopharmacol Immunotoxicol 2017; 39:188-198. [PMID: 28472907 DOI: 10.1080/08923973.2017.1320670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatitis C virus (HCV) infection causes chronic hepatitis, which is often associated with suppressed anti-HCV immune responses. We have recently reported accumulation of myeloid-derived suppressor cells (MDSCs) and suppressed immunity in cancer patients. AIM The main aim of this study was to determine whether chronic HCV patients harbor high of MDSCs in general and in nonresponders to IFN-based therapy in particular as well as to analyze the immune suppressive molecules. METHODS Peripheral blood samples withdrawn from 154 patients with chronic HCV infection and were categorized into responders and nonresponders based on viral titer upon IFN-α treatment. RESULTS The relative and absolute numbers of MDSCs defined as Lin-/HLA-DR-/CD33+/CD11b+ increased in all HCV patients, where they were higher in nonresponders than in responders. Additionally, the levels of MDSCs after 4-6 months of treatment in responders were lower than during the course of treatment. The responders also showed higher levels of IL-2 coincided with increased numbers of dendritic cells (DCs), CD4+ and CD8+ T cells. The levels of total NOS and IDO were also higher in nonresponders as compared to responders and healthy controls, while the expression levels of CD3ζ was lower in responders as compared to nonresponders and healthy volunteers. CONCLUSION Chronic HCV patients harbor high numbers of MDSCs, which are higher in nonresponders than in responders. The higher numbers of MDSCs associated with increases in the suppressing factors.
Collapse
Affiliation(s)
- Mohamed Labib Salem
- a Zoology Department, Immunology and Biotechnology Unit, Faculty of Science , Tanta University , Tanta , Egypt
| | - Abdel-Aziz A Zidan
- b Zoology Department, Faculty of Science , Damanhour University , Damanhour , Egypt
| | - Mohamed Attia
- c Department of Clinical Pathology, Faculty of Medicine , Tanta University , Tanta , Egypt
| | - Randa E El-Naggar
- a Zoology Department, Immunology and Biotechnology Unit, Faculty of Science , Tanta University , Tanta , Egypt
| | - Mohamed Nassef
- a Zoology Department, Immunology and Biotechnology Unit, Faculty of Science , Tanta University , Tanta , Egypt
| | - Abdel Raouf Abou El-Azm
- d Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine , Tanta University , Tanta , Egypt
| | - Hasan El-Bate
- e Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine , Kafrelshheikh University , Kafr Elshheikh , Egypt
| | - Mohamed Yussif
- d Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine , Tanta University , Tanta , Egypt
| | - Sohaila Galal
- a Zoology Department, Immunology and Biotechnology Unit, Faculty of Science , Tanta University , Tanta , Egypt
| | - Mohamed Abo Senna
- a Zoology Department, Immunology and Biotechnology Unit, Faculty of Science , Tanta University , Tanta , Egypt
| | - Maha El Demellawy
- f City of Scientific Research and Technological Applications , Pharmaceutical and Fermentation Industries Development Center , New Burg El Arab , Egypt
| |
Collapse
|
58
|
Skelton RA, Javed A, Zheng L, He J. Overcoming the resistance of pancreatic cancer to immune checkpoint inhibitors. J Surg Oncol 2017. [PMID: 28628715 DOI: 10.1002/jso.24642] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunotherapy has become a new modality of cancer treatment, but has had a limited success in treating PDAC. A combination approach to immunotherapy, using both immune checkpoint inhibitors and immune activating agonists, is needed, as PDAC does not respond to single-agent checkpoint inhibitors. Studies have also supported using vaccine-based therapies to prime the tumor microenvironment of PDAC with effector T-cells. Other therapeutic strategies including epigenetic agents, stroma modulators, radiotherapy, and T-cell transfer therapies may also prime the tumor microenvironment to overcome resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Richard A Skelton
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ammar Javed
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jin He
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
59
|
Rausch J, Lopez PA, Bialojan A, Denny M, Langguth P, Probst HC, Schild H, Radsak MP. Combined immunotherapy: CTLA-4 blockade potentiates anti-tumor response induced by transcutaneous immunization. J Dermatol Sci 2017; 87:300-306. [PMID: 28666747 DOI: 10.1016/j.jdermsci.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/14/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The epidermal application of the Toll Like Receptor 7 agonist imiquimod and a T-cell peptide epitope (transcutaneous immunization, TCI) mediates systemic peptide-specific cytotoxic T-cell (CTL) responses and leads to tumor protection in a prophylactic tumor setting. However, it does not accomplish memory formation or permanent defiance of tumors in a therapeutic set-up. As a distinct immunologic approach, CTLA-4 blockade augments systemic immune responses and has shown long-lasting effects in preclinical experiments as well as in clinical trials. OBJECTIVE The study investigates the vaccination capacity of TCI in combination with the checkpoint inhibitor CTLA-4 in matters of primary response, memory formation and tumor protection and characterizes the role of regulatory T cells (Tregs). METHODS After performing TCI with IMI-Sol (containing 5% Imiquimod) and the model epitope SIINFEKL, 6-8 week old C57BL/6 mice received anti-CTLA-4 antibody either s.c or i.p. The CTL responses and frequency of peptide specific CD8+ T-cells were then evaluated on day 8. To determine anti-tumor effects, a therapeutic tumor challenge with B16 OVA melanoma was performed. RESULTS The combination of s.c. anti-CTLA-4 antibody and TCI leads to an enhanced systemic cytotoxic response, to memory formation and allows significantly improved survival in a tumor setting with B16 OVA melanoma. Towards the mechanism, we show that in this vaccination protocol the CTLA-4 antibody acts mainly Treg-independent. CONCLUSION We demonstrate that the combination of TCI with IMI-Sol and anti-CTLA-4 can confer potent immune responses and tumor-protection. These results might contribute to the development of advanced vaccination approaches targeting tumors or persistent infectious diseases.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Aminoquinolines/pharmacology
- Aminoquinolines/therapeutic use
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- Drug Synergism
- Flow Cytometry
- Humans
- Imiquimod
- Immunologic Memory/drug effects
- Immunotherapy/methods
- Melanoma, Experimental/immunology
- Melanoma, Experimental/mortality
- Melanoma, Experimental/therapy
- Membrane Glycoproteins/antagonists & inhibitors
- Mice
- Mice, Inbred C57BL
- Ovalbumin/pharmacology
- Ovalbumin/therapeutic use
- Peptide Fragments/pharmacology
- Peptide Fragments/therapeutic use
- Skin Neoplasms/immunology
- Skin Neoplasms/mortality
- Skin Neoplasms/therapy
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Toll-Like Receptor 7/antagonists & inhibitors
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Johanna Rausch
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Pamela Aranda Lopez
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ariane Bialojan
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Mark Denny
- Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Peter Langguth
- Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Hans Christian Probst
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus P Radsak
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
60
|
Gaspar TB, Henriques J, Marconato L, Queiroga FL. The use of low-dose metronomic chemotherapy in dogs-insight into a modern cancer field. Vet Comp Oncol 2017; 16:2-11. [PMID: 28317239 DOI: 10.1111/vco.12309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 02/03/2017] [Accepted: 02/11/2017] [Indexed: 12/22/2022]
Abstract
The era of chemotherapy, which started in the middle of the last century, has been ruled by the routine use of dose-intense protocols, based on the "maximum-tolerated dose" concept. By promoting a balance between patient's quality of life and the goal of rapidly killing as many tumour cells as possible, these protocols still play a prominent role in veterinary oncology. However, with the opening of a new millennium, metronomic chemotherapy (MC) started to be considered a possible alternative to traditional dose-intense chemotherapy. Characterized by a long-term daily administration of lower doses of cytotoxic drugs, this new modality stands out for its unique combination of effects, namely on neovascularization, immune response and tumour dormancy. This article reviews the rationale for treatment with MC, its mechanism of action and the main studies conducted in veterinary medicine, and discusses the key challenges yet to be solved.
Collapse
Affiliation(s)
- T B Gaspar
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Hospital Veterinário Berna, Lisboa, Portugal
| | - J Henriques
- Hospital Veterinário Berna, Lisboa, Portugal
| | - L Marconato
- Centro Oncologico Veterinario, Bologna, Italy
| | - F L Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Porto, Portugal.,Center for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
61
|
Zhang H, He G, Kong Y, Chen Y, Wang B, Sun X, Jia B, Xie X, Wang X, Chen D, Wei L, Zhang M, Zeng H, Chen H. Tumour-activated liver stromal cells regulate myeloid-derived suppressor cells accumulation in the liver. Clin Exp Immunol 2017; 188:96-108. [PMID: 28019655 DOI: 10.1111/cei.12917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Regulating mechanisms underlying hepatic myeloid-derived suppressor cell (MDSC) accumulation remain to be described. Here, we provide evidence for the involvement of tumour-activated liver stromal cells in the process of hepatic MDSCs migration and accumulation. Our data showed an elevated frequency of MDSCs in the liver of tumour-bearing mice. Moreover, tumour-activated liver stromal cells promote MDSC migration into the liver site. Further investigation indicated higher levels of cytokine and chemokine expression in liver stromal cells after exposure to the tumour-conditioned supernatant. Notably, the expression levels of proinflammatory factors, mainly including macrophage colony stimulating factor (M-CSF), transforming growth factor-β (TGF-β), monocyte chemotactic protein-1 (MCP-1) and stromal-derived factor-1 (SDF-1), increased after treatment with tumour-conditioned supernatant, and blockade of MCP-1 or SDF-1 decreased the proportion of tumour infiltrated MDSCs in mice co-transplanted with liver stromal cells and tumour cells, but not in mice with only tumour cells injection. These findings demonstrate that tumour-activated liver stromal cells produce higher levels of chemokines and cytokines, which may contribute to MDSC accumulation into the liver site in patients with liver cancer.
Collapse
Affiliation(s)
- H Zhang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China.,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - G He
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Y Kong
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Y Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - B Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - X Sun
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - B Jia
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - X Xie
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - X Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - D Chen
- Institute of Immunology, Tsinghua University School of Medicine, Beijing, China
| | - L Wei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - M Zhang
- Institute of Immunology, Tsinghua University School of Medicine, Beijing, China
| | - H Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - H Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| |
Collapse
|
62
|
Harper A, Blackwood L. Toxicity of metronomic cyclophosphamide chemotherapy in a UK population of cancer-bearing dogs: a retrospective study. J Small Anim Pract 2017; 58:227-230. [DOI: 10.1111/jsap.12635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/20/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022]
Affiliation(s)
- A. Harper
- Institute of Veterinary Sciences; University of Liverpool; Liverpool Wirral CH64 7TE UK
| | - L. Blackwood
- Institute of Veterinary Sciences; University of Liverpool; Liverpool Wirral CH64 7TE UK
| |
Collapse
|
63
|
Rajappa P, Cobb WS, Vartanian E, Huang Y, Daly L, Hoffman C, Zhang J, Shen B, Yanowitch R, Garg K, Cisse B, Haddock S, Huse J, Pisapia DJ, Chan TA, Lyden DC, Bromberg JF, Greenfield JP. Malignant Astrocytic Tumor Progression Potentiated by JAK-mediated Recruitment of Myeloid Cells. Clin Cancer Res 2016; 23:3109-3119. [PMID: 28039266 DOI: 10.1158/1078-0432.ccr-16-1508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022]
Abstract
Purpose: While the tumor microenvironment has been known to play an integral role in tumor progression, the function of nonresident bone marrow-derived cells (BMDC) remains to be determined in neurologic tumors. Here we identified the contribution of BMDC recruitment in mediating malignant transformation from low- to high-grade gliomas.Experimental Design: We analyzed human blood and tumor samples from patients with low- and high-grade gliomas. A spontaneous platelet-derived growth factor (PDGF) murine glioma model (RCAS) was utilized to recapitulate human disease progression. Levels of CD11b+/GR1+ BMDCs were analyzed at discrete stages of tumor progression. Using bone marrow transplantation, we determined the unique influence of BMDCs in the transition from low- to high-grade glioma. The functional role of these BMDCs was then examined using a JAK 1/2 inhibitor (AZD1480).Results: CD11b+ myeloid cells were significantly increased during tumor progression in peripheral blood and tumors of glioma patients. Increases in CD11b+/GR1+ cells were observed in murine peripheral blood, bone marrow, and tumors during low-grade to high-grade transformation. Transient blockade of CD11b+ cell expansion using a JAK 1/2 Inhibitor (AZD1480) impaired mobilization of these cells and was associated with a reduction in tumor volume, maintenance of a low-grade tumor phenotype, and prolongation in survival.Conclusions: We demonstrate that impaired recruitment of CD11b+ myeloid cells with a JAK1/2 inhibitor inhibits glioma progression in vivo and prolongs survival in a murine glioma model. Clin Cancer Res; 23(12); 3109-19. ©2016 AACR.
Collapse
Affiliation(s)
- Prajwal Rajappa
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - William S Cobb
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Emma Vartanian
- Weill Medical College of Cornell University, New York, New York
| | - Yujie Huang
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Laura Daly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Caitlin Hoffman
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Jane Zhang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Beiyi Shen
- Weill Medical College of Cornell University, New York, New York
| | - Rachel Yanowitch
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Kunal Garg
- Weill Medical College of Cornell University, New York, New York
| | - Babacar Cisse
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Sara Haddock
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Huse
- Department of Pathology and, Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David J Pisapia
- Weill Cornell Medical College, Department of Pathology, Division of Neuropathology, New York, New York
| | - Timothy A Chan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David C Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Jacqueline F Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Weill Cornell Medical College, New York, New York
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
64
|
Wang Z, Yin N, Zhang Z, Zhang Y, Zhang G, Chen W. Upregulation of T-cell Immunoglobulin and Mucin-Domain Containing-3 (Tim-3) in Monocytes/Macrophages Associates with Gastric Cancer Progression. Immunol Invest 2016; 46:134-148. [PMID: 27911104 DOI: 10.1080/08820139.2016.1229790] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) is an important immune regulatory molecule in cancer immune system. However, expression and function of Tim-3 in monocytes/macrophages in cancer progression mainly remain unclear. In this study, we analyzed Tim-3 levels in peripheral blood mononuclear cells (PBMCs) from 62 gastric cancer patients and 45 healthy controls using flow cytometry and then associated Tim-3 levels with clinical pathological data from patients. We found Tim-3 level was significantly upregulated in monocytes from gastric cancer patients compared with those from healthy controls, and that upregulated Tim-3 levels associated with depth of tumor invasion and tumor lymph node metastasis and advanced clinical stages of gastric cancer patients. Furthermore, tumor-bearing mouse experiments revealed that Tim-3 level on monocytes/macrophages associated with xenograft formation and growth. In addition, culture of monocytes from healthy controls with gastric cancer cell-conditioned medium upregulated Tim-3 expression, but IL-10, TNF-α, IFN-γ, or GM-CSF treatment or T-bet, Eomes, and T-bet/Eomes double gene knockout did not affect Tim-3 levels in blood monocytes/macrophages from human or mouse, respectively. Gal-9/Tim-3 signal was able to significantly stimulate monocyte to secrete IL-6, IL-8, and IL-10, but not IL-1β, IL-12p70, or TNF-α in presence of LPS. In conclusion, our study demonstrated that Tim-3 expressed by monocyte/macrophages might be an important mechanism in gastric cancer progression.
Collapse
Affiliation(s)
- Zhenxin Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Soochow University , Suzhou , China.,b Department of Medical Oncology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Ni Yin
- b Department of Medical Oncology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Zixiang Zhang
- c Department of General Surgery , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Yi Zhang
- c Department of General Surgery , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Guangbo Zhang
- d Clinical Immunology of Jiangsu Province , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Weichang Chen
- a Department of Gastroenterology , The First Affiliated Hospital of Soochow University , Suzhou , China.,d Clinical Immunology of Jiangsu Province , The First Affiliated Hospital of Soochow University , Suzhou , China
| |
Collapse
|
65
|
Siegler EL, Kim YJ, Wang P. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jocit.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
66
|
Nam S, Kang K, Cha JS, Kim JW, Lee HG, Kim Y, Yang Y, Lee MS, Lim JS. Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J Leukoc Biol 2016; 100:1273-1284. [DOI: 10.1189/jlb.1a0215-068rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 02/02/2023] Open
|
67
|
Heeren AM, de Boer E, Bleeker MCG, Musters RJP, Buist MR, Kenter GG, de Gruijl TD, Jordanova ES. Nodal metastasis in cervical cancer occurs in clearly delineated fields of immune suppression in the pelvic lymph catchment area. Oncotarget 2016; 6:32484-93. [PMID: 26431490 PMCID: PMC4741707 DOI: 10.18632/oncotarget.5398] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 01/10/2023] Open
Abstract
In cervical cancer, high frequencies of regulatory T cells (Tregs) and immunosuppressive PD-L1+CD14+ antigen-presenting cells dominate the microenvironment of tumor-positive lymph nodes (LN+). It is unknown whether this is restricted to LN+ or precedes metastasis, emanating from the primary tumor and spreading through tumor-draining lymph nodes (TDLNs). To investigate immunosuppression in the lymphatic basin of cervical tumors, all dissected TDLNs of five cervical cancer patients (in total 9 LN+ and 74 tumor-negative lymph nodes (LN−)) were analyzed for FoxP3+ Tregs, CD8+ T cells, HLA-DR+- and PD-L1+ myeloid cells by immunohistochemistry. Tregs and PD-L1+ cells were found to form an immunosuppressive cordon around metastatic tumor cells. Importantly, whereas high HLA-DR+- and PD-L1+ cell rates were strongly associated with LN+, elevated Treg levels and decreased CD8+ T cell/Treg ratios were found similar in LN+ and adjacent LN−, as compared to LN− at more distant anatomical localizations. These data suggest that delineated fields of Treg-associated immune suppression in anatomically co-localized TDLNs enable metastasis by creating metastatic niches. This may be of importance for decision-making regarding (surgical) intervention in cervical cancer. Future efforts should include the implementation of immunotherapeutic regimens to overcome this immune suppression, establish loco-regional control and halt systemic tumor spread.
Collapse
Affiliation(s)
- A Marijne Heeren
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.,Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eline de Boer
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Maaike C G Bleeker
- Department of Pathology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - René J P Musters
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, 1081 BT Amsterdam, The Netherlands
| | - Marrije R Buist
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Gemma G Kenter
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.,Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.,Center Gynecological Oncology Amsterdam (CGOA), Department of Gynecology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, 1006 BE Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ekaterina S Jordanova
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
68
|
Hong HJ, Lim HX, Song JH, Lee A, Kim E, Cho D, Cohen EP, Kim TS. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 suppresses tumor growth in breast cancer-bearing mice by negatively regulating myeloid-derived suppressor cell functions. Cancer Immunol Immunother 2016; 65:61-72. [PMID: 26613952 PMCID: PMC11029743 DOI: 10.1007/s00262-015-1777-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/18/2015] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the most important cell types that contribute to negative regulation of immune responses in the tumor microenvironment. Recently, aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1), a novel pleiotropic cytokine, was identified as an antitumor protein that inhibits angiogenesis and induces antitumor responses. However, the effect of AIMP1 on MDSCs in the tumor environment remains unclear. In the present study, we demonstrated that AIMP1 significantly inhibited tumor growth in 4T1 breast cancer-bearing mice and reduced MDSCs population of tumor sites and spleens of tumor-bearing mice. AIMP1 reduced expansion of MDSCs from bone marrow-derived cells in the tumor-conditioned media. AIMP1 also negatively regulated suppressive activities of MDSCs by inhibiting IL-6 and NO production, and Arg-1 expression. Furthermore, treatment of breast cancer-bearing mice with AIMP1 decreased the capacity of MDSCs to suppress T cell proliferation and Treg cell induction. Western blot and inhibition experiments showed that downregulation of MDSCs functions by AIMP1 may result from attenuated activation of STATs, Akt, and ERK. These findings indicate that AIMP1 plays an essential role in negative regulation of suppressive functions of MDSCs. Therefore, it has a significant potential as a therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Hye-Jin Hong
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Room 607, Hana Science Building, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Hui Xuan Lim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Room 607, Hana Science Building, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Ju Han Song
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Room 607, Hana Science Building, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Arim Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Room 607, Hana Science Building, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Eugene Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Room 607, Hana Science Building, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Daeho Cho
- Division of Life Science, Sookmyung Women's University, Seoul, 140-742, Republic of Korea
| | - Edward P Cohen
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Tae Sung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Room 607, Hana Science Building, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
69
|
Zou Q, Jin J, Xiao Y, Zhou X, Hu H, Cheng X, Kazimi N, Ullrich SE, Sun SC. T Cell Intrinsic USP15 Deficiency Promotes Excessive IFN-γ Production and an Immunosuppressive Tumor Microenvironment in MCA-Induced Fibrosarcoma. Cell Rep 2015; 13:2470-2479. [PMID: 26686633 PMCID: PMC4691552 DOI: 10.1016/j.celrep.2015.11.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/06/2015] [Accepted: 11/15/2015] [Indexed: 02/05/2023] Open
Abstract
USP15 is a deubiquitinase that negatively regulates activation of naive CD4(+) T cells and generation of IFN-γ-producing T helper 1 (Th1) cells. USP15 deficiency in mice promotes antitumor T cell responses in a transplantable cancer model; however, it has remained unclear how deregulated T cell activation impacts primary tumor development during the prolonged interplay between tumors and the immune system. Here, we find that the USP15-deficient mice are hypersensitive to methylcholantrene (MCA)-induced fibrosarcomas. Excessive IFN-γ production in USP15-deficient mice promotes expression of the immunosuppressive molecule PD-L1 and the chemokine CXCL12, causing accumulation of T-bet(+) regulatory T cells and CD11b(+)Gr-1(+) myeloid-derived suppressor cells at tumor site. Mixed bone marrow adoptive transfer studies further reveals a T cell-intrinsic role for USP15 in regulating IFN-γ production and tumor development. These findings suggest that T cell intrinsic USP15 deficiency causes excessive production of IFN-γ, which promotes an immunosuppressive tumor microenvironment during MCA-induced primary tumorigenesis.
Collapse
Affiliation(s)
- Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China; Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA
| | - Jin Jin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA; Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yichuan Xiao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA; Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA
| | - Hongbo Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA; State Key Laboratory of Biotherapy, West China Hospital, Si-Chuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA
| | - Nasser Kazimi
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA
| | - Stephen E Ullrich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
70
|
Shi G, Wang H, Zhuang X. Myeloid-derived suppressor cells enhance the expression of melanoma-associated antigen A4 in a Lewis lung cancer murine model. Oncol Lett 2015; 11:809-816. [PMID: 26870289 DOI: 10.3892/ol.2015.3918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 06/03/2015] [Indexed: 01/03/2023] Open
Abstract
The cancer-testis (CT) family of antigens are expressed in multiple types of malignant neoplasm and are silent in normal tissues, apart from the testis. Immunotherapy targeting CT antigens is a promising therapeutic strategy for treatment of solid tumors. One member of this family, melanoma-associated antigen A4 (MAGE-A4), has been demonstrated to be expressed in melanomas and lung cancer. Patients with tumors expressing the MAGE-A4 antigen exhibit specific cellular and humoral immune responses to the antigen, resulting in a favorable prognosis. Conversely, the expression of MAGE-A4 is associated with poor survival in lung cancer. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immunosuppressive cells, which are upregulated in the cancer microenvironment. Little is known regarding any potential correlation between the expression of MAGE-A4 antigens and the accumulation of MDSCs. The present study aimed to examine the association between circulating MDSC levels and MAGE-A4 expression in a mouse model of Lewis lung cancer. The expression of MAGE-A4 in tumor cells or tissues was evaluated using western blotting, while the percentage of MDSCs (CD11b+Gr-1+) in the blood was detected by flow cytometry. In addition, the suppressive capacity of MDSCs and the effectiveness of MDSC depletion were assessed in C57BL/6 tumor-bearing mice. MDSCs were demonstrated to upregulate MAGE-A4 expression via the phosphosphorylated-signal transducer and activator of transcription 3705 pathway, while depletion of MDSCs decreased the tumor growth rate, prolonged median survival and enhanced the recognition of MAGE-A4 by CD8+ T cells. These findings indicated that immunotherapeutic strategies involving induction of cytotoxic T lymphocytes that target MAGE-A4, in combination with MDSC depletion, may be an effective approach to immunotherapy for cancer types with high expression of MAGE-A4.
Collapse
Affiliation(s)
- Guilan Shi
- Department of Immunology, Zibo Vocational Institute, Zibo, Shandong 255314, P.R. China
| | - Huiru Wang
- Department of Immunology, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Xiufen Zhuang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| |
Collapse
|
71
|
Targeting IL4/IL4R for the treatment of epithelial cancer metastasis. Clin Exp Metastasis 2015; 32:847-56. [PMID: 26385103 DOI: 10.1007/s10585-015-9747-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022]
Abstract
While progress has been made in treating primary epithelial tumors, metastatic tumors remain largely incurable and still account for 85-90 % of all cancer-related deaths. Interleukin-4 (IL4), a Th2 cytokine, and the IL4/IL4 receptor (IL4R) interaction have well defined roles in the immune system. Yet, IL4 receptors are over-expressed by many epithelial cancers and could be a promising target for metastatic tumor therapy. The IL4/IL4R signaling axis is a strong promoter of pro-metastatic phenotypes in epithelial cancer cells including enhanced migration, invasion, survival, and proliferation. The promotion of breast cancer growth specifically is also supported in part by IL4-induced glutamine metabolism, and we have shown that IL4 is also capable of inducing glucose metabolism in breast cancer cells. Importantly, there are several types of FDA approved medications for use in asthma patients that inhibit the IL4/IL4R signaling axis. However, these approved medications inhibit both the type I IL4 receptor found on immune cells, and the type II IL4 receptor that is predominantly expressed by some non-hematopoietic cells including epithelial cancer cells. This article reviews existing therapies targeting IL4, IL4R, or IL4/IL4R signaling, and recent findings guiding the creation of novel therapies that specifically inhibit the type II IL4R, while taking into consideration effects on immune cells within the tumor microenvironment. Some of these therapies are currently in clinical trials for cancer patients, and may be exploitable for the treatment of metastatic disease.
Collapse
|
72
|
Lu JQ, Adam B, Jack AS, Lam A, Broad RW, Chik CL. Immune Cell Infiltrates in Pituitary Adenomas: More Macrophages in Larger Adenomas and More T Cells in Growth Hormone Adenomas. Endocr Pathol 2015; 26:263-72. [PMID: 26187094 DOI: 10.1007/s12022-015-9383-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumor immune microenvironment has been gradually recognized as a key contributor to tumor development, progression, and control. Immune cell infiltrates in brain tumors have been increasingly studied, but few have published on immune cell infiltrates in pituitary adenomas. We quantitatively assessed the infiltration of macrophages and lymphocytes in 35 pituitary adenomas, including 9 densely granulated growth hormone (DG-GH), 9 sparsely granulated growth hormone (SG-GH), 9 null cell (NC), and 8 adrenocorticotropic hormone (ACTH) adenomas. All the adenomas showed varying degrees of CD68+ macrophage infiltration. While SG-GH adenomas were significantly larger in size than DG-GH and ACTH adenomas, the infiltration of CD68+ macrophages was significantly greater in SG-GH than in DG-GH and ACTH adenomas. Similarly, NC adenomas that were significantly larger than DG-GH and ACTH adenomas had significantly greater infiltration of CD68+ macrophages than DG-GH and ACTH adenomas. The numbers of CD68+ macrophages were positively correlated with the tumor sizes and Knosp classification grades for tumor invasiveness. The infiltration of CD4+ and CD8+ T cells was relatively scant in these adenomas, but GH adenomas exhibited significantly more CD4+ and CD8+ T cells than non-GH adenomas. Both DG-GH and SG-GH adenomas had significantly more CD4+ cells than ACTH adenomas and significantly more CD8+ cells than NC adenomas. These results suggest an association of CD68+ macrophage infiltration with an increase in the pituitary adenoma size and invasiveness. Our observation contributes to understanding the growth environment of pituitary adenomas, for which adjuvant immunotherapy may help to constrain the tumor enlargement and invasiveness.
Collapse
Affiliation(s)
- Jian-Qiang Lu
- Department of Laboratory Medicine and Pathology, University of Alberta, 8440-112 Street, T6G 2B7, Edmonton, Alberta, Canada,
| | | | | | | | | | | |
Collapse
|
73
|
Huang X, Guan D, Shu YQ, Liu LK, Ni F. Effect of Cisplatin on the Frequency and Immuno-inhibitory Function of Myeloid-derived Suppressor Cells in A375 Melanoma Model. Asian Pac J Cancer Prev 2015; 16:4329-33. [DOI: 10.7314/apjcp.2015.16.10.4329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
74
|
Nasser MW, Elbaz M, Ahirwar DK, Ganju RK. Conditioning solid tumor microenvironment through inflammatory chemokines and S100 family proteins. Cancer Lett 2015; 365:11-22. [PMID: 25963887 DOI: 10.1016/j.canlet.2015.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/13/2022]
Abstract
Recently, there has been growing attention to the role of the tumor microenvironment (TME) in cancer growth, metastasis and emergence of chemotherapy resistance. Stromal and tumor cells make up the TME and interact with each other through a complex cross-talk manner. This interaction is facilitated by a variety of growth factors, cytokines, chemokines and S100 proteins. In this review, we focus on chemokines and their cognate receptors in regulating the tumorigenic process. Chemokines are cytokines that have chemotactic potential. Chemokine receptors are expressed on tumor cells and stromal cells. Chemokines and their cognate receptors modulate tumor growth and metastasis in a paracrine and autocrine manner. They play a major role in the modulation of stromal cell recruitment, angiogenic potential, cancer cell proliferation, survival, adhesion, invasion and metastasis to distant sites. In addition, a new class of calcium binding family S100 proteins has been getting attention as they play significant roles in tumor progression and metastasis by modulating TME. Here, we highlight recent developments regarding the inflammatory chemokine/S100 protein systems in the TME. We also focus on how chemokines/S100 proteins, through their role in the TME, modulate cancer cell ability to grow, proliferate, invade and metastasize to different organs. This review highlights the possibility of using the chemokine/chemokine receptor axis as a promising strategy in cancer therapy, the current difficulties in achieving this goal, and how it could be overcome for successful future therapeutic intervention.
Collapse
Affiliation(s)
- Mohd W Nasser
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA.
| | - Mohamad Elbaz
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA
| | - Dinesh K Ahirwar
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA
| |
Collapse
|
75
|
Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 2015; 4:e1016700. [PMID: 26140242 DOI: 10.1080/2162402x.2015.1016700] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 02/08/2023] Open
Abstract
It has become evident that tumor-induced immuno-suppressive factors in the tumor microenvironment play a major role in suppressing normal functions of effector T cells. These factors serve as hurdles that limit the therapeutic potential of cancer immunotherapies. This review focuses on illustrating the molecular mechanisms of immunosuppression in the tumor microenvironment, including evasion of T-cell recognition, interference with T-cell trafficking, metabolism, and functions, induction of resistance to T-cell killing, and apoptosis of T cells. A better understanding of these mechanisms may help in the development of strategies to enhance the effectiveness of cancer immunotherapies.
Collapse
Key Words
- 1MT, 1-methyltryptophan
- COX2, cyclooxygenase-2
- GM-CSF, granulocyte macrophage colony-stimulating factor
- GPI, glycosylphosphatidylinositol
- Gal1, galectin-1
- HDACi, histone deacetylase inhibitor
- HLA, human leukocyte antigen
- IDO, indoleamine-2,3- dioxygenase
- IL-10, interleukin-10
- IMC, immature myeloid cell
- MDSC, myeloid-derived suppressor cells
- MHC, major histocompatibility
- MICA, MHC class I related molecule A
- MICB, MHC class I related molecule B
- NO, nitric oxide
- PARP, poly ADP-ribose polymerase
- PD-1, program death receptor-1
- PD-L1, programmed death ligand 1
- PGE2, prostaglandin E2
- RCAS1, receptor-binding cancer antigen expressed on Siso cells 1
- RCC, renal cell carcinoma
- SOCS, suppressor of cytokine signaling
- STAT3, signal transducer and activator of transcription 3
- SVV, survivin
- T cells
- TCR, T-cell receptor
- TGF-β, transforming growth factor β
- TRAIL, TNF-related apoptosis-inducing ligand
- VCAM-1, vascular cell adhesion molecule-1
- XIAP, X-linked inhibitor of apoptosis protein
- iNOS, inducible nitric-oxide synthase
- immunosuppression
- immunosuppressive factors
- immunotherapy
- tumor microenvironment
Collapse
Affiliation(s)
- Annie A Wu
- Department of Oncology; The Johns Hopkins University School of Medicine ; Baltimore, MD USA
| | - Virginia Drake
- School of Medicine; University of Maryland ; Baltimore, MD USA
| | | | - ShihChi Chiu
- College of Medicine; National Taiwan University ; Taipei, Taiwan
| | - Lei Zheng
- Department of Oncology; The Johns Hopkins University School of Medicine ; Baltimore, MD USA
| |
Collapse
|
76
|
CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A 2015; 112:4725-30. [PMID: 25825750 DOI: 10.1073/pnas.1424795112] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nonresolving chronic inflammation at the neoplastic site is consistently associated with promoting tumor progression and poor patient outcomes. However, many aspects behind the mechanisms that establish this tumor-promoting inflammatory microenvironment remain undefined. Using bladder cancer (BC) as a model, we found that CD14-high cancer cells express higher levels of numerous inflammation mediators and form larger tumors compared with CD14-low cells. CD14 antigen is a glycosyl-phosphatidylinositol (GPI)-linked glycoprotein and has been shown to be critically important in the signaling pathways of Toll-like receptor (TLR). CD14 expression in this BC subpopulation of cancer cells is required for increased cytokine production and increased tumor growth. Furthermore, tumors formed by CD14-high cells are more highly vascularized with higher myeloid cell infiltration. Inflammatory factors produced by CD14-high BC cells recruit and polarize monocytes and macrophages to acquire immune-suppressive characteristics. In contrast, CD14-low BC cells have a higher baseline cell division rate than CD14-high cells. Importantly, CD14-high cells produce factors that further increase the proliferation of CD14-low cells. Collectively, we demonstrate that CD14-high BC cells may orchestrate tumor-promoting inflammation and drive tumor cell proliferation to promote tumor growth.
Collapse
|
77
|
Abstract
The concept of immunosurveillance of cancer has been widely accepted for many years, but only recently have the precise mechanisms of tumor-host immune interactions been revealed. Inflammatory and immune reactions play a role in melanomagenesis, and may contribute to the eradication of tumor as well as potentiating its growth and proliferation. Studies of the role of tumor-immune system interactions are providing insights into the pathogenesis and opportunities for highly effective therapeutic strategies. Some patients, even with advanced disease, are now cured with immunotherapy, and increasing numbers of such cures are likely in future.
Collapse
|
78
|
Reissfelder C, Stamova S, Gossmann C, Braun M, Bonertz A, Walliczek U, Grimm M, Rahbari NN, Koch M, Saadati M, Benner A, Büchler MW, Jäger D, Halama N, Khazaie K, Weitz J, Beckhove P. Tumor-specific cytotoxic T lymphocyte activity determines colorectal cancer patient prognosis. J Clin Invest 2014; 125:739-51. [PMID: 25562322 DOI: 10.1172/jci74894] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 11/13/2014] [Indexed: 12/15/2022] Open
Abstract
The composition of tumor-targeted T cell infiltrates is a major prognostic factor in colorectal cancer (CRC) outcome; however, the functional role of these populations in prolonging patient survival remains unclear. Here, we evaluated 190 patients with CRC for the presence of functionally active tumor-infiltrating lymphocytes (TILs), the tumor specificity of these TILs, and the correlation between patient TILs and long-term survival. Using intracytoplasmic cytokine staining in conjunction with HLA multimers loaded with tumor peptide and antigen-specific cytokine secretion assays, we determined that TNF-α expression delineates a population of tumor antigen-specific (TA-specific) cytotoxic T lymphocytes (CTLs) present within tumors from patients with CRC. Upregulation of TNF-α expression in TILs strongly correlated with an increase in the total amount of intratumoral TNF-α, which is indicative of tumor-specific CTL activity. Moreover, a retrospective multivariate analysis of 102 patients with CRC, which had multiple immune parameters evaluated, revealed that increased TNF-α concentration was an independent prognostic factor. Together, these results indicate that the prognostic impact of T cell infiltrates for CRC maybe largely based on subpopulations of active TA-specific T cells within the tumor, suggesting causal implication for these cells in patient survival. Additionally, these results support the use of intratumoral TNF-α, which is indicative of T cell function, as a prognostic parameter for CRC.
Collapse
|
79
|
Maenhout SK, Thielemans K, Aerts JL. Location, location, location: functional and phenotypic heterogeneity between tumor-infiltrating and non-infiltrating myeloid-derived suppressor cells. Oncoimmunology 2014; 3:e956579. [PMID: 25941577 DOI: 10.4161/21624011.2014.956579] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/16/2014] [Indexed: 12/26/2022] Open
Abstract
An increasing number of studies is focusing on the role of myeloid-derived suppressor cells (MDSCs) in the suppression of antitumor immune responses. Although the main site of action for MDSCs is most likely the tumor microenvironment, the study of these cells has been largely restricted to MDSCs derived from peripheral lymphoid organs. Only in a minority of studies MDSCs isolated from the tumor microenvironment have been characterized. This review will give an overview of the data available on the phenotypical and functional differences between tumor-derived MDSCs and MDSCs isolated from the spleen of tumor-bearing mice or from the peripheral blood of cancer patients.
Collapse
Key Words
- ATRA, all-trans retinoic acid
- Bv8, Bombina variagata peptide 8
- CTLA-4, cytotoxic T-lymphocyte antigen-4
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- IFN-γ, interferon gamma
- IL, interleukin
- IL-4Rα, interleukin-4 receptor alpha
- LPS, lipopolysaccharide
- M-CSF, macrophage-colony stimulating factor
- MAPK, mitogen-activated protein kinases
- MDSCs, myeloid-derived suppressor cells
- NS cells, natural suppressor cells
- PD-L1, programmed death-ligand 1
- PHA, phytohemagglutinin
- ROS, reactive oxygen species
- TAMs, tumor-associated macrophages
- Treg, regulatory T cells
- VEGF, vascular endothelial growth factor.
- iNOS, inducible nitric oxide synthase
- immunosuppression
- myeloid-derived suppressor cells
- siRNA, small interfering ribonucleic acid
- tumor immunology
- tumor microenvironment
- tumor models
Collapse
Affiliation(s)
- Sarah K Maenhout
- Laboratory of Molecular and Cellular Therapy; Department of Immunology-Physiology ; Vrije Universiteit Brussel ; Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy; Department of Immunology-Physiology ; Vrije Universiteit Brussel ; Brussels, Belgium
| | - Joeri L Aerts
- Laboratory of Molecular and Cellular Therapy; Department of Immunology-Physiology ; Vrije Universiteit Brussel ; Brussels, Belgium
| |
Collapse
|
80
|
Sun Y, Pan J, Mao S, Jin J. IL-17/miR-192/IL-17Rs regulatory feedback loop facilitates multiple myeloma progression. PLoS One 2014; 9:e114647. [PMID: 25489847 PMCID: PMC4260882 DOI: 10.1371/journal.pone.0114647] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 11/12/2014] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell disorder which constitutes the second most common hematological malignancy, and remains an incurable tumor with poor survival. Recently, interleukin-17 (IL-17), produced locally in the tumor microenvironment, has been reported to play a crucial role in tumor immunity. In this study, we determined that exposure of MM cells to IL-17 had various promotive influences on different aspects of tumor progression. IL-17 significantly induced cell proliferation, inhibited cellular apoptosis, repressed cell adhesion to fibronectin and collagen I, and facilitated cell migration. Exposure to IL-17 also resulted in epithelial-mesenchymal transition (EMT), as evidenced by repression of the epithelial marker E-cadherin, and induction of the mesenchymal marker Vimentin, and EMT transcription factors Snail and Slug. Further experiments showed that IL-17 activated the oncogenic p65 transcription factor, which directly repressed the miR-192 gene via binding to the miR-192 promoter. Loss of miR-192 in MM cells can mimic the effects of IL-17, and was required for the above oncogenic effects of IL-17 on MM. Furthermore, we found that miR-192, and its homologous miR-215 directly targeted the 3′-untranslated regions of IL-17Rs, including IL-17RA and RE mRNA. By examining bone marrow specimens derived from MM patients, a negative correlation between miR-192 expression and IL-17 or IL-17RA expression was observed. Also, IL-17 was negatively correlated with E-cadherin and positively with Vimentin. Taken together, our study provides evidence that the IL-17/miR-192/IL-17Rs regulatory feedback loop is manifest in MM and might represent a promising and efficient prognostic marker and therapeutic target for MM.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Hematology, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Jing Pan
- Department of Hematology, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Shudan Mao
- Department of Hematology, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Jieping Jin
- Department of Hematology, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
- * E-mail:
| |
Collapse
|
81
|
Platten M, Ochs K, Lemke D, Opitz C, Wick W. Microenvironmental clues for glioma immunotherapy. Curr Neurol Neurosci Rep 2014; 14:440. [PMID: 24604058 DOI: 10.1007/s11910-014-0440-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gliomas have been viewed for decades as inaccessible for a meaningful antitumor immune response as they grow in a sanctuary site protected from infiltrating immune cells. Moreover, the glioma microenvironment constitutes a hostile environment for an efficient antitumor immune response as glioma-derived factors such as transforming growth factor β and catabolites of the essential amino acid tryptophan paralyze T-cell function. There is growing evidence from preclinical and clinical studies that a meaningful antitumor immunity exists in glioma patients and that it can be activated by vaccination strategies. As a consequence, the concept of glioma immunotherapy appears to be experiencing a renaissance with the first phase 3 randomized immunotherapy trials entering the clinical arena. On the basis of encouraging results from other tumor entities using immunostimulatory approaches by blocking endogenous T-cell suppressive pathways mediated by cytotoxic T-lymphocyte antigen 4 or programmed cell death protein 1/programmed cell death protein 1 ligand 1 with humanized antibodies, there is now a realistic and promising option to combine active immunotherapy with agents blocking the immunosuppressive microenvironment in patients with gliomas to allow a peripheral antitumor immune response induced by vaccination to become effective. Here we review the current clinical and preclinical evidence of antimicroenvironment immunotherapeutic strategies in gliomas.
Collapse
Affiliation(s)
- Michael Platten
- Department of Neurooncology, University Hospital Heidelberg and National Center for Tumor Diseases, German Cancer Consortium (DKTK) Clinical Cooperation Units, Im Neuenheimer Feld, Heidelberg, Germany,
| | | | | | | | | |
Collapse
|
82
|
Case-control estimation of the impact of oncolytic adenovirus on the survival of patients with refractory solid tumors. Mol Ther 2014; 23:321-9. [PMID: 25381801 DOI: 10.1038/mt.2014.218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/29/2014] [Indexed: 01/21/2023] Open
Abstract
Oncolytic immunotherapy with cytokine armed replication competent viruses is an emerging approach in cancer treatment. In a recent randomized trial, an increase in response rate was seen but the effect on overall survival is not known with any virus. To facilitate randomized trials, we performed a case-control study assessing the survival of 270 patients treated in an Advanced Therapy Access Program (ATAP), in comparison to matched concurrent controls from the same hospital. The overall survival of all virus treated patients was not increased over controls. However, when analysis was restricted to GMCSF-sensitive tumor types treated with GMSCF-coding viruses, a significant improvement in median survival was present (from 170 to 208 days, P = 0.0012, N = 148). An even larger difference was seen when analysis was restricted to good performance score patients (193 versus 292 days, P = 0.034, N = 90). The survival of ovarian cancer patients was especially promising as median survival nearly quadrupled (P = 0.0003, N = 37). These preliminary data lend support to initiation of randomized clinical trials with GMCSF-coding oncolytic adenoviruses.
Collapse
|
83
|
Heeren AM, Koster BD, Samuels S, Ferns DM, Chondronasiou D, Kenter GG, Jordanova ES, de Gruijl TD. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol Res 2014; 3:48-58. [PMID: 25361854 DOI: 10.1158/2326-6066.cir-14-0149] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A better understanding of the microenvironment in relation to lymph node metastasis is essential for the development of effective immunotherapeutic strategies against cervical cancer. In the present study, we investigated the microenvironment of tumor-draining lymph nodes of patients with cervical cancer by comprehensive flow cytometry-based phenotyping and enumeration of immune-cell subsets in tumor-negative (LN(-), n = 20) versus tumor-positive lymph nodes (LN(+), n = 8), and by the study of cytokine release profiles (n = 4 for both LN(-) and LN(+)). We found significantly lower CD4(+) and higher CD8(+) T-cell frequencies in LN(+) samples, accompanied by increased surface levels of activation markers (HLA-DR; ICOS; PD-1; CTLA-4) and the memory marker CD45RO. Furthermore, in LN(+), we found increased rates of a potentially regulatory antigen-presenting cell (APC) subset (CD11c(hi)CD14(+)PD-L1(+)) and of myeloid-derived suppressor cell subsets; the LN(+) APC subset correlated with significantly elevated frequencies of FoxP3(+) regulatory T cells (Treg). After in vitro stimulation with different Toll-like receptor (TLR) ligands (PGN; Poly-IC; R848), we observed higher production levels of IL6, IL10, and TNFα but lower levels of IFNγ in LN(+) samples. We conclude that, despite increased T-cell differentiation and activation, a switch to a profound immune-suppressive microenvironment in LN(+) of patients with cervical cancer will enable immune escape. Our data indicate that the CD14(+)PD-L1(+) APC/Treg axis is a particularly attractive and relevant therapeutic target to specifically tackle microenvironmental immune suppression and thus enhances the efficacy of immunotherapy in patients with metastasized cervical cancer.
Collapse
Affiliation(s)
- A Marijne Heeren
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands. Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands
| | - Bas D Koster
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sanne Samuels
- Center Gynecological Oncology Amsterdam (CGOA), Department of Gynecology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Debbie M Ferns
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands
| | - Dafni Chondronasiou
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Gemma G Kenter
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands. Center Gynecological Oncology Amsterdam (CGOA), Department of Gynecology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Ekaterina S Jordanova
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
84
|
Velasco-Velázquez M, Xolalpa W, Pestell RG. The potential to target CCL5/CCR5 in breast cancer. Expert Opin Ther Targets 2014; 18:1265-75. [DOI: 10.1517/14728222.2014.949238] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
85
|
Biller B. Metronomic Chemotherapy in Veterinary Patients with Cancer. Vet Clin North Am Small Anim Pract 2014; 44:817-29. [DOI: 10.1016/j.cvsm.2014.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
86
|
Wang J, Yu F, Jia X, Iwanowycz S, Wang Y, Huang S, Ai W, Fan D. MicroRNA-155 deficiency enhances the recruitment and functions of myeloid-derived suppressor cells in tumor microenvironment and promotes solid tumor growth. Int J Cancer 2014; 136:E602-13. [PMID: 25143000 DOI: 10.1002/ijc.29151] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/14/2014] [Accepted: 08/15/2014] [Indexed: 01/13/2023]
Abstract
Immune cells in tumor microenvironment play a prominent role in tumor progression and metastasis. MicroRNA-155 (miR-155) represents an important player in innate and adaptive immunity by regulating differentiation, maturation and activation of macrophages, dendritic cells, B cells and T cells. However, the role of miR-155 expression in immune cells in solid tumor development is less elucidated. Our current study showed that both B16-F10 melanoma and Lewis lung carcinoma tumors grew much faster in bic/miR-155 knockout (miR-155(-/-) ) mice along with an increase of myeloid-derived suppressor cells (MDSCs) accumulation in tumors, compared to that in wild-type mice. Bone marrow transplantation study showed that bone marrow miR-155 deficiency could replicate the above tumor-promoting phenotype. In vitro study demonstrated that tumor-infiltrating miR-155(-/-) MDSCs showed greater migration ability and expressed higher level of multiple chemokines. Furthermore, we found that the level of HIF-1α, a direct target of miR-155, was increased in miR-155 deficient MDSCs, and that the increased HIF-1α upregulated CXCL1, CXCL3 and CXCL8 expression in MDSCs, contributing to the enhanced recruitment of miR-155(-/-) MDSCs to the tumors. Moreover, miR-155(-/-) MDSCs showed enhanced immunosuppressive and pro-angiogenic capacities. Taken together, our study, for the first time, demonstrated that miR-155 deficiency promoted solid tumor growth through increasing the recruitment of MDSCs to tumor microenvironment and enhancing the tumor-promoting functions of the recruited MDSCs. Thus, upregulating miR-155 expression in MDSCs may be developed as a therapeutic approach to halt tumor development.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209; Centre for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Janols H, Bergenfelz C, Allaoui R, Larsson AM, Rydén L, Björnsson S, Janciauskiene S, Wullt M, Bredberg A, Leandersson K. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases. J Leukoc Biol 2014; 96:685-93. [DOI: 10.1189/jlb.5hi0214-074r] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
88
|
Diaz-Montero CM, Finke J, Montero AJ. Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin Oncol 2014; 41:174-84. [PMID: 24787291 DOI: 10.1053/j.seminoncol.2014.02.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immune evasion is a hallmark of cancer. While there are multiple different mechanisms that cancer cells employ, myeloid-derived suppressor cells (MDSCs) are one of the key drivers of tumor-mediated immune evasion. MDSCs begin as myeloid cells recruited to the tumor microenvironment, where they are transformed into potent immunosuppressive cells. However, our understanding of the clinical relevance of MDSCs in cancer patients has significantly lagged behind the preclinical literature in part due to the absence of a cognate molecule present in mice, as well as to the considerable heterogeneity of MDSCs. However, if one evaluates the clinical literature through the filter of clinically robust endpoints, such as overall survival, three important phenotypes emerge: promyelocytic, monocytic, and granulocytic. Based on these studies, MDSCs have clear prognostic importance in multiple solid tumors, and emerging data support the utility of circulating MDSCs as a predictive marker for cancer immunotherapy, and even as an early leading marker for predicting clinical response to systemic chemotherapy in patients with advanced solid tumors. More recent preclinical data in immunosuppressed murine models suggest that MDSCs play an important role in tumor progression and the metastatic process that is independent of their immunosuppressive properties. Consequently, targeting MDSCs either in combination with cancer immunotherapy or independently as part of an approach to inhibit the metastatic process appears to be a very clinically promising strategy. We review different approaches to target MDSCs that could potentially be tested in future clinical trials in cancer patients.
Collapse
Affiliation(s)
- C Marcela Diaz-Montero
- Lerner Research Institute Department of Immunology; Cleveland Clinic Foundation, Cleveland, OH
| | - Jim Finke
- Lerner Research Institute Department of Immunology; Cleveland Clinic Foundation, Cleveland, OH
| | - Alberto J Montero
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH.
| |
Collapse
|
89
|
Pio R, Corrales L, Lambris JD. The role of complement in tumor growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:229-62. [PMID: 24272362 DOI: 10.1007/978-1-4614-5915-6_11] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complement is a central part of the immune system that has developed as a first defense against non-self cells. Neoplastic transformation is accompanied by an increased capacity of the malignant cells to activate complement. In fact, clinical data demonstrate complement activation in cancer patients. On the basis of the use of protective mechanisms by malignant cells, complement activation has traditionally been considered part of the body's immunosurveillance against cancer. Inhibitory mechanisms of complement activation allow cancer cells to escape from complement-mediated elimination and hamper the clinical efficacy of monoclonal antibody-based cancer immunotherapies. To overcome this limitation, many strategies have been developed with the goal of improving complement-mediated effector mechanisms. However, significant work in recent years has identified new and surprising roles for complement activation within the tumor microenvironment. Recent reports suggest that complement elements can promote tumor growth in the context of chronic inflammation. This chapter reviews the data describing the role of complement activation in cancer immunity, which offers insights that may aid the development of more effective therapeutic approaches to control cancer.
Collapse
Affiliation(s)
- Ruben Pio
- Oncology Division (CIMA), and Department of Biochemistry and Genetics (School of Science), University of Navarra, Pamplona, Spain,
| | | | | |
Collapse
|
90
|
Raymond E, Dalgleish A, Damber JE, Smith M, Pili R. Mechanisms of action of tasquinimod on the tumour microenvironment. Cancer Chemother Pharmacol 2013; 73:1-8. [PMID: 24162378 PMCID: PMC3889691 DOI: 10.1007/s00280-013-2321-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/09/2013] [Indexed: 12/14/2022]
Abstract
Tasquinimod is a small molecule with pleiotropic effects on the tumour microenvironment. Tasquinimod inhibits the growth and metastasis of tumour cells in vitro and in vivo. It targets the tumour microenvironment, enhancing the host immune response and inhibiting the angiogenic response. Tasquinimod influences infiltrating myeloid cells in the tumour milieu shifting the balance towards a less immunosuppressive phenotype. Myeloid-derived suppressor cells and tumour-associated macrophages are major components of the immunosuppressive microenvironment and as a result promote tumour growth and favour angiogenesis and metastasis formation. Growing evidence indicates that tasquinimod targets these myeloid cells and modulates local tumour immunity by blocking the interaction between the multifunctional protein S100A9 and its ligands receptor of advanced glycation end products and Toll-like receptor 4. Its anti-angiogenic effects are achieved at least in part through these effects on regulatory myeloid cells and also potentially through inactivating histone deacetylase-4 and reducing expression of hypoxia-inducible factor 1-controlled genes. The aim is to comprehensively review the mode of action of tasquinimod as a novel oral anti-cancer agent. Based on its unique combination of effects, tasquinimod is a novel agent with clinical therapeutic potential in various solid tumours, both alone and as part of rational combination therapy.
Collapse
Affiliation(s)
- E Raymond
- Department of Medical Oncology, Beaujon University Hospital, Clichy, France,
| | | | | | | | | |
Collapse
|
91
|
Downregulation of ADAM10 expression inhibits metastasis and invasiveness of human hepatocellular carcinoma HepG2 cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:434561. [PMID: 23936798 PMCID: PMC3727112 DOI: 10.1155/2013/434561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 01/25/2023]
Abstract
Objective. This study aims to investigate the effects of ADAM10 expression on metastasis and invasiveness of human hepatocellular carcinoma HepG2 cells. Methods. The HepG2 cells were transfected with medium only, the empty vector, the control siRNA, or siRNA against ADAM10, respectively. Cell migration assay and Transwell invasiveness assay were performed to detect the effects of ADAM10 knockdown on migration and invasiveness of HepG2 cells. Western blotting and real-time RT PCR were performed to investigate the effects of knock-down of ADAM10 on protein and mRNA levels of E-cadherin gene. Results. Cell migration and invasiveness of HepG2 cells transfected with ADAM10 siRNA were significantly decreased, when compared with the cells transfected with the control siRNA, suggesting that the downregulation of ADAM10 expression inhibits cell migration and invasiveness. The Western blotting results suggest that the down-regulation of ADAM10 expression increases E-cadherin protein levels. The real-time RT-PCR results indicated that the mRNA level of E-cadherin is not detectably affected by the knock-down of ADAM10 gene. Conclusions. Expression of ADAM10 may be related to cell migration and invasiveness of human hepatocellular carcinoma HepG2 cells via a mechanism related to E-cadherin.
Collapse
|
92
|
Feyler S, Selby PJ, Cook G. Regulating the regulators in cancer-immunosuppression in multiple myeloma (MM). Blood Rev 2013; 27:155-64. [PMID: 23623928 DOI: 10.1016/j.blre.2013.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An effective immune response requires a prompt but measured action against the pathological insult, to prevent over-zealous inflammatory-mediated tissue destruction. In cancer, defective or incompetent immune responses may paradoxically result in disease progression despite an immune attempt at elimination. Tumour-induced immunosuppression may not only result from soluble factors and altered antigenicity, but also from cellular-mediated tumour-induced immune evasion. Multiple myeloma (MM) is associated with both cellular and humoral immune deficiencies and increased T(Reg) cells. In vitro modelling has indicated that the tumour cells directly induce functional T(Reg) cells. In light of this recent evidence, it now seems that the most promising and synergistic approaches for cancer immunotherapy would involve specific anti-tumour immunity and simultaneous reduction of tumour-induced immune-regulation. This review sets out the basic understanding of the human immune response, its dysregulation in cancer and proposes how this knowledge may influence future treatment strategies to maximise the anti-tumour immune response.
Collapse
Affiliation(s)
- Sylvia Feyler
- Transplant Immunology Group, Academic Department of Haematology & Oncology, University of Leeds, UK
| | | | | |
Collapse
|