51
|
Tamura R, Eifuku S, Uwano T, Sugimori M, Uchiyama K, Ono T. A method for recording evoked local field potentials in the primate dentate gyrus in vivo. Hippocampus 2012; 21:565-74. [PMID: 20169538 DOI: 10.1002/hipo.20773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recording evoked local field potentials (LFPs) in the hippocampus in vivo has yielded us useful information about the neural mechanisms of learning and memory. Although this technique has been used in studies of the hippocampus of rodents, lagomorphs, and felines, it has not yet been applied to the primate hippocampus. Here, we report a method for recording evoked LFPs in the hippocampus of monkeys. A stimulation electrode and a recording electrode were implanted in the perforant pathway and dentate gyrus, respectively, under the guidance of electrophysiological recording. With a low stimulus intensity just above the threshold, the potential appeared as a slow positive-wave component, which was regarded as field excitatory postsynaptic potential (putative fEPSP); as stimulation intensity increased, the fEPSP amplitude increased, followed by a sharp negative component which was regarded as putative population spike. When the coordinates of the recording or stimulation electrode were moved stepwise, we observed a systematic change in the waveforms of evoked LFPs; this change corresponded to the structural arrangement through which the electrode passed. In a test for short-term synaptic plasticity by paired-pulse stimulation, potentials evoked by the second pulse were influenced by the first one in a manner dependent on interpulse intervals. In a test for long-term synaptic plasticity by high-frequency stimulation, the slopes of the fEPSPs and the area of population spikes were increased for more than 1 h. These results indicate that the method developed in the present study is useful for testing theories of hippocampal functions in primates.
Collapse
Affiliation(s)
- Ryoi Tamura
- Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
52
|
Fear conditioning occludes late-phase long-term potentiation at thalamic input synapses onto the lateral amygdala in rat brain slices. Neurosci Lett 2011; 506:121-5. [PMID: 22079527 DOI: 10.1016/j.neulet.2011.10.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/08/2011] [Accepted: 10/27/2011] [Indexed: 01/03/2023]
Abstract
Late-phase long-term potentiation (L-LTP) of excitatory synaptic transmission at thalamic input synapses onto the lateral amygdala (T-LA synapses) has been proposed as a cellular substrate for long-term fear memory. This notion is evidenced primarily by previous reports in which the same pharmacological treatments block both T-LA L-LTP and the consolidation of fear memory. In this study, we report that fear conditioning occludes L-LTP at T-LA synapses in brain slices prepared after fear memory consolidation. L-LTP was restored either when synaptic depotentiation was induced prior to L-LTP induction in brain slices prepared from conditioned rats or when brain slices were prepared from conditioned rats that had been exposed to subsequent fear extinction, which is a behavior paradigm known to induce in vivo synaptic depotentiation at T-LA synapses. These results suggest that fear conditioning recruits L-LTP-like mechanisms that are reversible and saturable at T-LA synapses.
Collapse
|
53
|
Bourne JN, Harris KM. Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 2011; 21:354-73. [PMID: 20101601 DOI: 10.1002/hipo.20768] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enlargement of dendritic spines and synapses correlates with enhanced synaptic strength during long-term potentiation (LTP), especially in immature hippocampal neurons. Less clear is the nature of this structural synaptic plasticity on mature hippocampal neurons, and nothing is known about the structural plasticity of inhibitory synapses during LTP. Here the timing and extent of structural synaptic plasticity and changes in local protein synthesis evidenced by polyribosomes were systematically evaluated at both excitatory and inhibitory synapses on CA1 dendrites from mature rats following induction of LTP with theta-burst stimulation (TBS). Recent work suggests dendritic segments can act as functional units of plasticity. To test whether structural synaptic plasticity is similarly coordinated, we reconstructed from serial section transmission electron microscopy all of the spines and synapses along representative dendritic segments receiving control stimulation or TBS-LTP. At 5 min after TBS, polyribosomes were elevated in large spines suggesting an initial burst of local protein synthesis, and by 2 h only those spines with further enlarged synapses contained polyribosomes. Rapid induction of synaptogenesis was evidenced by an elevation in asymmetric shaft synapses and stubby spines at 5 min and more nonsynaptic filopodia at 30 min. By 2 h, the smallest synaptic spines were markedly reduced in number. This synapse loss was perfectly counterbalanced by enlargement of the remaining excitatory synapses such that the summed synaptic surface area per length of dendritic segment was constant across time and conditions. Remarkably, the inhibitory synapses showed a parallel synaptic plasticity, also demonstrating a decrease in number perfectly counterbalanced by an increase in synaptic surface area. Thus, TBS-LTP triggered spinogenesis followed by loss of small excitatory and inhibitory synapses and a subsequent enlargement of the remaining synapses by 2 h. These data suggest that dendritic segments coordinate structural plasticity across multiple synapses and maintain a homeostatic balance of excitatory and inhibitory inputs through local protein-synthesis and selective capture or redistribution of dendritic resources.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Center for Learning and Memory, Section of Neurobiology, Institute for Neuroscience, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
54
|
Bowden JB, Abraham WC, Harris KM. Differential effects of strain, circadian cycle, and stimulation pattern on LTP and concurrent LTD in the dentate gyrus of freely moving rats. Hippocampus 2011; 22:1363-70. [PMID: 21853503 DOI: 10.1002/hipo.20972] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2011] [Indexed: 01/09/2023]
Abstract
Because long-term potentiation (LTP) and long-term depression (LTD) are thought to be involved in learning and memory, it is important to delineate factors that modulate their induction and persistence, especially as studied in freely moving animals. Here, we investigated the effects of rat strain, circadian cycle, and high-frequency stimulation (HFS) pattern on LTP and concurrently induced LTD in the dentate gyrus (DG). Comparison of two commonly used rat strains revealed that medial perforant path field EPSP-population spike (E-S) coupling and LTP were greater in Long-Evans than Sprague-Dawley rats. Circadian cycle experiments conducted in Long-Evans rats revealed greater E-S coupling and enhanced LTP during the dark phase. Interestingly, concurrent LTD in the lateral perforant path did not significantly differ across strains or circadian cycle. Testing HFS protocols during the dark phase revealed that theta burst stimulation (100 Hz bursts at 5 Hz intervals) was ineffective in eliciting either LTP or concurrent LTD in DG, whereas 400 Hz bursts delivered at theta (5 Hz) or delta (1 Hz) frequencies produced substantial LTP and concurrent LTD. Thus, these natural and experimental factors regulate granule cell excitability, and differentially affect LTP and concurrent LTD in the DG of freely moving rats. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jared B Bowden
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
55
|
Exploring the effect of inducing long-term potentiation in the human motor cortex on motor learning. Brain Stimul 2011; 4:137-44. [DOI: 10.1016/j.brs.2010.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/01/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022] Open
|
56
|
Michmizos D, Koutsouraki E, Asprodini E, Baloyannis S. Synaptic Plasticity: A Unifying Model to Address Some Persisting Questions. Int J Neurosci 2011; 121:289-304. [DOI: 10.3109/00207454.2011.556283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
57
|
Oberman L, Edwards D, Eldaief M, Pascual-Leone A. Safety of theta burst transcranial magnetic stimulation: a systematic review of the literature. J Clin Neurophysiol 2011; 28:67-74. [PMID: 21221011 PMCID: PMC3260517 DOI: 10.1097/wnp.0b013e318205135f] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Theta burst stimulation (TBS) protocols have recently emerged as a method to transiently alter cortical excitability in the human brain through repetitive transcranial magnetic stimulation. TBS involves applying short trains of stimuli at high frequency repeated at intervals of 200 milliseconds. Because repetitive transcranial magnetic stimulation is known to carry a risk of seizures, safety guidelines have been established. TBS has the theoretical potential of conferring an even higher risk of seizure than other repetitive transcranial magnetic stimulation protocols because it delivers high-frequency bursts. In light of the recent report of a seizure induced by TBS, the safety of this new protocol deserves consideration. We performed an English language literature search and reviewed all studies published from May 2004 to December 2009 in which TBS was applied. The adverse events were documented, and crude risk was calculated. The majority of adverse events attributed to TBS were mild and occurred in 5% of subjects. Based on this review, TBS seems to be a safe and efficacious technique. However, given its novelty, it should be applied with caution. Additionally, this review highlights the need for rigorous documentation of adverse events associated with TBS and intensity dosing studies to assess the seizure risk associated with various stimulation parameters (e.g., frequency, intensity, and location).
Collapse
Affiliation(s)
- Lindsay Oberman
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Dylan Edwards
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Burke Medical Research Institute, White Plains, NY, USA
| | - Mark Eldaief
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Guttmann University Institute for Neurorehabilitation, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
58
|
Banko JL, Trotter J, Weeber EJ. Insights into synaptic function from mouse models of human cognitive disorders. FUTURE NEUROLOGY 2011; 6:113-125. [DOI: 10.2217/fnl.10.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modern approaches to the investigation of the molecular mechanisms underlying human cognitive disease often include multidisciplinary examination of animal models engineered with specific mutations that spatially and temporally restrict expression of a gene of interest. This approach not only makes possible the development of animal models that demonstrate phenotypic similarities to their respective human disorders, but has also allowed for significant progress towards understanding the processes that mediate synaptic function and memory formation in the nondiseased state. Examples of successful mouse models where genetic manipulation of the mouse resulted in recapitulation of the symptomatology of the human disorder and was used to significantly expand our understanding of the molecular mechanisms underlying normal synaptic plasticity and memory formation are discussed in this article. These studies have broadened our knowledge of several signal transduction cascades that function throughout life to mediate synaptic physiology. Defining these events is key for developing therapies to address disorders of cognitive ability.
Collapse
Affiliation(s)
- Jessica L Banko
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, Tampa, FL, USA
| | - Justin Trotter
- Department of Molecular Pharmacology & Physiology, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, 4001 East Fletcher Ave, Tampa, FL 33612, USA
| | | |
Collapse
|
59
|
Pell GS, Roth Y, Zangen A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: Influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol 2011; 93:59-98. [DOI: 10.1016/j.pneurobio.2010.10.003] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 10/14/2010] [Accepted: 10/20/2010] [Indexed: 01/10/2023]
|
60
|
Medvedev NI, Popov VI, Dallérac G, Davies HA, Laroche S, Kraev IV, Rodriguez Arellano JJ, Doyère V, Stewart MG. Alterations in synaptic curvature in the dentate gyrus following induction of long-term potentiation, long-term depression, and treatment with the N-methyl-D-aspartate receptor antagonist CPP. Neuroscience 2010; 171:390-7. [PMID: 20849931 DOI: 10.1016/j.neuroscience.2010.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/04/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
Alterations in curvature of the post synaptic density (PSD) and apposition zone (AZ), are believed to play an important role in determining synaptic efficacy. In the present study we have examined curvature of PSDs and AZs 24 h following homosynaptic long-term potentiation (LTP), and heterosynaptic long-term depression (LTD) in vivo, in awake adult rats. High frequency stimulation (HFS) applied to the medial perforant path to the dentate gyrus induced LTP while HFS stimulation of the lateral perforant path induced LTD in the middle molecular layer of the dentate gyrus (DG). Curvature changes were analysed in this area using three dimensional (3-D) reconstructions of electron microscope images of ultrathin serial sections. Very large and significant changes in 3-D measurements of AZ and PSD curvature occurred 24 h following both LTP and LTD, with a flattening of the normal concavity of mushroom spine heads and a change to convexity for thin spines. An N-methyl-D-aspartate (NMDA) receptor antagonist CPP (3-[(R)-2-Carboxypiperazin-4-yl]-propyl-1-phosphonic acid) blocked the changes in curvature of mushroom and thin spine PSDs and apposition zones, actually increasing the concavity of mushroom spines as the spine engulfed the presynaptic bouton. In order to establish whether these changes resulted from the effect of the NMDA antagonist or from its coincidence with synaptic activation during testing we examined the effects of CPP alone on PSD and apposition zone curvature. It was found that CPP alone also caused a small decrease in curvature of both PSD and apposition zone of mushroom and thin spines.
Collapse
Affiliation(s)
- N I Medvedev
- Department of Life Sciences, The Open University, Milton Keynes, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Hahn JD, Swanson LW. Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. BRAIN RESEARCH REVIEWS 2010; 64:14-103. [PMID: 20170674 PMCID: PMC2886810 DOI: 10.1016/j.brainresrev.2010.02.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 12/26/2022]
Abstract
We have analyzed at high resolution the neuroanatomical connections of the juxtaparaventricular region of the lateral hypothalamic area (LHAjp); as a control and in comparison to this, we also performed a preliminary analysis of a nearby LHA region that is dorsal to the fornix, namely the LHA suprafornical region (LHAs). The connections of these LHA regions were revealed with a coinjection tract-tracing technique involving a retrograde (cholera toxin B subunit) and anterograde (Phaseolus vulgaris leucoagglutinin) tracer. The LHAjp and LHAs together connect with almost every major division of the cerebrum and cerebrospinal trunk, but their connection profiles are markedly different and distinct. In simple terms, the connections of the LHAjp indicate a possible primary role in the modulation of defensive behavior; for the LHAs, a role in the modulation of ingestive behavior is suggested. However, the relation of the LHAjp and LHAs to potential modulation of these behaviors, as indicated by their neuroanatomical connections, appears to be highly integrative as it includes each of the major functional divisions of the nervous system that together determine behavior, i.e., cognitive, state, sensory, and motor. Furthermore, although a primary role is indicated for each region with respect to a particular mode of behavior, intermode modulation of behavior is also indicated. In summary, the extrinsic connections of the LHAjp and LHAs (so far as we have described them) suggest that these regions have a profoundly integrative role in which they may participate in the orchestrated modulation of elaborate behavioral repertoires.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA.
| | | |
Collapse
|
62
|
Karashima A, Katayama N, Nakao M. Enhancement of Synchronization Between Hippocampal and Amygdala Theta Waves Associated With Pontine Wave Density. J Neurophysiol 2010; 103:2318-25. [DOI: 10.1152/jn.00551.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Theta waves in the amygdala are known to be synchronized with theta waves in the hippocampus. Synchronization between amygdala and hippocampal theta waves is considered important for neuronal communication between these regions during the memory-retrieval process. These theta waves are also observed during rapid eye movement (REM) sleep. However, few studies have examined the mechanisms and functions of theta waves during REM sleep. This study examined correlations between the dynamics of hippocampal and amygdala theta waves and pontine (P) waves in the subcoeruleus region, which activates many brain areas including the hippocampus and amygdala, during REM sleep in rats. We confirmed that the frequency of hippocampal theta waves increased in association with P wave density, as shown in our previous study. The frequency of amygdala theta waves also increased with in associated with P wave density. In addition, we confirmed synchronization between hippocampal and amygdala theta waves during REM sleep in terms of the cross-correlation function and found that this synchronization was enhanced in association with increased P wave density. We further studied theta wave synchronization associated with P wave density by lesioning the pontine subcoeruleus region. This lesion not only decreased hippocampal and amygdala theta frequency, but also degraded theta wave synchronization. These results indicate that P waves enhance synchronization between regional theta waves. Because hippocampal and amygdala theta waves and P waves are known to be involved in learning and memory processes, these results may help clarify these functions during REM sleep.
Collapse
Affiliation(s)
- Akihiro Karashima
- Laboratory of Biomodeling, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Norihiro Katayama
- Laboratory of Biomodeling, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Mitsuyuki Nakao
- Laboratory of Biomodeling, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
63
|
Habib D, Dringenberg HC. Low-frequency-induced synaptic potentiation: a paradigm shift in the field of memory-related plasticity mechanisms? Hippocampus 2010; 20:29-35. [PMID: 19405136 DOI: 10.1002/hipo.20611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity thought to play functional roles in learning and memory processes. It is generally assumed that the direction of synaptic modifications (i.e., up- or down-regulation of synaptic strength) depends on the specific pattern of afferent inputs, with high frequency activity or stimulation effectively inducing LTP, while low-frequency patterns often elicit LTD. This dogma ("high frequency-LTP, low frequency-LTD") has recently been challenged by evidence demonstrating low frequency stimulation (LFS)-induced synaptic potentiation in the rodent hippocampus and amygdala. Extensive work in the past decades has focused on deciphering the mechanisms by which high frequency stimulation of afferent fiber systems results in LTP. With this review, we will compare and contrast the well-known synaptic and cellular mechanisms underlying classical, high-frequency-induced LTP to those mediating the more recently discovered phenomena of LFS-induced synaptic enhancement. In addition, we argue that LFS protocols provide a means to more accurately mimic some endogenous, oscillatory activity patterns present in hippocampal and extra-hippocampal (especially neocortical) circuits during periods of memory consolidation. Consequently, LFS-induced synaptic potentiation offers a novel and important avenue to investigate cellular and systems-level mechanisms mediating the encoding, consolidation, and transfer of information throughout multiple forebrain networks implicated in learning and memory processes. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Diala Habib
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
64
|
Medvedev N, Popov V, Rodriguez Arellano J, Dallérac G, Davies H, Gabbott P, Laroche S, Kraev I, Doyère V, Stewart M. The N-methyl-d-aspartate receptor antagonist CPP alters synapse and spine structure and impairs long-term potentiation and long-term depression induced morphological plasticity in dentate gyrus of the awake rat. Neuroscience 2010; 165:1170-81. [DOI: 10.1016/j.neuroscience.2009.11.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
65
|
Scherf T, Frey JU, Frey S. Simultaneous recording of the field-EPSP as well as the population spike in the CA1 region in freely moving rats by using a fixed "double"-recording electrode. J Neurosci Methods 2010; 188:1-6. [PMID: 20105443 DOI: 10.1016/j.jneumeth.2010.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/15/2010] [Accepted: 01/18/2010] [Indexed: 12/29/2022]
Abstract
The recording of field potentials in freely moving rats is a very appropriate and commonly used method to describe changes in cellular mechanisms underlying synaptic plasticity. Recently, we introduced a method for the simultaneous recording of both the field-EPSP as well as the population spike in the dentate gyrus of freely moving rats. We used self-made "double"-recording electrodes, consisting of two wires straighten together with a constant distance between both tips. This method was now further developed to obtain stable long-term recordings of CA1 field potentials. Rats were chronically implanted with a bipolar recording electrode; one tip of which reached the stratum radiatum to record the field-EPSP, the other tip was lowered into the stratum pyramidale of the same neuron population to record the population spike by stimulation of the contralateral CA3 (cCA3). In such prepared rats, simultaneously recorded field-EPSP as well as the population spike where thus obtained from their places of generation in a very reliable manner. This kind of preparation allowed a better standardization of stimulation intensities between different animals and stable electrophysiological recordings of both CA1-potentials over a time period of at least 24h in freely behaving animals. Furthermore, primed burst stimulation of the cCA3 (a single biphasic priming pulse was followed by a burst of 10 pulses (frequency of 100 Hz) 190 ms later; pulse duration per half-wave: 0.1 ms) resulted in an early-LTP of both measured parameters, the field-EPSP and the population spike in the CA1 region of freely moving rats.
Collapse
Affiliation(s)
- Thomas Scherf
- Leibniz-Institute for Neurobiology, Department of Neurophysiology, Magdeburg, Germany
| | | | | |
Collapse
|
66
|
He Y, Liu MG, Gong KR, Chen J. Differential effects of long and short train theta burst stimulation on LTP induction in rat anterior cingulate cortex slices: multi-electrode array recordings. Neurosci Bull 2010; 25:309-18. [PMID: 19784087 DOI: 10.1007/s12264-009-0831-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE There is substantial evidence supporting the notion that the anterior cingulate cortex (ACC) is an important limbic structure involved in multiple brain functions such as sensory perception, motor conflict monitoring, memory, emotion and cognition. It has been shown that long term potentiation (LTP) is an important synaptic model of neural plasticity in the ACC, however, little is known about the spatiotemporal properties of ACC at network level. The present study was designed to see the LTP induction effects across different layers of the ACC by using different conditioning stimuli (CS) protocols. METHODS A unique multi-electrode array recording technique was used in the acutely-dissociated ACC slices of rats. Long and short train theta burst stimulation (TBS) paradigms were applied in layer V-VI as the CS and the LTP induction effects were compared across different layers of the ACC. Briefly, both long and short train TBS are composed of bursts (4 pulses at 100 Hz) with a 200 ms interval, however, the former (TBS1) was with 10 trains and the latter (TBS2) was with 5 trains. After test stimulation at layer V-VI in the ACC, network field potentials (FPs) could be simultaneously recorded across all layers of the ACC. RESULTS The waveforms of FPs were different across different layers. Namely, positive-going waveforms were recorded in layer I and negative-going waveforms were recorded in layers V-VI, in contrast, complex waveforms were localized mainly in layers II-III. Following application of two CS protocols, the induction rate of LTP was significantly different between TBS1 and TBS2 regardless of the spatial properties. TBS1 had more than 60% success, while TBS2 was less than 25% in induction of LTP. Moreover, both the 2 CS protocols could induce LTP in layers II-III and layers V-VI without layer-related difference. However, no LTP was inducible in layer I. CONCLUSION The present findings indicate that stimulation protocols may, at least in part, account for a large portion of variations among previous LTP studies, and hence highlight the importance of selecting the best LTP induction protocol when designing such experiments. Moreover, the present results demonstrate the prominent superiority of multi-electrode array recording in revealing the network properties of synaptic activities in the ACC, especially in comparing the spatiotemporal characteristics between different layers of this structure.
Collapse
Affiliation(s)
- Ying He
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, China
| | | | | | | |
Collapse
|
67
|
Yang B, Tadavarty R, Xu JY, Sastry BR. Activity-mediated plasticity of GABA equilibrium potential in rat hippocampal CA1 neurons. Exp Neurol 2009; 221:157-65. [PMID: 19879261 DOI: 10.1016/j.expneurol.2009.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/06/2009] [Accepted: 10/22/2009] [Indexed: 11/27/2022]
Abstract
The equilibrium potential (E(GABA)(-PSC)) for gamma-aminobutyric acid (GABA) A receptor mediated inhibitory postsynaptic currents (PSCs) in hippocampal CA1 pyramidal neurons shifts when theta-burst stimulation (four pulses at 100 Hz in each burst in a train consisting of five bursts with an inter-burst interval of 200 ms, the train repeated thrice at 30-s intervals) is applied to the input. E(GABA)(-PSC) is regulated by K(+)/Cl(-) co-transporter (KCC2). GABA(B) receptors are implicated in modulating KCC2 levels. In the current study, the involvement of KCC2, as well as GABA(B) receptors, in theta-burst-mediated shifts in E(GABA)(-PSC) was examined. Whole-cell patch recordings were made from hippocampal CA1 pyramidal neurons (from 9 to 12 days old rats), in a slice preparation. Glutamatergic excitatory postsynaptic currents were blocked with dl-2-amino-5-phosphonovaleric acid (50 microM) and 6,7-dinitroquinoxaline-2,3-dione (20 microM). The PSC and the E(GABA)(-PSC) were stable when stimulated at 0.05 Hz. However, both changed following a 30-min stimulation at 0.5 or 1 Hz. Furosemide (500 microM) and KCC2 anti-sense in the recording pipette but not bumetanide (20 or 100 microM) or KCC2 sense, blocked the changes, suggesting KCC2 involvement. Theta-burst stimulation induced a negative shift in E(GABA)(-PSC), which was prevented by KCC2 anti-sense; however, KCC2 sense had no effect. CGP55845 (2 microM), a GABA(B) antagonist, applied in the superfusing medium, or GDP-beta-S in the recording pipette, blocked the shift in E(GABA)(-PSC). These results indicate that activity-mediated plasticity in E(GABA)(-PSC) occurs in hippocampal CA1 pyramidal neurons and theta-burst-induced negative shift in E(GABA)(-PSC) requires KCC2, GABA(B) receptors and G-protein activation.
Collapse
Affiliation(s)
- B Yang
- Neuroscience Research Laboratory, Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
68
|
Reelin and apoE actions on signal transduction, synaptic function and memory formation. ACTA ACUST UNITED AC 2009; 4:259-70. [DOI: 10.1017/s1740925x09990184] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Low-density-lipoprotein receptors (LDLRs) are an evolutionarily ancient surface protein family with the ability to activate a diversity of extracellular signals across the cellular membrane in the adult central nervous system (CNS). Their intimate roles in modulating synaptic plasticity and their necessity in hippocampal-dependent learning and memory have only recently come to light. Two known LDLR ligands, specifically apolipoprotein E (apoE) and reelin, have been the most widely investigated in this regard. Most of our understanding of synaptic plasticity comes from investigation of both pre- and postsynaptic alterations. Therefore, it is interesting to note that neurons and glia that do not contribute to the synaptic junction in question can secrete signaling molecules that affect synaptic plasticity. Notably, reelin and apoE have been shown to modulate hippocampal long-term potentiation in general, and affect NMDA receptor and AMPA receptor regulation specifically. Furthermore, these receptors and signaling molecules have significant roles in neuronal degenerative diseases such as Alzheimer's disease. The recent production of recombinant proteins, knockout and transgenic mice for receptors and ligands and the development of human ApoE targeted replacement mice have significantly expanded our understanding of the roles LDLRs and their ligands have in certain disease states and the accompanying initiation of specific signaling pathways. This review describes the role LDLRs, apoE and reelin have in the regulation of hippocampal synaptic plasticity.
Collapse
|
69
|
Abstract
Background Theta rhythm in the hippocampal formation is a main feature of exploratory behaviour and is believed to enable the encoding of new spatial information and the modification of synaptic weights. Cyclic changes of dentate gyrus excitability during theta rhythm are related to its function, but whether theta epochs per se are able to alter network properties of dentate gyrus for long time-periods is still poorly understood. Methodology/Principal Findings We used low-frequency stimulation protocols that amplify the power of endogenous theta oscillations, in order to estimate the plasticity effect of endogenous theta oscillations on a population level. We found that stimulation-induced augmentation of the theta rhythm is linked to a subsequent increase of neuronal excitability and decrease of the synaptic response. This EPSP-to-Spike uncoupling is related to an increased postsynaptic spiking on the positive phases of theta frequency oscillations. Parallel increase of the field EPSP slope and the population spike occurs only after concurrent pre- and postsynaptic activation. Furthermore, we observed that long-term potentiation (>24 h) occurs in the dentate gyrus of freely behaving adult rats after phasic activity of entorhinal afferents in the theta-frequency range. This plasticity is proportional to the field bursting activity of granule cells during the stimulation, and may comprise a key step in spatial information transfer. Long-term potentiation of the synaptic component occurs only when the afferent stimulus precedes the evoked population burst, and is input-specific. Conclusions/Significance Our data confirm the role of the dentate gyrus in filtering information to the subsequent network during the activated state of the hippocampus.
Collapse
|
70
|
Barrett AB, Billings GO, Morris RGM, van Rossum MCW. State Based Model of Long-Term Potentiation and Synaptic Tagging and Capture. PLoS Comput Biol 2009. [DOI: 10.1117/12.945264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
71
|
Grover LM, Kim E, Cooke JD, Holmes WR. LTP in hippocampal area CA1 is induced by burst stimulation over a broad frequency range centered around delta. Learn Mem 2009; 16:69-81. [PMID: 19144965 PMCID: PMC2632851 DOI: 10.1101/lm.1179109] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/23/2008] [Indexed: 11/25/2022]
Abstract
Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100 msec to 20 sec (10 Hz to 0.05 Hz). LTP at Schaffer collateral-CA1 synapses was obtained at intervals from 100 msec to 5 sec, with maximal LTP at 350-500 msec (2-3 Hz, delta frequency). In addition, a short-duration potentiation was present over the entire range of burst intervals. We found that N-methyl-d-aspartic acid (NMDA) receptors were more important for LTP induction by burst stimulation, but L-type calcium channels were more important for LTP induction by continuous high-frequency stimulation. NMDA receptors were even more critical for short-duration potentiation than they were for LTP. We also compared repeated burst stimulation with a single primed burst. In contrast to results from repeated burst stimulation, primed burst potentiation was greater when a 200-msec interval (theta frequency) was used, and a 500-msec interval was ineffective. Whole-cell recordings of postsynaptic membrane potential during burst stimulation revealed two factors that may determine the interval dependence of LTP. First, excitatory postsynaptic potentials facilitated across bursts at 500-msec intervals but not 200-msec or 1-sec intervals. Second, synaptic inhibition was suppressed by burst stimulation at intervals between 200 msec and 1 sec. Our data show that CA1 synapses are more broadly tuned for potentiation than previously appreciated.
Collapse
Affiliation(s)
- Lawrence M Grover
- Department of Pharmacology, Physiology and Toxicology, Marshall University, School of Medicine, Huntington, West Virginia 25755, USA.
| | | | | | | |
Collapse
|
72
|
Barrett AB, Billings GO, Morris RGM, van Rossum MCW. State based model of long-term potentiation and synaptic tagging and capture. PLoS Comput Biol 2009; 5:e1000259. [PMID: 19148264 PMCID: PMC2603667 DOI: 10.1371/journal.pcbi.1000259] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/24/2008] [Indexed: 11/17/2022] Open
Abstract
Recent data indicate that plasticity protocols have not only synapse-specific but also more widespread effects. In particular, in synaptic tagging and capture (STC), tagged synapses can capture plasticity-related proteins, synthesized in response to strong stimulation of other synapses. This leads to long-lasting modification of only weakly stimulated synapses. Here we present a biophysical model of synaptic plasticity in the hippocampus that incorporates several key results from experiments on STC. The model specifies a set of physical states in which a synapse can exist, together with transition rates that are affected by high- and low-frequency stimulation protocols. In contrast to most standard plasticity models, the model exhibits both early- and late-phase LTP/D, de-potentiation, and STC. As such, it provides a useful starting point for further theoretical work on the role of STC in learning and memory.
Collapse
Affiliation(s)
- Adam B Barrett
- Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
73
|
Serruya MD, Kahana MJ. Techniques and devices to restore cognition. Behav Brain Res 2008; 192:149-65. [PMID: 18539345 PMCID: PMC3051349 DOI: 10.1016/j.bbr.2008.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 03/03/2008] [Accepted: 04/09/2008] [Indexed: 12/18/2022]
Abstract
Executive planning, the ability to direct and sustain attention, language and several types of memory may be compromised by conditions such as stroke, traumatic brain injury, cancer, autism, cerebral palsy and Alzheimer's disease. No medical devices are currently available to help restore these cognitive functions. Recent findings about the neurophysiology of these conditions in humans coupled with progress in engineering devices to treat refractory neurological conditions imply that the time has arrived to consider the design and evaluation of a new class of devices. Like their neuromotor counterparts, neurocognitive prostheses might sense or modulate neural function in a non-invasive manner or by means of implanted electrodes. In order to paint a vision for future device development, it is essential to first review what can be achieved using behavioral and external modulatory techniques. While non-invasive approaches might strengthen a patient's remaining intact cognitive abilities, neurocognitive prosthetics comprised of direct brain-computer interfaces could in theory physically reconstitute and augment the substrate of cognition itself.
Collapse
Affiliation(s)
- Mijail Demian Serruya
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Gates 3 HUP, Philadelphia, PA 19104-4283, United States.
| | | |
Collapse
|
74
|
Stone JV, Jupp PE. Falling towards Forgetfulness: Synaptic Decay Prevents Spontaneous Recovery of Memory. PLoS Comput Biol 2008; 4:e1000143. [PMID: 18725945 PMCID: PMC2516185 DOI: 10.1371/journal.pcbi.1000143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 06/25/2008] [Indexed: 11/18/2022] Open
Abstract
Long after a new language has been learned and forgotten, relearning a few words seems to trigger the recall of other words. This “free-lunch learning” (FLL) effect has been demonstrated both in humans and in neural network models. Specifically, previous work proved that linear networks that learn a set of associations, then partially forget them all, and finally relearn some of the associations, show improved performance on the remaining (i.e., nonrelearned) associations. Here, we prove that relearning forgotten associations decreases performance on nonrelearned associations; an effect we call negative free-lunch learning. The difference between free-lunch learning and the negative free-lunch learning presented here is due to the particular method used to induce forgetting. Specifically, if forgetting is induced by isotropic drifting of weight vectors (i.e., by adding isotropic noise), then free-lunch learning is observed. However, as proved here, if forgetting is induced by weight values that simply decay or fall towards zero, then negative free-lunch learning is observed. From a biological perspective, and assuming that nervous systems are analogous to the networks used here, this suggests that evolution may have selected physiological mechanisms that involve forgetting using a form of synaptic drift rather than synaptic decay, because synaptic drift, but not synaptic decay, yields free-lunch learning. If you learn a skill, then partially forget it, does relearning part of that skill induce recovery of other parts of the skill? More generally, if you learn a set of associations, then partially forget them, does relearning a subset induce recovery of the remaining associations? In previous work, in which participants learned the layout of a scrambled computer keyboard, the answer to this question appeared to be “yes.” More recently, we modeled this “free-lunch learning” effect using artificial neural networks, in which the synaptic strength between each pair of model neurons is a connection weight. We proved that if forgetting is induced by allowing each weight value to drift randomly, then free-lunch learning is almost inevitable. However, if, after learning a set of associations, forgetting is induced by allowing each connection weight to decay or fall toward zero, then relearning a subset of associations decreases performance on the remaining associations. This suggests that evolution may have selected physiological mechanisms that involve forgetting using a form of synaptic drift rather than synaptic decay, because synaptic drift yields free-lunch learning, whereas decay does not.
Collapse
Affiliation(s)
- James V Stone
- Psychology Department, Sheffield University, Sheffield, United Kingdom.
| | | |
Collapse
|
75
|
Abstract
Most synaptic inputs are made onto the dendritic tree. Recent work has shown that dendrites play an active role in transforming synaptic input into neuronal output and in defining the relationships between active synapses. In this review, we discuss how these dendritic properties influence the rules governing the induction of synaptic plasticity. We argue that the location of synapses in the dendritic tree, and the type of dendritic excitability associated with each synapse, play decisive roles in determining the plastic properties of that synapse. Furthermore, since the electrical properties of the dendritic tree are not static, but can be altered by neuromodulators and by synaptic activity itself, we discuss how learning rules may be dynamically shaped by tuning dendritic function. We conclude by describing how this reciprocal relationship between plasticity of dendritic excitability and synaptic plasticity has changed our view of information processing and memory storage in neuronal networks.
Collapse
Affiliation(s)
- P Jesper Sjöström
- Wolfson Institute for Biomedical Research and Department of Physiology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
76
|
Abraham WC, Williams JM. LTP maintenance and its protein synthesis-dependence. Neurobiol Learn Mem 2008; 89:260-8. [DOI: 10.1016/j.nlm.2007.10.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/01/2007] [Accepted: 10/01/2007] [Indexed: 12/22/2022]
|
77
|
Abstract
The timing and the organization of sleep architecture are mainly controlled by the circadian system, while sleep need and intensity are regulated by a homeostatic process. How independent these two systems are in regulating sleep is not well understood. In contrast to the impressive progress in the molecular genetics of circadian rhythms, little is known about the molecular basis of sleep. Nevertheless, as summarized here, phenotypic dissection of sleep into its most basic aspects can be used to identify both the single major genes and small effect quantitative trait loci involved. Although experimental models such as the mouse are more readily amenable to genetic analysis of sleep, similar approaches can be applied to humans.
Collapse
Affiliation(s)
- Mehdi Tafti
- Center for Integrative Genomics (CIG), University of Lausanne, Génopode Bldg, 1015 Dorigny-Lausanne, Switzerland.
| |
Collapse
|
78
|
Xu JY, Sastry BR. Theta-bursts induce a shift in reversal potentials for GABA-A receptor-mediated postsynaptic currents in rat hippocampal CA1 neurons. Exp Neurol 2007; 204:836-9. [PMID: 17303122 PMCID: PMC2805239 DOI: 10.1016/j.expneurol.2007.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/18/2006] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Theta-burst stimulation of the stratum radiatum induces a negative shift in the reversal potential (RP) of gamma-aminobutyric acid (GABA)-ergic postsynaptic currents (PSCs) in hippocampal CA1 neurons in brain slices from rats of age groups 3-4 days, 6-9 days and 3-4 weeks. Furosemide reversed the shift in the RP. The amplitude of the evoked PSC appeared to increase following the theta-burst stimulation but this increase was secondary to the change in the RP. These results indicate that the RP for GABA-ergic PSCs undergoes an activity-dependent plasticity in not only neonatal but also adult neurons presumably through an up-regulation of a K(+)-Cl(-) co-transporter. This plasticity can have significant implications for neuronal network activity in the central nervous system. Furthermore, these results indicate that studies on GABA-ergic synaptic efficacy require a careful, parallel monitoring of the RP.
Collapse
Affiliation(s)
- J-Y Xu
- Neuroscience Research Laboratory, Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada V6T 1Z3
| | | |
Collapse
|
79
|
Raymond CR. LTP forms 1, 2 and 3: different mechanisms for the ‘long’ in long-term potentiation. Trends Neurosci 2007; 30:167-75. [PMID: 17292975 DOI: 10.1016/j.tins.2007.01.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/21/2006] [Accepted: 01/31/2007] [Indexed: 11/23/2022]
Abstract
Long-term potentiation (LTP) of synaptic transmission is a primary experimental model of memory formation in neuronal circuits. Because of the intellectual appeal and scientific fecundity of the field, it is perhaps unsurprising that the literature on LTP contains many complex and often contradictory findings. Recognition that LTP is not a unitary phenomenon and mechanisms can differ between brain regions has resolved some controversy. However, further categorization can be made of mechanistically discrete forms of LTP at the same set of synapses. LTP1, LTP2 and LTP3 have previously been defined according to differences in the longevity and general molecular mechanisms of LTP. This review aims to reinvigorate and extend this concept as a useful framework to disentangle the mechanisms of LTP.
Collapse
Affiliation(s)
- Clarke R Raymond
- Division of Neuroscience, The John Curtin School of Medical Research, The Australian National University Canberra, ACT 0200, Australia.
| |
Collapse
|
80
|
Hamam BN, Sinai M, Poirier G, Chapman CA. Cholinergic suppression of excitatory synaptic responses in layer II of the medial entorhinal cortex. Hippocampus 2007; 17:103-13. [PMID: 17146776 DOI: 10.1002/hipo.20249] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Theta-frequency (4-12 Hz) electroencephalographic activity is thought to play a role in mechanisms mediating sensory and mnemonic processing in the entorhinal cortex and hippocampus, but the effects of acetylcholine on excitatory synaptic inputs to the entorhinal cortex are not well understood. Field excitatory postsynaptic potentials (fEPSPs) evoked by stimulation of the piriform (olfactory) cortex were recorded in the medial entorhinal cortex during behaviors associated with theta activity (active mobility) and were compared with those recorded during nontheta behaviors (awake immobility and slow wave sleep). Synaptic responses were smaller during behavioral activity than during awake immobility and sleep, and responses recorded during movement were largest during the negative phase of the theta rhythm. Systemic administration of cholinergic agonists reduced the amplitude of fEPSPs, and the muscarinic receptor blocker scopolamine strongly enhanced fEPSPs, suggesting that the theta-related suppression of fEPSPs is mediated in part by cholinergic inputs. The reduction in fEPSPs was investigated using in vitro intracellular recordings of EPSPs in Layer II neurons evoked by stimulation of Layer I afferents. Constant bath application of the muscarinic agonist carbachol depolarized membrane potential and suppressed EPSP amplitude in Layer II neurons. The suppression of EPSPs was not associated with a substantial change in input resistance, and could not be accounted for by a depolarization-induced reduction in driving force on the EPSP. The GABA(A) receptor-blocker bicuculline (50 microM) did not prevent the cholinergic suppression of EPSPs, suggesting that the suppression is not dependent on inhibitory mechanisms. Paired-pulse facilitation of field and intracellular EPSPs were enhanced by carbachol, indicating that the suppression is likely due to inhibition of presynaptic glutamate release. These results indicate that, in addition to well known effects on postsynaptic conductances that increase cellular excitability, cholinergic activation in the entorhinal cortex results in a strong reduction in strength of excitatory synaptic inputs from the piriform cortex.
Collapse
Affiliation(s)
- Bassam N Hamam
- Department of Psychology, Concordia University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
81
|
Diamond DM, Campbell AM, Park CR, Halonen J, Zoladz PR. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast 2007; 2007:60803. [PMID: 17641736 PMCID: PMC1906714 DOI: 10.1155/2007/60803] [Citation(s) in RCA: 395] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 12/29/2022] Open
Abstract
We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC) and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our "temporal dynamics" model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced amnesia. An important feature of the model is the idea that endogenous mechanisms of plasticity in the hippocampus and amygdala are rapidly activated for a relatively short period of time by a strong emotional learning experience. Following this activational period, both structures undergo a state in which the induction of new plasticity is suppressed, which facilitates the memory consolidation process. We further propose that with the onset of strong emotionality, the hippocampus rapidly shifts from a "configural/cognitive map" mode to a "flashbulb memory" mode, which underlies the long-lasting, but fragmented, nature of traumatic memories. Finally, we have speculated on the significance of stress-LTP interactions in the context of the Yerkes-Dodson Law, a well-cited, but misunderstood, century-old principle which states that the relationship between arousal and behavioral performance can be linear or curvilinear, depending on the difficulty of the task.
Collapse
Affiliation(s)
- David M Diamond
- Medical Research Service, VA Hospital, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
82
|
Derrick BE. Plastic processes in the dentate gyrus: a computational perspective. PROGRESS IN BRAIN RESEARCH 2007; 163:417-51. [PMID: 17765732 DOI: 10.1016/s0079-6123(07)63024-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dentate gyrus has the capacity for numerous types of synaptic plasticity that use diverse mechanisms and are thought essential for the storage of information in the hippocampus. Here we review the various forms of synaptic plasticity that involve afferents and efferents of the dentate gyrus, and, from a computational perspective, relate how these plastic processes might contribute to sparse, orthogonal encoding, and the selective recall of information within the hippocampus.
Collapse
Affiliation(s)
- Brian E Derrick
- Department of Biology, The Cajal Neuroscience Research Institute, The University of Texas at San Antonio, TX 78249-0662, USA.
| |
Collapse
|
83
|
Gengler S, Gault VA, Harriott P, Hölscher C. Impairments of hippocampal synaptic plasticity induced by aggregated beta-amyloid (25–35) are dependent on stimulation-protocol and genetic background. Exp Brain Res 2006; 179:621-30. [PMID: 17171334 DOI: 10.1007/s00221-006-0819-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 11/23/2006] [Indexed: 11/26/2022]
Abstract
The aggregation of beta-amyloid to plaques in the brain is one of the hallmarks of Alzheimer disease (AD). Numerous studies have tried to elucidate to what degree amyloid peptides play a role in the neurodegenerative developments seen in AD. While most studies report an effect of amyloid on neural activity and cognitive abilities of rodents, there have been many inconsistencies in the results. This study investigated to what degree the different genetic backgrounds affect the outcome of beta-amyloid fragment (25-35) on synaptic plasticity in vivo in the rat hippocampus. Two strains, Wistar and Lister hooded rats, were tested. In addition, the effects of a strong (600 stimuli) and a weak stimulation protocol (100 stimuli) on impairments of LTP were analysed. Furthermore, since the state of amyloid aggregation appears to play a role in the induction of toxic processes, it was tested by dual polarisation interferometry to what degree and at what speed beta-amyloid (25-35) can aggregate in vitro. It was found that 100 nmol beta-amyloid (25-35) injected icv did impair LTP in Wistar rats when using the weak but not the strong stimulation protocol (P < 0.001). One-hundred nano mole of the reverse sequence amyloid (35-25) had no effect. LTP in Lister Hooded rats was not impaired by amyloid at any stimulation protocol. The aggregation studies showed that amyloid (25-35) aggregated within hours, while amyloid (35-25) did not. These results show that the genetic background and the stimulation protocol are important variables that greatly influence the experimental outcome. The fact that amyloid (25-35) aggregated quickly and showed neurophysiological effects, while amyloid (35-25) did not aggregate and did not show any effects indicates that the state of aggregation plays an important role in the physiological effects.
Collapse
Affiliation(s)
- Simon Gengler
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland
| | | | | | | |
Collapse
|
84
|
Nuñez A, Cervera-Ferri A, Olucha-Bordonau F, Ruiz-Torner A, Teruel V. Nucleus incertus contribution to hippocampal theta rhythm generation. Eur J Neurosci 2006; 23:2731-8. [PMID: 16817876 DOI: 10.1111/j.1460-9568.2006.04797.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The hippocampal theta rhythm is generated by the pacemaker activity of the medial septum-diagonal band of Broca (MS/DBB) neurons. These nuclei are influenced by brainstem structures that modulate the theta rhythm. The aim of the present work is to determine whether the nucleus incertus (NI), which has important anatomical connections with the MS/DBB, contributes to the hippocampal theta rhythm generation in rats. Hippocampal field activity was recorded in urethane-anaesthetized rats. Electrical stimulation of the NI not only evoked theta rhythm in the hippocampus, but also decreased the amplitude of delta waves. Unit recordings in the NI revealed either a non-rhythm discharge pattern in most neurons (76%), or a rhythm activity at 13-25 Hz in the remaining neurons. The firing rate of these neurons increased during the presence of theta rhythm evoked by either sensory or reticularis pontis oralis nucleus (RPO) stimulation. Electrolytic lesions of NI, or the microinjection of the gamma-aminobutyric acid (GABA)A agonist muscimol, abolished the theta rhythm evoked by RPO stimulation. Consequently, the NI may be a relay station between brainstem structures and the MS/DBB in the control of the hippocampal theta rhythm generation.
Collapse
Affiliation(s)
- A Nuñez
- Departamento de Anatomia, Histología y Neurociencia Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | | | | | | | | |
Collapse
|
85
|
Dozmorov M, Li R, Abbas AK, Hellberg F, Farre C, Huang FS, Jilderos B, Wigström H. Contribution of AMPA and NMDA receptors to early and late phases of LTP in hippocampal slices. Neurosci Res 2006; 55:182-8. [PMID: 16678928 DOI: 10.1016/j.neures.2006.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 02/27/2006] [Accepted: 03/01/2006] [Indexed: 11/29/2022]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor mediated responses were investigated in rat hippocampal slices under 4h of long-term potentiation (LTP) expression. A modified medium containing the NMDA receptor antagonist AP5 and low concentration of Mg(2+) was used to monitor isolated AMPA responses. NMDA components were determined from composite excitatory postsynaptic potentials (EPSPs) under brief (15-20 min) wash-out of AP5. LTP was induced in a medium with low concentration of AP5, resulting in an about two-fold larger increase of the AMPA component than of the NMDA component at both 1h and 4h after induction. Similar results were obtained if LTP was induced in "normal Mg(2+)" and the NMDA components were assessed at the end of experiment, from either composite or isolated NMDA EPSPs, with or without blockade of GABAergic inhibition. It is generally believed that LTP undergoes biochemical and/or structural conversions during the first few hours. Our study, however, shows constant expression of LTP, at least in terms of AMPA versus NMDA components, during this time. The data support the notion that LTP initiates as a predominant amplification of AMPA receptors and remains so for at least 4h.
Collapse
Affiliation(s)
- Mikhail Dozmorov
- Department of Medical Biophysics, Institute of Neuroscience and Physiology, Göteborg University, Box 433, 405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Wang W, Gong N, Xu TL. Downregulation of KCC2 following LTP contributes to EPSP-spike potentiation in rat hippocampus. Biochem Biophys Res Commun 2006; 343:1209-15. [PMID: 16581019 DOI: 10.1016/j.bbrc.2006.03.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
GABAergic synaptic inhibition plays a critical role in regulating long-term potentiation (LTP) of glutamatergic synaptic transmission and circuit output. The K(+)-Cl(-) cotransporter 2 (KCC2) is an important factor in determining inhibitory GABAergic synaptic strength besides the contribution of GABA(A) receptor. Although much knowledge has been gained regarding activity-dependent downregulation of KCC2 in many pathological conditions, the potential change and contribution of KCC2 in LTP expression is still unknown. In this study, we found that downregulation of KCC2 was accompanied with the occurrence of LTP but not that of long-term depression in hippocampal CA1 region. Meanwhile, KCC2 level in CA3/DG and adjacent cortex was stable in the process of LTP expression in Schaffer collateral synapses. Blockade of NMDA receptor with APV not only prevented LTP induction also abolished the reduction of KCC2. Furthermore, the inhibition of KCC2 function with furosemide directly induced EPSP-spike (E-S) potentiation, an important component of LTP in hippocampus. The present data suggest a novel mechanism that LTP formation is accompanied by the downregulation of KCC2, which is underlying GABAergic strength and most likely contributes to the E-S potentiation following LTP.
Collapse
Affiliation(s)
- Wei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | |
Collapse
|
87
|
Kramár EA, Lin B, Rex CS, Gall CM, Lynch G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc Natl Acad Sci U S A 2006; 103:5579-84. [PMID: 16567651 PMCID: PMC1459396 DOI: 10.1073/pnas.0601354103] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term potentiation (LTP), like memory, becomes progressively more resistant to disruption with time after its formation. Here we show that threshold conditions for inducing LTP cause a rapid, long-lasting increase in polymerized filamentous actin in dendritic spines of adult hippocampus. Two independent manipulations that reverse LTP disrupted this effect when applied shortly after induction but not 30 min later. Function-blocking antibodies to beta1 family integrins selectively eliminated both actin polymerization and stabilization of LTP. We propose that the initial stages of consolidation involve integrin-driven events common to cells engaged in activities that require rapid morphological changes.
Collapse
Affiliation(s)
| | - Bin Lin
- Departments of *Psychiatry and Human Behavior
| | | | - Christine M. Gall
- Anatomy and Neurobiology, and
- Neurobiology and Behavior, University of California, Irvine, CA 92697
- To whom correspondence should be addressed. E-mail:
| | - Gary Lynch
- Departments of *Psychiatry and Human Behavior
| |
Collapse
|
88
|
Williams J, Ramaswamy D, Oulhaj A. 10 Hz flicker improves recognition memory in older people. BMC Neurosci 2006; 7:21. [PMID: 16515710 PMCID: PMC1434755 DOI: 10.1186/1471-2202-7-21] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 03/05/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 10 Hz electroencephalographic (EEG) alpha rhythms correlate with memory performance. Alpha and memory decline in older people. We wished to test if alpha-like EEG activity contributes to memory formation. Flicker can elicit alpha-like EEG activity. We tested if alpha-frequency flicker enhances memory in older people. Pariticpants aged 67-92 identified short words that followed 1 s of flicker at 9.0 Hz, 9.5 Hz, 10.0 Hz, 10.2 Hz, 10.5 Hz, 11.0 Hz, 11.5 Hz or 500 Hz. A few minutes later, we tested participants' recognition of the words (without flicker). RESULTS Flicker frequencies close to 10 Hz (9.5-11.0 Hz) facilitated the identification of the test words in older participants. The same flicker frequencies increased recognition of the words more than other frequencies (9.0 Hz, 11.5 Hz and 500 Hz), irrespective of age. CONCLUSION The frequency-specificity of flicker's effects in our participants paralleled the power spectrum of EEG alpha in the general population. This indicates that alpha-like EEG activity may subserve memory processes. Flicker may be able to help memory problems in older people.
Collapse
Affiliation(s)
| | - Deepa Ramaswamy
- OPTIMA, Radcliffe Infirmary, Woodstock Road, Oxford, OX2 6HE, UK
- Dept. of Psychiatry Unit II, Christian Medical College, Vellore 632002, India
| | | |
Collapse
|
89
|
Leung LS, Shen B. Hippocampal CA1 kindling but not long-term potentiation disrupts spatial memory performance. Learn Mem 2006; 13:18-26. [PMID: 16418436 PMCID: PMC1360129 DOI: 10.1101/lm.66106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long-term synaptic enhancement in the hippocampus has been suggested to cause deficits in spatial performance. Synaptic enhancement has been reported after hippocampal kindling that induced repeated electrographic seizures or afterdischarges (ADs) and after long-term potentiation (LTP) defined as synaptic enhancement without ADs. We studied whether repeated stimulations that gave LTP or ADs resulted in spatial performance deficits on the radial arm maze (RAM) and investigated the minimal number of ADs required for such deficits. Three experimental groups were run as follows: (1) 5 hippocampal ADs in 1 d (5-AD group), (2) 10 hippocampal ADs in 2 d (10-AD group), and (3) 12 -frequency primed-burst stimulations (PBSs) in 2 d in order to induce LTP without ADs (LTP group). Each experimental group was run together with a control group during the same time period. Rats were first trained in a spatial task on a radial arm maze with four of the eight arms baited, then given control or experimental treatment, and maze performance was tested in the first week (1-4 d) and fourth week (22-25 d) after treatment. Basal dendritic population excitatory postsynaptic potentials (pEPSPs) and medial perforant path (MPP)-evoked dentate gyrus population spike and polysynaptic CA1 excitation were recorded before and after experimental and control treatment. Spatial memory errors, in particular reference memory errors, were significantly higher in the 10-AD kindled group than any other group on the first and fourth week after treatment. Spatial memory errors were not significantly different in the 5-AD and LTP groups as compared with any control groups at any time. Basal dendritic pEPSP in CA1 was enhanced for about 1 wk after 12 PBSs, 10 ADs, or 5 ADs, while the dentate gyrus population spike and CA1 polysynaptic excitation evoked by MPP was increased for up to 4 wk after 10 ADs, but not 12 PBSs. Thus, distributed alteration of multiple synaptic transmission in the entorhinal-hippocampal circuit, but not LTP at the basal dendritic synapses in CA1, may disrupt spatial performance after 10 hippocampal ADs.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology, The University of Western Ontario, London, Canada N6A 5C1.
| | | |
Collapse
|
90
|
Abstract
The theta rhythm is the largest extracellular synchronous signal that can be recorded from the mammalian brain, and has been strongly implicated in mnemonic functions of the hippocampus. We advance the proposal that the theta rhythm represents a "tag" for short-term memory processing in the hippocampus. We propose that the hippocampus receives two main types of input, theta from ascending brainstem-diencephalo-septal systems and "information bearing" mainly from thalamocortical and cortical systems. The temporal convergence of activity of these two systems results in the encoding of information in the hippocampus, primarily reaching it via cortical routes. By analogy to processes associated with long-term potentiation (LTP), we suggest that theta represents a strong depolarizing influence on NMDA receptor-containing cells of the hippocampus. The temporal coupling of a theta-induced depolarization and the release of glutamate to these cells from intra- and extrahippocampal sources activates them. This, in turn, initiates processes leading to a (short-term) strengthening of connections between presynaptic ("information bearing") and postsynaptic neurons of the hippocampus. Theta is selectively present in the rat during active exploratory movements. During exploration, a rat continually gathers and updates information about its environment. If this information is temporally coupled to theta (as with the case of locomotion), it becomes temporarily stored in the hippocampus by mechanisms similar to the early phase of LTP (E-LTP). If the exploratory behavior of the rat goes unreinforced, these relatively short-lasting traces (1-3 h) gradually weaken and eventually fade-to be reupdated. On the other hand, if the explorations of the rat lead to rewards (or punishments), additional modulatory inputs to the hippocampus become activated and convert the short-term, theta-dependent memory, into long-term stores.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, 33431, USA.
| |
Collapse
|
91
|
Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu QS, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K, Sambamurti K, Brossi A, Lahiri DK. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci U S A 2005; 102:17213-8. [PMID: 16275899 PMCID: PMC1288010 DOI: 10.1073/pnas.0508575102] [Citation(s) in RCA: 580] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like acetylcholinesterase, butyrylcholinesterase (BChE) inactivates the neurotransmitter acetylcholine (ACh) and is hence a viable therapeutic target in Alzheimer's disease, which is characterized by a cholinergic deficit. Potent, reversible, and brain-targeted BChE inhibitors (cymserine analogs) were developed based on binding domain structures to help elucidate the role of this enzyme in the central nervous system. In rats, cymserine analogs caused long-term inhibition of brain BChE and elevated extracellular ACh levels, without inhibitory effects on acetylcholinesterase. In rat brain slices, selective BChE inhibition augmented long-term potentiation. These compounds also improved the cognitive performance (maze navigation) of aged rats. In cultured human SK-N-SH neuroblastoma cells, intra- and extracellular beta-amyloid precursor protein, and secreted beta-amyloid peptide levels were reduced without affecting cell viability. Treatment of transgenic mice that overexpressed human mutant amyloid precursor protein also resulted in lower beta-amyloid peptide brain levels than controls. Selective, reversible inhibition of brain BChE may represent a treatment for Alzheimer's disease, improving cognition and modulating neuropathological markers of the disease.
Collapse
Affiliation(s)
- Nigel H Greig
- Laboratory of Neurosciences and Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Lin B, Kramár EA, Bi X, Brucher FA, Gall CM, Lynch G. Theta stimulation polymerizes actin in dendritic spines of hippocampus. J Neurosci 2005; 25:2062-9. [PMID: 15728846 PMCID: PMC6726058 DOI: 10.1523/jneurosci.4283-04.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been proposed that the endurance of long-term potentiation (LTP) depends on structural changes entailing reorganization of the spine actin cytoskeleton. The present study used a new technique involving intracellular and extracellular application of rhodamine-phalloidin to conventional hippocampal slices to test whether induction of LTP by naturalistic patterns of afferent activity selectively increases actin polymerization in juvenile to young adult spines. Rhodamine-phalloidin, which selectively binds to polymerized actin, was detected in perikarya and proximal dendrites of CA1 pyramidal cells that received low-frequency afferent activity but was essentially absent in spines and fine dendritic processes. Theta pattern stimulation induced LTP and caused a large (threefold), reliable increase in labeled spines and spine-like puncta in the proximal dendritic zone containing potentiated synapses. The spines frequently occurred in the absence of labeling to other structures but were also found in association with fluorescent dendritic processes. These effects were replicated (>10-fold increase in labeled spines) using extracellular applications of rhodamine-phalloidin. Increases in labeling appeared within 2 min, were completely blocked by treatments that prevent LTP induction, and occurred in slices prepared from young adult rats. These results indicate that near-threshold conditions for inducing stable potentiation cause the rapid polymerization of actin in mature spines and suggest that the effect is both sufficiently discrete to satisfy the synapse-specificity rule of LTP as well as rapid enough to participate in the initial stages of LTP consolidation.
Collapse
Affiliation(s)
- Bin Lin
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92617-1695, USA
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
Fragile X syndrome (FXS) is caused by the transcriptional silencing of the Fmr1 gene, which encodes a protein (FMRP) that can act as a translational suppressor in dendrites, and is characterized by a preponderance of abnormally long, thin and tortuous dendritic spines. According to a current theory of FXS, the loss of FMRP expression leads to an exaggeration of translation responses linked to group I metabotropic glutamate receptors. Such responses are involved in the consolidation of a form of long-term depression that is enhanced in Fmr1 knockout mice and in the elongation of dendritic spines, resembling synaptic phenotypes over-represented in fragile X brain. These observations place fragile X research at the heart of a long-standing issue in neuroscience. The consolidation of memory, and several distinct forms of synaptic plasticity considered to be substrates of memory, requires mRNA translation and is associated with changes in spine morphology. A recent convergence of research on FXS and on the involvement of translation in various forms of synaptic plasticity has been very informative on this issue and on mechanisms underlying FXS. Evidence suggests a general relationship in which the receptors that induce distinct forms of efficacy change differentially regulate translation to produce unique spine shapes involved in their consolidation. We discuss several potential mechanisms for differential translation and the notion that FXS represents an exaggeration of one 'channel' in a set of translation-dependent consolidation responses.
Collapse
Affiliation(s)
- P W Vanderklish
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
94
|
Pennartz CMA, Lee E, Verheul J, Lipa P, Barnes CA, McNaughton BL. The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. J Neurosci 2005; 24:6446-56. [PMID: 15269254 PMCID: PMC6729862 DOI: 10.1523/jneurosci.0575-04.2004] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previously it has been shown that the hippocampus and neocortex can spontaneously reactivate ensemble activity patterns during post-behavioral sleep and rest periods. Here we examined whether such reactivation also occurs in a subcortical structure, the ventral striatum, which receives a direct input from the hippocampal formation and has been implicated in guidance of consummatory and conditioned behaviors. During a reward-searching task on a T-maze, flanked by sleep and rest periods, parallel recordings were made from ventral striatal ensembles while EEG signals were derived from the hippocampus. Statistical measures indicated a significant amount of reactivation in the ventral striatum. In line with hippocampal data, reactivation was especially prominent during post-behavioral slow-wave sleep, but unlike the hippocampus, no decay in pattern recurrence was visible in the ventral striatum across the first 40 min of post-behavioral rest. We next studied the relationship between ensemble firing patterns in ventral striatum and hippocampal ripples-sharp waves, which have been implicated in pattern replay. Firing rates were significantly modulated in close temporal association with hippocampal ripples in 25% of the units, showing a marked transient enhancement in the average response profile. Strikingly, ripple-modulated neurons in ventral striatum showed a clear reactivation, whereas nonmodulated cells did not. These data suggest, first, the occurrence of pattern replay in a subcortical structure implied in the processing and prediction of reward and, second, a functional linkage between ventral striatal reactivation and a specific type of high-frequency population activity associated with hippocampal replay.
Collapse
Affiliation(s)
- C M A Pennartz
- Graduate School of Neurosciences Amsterdam, University of Amsterdam, Faculty of Science, Swammerdam Institute for Life Sciences, 1090 GB, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
95
|
Davis CD, Jones FL, Derrick BE. Novel environments enhance the induction and maintenance of long-term potentiation in the dentate gyrus. J Neurosci 2005; 24:6497-506. [PMID: 15269260 PMCID: PMC6729872 DOI: 10.1523/jneurosci.4970-03.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The induction of long-term potentiation (LTP) in the hippocampal formation can be modulated by different behavioral states. However, few studies have addressed modulation of LTP during behavioral states in which the animal is likely acquiring new information. Here, we demonstrate that both the induction and the longevity of LTP in the dentate gyrus are enhanced when LTP is induced during the initial exploration of a novel environment. These effects are independent from locomotor activity, changes in brain temperature, and theta rhythm. Previous exposure to the novel environment attenuated this enhancement, suggesting that the effects of novelty habituate with familiarity. LTP longevity also was enhanced when induced in familiar environments containing novel objects. Together, these data indicate that both LTP induction and maintenance are enhanced when LTP is induced while rats investigate novel stimuli. We suggest that novelty initiates a transition of the hippocampal formation to a mode that is particularly conducive to synaptic plasticity, a process that could allow for new learning while preserving the stability of previously stored information. In addition, LTP induced in novel environments elicited a sustained late LTP. This suggests that a single synaptic population can display distinct profiles of LTP maintenance and that this depends on the animal's behavioral state during its induction. Furthermore, the duration of LTP enhanced by novelty parallels the time period during which the hippocampal formation is thought necessary for memory, consistent with the view that dentate LTP is of a duration sufficient to sustain memory in the hippocampal formation.
Collapse
Affiliation(s)
- Cyndy D Davis
- Department of Biology and Cajal Neuroscience Research Center, The University of Texas at San Antonio, San Antonio, Texas 78249-0662, USA
| | | | | |
Collapse
|
96
|
Hernandez RV, Navarro MM, Rodriguez WA, Martinez JL, LeBaron RG. Differences in the magnitude of long-term potentiation produced by theta burst and high frequency stimulation protocols matched in stimulus number. ACTA ACUST UNITED AC 2005; 15:6-13. [PMID: 15878145 DOI: 10.1016/j.brainresprot.2005.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 01/31/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
Theta-burst stimulation (TBS: four pulses at 100 Hz repeated with 200 ms inter-burst-intervals) and another commonly used high-frequency stimulation protocol (HFS: 1 s burst of equally spaced pulses at 100 Hz) were compared for the magnitude of LTP produced in rat hippocampal slices. The total number of pulses applied during tetanus (TET) was either 40, 100, 200, or 300. In a conventional analysis of the last 10 min of the post-TET period, a two-way ANOVA revealed no difference either in LTP of the field excitatory post-synaptic potential (fEPSP) between TBS and HFS or differences across pulse number at 40, 100, or 200 pulses. At 300 pulses, there was a significant main effect by pulse number but not by protocol. A linear regression analysis showed that stimulation protocol accounted for only about 10% of the change in magnitude while pulse number contributed to 30% of the change. However, when an extended analysis of the same data was performed across the entire post-TET period with a repeated-measure ANOVA, a small but persistent increase in TBS over HFS at 200 pulses was significant. A difference between TBS and HFS at 300 pulses that occurred only during the early phase of LTP was also significant. These results suggest that, over a range of stimuli, the number of pulses in an induction protocol, rather than the pattern of stimulation, determines the magnitude of late phase LTP, while TBS produces greater potentiation than HFS in the early phase of LTP with higher TET number.
Collapse
Affiliation(s)
- Ruben V Hernandez
- Department of Biology and the Cajal Neuroscience Institute, The University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249, USA.
| | | | | | | | | |
Collapse
|
97
|
Abstract
Memory maintenance is widely believed to involve long-term retention of the synaptic weights that are set within relevant neural circuits during learning. However, despite recent exciting technical advances, it has not yet proved possible to confirm experimentally this intuitively appealing hypothesis. Artificial neural networks offer an alternative methodology as they permit continuous monitoring of individual connection weights during learning and retention. In such models, ongoing alterations in connection weights are required if a network is to retain previously stored material while learning new information. Thus, the duration of synaptic change does not necessarily define the persistence of a memory; rather, it is likely that a regulated balance of synaptic stability and synaptic plasticity is required for optimal memory retention in real neuronal circuits.
Collapse
Affiliation(s)
- Wickliffe C Abraham
- Departments of Psychology and Computer Science, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
98
|
Zhang M, Hung FS, Zhu Y, Xie Z, Wang JH. Calcium signal-dependent plasticity of neuronal excitability developed postnatally. ACTA ACUST UNITED AC 2005; 61:277-87. [PMID: 15382030 DOI: 10.1002/neu.20045] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuronal plasticity and its development were investigated at pyramidal neurons in the cortical slices of rats. The threshold and probability of firing spikes were measured by using whole-cell recording to assess neuronal excitability. Postsynaptic high frequency activity (HFA) at the pyramidal neurons, evoked by 20 trains (250-ms interval) of five depolarization-pulses (1 ms) at 100 Hz, persistently lowered the threshold and increased the probability of firing spikes. After long-term enhancement of neuronal excitability by HFA was stable, another HFA induced further enhancement. Infusing 1 mM 1,2-bis(2-aminophenoxy)-ethane-N, N,N',N'-tetraacetic acid or 100 microM CaMKII(281-301) into the recording neurons prevented HFA-induced long-term enhancement of neuronal excitability. The infusion of 40 microM calcineurin autoinhibitory peptide enhanced neuronal excitability, which occluded HFA effect. HFA-induced long-term enhancement of intrinsic excitability expressed at most pyramidal neurons after postnatal day (PND) 14, but not at those before PND 9. Our results show a new type of neuronal plasticity induced by physiological activity at cortical neurons, which requires calcium-dependent protein phosphorylation and develops during postnatal period. An upregulation of intrinsic excitability at cortical neurons facilitates their activity and broadens signal codes; consequently, their computational ability is upgraded.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | |
Collapse
|
99
|
Werk CM, Harbour VL, Chapman CA. Induction of long-term potentiation leads to increased reliability of evoked neocortical spindles in vivo. Neuroscience 2005; 131:793-800. [PMID: 15749334 DOI: 10.1016/j.neuroscience.2004.12.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2004] [Indexed: 11/19/2022]
Abstract
Large amplitude electroencephalographic spindle waves (7-14 Hz) occur spontaneously in the neocortex during both sleep and awake immobility, and it has been proposed that synchronous neuronal activation during spindles may contribute to learning-related synaptic plasticity. Spindles can also be evoked in the sensorimotor cortex by electrical stimulation of cortical or thalamic inputs in the rat. To determine if strengthening cortical synapses can affect the initiation and maintenance of electrically evoked spindles, stimulation pulses were delivered at a range of intensities to the corpus callosum or ventrolateral thalamus in the awake rat before and after the induction of long-term potentiation (LTP) by tetanization of the corpus callosum. The morphology of evoked spindles was similar to that of naturally occurring spindles. Spindles were evoked less reliably during slow-wave sleep than during waking, and this was correlated with smaller synaptic responses during slow-wave sleep. Similar to previous findings, daily tetanization of the corpus callosum for 15 days decreased the early component and increased the late component of synaptic responses evoked by corpus callosum stimulation, but did not significantly affect synaptic responses evoked by thalamic stimulation. Similarly, LTP induction increased the reliability with which low-intensity corpus callosum stimulation evoked spindles, but increases in spindles evoked by thalamic stimulation were not significant. Synaptic potentiation and the increased reliability of spindles developed with a similar time-course over the 15-day LTP induction period. These results reflect strong correlations between the strength of cortical layer V activation and the initiation of spindles in the sensorimotor cortex, and support the idea that monosynaptic and polysynaptic horizontal collaterals of layer V neurons can play a significant role in the initiation of spindles.
Collapse
Affiliation(s)
- C M Werk
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke Street West, Room SP-244, Montreal Quebec, Canada, H4B 1R6
| | | | | |
Collapse
|
100
|
Colgin LL, Kubota D, Jia Y, Rex CS, Lynch G. Long-term potentiation is impaired in rat hippocampal slices that produce spontaneous sharp waves. J Physiol 2004; 558:953-61. [PMID: 15194734 PMCID: PMC1665012 DOI: 10.1113/jphysiol.2004.068080] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sharp waves (SPWs) occur in the hippocampal EEG during behaviours such as alert immobility and slow-wave sleep. Despite their widespread occurrence across brain regions and mammalian species, the functional importance of SPWs remains unknown. Experiments in the present study indicate that long-term potentiation (LTP) is significantly impaired in slices, prepared from the temporal aspect of rat hippocampus, that spontaneously generate SPW activity. This was probably not due to anatomical and/or biochemical abnormalities in temporal slices because stable LTP was uncovered in field CA1 when SPWs were eliminated by severing the projection from CA3. The same procedure did not alter LTP in slices lacking SPWs. Robust and stable LTP was obtained in the presence of SPWs in slices treated with an adenosine A1 receptor antagonist, a finding that links the present results to mechanisms related to the LTP reversal effect. In accord with this, single stimulation pulses delivered intermittently in a manner similar to the SPW pattern interfered with LTP to a similar degree as spontaneous SPWs. Taken together, these results suggest the possibility that SPWs in the hippocampus constitute a neural mechanism for forgetting.
Collapse
Affiliation(s)
- Laura Lee Colgin
- 101 Theory, No. 250, Department of Psychiatry and Human Behaviour, University of California, Irvine, CA 92612-1695, USA.
| | | | | | | | | |
Collapse
|