51
|
Eckert MJ, Abraham WC. Physiological effects of enriched environment exposure and LTP induction in the hippocampus in vivo do not transfer faithfully to in vitro slices. Learn Mem 2010; 17:480-4. [PMID: 20861169 DOI: 10.1101/lm.1822610] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of experimental paradigms use in vitro brain slices to test for changes in synaptic transmission and plasticity following a behavioral manipulation. For example, a number of previous studies have reported a variety of effects of environmental enrichment (EE) exposure on field potential responses in hippocampal slices, but in no study was is it known what changes had been elicited in vivo. In the present study, we recorded from the hippocampus in vivo while rats underwent a brief period of EE. There was no detectable EE-induced change in synaptic efficacy in the dentate gyrus in vivo, but there was an increase in cellular excitability. In slices prepared from the same animals, we failed to observe any evidence of the excitability increase. We next tested whether LTP induction in vivo was better preserved in vitro. However, when slices from these rats were examined, there was no observable change in perforant path synaptic strength, although there was a modest increase in excitability that correlated with the increased excitability observed in vivo. These findings suggest that synaptic changes induced in vivo either are not preserved faithfully or are difficult to detect in hippocampal slices, while changes in cellular excitability are better preserved.
Collapse
Affiliation(s)
- Michael J Eckert
- Department of Psychology and the Brain Health and Repair Research Centre, University of Otago, Dunedin 9054, New Zealand.
| | | |
Collapse
|
52
|
Bidirectional regulation of hippocampal long-term synaptic plasticity and its influence on opposing forms of memory. J Neurosci 2010; 30:3813-25. [PMID: 20220016 DOI: 10.1523/jneurosci.1330-09.2010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Reference memory characterizes the long-term storage of information acquired through numerous trials. In contrast, working memory represents the short-term acquisition of trial-unique information. A number of studies in the rodent hippocampus have focused on the contribution of long-term synaptic potentiation (LTP) to long-term reference memory. In contrast, little is known about the synaptic plasticity correlates of hippocampal-based components of working memory. Here, we described a mouse with selective expression of a dominant-negative mutant of the regulatory subunit of protein kinase A (PKA) only in two regions of the hippocampus, the dentate gyrus and area CA1. This mouse showed a deficit in several forms of LTP in both hippocampal subregions and a lowered threshold for the consolidation of long-term synaptic depression (LTD). When trained with one trial per day in a water maze task, mutant mice displayed a deficit in consolidation of long-term memory. In contrast, these mice proved to be more flexible after a transfer test and also showed a delay-dependent increased performance in working memory, when repetitive information (proactive interference) was presented. We suggest that through its bidirectional control over synaptic plasticity PKA can regulate opposing forms of memory. The defect in L-LTP disrupts long-term memory consolidation. The persistence of LTD may allow acquisition of new information by restricting the body of previously stored information and suppressing interference.
Collapse
|
53
|
Almaguer-Melian W, Bergado JA, López-Rojas J, Frey S, Frey JU. Differential effects of electrical stimulation patterns, motivational-behavioral stimuli and their order of application on functional plasticity processes within one input in the dentate gyrus of freely moving rats in vivo. Neuroscience 2010; 165:1546-58. [PMID: 19963044 DOI: 10.1016/j.neuroscience.2009.11.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/06/2009] [Accepted: 11/27/2009] [Indexed: 11/28/2022]
|
54
|
Gladding CM, Fitzjohn SM, Molnár E. Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol Rev 2009; 61:395-412. [PMID: 19926678 PMCID: PMC2802426 DOI: 10.1124/pr.109.001735] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to modify synaptic transmission between neurons is a fundamental process of the nervous system that is involved in development, learning, and disease. Thus, synaptic plasticity is the ability to bidirectionally modify transmission, where long-term potentiation and long-term depression (LTD) represent the best characterized forms of plasticity. In the hippocampus, two main forms of LTD coexist that are mediated by activation of either N-methyl-d-aspartic acid receptors (NMDARs) or metabotropic glutamate receptors (mGluRs). Compared with NMDAR-LTD, mGluR-LTD is less well understood, but recent advances have started to delineate the underlying mechanisms. mGluR-LTD at CA3:CA1 synapses in the hippocampus can be induced either by synaptic stimulation or by bath application of the group I selective agonist (R,S)-3,5-dihydroxyphenylglycine. Multiple signaling mechanisms have been implicated in mGluR-LTD, illustrating the complexity of this form of plasticity. This review provides an overview of recent studies investigating the molecular mechanisms underlying hippocampal mGluR-LTD. It highlights the role of key molecular components and signaling pathways that are involved in the induction and expression of mGluR-LTD and considers how the different signaling pathways may work together to elicit a persistent reduction in synaptic transmission.
Collapse
Affiliation(s)
- Clare M Gladding
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
55
|
Hagena H, Manahan-Vaughan D. Frequency facilitation at mossy fiber-CA3 synapses of freely behaving rats contributes to the induction of persistent LTD via an adenosine-A1 receptor-regulated mechanism. Cereb Cortex 2009; 20:1121-30. [PMID: 19903765 PMCID: PMC2852506 DOI: 10.1093/cercor/bhp184] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Frequency facilitation (FF), comprising a rapid and multiple-fold increase in the magnitude of evoked field potentials, is elicited by low-frequency stimulation (LFS) at mossy fiber-CA3 synapses. Here, we show that in freely behaving rats, FF reliably occurs in response to 1 and 2Hz but not in response to 0.25-, 0.3-, or 0.5-Hz LFS. Strikingly, prolonged (approximately 600 s) FF was tightly correlated to the induction of long-term depression (LTD) in freely moving animals. Although LFS at 2 Hz elicited unstable FF and unstable LTD, application of LFS at 1 Hz elicited pronounced FF, as well as robust LTD that persisted for over 24 h. This correlation of prolonged FF with LTD was absent at stimulation frequencies that did not induce FF. The adenosine-A1 receptor appears to participate in these effects: Application of adenosine-A1, but not adenosine-A3, receptor antagonists enhanced mossy fiber synaptic transmission and occluded FF. Furthermore, adenosine-A1 receptor antagonism resulted in more stable FF at 1 or 2 Hz and elicited more potent LTD. These data support the fact that FF contributes to the enablement of long-term information storage at mossy fiber-CA3 synapses and that the adenosine-A1 receptor may regulate the thresholds for this process.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Experimental Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
56
|
Abstract
Metaplasticity refers to an activity-dependent regulation of the plastic state of neurons. In this issue of Neuron, Dunfield and Haas demonstrate that in intact developing brain circuits, specific patterns of visual stimulation drive functional plasticity of individual neurons with variable outcomes, predisposed by time-averaged postsynaptic activity recent to visual training.
Collapse
Affiliation(s)
- Sheng-zhi Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
57
|
Hosseinmardi N, Fathollahi Y, Naghdi N, Javan M. Theta pulse stimulation: A natural stimulus pattern can trigger long-term depression but fails to reverse long-term potentiation in morphine withdrawn hippocampus area CA1. Brain Res 2009; 1296:1-14. [DOI: 10.1016/j.brainres.2009.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/21/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
|
58
|
Abstract
Background Theta rhythm in the hippocampal formation is a main feature of exploratory behaviour and is believed to enable the encoding of new spatial information and the modification of synaptic weights. Cyclic changes of dentate gyrus excitability during theta rhythm are related to its function, but whether theta epochs per se are able to alter network properties of dentate gyrus for long time-periods is still poorly understood. Methodology/Principal Findings We used low-frequency stimulation protocols that amplify the power of endogenous theta oscillations, in order to estimate the plasticity effect of endogenous theta oscillations on a population level. We found that stimulation-induced augmentation of the theta rhythm is linked to a subsequent increase of neuronal excitability and decrease of the synaptic response. This EPSP-to-Spike uncoupling is related to an increased postsynaptic spiking on the positive phases of theta frequency oscillations. Parallel increase of the field EPSP slope and the population spike occurs only after concurrent pre- and postsynaptic activation. Furthermore, we observed that long-term potentiation (>24 h) occurs in the dentate gyrus of freely behaving adult rats after phasic activity of entorhinal afferents in the theta-frequency range. This plasticity is proportional to the field bursting activity of granule cells during the stimulation, and may comprise a key step in spatial information transfer. Long-term potentiation of the synaptic component occurs only when the afferent stimulus precedes the evoked population burst, and is input-specific. Conclusions/Significance Our data confirm the role of the dentate gyrus in filtering information to the subsequent network during the activated state of the hippocampus.
Collapse
|
59
|
Prakash S, Ambrosio E, Alguacil L, del Olmo N. Genetic differences in hippocampal synaptic plasticity. Neuroscience 2009; 161:342-6. [DOI: 10.1016/j.neuroscience.2009.03.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 03/11/2009] [Accepted: 03/24/2009] [Indexed: 11/28/2022]
|
60
|
Tadavarty R, Kaan T, Sastry B. Long-term depression of excitatory synaptic transmission in rat hippocampal CA1 neurons following sleep-deprivation. Exp Neurol 2009; 216:239-42. [DOI: 10.1016/j.expneurol.2008.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/12/2008] [Accepted: 11/19/2008] [Indexed: 01/12/2023]
|
61
|
G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation. Proc Natl Acad Sci U S A 2008; 106:635-40. [PMID: 19118199 DOI: 10.1073/pnas.0811685106] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Excitatory synapses in the brain undergo activity-dependent changes in the strength of synaptic transmission. Such synaptic plasticity as exemplified by long-term potentiation (LTP) is considered a cellular correlate of learning and memory. The presence of G protein-activated inwardly rectifying K(+) (GIRK) channels near excitatory synapses on dendritic spines suggests their possible involvement in synaptic plasticity. However, whether activity-dependent regulation of GIRK channels affects excitatory synaptic plasticity is unknown. In a companion article we have reported activity-dependent regulation of GIRK channel density in cultured hippocampal neurons that requires activity of NMDA receptors (NMDAR) and protein phosphatase-1 (PP1) and takes place within 15 min. In this study, we performed whole-cell recordings of cultured hippocampal neurons and found that NMDAR activation increases basal GIRK current and GIRK channel activation mediated by adenosine A(1) receptors, but not GABA(B) receptors. Given the similar involvement of NMDARs, adenosine A(1) receptors, and PP1 in depotentiation of LTP caused by low-frequency stimulation that immediately follows LTP-inducing high-frequency stimulation, we wondered whether NMDAR-induced increase in GIRK channel surface density and current may contribute to the molecular mechanisms underlying this specific depotentiation. Remarkably, GIRK2 null mutation or GIRK channel blockade abolishes depotentiation of LTP, demonstrating that GIRK channels are critical for depotentiation, one form of excitatory synaptic plasticity.
Collapse
|
62
|
Artola A. Diabetes-, stress- and ageing-related changes in synaptic plasticity in hippocampus and neocortex — The same metaplastic process? Eur J Pharmacol 2008; 585:153-62. [DOI: 10.1016/j.ejphar.2007.11.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/04/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
|
63
|
Nicholls RE, Alarcon JM, Malleret G, Carroll RC, Grody M, Vronskaya S, Kandel ER. Transgenic Mice Lacking NMDAR-Dependent LTD Exhibit Deficits in Behavioral Flexibility. Neuron 2008; 58:104-17. [DOI: 10.1016/j.neuron.2008.01.039] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/20/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
64
|
Impaired fear memory, altered object memory and modified hippocampal synaptic plasticity in split-brain mice. Brain Res 2008; 1210:179-88. [PMID: 18417102 DOI: 10.1016/j.brainres.2008.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 03/04/2008] [Accepted: 03/04/2008] [Indexed: 12/31/2022]
Abstract
The hippocampus is critical for memory formation. However, the contributions of the hippocampal commissure (HC) and the corpus callosum (CC) are less clear. To elucidate the role of the forebrain commissures in learning and memory, we performed a behavioural and electrophysiological characterization of an inbred mouse strain that displays agenesis of the CC and congenitally reduced HC (BTBR T+ tf/J; 'BTBR'). Compared to a control strain, BTBR mice have severely impaired contextual fear memory, with normal object recognition memory. Interestingly, continuous environmental "enrichment" significantly increased object recognition in BTBR, but not in control C57BL/6 ('BL/6') mice. In area CA1 of hippocampal slices, BTBR displayed intact expression of long-term potentiation (LTP), paired-pulse facilitation (PPF) and basal synaptic transmission, compared to BL/6 mice. However, BTBR hippocampal slices show an increased susceptibility to depotentiation (DPT), an activity-induced reversal of LTP. We conclude that the HC and CC are critical for some forms of hippocampal memory and for synaptic resistance to DPT. Agenesis of the CC and HC may unmask some latent ability to encode, store or retrieve certain forms of recognition memory. We suggest that the increased susceptibility to DPT in BTBR may underlie the memory phenotype reported here.
Collapse
|
65
|
Neves G, Cooke SF, Bliss TVP. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 2008; 9:65-75. [PMID: 18094707 DOI: 10.1038/nrn2303] [Citation(s) in RCA: 835] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two facts about the hippocampus have been common currency among neuroscientists for several decades. First, lesions of the hippocampus in humans prevent the acquisition of new episodic memories; second, activity-dependent synaptic plasticity is a prominent feature of hippocampal synapses. Given this background, the hypothesis that hippocampus-dependent memory is mediated, at least in part, by hippocampal synaptic plasticity has seemed as cogent in theory as it has been difficult to prove in practice. Here we argue that the recent development of transgenic molecular devices will encourage a shift from mechanistic investigations of synaptic plasticity in single neurons towards an analysis of how networks of neurons encode and represent memory, and we suggest ways in which this might be achieved. In the process, the hypothesis that synaptic plasticity is necessary and sufficient for information storage in the brain may finally be validated.
Collapse
Affiliation(s)
- Guilherme Neves
- Division of Neurophysiology, Medical Research Council National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | |
Collapse
|
66
|
Rex CS, Lin CY, Kramár EA, Chen LY, Gall CM, Lynch G. Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J Neurosci 2007; 27:3017-29. [PMID: 17360925 PMCID: PMC6672589 DOI: 10.1523/jneurosci.4037-06.2007] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an extremely potent, positive modulator of theta burst induced long-term potentiation (LTP) in the adult hippocampus. The present studies tested whether the neurotrophin exerts its effects by facilitating cytoskeletal changes in dendritic spines. BDNF caused no changes in phalloidin labeling of filamentous actin (F-actin) when applied alone to rat hippocampal slices but markedly enhanced the number of densely labeled spines produced by a threshold level of theta burst stimulation. Conversely, the BDNF scavenger TrkB-Fc completely blocked increases in spine F-actin produced by suprathreshold levels of theta stimulation. TrkB-Fc also blocked LTP consolidation when applied 1-2 min, but not 10 min, after theta trains. Additional experiments confirmed that p21 activated kinase and cofilin, two actin-regulatory proteins implicated in spine morphogenesis, are concentrated in spines in mature hippocampus and further showed that both undergo rapid, dose-dependent phosphorylation after infusion of BDNF. These results demonstrate that the influence of BDNF on the actin cytoskeleton is retained into adulthood in which it serves to positively modulate the time-dependent LTP consolidation process.
Collapse
Affiliation(s)
| | | | - Eniko A. Kramár
- Psychiatry and Human Behavior, University of California, Irvine, Irvine, California 92697-4292
| | | | - Christine M. Gall
- Departments of Neurobiology and Behavior
- Anatomy and Neurobiology, and
| | - Gary Lynch
- Psychiatry and Human Behavior, University of California, Irvine, Irvine, California 92697-4292
| |
Collapse
|
67
|
Fusi S, Abbott LF. Limits on the memory storage capacity of bounded synapses. Nat Neurosci 2007; 10:485-93. [PMID: 17351638 DOI: 10.1038/nn1859] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/29/2007] [Indexed: 11/08/2022]
Abstract
Memories maintained in patterns of synaptic connectivity are rapidly overwritten and destroyed by ongoing plasticity related to the storage of new memories. Short memory lifetimes arise from the bounds that must be imposed on synaptic efficacy in any realistic model. We explored whether memory performance can be improved by allowing synapses to traverse a large number of states before reaching their bounds, or by changing the way these bounds are imposed. In the case of hard bounds, memory lifetimes grow proportional to the square of the number of synaptic states, but only if potentiation and depression are precisely balanced. Improved performance can be obtained without fine tuning by imposing soft bounds, but this improvement is only linear with respect to the number of synaptic states. We explored several other possibilities and conclude that improving memory performance requires a more radical modification of the standard model of memory storage.
Collapse
Affiliation(s)
- Stefano Fusi
- Center for Neurobiology and Behavior, Kolb Research Annex, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, New York, New York 10032-2695, USA
| | | |
Collapse
|
68
|
McCutchen E, Scheiderer CL, Dobrunz LE, McMahon LL. Coexistence of muscarinic long-term depression with electrically induced long-term potentiation and depression at CA3-CA1 synapses. J Neurophysiol 2006; 96:3114-21. [PMID: 17005622 DOI: 10.1152/jn.00144.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our laboratory recently characterized a form of long-term depression (LTD) at CA3-CA1 synapses mediated by M1 muscarinic receptors (mAChRs), termed muscarinic LTD (mLTD). mLTD is both activity and NMDAR dependent, characteristics shared by forms of synaptic plasticity thought to be relevant to learning and memory, including long-term potentiation (LTP) induced by high-frequency stimulation (HFS-LTP) and long-term depression induced by low-frequency stimulation (LFS-LTD). However, it remains unclear whether mLTD can occur sequentially with these electrically induced forms of hippocampal plasticity or whether mLTD might interact with them. The first goal of this study was to examine the interplay of mLTD and HFS-LTP. We report that mLTD expression does not alter subsequent induction of HFS-LTP and, further, at synapses expressing HFS-LTP, mLTD can mediate a novel form of depotentiation. The second goal was to determine whether mLTD would alter LFS-LTD induction and/or expression. Although we show that mLTD is occluded by saturation of LFS-LTD, suggesting mechanistic similarity between these two plasticities, saturation of mLTD does not occlude LFS-LTD. Surprisingly, however, the LFS-LTD that follows cholinergic receptor activation is NMDAR independent, indicating that application of muscarinic agonist induces a change in the induction mechanism required for LFS-LTD. These data demonstrate that mLTD can coexist with electrically induced forms of synaptic plasticity and support the hypothesis that mLTD is one of the mechanisms by which the cholinergic system modulates hippocampal function.
Collapse
Affiliation(s)
- Eve McCutchen
- The University of Alabama at Birmingham, 1918 University Blvd, MCLM 964, Birmingham, AL 35294-0005, USA
| | | | | | | |
Collapse
|
69
|
Morris RGM. Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur J Neurosci 2006; 23:2829-46. [PMID: 16819972 DOI: 10.1111/j.1460-9568.2006.04888.x] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 2004 EJN Lecture was an attempt to lay out further aspects of a developing neurobiological theory of hippocampal function [Morris, R.G.M., Moser, E.I., Riedel, G., Martin, S.J., Sandin, J., Day, M. & O'Carroll, C. (2003) Phil. Trans. R. Soc. Lond. B Biol. Sci., 358, 773-786.] These are that (i) activity-dependent synaptic plasticity plays a key role in the automatic encoding and initial storage of attended experience; (ii) the persistence of hippocampal synaptic potentiation over time can be influenced by other independent neural events happening closely in time, an idea with behavioural implications for memory; and (iii) that systems-level consolidation of memory traces within neocortex is guided both by hippocampal traces that have been subject to cellular consolidation and by the presence of organized schema in neocortex into which relevant newly encoded information might be stored. Hippocampal memory is associative and, to study it more effectively than with previous paradigms, a new learning task is described which is unusual in requiring the incidental encoding of flavour-place paired associates, with the readout of successful storage being successful recall of a place given the flavour with which it was paired. NMDA receptor-dependent synaptic plasticity is shown to be critical for the encoding and intermediate storage of memory traces in this task, while AMPA receptor-mediated fast synaptic transmission is necessary for memory retrieval. Typically, these rapidly encoded traces decay quite rapidly over time. Synaptic potentiation also decays rapidly, but can be rendered more persistent by a process of cellular consolidation in which synaptic tagging and capture play a key part in determining whether or not it will be persistent. Synaptic tags set at the time of an event, even many trivial events, can capture the products of the synthesis of plasticity proteins set in train by events before, during or even after an event to be remembered. Tag-protein interactions stabilize synaptic potentiation and, by implication, memory. The behavioural implications of tagging are explored. Finally, using a different protocol for flavour-place paired associate learning, it is shown that rats can develop a spatial schema which represents the relative locations of several different flavours of food hidden at places within a familiar space. This schema is learned gradually but, once acquired, enables new paired associates to be encoded and stored in one trial. Their incorporation into the schema prevents rapid forgetting and suggests that schema play a key and hitherto unappreciated role in systems-level memory consolidation. The elements of what may eventually mature into a more formal neurobiological theory of hippocampal memory are laid out as specific propositions with detailed conceptual discussion and reference to recent data.
Collapse
Affiliation(s)
- R G M Morris
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland.
| |
Collapse
|
70
|
Artola A, von Frijtag JC, Fermont PCJ, Gispen WH, Schrama LH, Kamal A, Spruijt BM. Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment. Eur J Neurosci 2006; 23:261-72. [PMID: 16420435 DOI: 10.1111/j.1460-9568.2005.04552.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Behavioural experience (e.g. chronic stress, environmental enrichment) can have long-lasting effects on cognitive functions. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as hippocampus, we tested whether behaviour has also long-lasting effects on synaptic plasticity by examining the induction of long-term potentiation (LTP) and long-term depression (LTD) in slices of hippocampal CA1 obtained from rats either 7-9 months after social defeat (behavioural stress) or 3-5 weeks after 5-week exposure to environmental enrichment. Compared with age-matched controls, defeated rats showed markedly reduced LTP. LTP was even completely impaired but LTD was enhanced in defeated and, subsequently, individually housed (during the 7-9-month period after defeat) rats. However, increasing stimulus intensity during 100-Hz stimulation resulted in significant LTP. This suggests that the threshold for LTP induction is still raised and that for LTD lowered several months after a short stressful experience. Both LTD and LTP were enhanced in environmentally enriched rats, 3-5 weeks after enrichment, as compared with age-matched controls. Because enrichment reduced paired-pulse facilitation, an increase in presynaptic release, facilitating both LTD and LTP induction, might contribute to enhanced synaptic changes. Consistently, enrichment reduced the number of 100-Hz stimuli required for inducing LTP. But enrichment may also actually enhance the range of synaptic modification. Repeated LTP and LTD induction produced larger synaptic changes in enriched than in control rats. These data reveal that exposure to very different behavioural experiences can produce long-lasting effects on the susceptibility to synaptic plasticity, involving pre- and postsynaptic processes.
Collapse
Affiliation(s)
- Alain Artola
- Department of Animals, Science & Society, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
71
|
Young JZ, Isiegas C, Abel T, Nguyen PV. Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic tagging. Eur J Neurosci 2006; 23:1784-94. [PMID: 16623835 PMCID: PMC2921966 DOI: 10.1111/j.1460-9568.2006.04707.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The late-phase of long-term potentiation (L-LTP) in hippocampal area CA1 requires gene expression and de novo protein synthesis but it is expressed in an input-specific manner. The 'synaptic tag' theory proposes that gene products can only be captured and utilized at synapses that have been 'tagged' by previous activity. The mechanisms underlying synaptic tagging, and its activity dependence, are largely undefined. Previously, we reported that low-frequency stimulation (LFS) decreases the stability of L-LTP in a cell-wide manner by impairing synaptic tagging. We show here that a phosphatase inhibitor, okadaic acid, blocked homosynaptic and heterosynaptic inhibition of L-LTP by prior LFS. In addition, prior LFS homosynaptically and heterosynaptically impaired chemically induced synaptic facilitation elicited by forskolin/3-isobutyl-1-methylxanthine, suggesting that there is a cell-wide dampening of cAMP/protein kinase A (PKA) signaling concurrent with phosphatase activation. We propose that prior LFS impairs expression of L-LTP by inhibiting synaptic tagging through its actions on the cAMP/PKA pathway. In support of this notion, we show that hippocampal slices from transgenic mice that have genetically reduced hippocampal PKA activity display impaired synaptic capture of L-LTP. An inhibitor of PKA, KT-5720, also blocked synaptic capture of L-LTP. Moreover, pharmacological activation of the cAMP/PKA pathway can produce a synaptic tag to capture L-LTP expression, resulting in persistent synaptic facilitation. Collectively, our results show that PKA is critical for synaptic tagging and for input-specific L-LTP. PKA-mediated signaling can be constrained by prior episodes of synaptic activity to regulate subsequent L-LTP expression and perhaps control the integration of multiple synaptic events over time.
Collapse
Affiliation(s)
- Jennie Z. Young
- Centre for Neuroscience, University of Alberta School of Medicine, 7-14 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | - Carolina Isiegas
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Peter V. Nguyen
- Centre for Neuroscience, University of Alberta School of Medicine, 7-14 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
- Departments of Physiology and Psychiatry, University of Alberta School of Medicine, 7-14 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
72
|
Kramár EA, Lin B, Rex CS, Gall CM, Lynch G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc Natl Acad Sci U S A 2006; 103:5579-84. [PMID: 16567651 PMCID: PMC1459396 DOI: 10.1073/pnas.0601354103] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term potentiation (LTP), like memory, becomes progressively more resistant to disruption with time after its formation. Here we show that threshold conditions for inducing LTP cause a rapid, long-lasting increase in polymerized filamentous actin in dendritic spines of adult hippocampus. Two independent manipulations that reverse LTP disrupted this effect when applied shortly after induction but not 30 min later. Function-blocking antibodies to beta1 family integrins selectively eliminated both actin polymerization and stabilization of LTP. We propose that the initial stages of consolidation involve integrin-driven events common to cells engaged in activities that require rapid morphological changes.
Collapse
Affiliation(s)
| | - Bin Lin
- Departments of *Psychiatry and Human Behavior
| | | | - Christine M. Gall
- Anatomy and Neurobiology, and
- Neurobiology and Behavior, University of California, Irvine, CA 92697
- To whom correspondence should be addressed. E-mail:
| | - Gary Lynch
- Departments of *Psychiatry and Human Behavior
| |
Collapse
|
73
|
Gelinas JN, Nguyen PV. Beta-adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. J Neurosci 2006; 25:3294-303. [PMID: 15800184 PMCID: PMC6724894 DOI: 10.1523/jneurosci.4175-04.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) is activity-dependent enhancement of synaptic strength that can critically regulate long-term memory storage. Like memory, LTP exhibits at least two mechanistically distinct temporal phases. Early LTP (E-LTP) does not require protein synthesis, whereas the late phase of LTP (L-LTP), like long-term memory, requires protein synthesis. Hippocampal beta-adrenergic receptors can regulate expression of both E-LTP and long-term memory. Although beta-adrenergic receptor activation enhances the ability of subthreshold stimuli to induce E-LTP, it is unclear whether such activation can facilitate induction of L-LTP. Here, we use electrophysiological recording methods on mouse hippocampal slices to show that when synaptic stimulation that is subthreshold for inducing L-LTP is paired with beta-adrenergic receptor activation, the resulting LTP persists for over 6 h in area CA1. Like L-LTP induced by multiple trains of high-frequency electrical stimulation, this LTP requires protein synthesis. Unlike tetanus-induced L-LTP, however, L-LTP induced by beta-adrenergic receptor activation during subthreshold stimulation appears to involve dendritic protein synthesis but not somatic transcription. Maintenance of this LTP also requires activation of extracellular signal-regulated kinases (ERKs). Thus, beta-adrenergic receptor activation elicits a type of L-LTP that requires translation and ERK activation but not transcription. This form of L-LTP may be a cellular mechanism for facilitation of behavioral long-term memory during periods of heightened emotional arousal that engage the noradrenergic modulatory system.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
74
|
Guan X, Nakauchi S, Sumikawa K. Nicotine reverses consolidated long-term potentiation in the hippocampal CA1 region. Brain Res 2006; 1078:80-91. [PMID: 16564510 DOI: 10.1016/j.brainres.2006.02.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/07/2006] [Accepted: 02/08/2006] [Indexed: 11/15/2022]
Abstract
Long-term potentiation (LTP) has a memory-like consolidation period during which it becomes progressively stabilized. However, it is unknown how the consolidation is achieved. The present study demonstrates that nicotine reverses stabilized LTP in the hippocampal CA1 region, providing the first evidence that consolidated LTP can be reversed. The nicotine-induced reversal appeared to work by reversing cellular processes involved in stabilizing LTP, as LTP was readily induced again after reversal. The effect of nicotine was mediated, in large part, via desensitization of alpha7 nicotinic acetylcholine receptors (nAChRs), as an alpha7 nAChR-selective antagonist mimicked the nicotine effect. A non-selective N-methyl-d-aspartate receptor (NMDAR) antagonist completely abolished the nicotine-induced reversal, whereas an NR2B-containing NMDAR-selective antagonist had no effect. Furthermore, both the protein phosphatase 1/protein phosphatase 2A inhibitor okadaic acid and the protein phosphatase 2B (calcineurin) inhibitor cyclosporin A blocked the nicotine-induced reversal. Taken together, our results suggest that the reversal of stabilized LTP depends on the activation of NR2A-containing NMDARs and dephosphorylation. Thus, the consolidation of LTP appears to be the interruption of signaling leading to NR2A-containing NMDAR-dependent activation of protein phosphatases, which can be circumvented by nicotine-induced signaling. LTP induced in chronic nicotine-treated hippocampi contained a component that is immune to reversal, and thus acute nicotine was no longer effective to reverse consolidated LTP. These results demonstrate the differential effects of acute and chronic nicotine exposure on the cellular processes that are potentially involved in learning and memory.
Collapse
Affiliation(s)
- Xin Guan
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | | | |
Collapse
|
75
|
Young JZ, Nguyen PV. Homosynaptic and heterosynaptic inhibition of synaptic tagging and capture of long-term potentiation by previous synaptic activity. J Neurosci 2006; 25:7221-31. [PMID: 16079404 PMCID: PMC6725232 DOI: 10.1523/jneurosci.0909-05.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) is an enhancement of synaptic strength that may contribute to information storage in the mammalian brain. LTP expression can be regulated by previous synaptic activity, a process known as "metaplasticity." Cell-wide occurrence of metaplasticity may regulate synaptic strength. However, few reports have demonstrated metaplasticity at synapses that are silent during activity at converging synaptic inputs. We describe a novel form of cell-wide metaplasticity in hippocampal area CA1. Low-frequency stimulation (LFS) decreased the stability of long-lasting LTP ["late" LTP (L-LTP)] induced later at the same inputs (homosynaptic inhibition) and at other inputs converging on the same postsynaptic cells (heterosynaptic inhibition). Significantly, heterosynaptic inhibition of L-LTP also occurred across basal and apical dendrites ("heterodendritic" inhibition). Because transient early LTP (E-LTP) was not affected by previous LFS, we examined the effects of LFS on the consolidation of E-LTP to L-LTP. The duration of E-LTP induced at one set of inputs can be extended by capturing L-LTP-associated gene products generated by previous activity at other inputs to the same postsynaptic neurons. LFS applied homosynaptically or heterosynaptically before L-LTP induction did not impair synaptic capture by subsequent E-LTP stimulation, suggesting that LFS does not impair L-LTP-associated transcription. In contrast, LFS applied just before E-LTP (homosynaptically or heterosynaptically) prevented synaptic tagging, and capture of L-LTP expression. Thus, LFS inhibits synaptic tagging to impair expression of subsequent L-LTP. Such anterograde inhibition represents a novel way in which synaptic activity can regulate the expression of future long-lasting synaptic plasticity in a cell-wide manner.
Collapse
Affiliation(s)
- Jennie Z Young
- Laboratory of Synaptic Plasticity, University of Alberta School of Medicine, Edmonton, Alberta, T6G 2H7, Canada
| | | |
Collapse
|
76
|
Mellentin C, Møller M, Jahnsen H. Properties of long-term synaptic plasticity and metaplasticity in organotypic slice cultures of rat hippocampus. Exp Brain Res 2005; 170:522-31. [PMID: 16328258 DOI: 10.1007/s00221-005-0236-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate whether synaptic plasticity and metaplasticity in slice cultures of the young rat hippocampus were comparable to previously reported synaptic plasticity and metaplasticity in acute adult hippocampal slices. This is relevant since differences do exist between the preparations as a result of age and the ex vivo maintenance. We prepared and maintained slice cultures from 5- to 6-day-old rats according to the porous membrane method. After 12-16 days in vitro, extracellular low-frequency stimulation (LFS) and high-frequency stimulation (HFS) protocols were applied to the Schaffer collaterals, and extracellular field potentials were recorded in area CA1. LFS and HFS induced long-term depression (LTD) and long-term potentiation (LTP), respectively. LTP could be reversed by LFS, as could LTD by HFS 60 min after induction. Plotting the amount of LTD and LTP versus stimulation protocol demonstrated frequency-dependence of the sign and extent of plasticity. Priming activation of group 1 metabotropic glutamate receptors (mGluRs) with DHPG facilitated subsequent LTP, revealing a metaplastic effect similar to that observed in acute slices. Immunohistochemistry for group 1 mGluR subtypes mGluR1alpha and mGluR5 showed both receptors to be present in these cultures. We conclude that synaptic plasticity and mGluR-mediated metaplasticity are largely comparable to those effects found in acute in vitro techniques.
Collapse
Affiliation(s)
- Christian Mellentin
- Division of Neurophysiology, Department of Medical Physiology, Panum Institute, 16.5, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
| | | | | |
Collapse
|
77
|
Delgado JY, O'dell TJ. Long-term potentiation persists in an occult state following mGluR-dependent depotentiation. Neuropharmacology 2005; 48:936-48. [PMID: 15857620 DOI: 10.1016/j.neuropharm.2005.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 01/05/2005] [Accepted: 01/20/2005] [Indexed: 11/30/2022]
Abstract
Depotentiation, the reversal of long-term potentiation (LTP), can be induced by activation of metabotropic glutamate receptors (mGluRs) or NMDA receptors (NMDARs). Although NMDAR-dependent depotentiation is due to a protein phosphatase-dependent erasure of LTP, the notion that mGluR-dependent depotentiation also involves LTP erasure is controversial. To address this issue we used electrophysiological and biochemical approaches to investigate mGluR-dependent depotentiation in hippocampal slices. Activating group I mGluRs with (R,S)-3,5-dihydroxyphenylglycine (DHPG) induced robust depotentiation in both the CA1 and CA3 regions of hippocampal slices. Western immunoblotting of samples prepared from DHPG-treated slices revealed, however, that activation of group I mGluRs causes a transient increase in phosphorylation of AMPA receptor GluR1 subunits at sites crucial for LTP and under some conditions causes persistent activation of alphaCamKII. The paradoxical ability of DHPG to induce depotentiation while at the same time activating signaling pathways involved in LTP suggests that LTP might not be erased by mGluR-dependent depotentiation. Consistent with this, DHPG-induced depotentiation did not restore the ability of high-frequency stimulation to induce LTP at synapses that had previously undergone saturating levels of LTP. In addition, blocking the expression of DHPG-induced LTD revealed hidden LTP at depotentiated synapses. Our results indicate that LTP and mGluR-dependent LTD can co-exist at excitatory synapses.
Collapse
Affiliation(s)
- Jary Y Delgado
- Interdepartmental PhD Program for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
78
|
Kim JJ, Jung MW. Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev 2005; 30:188-202. [PMID: 16120461 PMCID: PMC4342048 DOI: 10.1016/j.neubiorev.2005.06.005] [Citation(s) in RCA: 425] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/28/2005] [Accepted: 06/30/2005] [Indexed: 11/30/2022]
Abstract
Pavlovian or classical fear conditioning is recognized as a model system to investigate the neurobiological mechanisms of learning and memory in the mammalian brain and to understand the root of fear-related disorders in humans. In recent decades, important progress has been made in delineating the essential neural circuitry and cellular-molecular mechanisms of fear conditioning. Converging lines of evidence indicate that the amygdala is necessarily involved in the acquisition, storage and expression of conditioned fear memory, and long-term potentiation (LTP) in the lateral nucleus of the amygdala is often proposed as the underlying synaptic mechanism of associative fear memory. Recent studies further implicate the prefrontal cortex-amygdala interaction in the extinction (or inhibition) of conditioned fear. Despite these advances, there are unresolved issues and findings that challenge the validity and sufficiency of the current amygdalar LTP hypothesis of fear conditioning. The purpose of this review is to critically evaluate the strengths and weaknesses of evidence indicating that fear conditioning depend crucially upon the amygdalar circuit and plasticity.
Collapse
Affiliation(s)
- Jeansok J Kim
- Department of Psychology and Program in Neurobiology & Behavior, University of Washington, Guthrie Hall, Seattle, WA 98195-1525, USA.
| | | |
Collapse
|
79
|
O'Connor DH, Wittenberg GM, Wang SSH. Dissection of Bidirectional Synaptic Plasticity Into Saturable Unidirectional Processes. J Neurophysiol 2005; 94:1565-73. [PMID: 15800079 DOI: 10.1152/jn.00047.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In populations of synapses, overall synaptic strength can undergo either a net strengthening (long-term potentiation) or weakening (long-term depression). These phenomena have distinct induction pathways, but the functional outcome is usually measured as a single lumped quantity. In hippocampal CA3-CA1 synapses, we took two approaches to study the activity dependence of each phenomenon in isolation. First, we selectively blocked one process by applying kinase or phosphatase inhibitors known, respectively, to block potentiation or depression. Second, we saturated depression or potentiation and examined the activity dependence of the converse process. The resulting unidirectional learning rules could be recombined to give a well-known bidirectional frequency-dependent learning rule under the assumption that when both pathways are activated kinases dominate, resulting in potentiation. Saturation experiments revealed an additional process in which potentiated synapses can be locked at high strength. Saturability of the components of plasticity implies that the amount of plasticity contributed by each pathway depends on the initial level of strength of the synapses. Variation in the distribution of initial synaptic strengths predicts a form of metaplasticity and can account for differences in learning rules observed under several physiological and genetic manipulations.
Collapse
Affiliation(s)
- Daniel H O'Connor
- Department of Molecular Biology and Program in Neuroscience, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
80
|
Artola A, Kamal A, Ramakers GMJ, Biessels GJ, Gispen WH. Diabetes mellitus concomitantly facilitates the induction of long-term depression and inhibits that of long-term potentiation in hippocampus. Eur J Neurosci 2005; 22:169-78. [PMID: 16029206 DOI: 10.1111/j.1460-9568.2005.04205.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Memory impairments, which occur regularly across species as a result of ageing, disease (such as diabetes mellitus) and psychological insults, constitute a useful area for investigating the neurobiological basis of learning and memory. Previous studies in rats found that induction of diabetes (with streptozotocin, STZ) impairs long-term potentiation (LTP) but enhances long-term depression (LTD) induced by high- (HFS) and low-frequency stimulations (LFS), respectively. Using a pairing protocol under whole-cell recording conditions to induce synaptic plasticity at Schaffer collateral synapses in hippocampal CA1 slices, we show that LTD and LTP have similar magnitudes in diabetic and age-matched control rats. But, in diabetic animals, LTD is induced at more polarized and LTP more depolarized membrane potentials (V(ms)) compared with controls: diabetes produces a 10 mV leftward shift in the threshold for LTD induction and 10 mV rightward shift in the LTD-LTP crossover point of the voltage-response curve for synaptic plasticity. Prior repeated short-term potentiations or LTP are known to similarly, though reversibly, lower the threshold for LTD induction and raise that for LTP induction. Thus, diabetes- and activity-dependent modulation of synaptic plasticity (referred to as metaplasticity) display similar phenomenologies. In addition, compared with naïve synapses, prior induction of LTP produces a 10 mV leftward shift in Vms for inducing subsequent LTD in control but not in diabetic rats. This could indicate that diabetes acts on synaptic plasticity through mechanisms involved in metaplasticity. Persistent facilitation of LTD and inhibition of LTP may contribute to learning and memory impairments associated with diabetes mellitus.
Collapse
Affiliation(s)
- A Artola
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
81
|
Fusi S, Drew PJ, Abbott LF. Cascade models of synaptically stored memories. Neuron 2005; 45:599-611. [PMID: 15721245 DOI: 10.1016/j.neuron.2005.02.001] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 11/12/2004] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
Storing memories of ongoing, everyday experiences requires a high degree of plasticity, but retaining these memories demands protection against changes induced by further activity and experience. Models in which memories are stored through switch-like transitions in synaptic efficacy are good at storing but bad at retaining memories if these transitions are likely, and they are poor at storage but good at retention if they are unlikely. We construct and study a model in which each synapse has a cascade of states with different levels of plasticity, connected by metaplastic transitions. This cascade model combines high levels of memory storage with long retention times and significantly outperforms alternative models. As a result, we suggest that memory storage requires synapses with multiple states exhibiting dynamics over a wide range of timescales, and we suggest experimental tests of this hypothesis.
Collapse
Affiliation(s)
- Stefano Fusi
- Institute of Physiology, University of Bern, Bühlplatz 5, CH-3012, Bern, Switzerland
| | | | | |
Collapse
|
82
|
Affiliation(s)
- C F Stevens
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
83
|
Fonseca R, Nägerl UV, Morris RGM, Bonhoeffer T. Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 2005; 44:1011-20. [PMID: 15603743 DOI: 10.1016/j.neuron.2004.10.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/07/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
The persistence of synaptic potentiation in the hippocampus is known to depend on transcription and protein synthesis. We report here that, under regimes of reduced protein synthesis, competition between synapses for the relevant intracellular proteins can be demonstrated. Under such circumstances, the induction of additional protein synthesis-dependent long-term potentiation for a given set of postsynaptic neurons occurs at the expense of the maintenance of prior potentiation on an independent pathway. This new phenomenon, which we call "competitive maintenance," has important functional consequences, and it may be explained in terms of dynamic interactions between synapses and "plasticity factors" over extended periods of time.
Collapse
Affiliation(s)
- Rosalina Fonseca
- Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 München-Martinsried, Germany
| | | | | | | |
Collapse
|
84
|
Hu B, Karnup S, Zhou L, Stelzer A. Reversal of Hippocampal LTP by Spontaneous Seizure-Like Activity: Role of Group I mGluR and Cell Depolarization. J Neurophysiol 2005; 93:316-36. [PMID: 15282258 DOI: 10.1152/jn.00172.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Memory impairment is a common consequence of epileptic seizures. The hippocampal formation is particularly prone to seizure-induced amnesia due to its prominent role in mnemonic processes. We used the isolated CA1 slice preparation to examine effects of seizure-like activity on hippocampal plasticity, long-term potentiation (LTP), and long-term depression (LTD). Repeated spontaneous ictal events, generated in the presence of antagonists of GABAA receptor function, led to a stepwise erasure of LTP (termed spontaneous depotentiation, SDP). SDP could be initiated at various stages of LTP consolidation (tested ≤120 min after the induction of LTP). Renewed tetanic stimulation re-established LTP. SDP was remarkably specific: baseline transmission and other forms of hippocampal plasticity, i.e., Ca2+-induced LTP and two forms of LTD [(RS)-3,5-dihydroxyphenyglycine (DHPG) mediated and low-frequency stimulation mediated] were not affected by the same type of seizure activity. SDP was blocked in the presence of the group I mGluR antagonist ( S)-4-carboxyphenylglycine. The mGluR1 antagonist ( S)-(+)-α-amino-methylbenzeneacetic acid blocked ∼80%, the mGluR5-specific antagonist 2-methyl-6-(phenylethynyl)-pyridine ∼30% of SDP. Most efficient implementation of SDP was observed during seizures in the combined presence of the group I mGluR agonist DHPG and the GABAA antagonist bicuculline. However, similar ictal activity generated in the presence of DHPG alone did not lead to SDP in the vast majority of recordings. Complete disinhibition and at least partial activation of group I mGluR were necessary conditions for the induction of SDP. The depotentiating pharmacological conditions were accompanied by tonic membrane depolarization of CA1 pyramidal cells. Since hyperpolarization (by negative current injection) prevented intracellular SDP under depotentiating pharmacological conditions and depolarization (by positive current injection) led to selective intracellular SDP in the non-depotentiating seizure protocol of DHPG, it is concluded that cell depolarization was a sufficient condition for seizure-like activity to reverse hippocampal LTP.
Collapse
Affiliation(s)
- Bin Hu
- Department of Physiology and Pharmacology, State University of New York, 450 Clarkson Ave., Box 29, Brooklyn, New York 11203, USA
| | | | | | | |
Collapse
|
85
|
Diamond DM, Park CR, Campbell AM, Woodson JC. Competitive interactions between endogenous LTD and LTP in the hippocampus underlie the storage of emotional memories and stress-induced amnesia. Hippocampus 2005; 15:1006-25. [PMID: 16086429 DOI: 10.1002/hipo.20107] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This speculative review serves two purposes. First, it as an extension of the ideas we developed in a previous review (Diamond et al., Hippocampus, 2004;14:281-291), and second, it is a rebuttal to Abraham's (Hippocampus, 2004;14:675-676) critique of that review. We had speculated on the functional significance of the finding that post-training LTP induction produces retrograde amnesia. We noted the similarities between the findings that strong tetanizing stimulation can produce LTP and retrograde amnesia, and that a strong emotional experience can produce a long-lasting memory and retrograde amnesia, as well. The commonalities between LTP induction and emotional learning provided the basis of our hypothesis that an emotional experience generates endogenous LTD/depotentiation, which reverses synaptic plasticity formed during previous learning experiences, and endogenous LTP, which underlies the storage of new information. Abraham raised several concerns with our review, including the criticism that our speculation "falters because there is no evidence that stress causes LTD or depotentiation," and that research on stress and hippocampus has "failed to report any LTP-like changes." Abraham's points are well-taken because stress, in isolation, does not appear to generate long-lasting changes in baseline measures of hippocampal excitability. Here, within the context of a reply to Abraham's critique, we have provided a review of the literature on the influence of stress, novelty, fear conditioning, and the retrieval of emotional memories on cognitive and physiological measures of hippocampal functioning. An emphasis of this review is our hypothesis that endogenous forms of depotentiation, LTD and LTP are generated only when arousing experiences occur in conjunction with memory-related activation of the hippocampus and amygdala. We conclude with speculation that interactions among the different forms of endogenous plasticity underlie a form of competition by synapses and memories for access to retrieval resources.
Collapse
Affiliation(s)
- David M Diamond
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA.
| | | | | | | |
Collapse
|
86
|
Abstract
LTP and LTD, the long-term potentiation and depression of excitatory synaptic transmission, are widespread phenomena expressed at possibly every excitatory synapse in the mammalian brain. It is now clear that "LTP" and "LTD" are not unitary phenomena. Their mechanisms vary depending on the synapses and circuits in which they operate. Here we review those forms of LTP and LTD for which mechanisms have been most firmly established. Examples are provided that show how these mechanisms can contribute to experience-dependent modifications of brain function.
Collapse
Affiliation(s)
- Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
87
|
Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity. BMC Neurosci 2004; 5:44. [PMID: 15538948 PMCID: PMC535344 DOI: 10.1186/1471-2202-5-44] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 11/11/2004] [Indexed: 11/28/2022] Open
Abstract
Background Knowledge of how synapses alter their efficiency of communication is central to the understanding of learning and memory. The most extensively studied forms of synaptic plasticity are long-term potentiation (LTP) and its counterpart long-term depression (LTD) of AMPA receptor-mediated synaptic transmission. In the CA1 region of the hippocampus, it has been shown that LTP often involves a rapid increase in the unitary conductance of AMPA receptor channels. However, LTP can also occur in the absence of any alteration in AMPA receptor unitary conductance. In the present study we have used whole-cell dendritic recording, failures analysis and non-stationary fluctuation analysis to investigate the mechanism of depotentiation of LTP. Results We find that when LTP involves an increase in unitary conductance, subsequent depotentiation invariably involves the return of unitary conductance to pre-LTP values. In contrast, when LTP does not involve a change in unitary conductance then depotentiation also occurs in the absence of any change in unitary conductance, indicating a reduction in the number of activated receptors as the most likely mechanism. Conclusions These data show that unitary conductance can be bi-directionally modified by synaptic activity. Furthermore, there are at least two distinct mechanisms to restore synaptic strength from a potentiated state, which depend upon the mechanism of the previous potentiation.
Collapse
|
88
|
Abstract
Persistent activity-induced synaptic modification is generally regarded as the cellular basis for developmental refinement of neuronal connections and for learning and memory. It has long been recognized that synaptic modifications can be reversed by subsequent stimuli. Recent in vivo studies indicate that reversal of synaptic modifications is a natural process that can be triggered by physiological activity. Long-term potentiation (LTP) of hippocampal synapses in adult rats was reversed as rats entered a novel environment. LTP of retinotectal synapses in developing Xenopus was also reversed by subsequent spontaneous activity. Repetitive stimulation with spaced patterns, however, can overcome this reversal, leading to stabilized synaptic modifications. The requirement of spaced stimulus patterns for stable synaptic modifications could ensure appropriate refinement of developing connections.
Collapse
Affiliation(s)
- Qiang Zhou
- Division of Neurobiology, Department of Molecular and Cell Biology University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
89
|
Schimanski LA, Nguyen PV. Multidisciplinary approaches for investigating the mechanisms of hippocampus-dependent memory: a focus on inbred mouse strains. Neurosci Biobehav Rev 2004; 28:463-83. [PMID: 15465135 DOI: 10.1016/j.neubiorev.2004.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 04/19/2004] [Accepted: 04/23/2004] [Indexed: 11/26/2022]
Abstract
Inbred mouse strains differ in genetic makeup and display diverse learning and memory phenotypes. Mouse models of memory impairment can be identified by examining hippocampus-dependent memory in multiple strains. These mouse models may be used to establish the genetic, molecular, and cellular correlates of deficits in learning or memory. In this article, we review research that has characterized hippocampal learning and memory in inbred mouse strains. We focus on two well-established behavioral tests, contextual fear conditioning and the Morris water maze (MWM). Selected cellular and molecular correlates of good and poor memory performance in inbred strains are highlighted. These include hippocampal long-term potentiation, a type of synaptic plasticity that can influence hippocampal learning and memory. Further methods that might help to pinpoint the anatomical loci, and genetic and cellular/molecular factors that contribute to memory impairments in inbred mice, are also discussed. Characterization of inbred mouse strains, using multidisciplinary approaches that combine cellular, genetic, and behavioral techniques, can complement directed mutagenesis to help identify molecular mechanisms for normal and abnormal memory functions.
Collapse
Affiliation(s)
- L A Schimanski
- Department of Physiology, University of Alberta, School of Medicine, Edmonton, Alta., T6G 2H7, Canada
| | | |
Collapse
|
90
|
Liu HN, Kurotani T, Ren M, Yamada K, Yoshimura Y, Komatsu Y. Presynaptic Activity and Ca2+ Entry Are Required for the Maintenance of NMDA Receptor–Independent LTP at Visual Cortical Excitatory Synapses. J Neurophysiol 2004; 92:1077-87. [PMID: 15277600 DOI: 10.1152/jn.00602.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown that some neural activity is required for the maintenance of long-term potentiation (LTP) at visual cortical inhibitory synapses. We tested whether this was also the case in N-methyl-d-aspartate (NMDA) receptor–independent LTP of excitatory connections in layer 2/3 cells of developing rat visual cortex. This LTP occurred after 2-Hz stimulation was applied for 15 min and always persisted for several hours while test stimulation was continued at 0.1 Hz. When test stimulation was stopped for 1 h after LTP induction, only one-third of the LTP instances disappeared, but most did disappear under a pharmacological suppression of spontaneous firing, indicating that LTP maintenance requires either evoked or spontaneous activities. LTP was totally abolished by a temporary blockade of action potentials with lidocaine or the removal of extracellular Ca2+ after LTP induction, but it persisted under a voltage clamp of postsynaptic cells or after a temporary blockade of postsynaptic activity with the glutamate receptor antagonist kynurenate, suggesting that LTP maintenance requires presynaptic, but not postsynaptic, firing and Ca2+ entry. More than one-half of the LTP instances were abolished after a pharmacological blockade of P-type Ca2+ channels, whereas it persisted after either L-type or Ni2+-sensitive Ca2+ channel blockades. These results show that the maintenance of NMDA receptor–independent excitatory LTP requires presynaptic firing and Ca2+ channel activation as inhibitory LTP, although the necessary level of firing and Ca2+ entry seems lower for the former than the latter and the Ca2+ channel types involved are only partly the same.
Collapse
Affiliation(s)
- Hong Nian Liu
- Dept. of Visual Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
91
|
Colgin LL, Kubota D, Jia Y, Rex CS, Lynch G. Long-term potentiation is impaired in rat hippocampal slices that produce spontaneous sharp waves. J Physiol 2004; 558:953-61. [PMID: 15194734 PMCID: PMC1665012 DOI: 10.1113/jphysiol.2004.068080] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sharp waves (SPWs) occur in the hippocampal EEG during behaviours such as alert immobility and slow-wave sleep. Despite their widespread occurrence across brain regions and mammalian species, the functional importance of SPWs remains unknown. Experiments in the present study indicate that long-term potentiation (LTP) is significantly impaired in slices, prepared from the temporal aspect of rat hippocampus, that spontaneously generate SPW activity. This was probably not due to anatomical and/or biochemical abnormalities in temporal slices because stable LTP was uncovered in field CA1 when SPWs were eliminated by severing the projection from CA3. The same procedure did not alter LTP in slices lacking SPWs. Robust and stable LTP was obtained in the presence of SPWs in slices treated with an adenosine A1 receptor antagonist, a finding that links the present results to mechanisms related to the LTP reversal effect. In accord with this, single stimulation pulses delivered intermittently in a manner similar to the SPW pattern interfered with LTP to a similar degree as spontaneous SPWs. Taken together, these results suggest the possibility that SPWs in the hippocampus constitute a neural mechanism for forgetting.
Collapse
Affiliation(s)
- Laura Lee Colgin
- 101 Theory, No. 250, Department of Psychiatry and Human Behaviour, University of California, Irvine, CA 92612-1695, USA.
| | | | | | | | | |
Collapse
|
92
|
Klausnitzer J, Kulla A, Manahan-Vaughan D. Role of the group III metabotropic glutamate receptor in LTP, depotentiation and LTD in the dentate gyrus of freely moving rats. Neuropharmacology 2004; 46:160-70. [PMID: 15080077 DOI: 10.1016/j.neuropharm.2003.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We investigated whether group III metabotropic glutamate (mGlu) receptors are critically involved in the expression of long-term potentiation (LTP), depotentiation, or long-term depression (LTD) in the dentate gyrus of freely moving rats. Male Wistar rats (7 8 weeks) underwent implantation of stimulating and recording electrodes in the medial perforant path and dentate gyrus granule cell layer, respectively. A cannula was permanently implanted into the ipsilateral cerebral ventricle to enable drug administration. Intracerebral injection of the group III mGlu receptor agonist, L(+)-2-amino-4-phosphonobutanoic acid (AP4), significantly inhibited LTP at a concentration which unaffects basal synaptic transmission. Depotentiation. short-term depression (STD) and LTDwere unaffected by the agonist. The antagonist. (R.S)-r-cyclopropyl-4-phosphonophenylglycine (CPPG), inhibited agonist effects. but had no independent effects on basal synaptic transmission. CPPG did not affect the profile of LTP, depotentiation or STD elicited by low frequency stimulation (LFS) at 0.5 or 3 Hz. but significantly impaired LTD expression (at I Hz) and STD elicited at 5 Hz. These findings suggest that activation of group III mGlu receptors is critically required for LTD. but not LTP or depotentiation in the dentate gyrus and provide evidence for the involvement of separate mechanisms underlying LTD and depotentiation.
Collapse
Affiliation(s)
- J Klausnitzer
- Learning and Memory Research, International Graduate School for Neuroscience, Ruhr University Bochum, Bochum, Germany
| | | | | |
Collapse
|
93
|
Abstract
Hypotheses about the factors controlling the rate of brain aging are usually derived from 1) correlates of maximum life span across mammals or 2) investigations into the causes of age-related neuropathologies in humans. With regard to the former, the strong correlation between metabolic rate and longevity prompted a variety of free radical hypotheses of aging. There is also evidence that brain size affects life span independently of body metabolism rates. The second approach has led to a diverse array of pathogenic mechanisms and, importantly for the development of general hypotheses, the discovery of animal analogues. The present paper discusses the possibility that age-associated lysosomal dysfunction constitutes a generalized mammalian phenomenon that accounts for specific features of the aged human brain. Immunocytochemical studies using rats and dogs have identified lysosomal changes that begin early in adulthood and are most pronounced in brain areas known to be particularly vulnerable to age-related pathogenesis in humans. Experimentally induced lysosomal dysfunction in cultured brain slices from rats and mutant mice triggers a wide array of changes associated with the aged human brain, including meganeurites and intraneuronal tangles. Finally, there is evidence that at least some forms of proteolysis decrease with increasing brain size across the mammals. The above observations lead to the suggestion that the expansion of neuronal arborizations that occurred in conjunction with increases in brain size secondarily slowed both neuronal metabolism and protein turnover. These events could have served to reduce the rate at which lysosomes (and other organelles) fail.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California at Irvine, Irvine, California 92697-1695, USA.
| | | |
Collapse
|
94
|
Gall CM, Lynch G. Integrins, synaptic plasticity and epileptogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:12-33. [PMID: 15250583 DOI: 10.1007/978-1-4757-6376-8_2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A number of processes are thought to contribute to the development of epilepsy including enduring increases in excitatory synaptic transmission, changes in GABAergic inhibition, neuronal cell death and the development of aberrant innervation patterns in part arising from reactive axonal growth. Recent findings indicate that adhesion chemistries and, most particularly, activities of integrin class adhesion receptors play roles in each of these processes and thereby are likely to contribute significantly to the cell biology underlying epileptogenesis. As reviewed in this chapter, studies of long-term potentiation have shown that integrins are important for stabilizing activity-induced increases in synaptic strength and excitability. Other work has demonstrated that seizures, and in some instances subseizure neuronal activity, modulate the expression of integrins and their matrix ligands and the activities of proteases which regulate them both. These same adhesion proteins and proteases play critical roles in axonal growth and synaptogenesis including processes induced by seizure in adult brain. Together, these findings indicate that seizures activate integrin signaling and induce a turnover in adhesive contacts and that both processes contribute to lasting changes in circuit and synaptic function underlying epileptogenesis.
Collapse
Affiliation(s)
- Christine M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, USA
| | | |
Collapse
|
95
|
Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol 2003; 71:401-37. [PMID: 15013227 DOI: 10.1016/j.pneurobio.2003.12.003] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 12/02/2003] [Indexed: 11/17/2022]
Abstract
Protein kinases critically regulate synaptic plasticity in the mammalian hippocampus. Cyclic-AMP dependent protein kinase (PKA) is a serine-threonine kinase that has been strongly implicated in the expression of specific forms of long-term potentiation (LTP), long-term depression (LTD), and hippocampal long-term memory. We review the roles of PKA in activity-dependent forms of hippocampal synaptic plasticity by highlighting particular themes that have emerged in ongoing research. These include the participation of distinct isoforms of PKA in specific types of synaptic plasticity, modification of the PKA-dependence of LTP by multiple factors such as distinct patterns of imposed activity, environmental enrichment, and genetic manipulation of signalling molecules, and presynaptic versus postsynaptic mechanisms for PKA-dependent LTP. We also discuss many of the substrates that have been implicated as targets for PKA's actions in hippocampal synaptic plasticity, including CREB, protein phosphatases, and glutamatergic receptors. Future prospects for shedding light on the roles of PKA are also described from the perspective of specific aspects of synaptic physiology and brain function that are ripe for investigation using incisive genetic, cell biological, and electrophysiological approaches.
Collapse
Affiliation(s)
- P V Nguyen
- Departments of Physiology and Psychiatry, Centre for Neuroscience, University of Alberta School of Medicine, Edmonton, Alta., Canada T6G 2H7.
| | | |
Collapse
|
96
|
Omrani A, Fathollahi Y. Reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices. Synapse 2003; 50:83-94. [PMID: 12923811 DOI: 10.1002/syn.10250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes was studied in the CA1 region of rat hippocampal slices. The field excitatory postsynaptic potential (fEPSP) and population spikes (PS) were recorded from strata radiatum and pyramidale, respectively, following stimulation of Schaffer collaterals. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at test-pulse intensity failed to reverse the PTZ potentiation. However, the same stimulation at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minutes of PTZ application. Prior application of high-intensity TPS also decreased the amount of PTZ potentiation, whereas it had no long-lasting effect on baseline synaptic responses. High-intensity TPS induced reversal was blocked by adenosine A1 receptor antagonist and, furthermore, was reduced by protein phosphatase 1 inhibitor. The results suggest that mechanism of PTZ-induced LTP reversal involves activation of adenosine receptors and protein phosphatases.
Collapse
Affiliation(s)
- Azar Omrani
- Department of Physiology, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | | |
Collapse
|
97
|
Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 2003. [PMID: 14573548 DOI: 10.1523/jneurosci.23-29-09687.2003] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the function of sleep remains elusive, several lines of evidence suggest that sleep has an important role in learning and memory. In light of the available data and with the prevalence of sleep deprivation (SD), we sought to determine the effect of SD on neuronal functioning. We found that the exposure of rats to 72 hr of primarily rapid eye movement SD impaired their subsequent performance on a hippocampus-dependent spatial learning task but had no effect on an amygdala-dependent learning task. To determine the underlying cellular level mechanisms of this hippocampal deficit, we examined the impact of SD on several fundamental aspects of membrane excitability and synaptic physiology in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. We found that neuronal excitability was severely reduced in CA1 neurons but not in granule cells and that the production of long-term potentiation of synaptic strength was inhibited in both areas. Using multiple SD methods we further attempted to differentiate the effects of sleep deprivation from those associated with the nonspecific stress induced by the sleep deprivation methods. Together these data suggest that failure to acquire adequate sleep produces several molecular and cellular level alterations that profoundly inhibit hippocampal functioning.
Collapse
|
98
|
Abstract
The piriform cortex provides a major input to the entorhinal cortex. Mechanisms of long-term depression (LTD) of synaptic transmission in this pathway may affect olfactory and mnemonic processing. We have investigated stimulation parameters for the induction of homosynaptic LTD and depotentiation in this pathway using evoked synaptic field potential recordings in the awake rat. In this study, 15 min of 1-Hz stimulation induced a transient (< 5 min) depression of evoked responses but did not induce LTD or depotentiation. To determine whether inhibitory and/or facilitatory mechanisms contribute to LTD induction, repetitive delivery of pairs of stimulation pulses was also assessed. Repetitive paired-pulse stimulation with a 10-ms interval between pulses, which activates inhibitory mechanisms during the second response, did not reliably induce LTD. However, repetitive paired-pulse stimulation using a 30-ms interval, which evokes marked paired-pulse facilitation, resulted in synaptic depression that lasted > or = 1 day, and which was reversible by tetanization. The selective induction of LTD by stimulation that evokes paired-pulse facilitation suggests that strong synaptic activation is required for LTD induction. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (0.1 mg/kg) blocked the induction of LTD, indicating that NMDA receptor activation is required for LTD induction in this pathway. These results indicate that LTD in piriform cortex inputs to the entorhinal cortex in the awake rat is effectively induced by strong repetitive synaptic stimulation, and that this form of LTD is dependent on activation of NMDA receptors.
Collapse
Affiliation(s)
- Raby Bouras
- Department of Psychology, Concordia University, Montréal, Québec, Canada
| | | |
Collapse
|
99
|
Jouvenceau A, Billard JM, Haditsch U, Mansuy IM, Dutar P. Different phosphatase-dependent mechanisms mediate long-term depression and depotentiation of long-term potentiation in mouse hippocampal CA1 area. Eur J Neurosci 2003; 18:1279-85. [PMID: 12956726 DOI: 10.1046/j.1460-9568.2003.02831.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two types of synaptic depression have been described in the hippocampus, long-term depression and depotentiation of long-term potentiation known to recruit the serine/threonine protein phosphatases PP1, PP2A and PP2B (calcineurin). The contribution of each of these protein phosphatases is controversial. To examine the role of the Ca2+/calmodulin-dependent protein phosphatase calcineurin in long-term depression and depotentiation, we analysed the effect of genetically inhibiting calcineurin reversibly in the hippocampus, using the doxycycline-dependent rtTA system in transgenic mice. We show that reducing calcineurin activity has no effect on long-term depression but reversibly affects depotentiation. Consistently, the calcineurin inhibitor FK-506 reproduces the depotentiation impairment observed in the mutant mice but does not affect long-term depression in control animals. In contrast, the PP1/PP2A inhibitor okadaic acid fully blocks both long-term depression and depotentiation. These data demonstrate that the nature of signalling cascades induced by synaptic activity depends on the initial synaptic state. While depression of potentiated synaptic responses requires activation of PP1/PP2A and/or calcineurin, depression of basal synaptic responses depends only on PP1/PP2A activation.
Collapse
Affiliation(s)
- Anne Jouvenceau
- INSERM U549, Paris, France Institute of Cell Biology, Department of Biology, ETH Zürich, Switzerland
| | | | | | | | | |
Collapse
|
100
|
Izaki Y, Takita M, Akema T. Compatibility of bidirectional synaptic plasticity on hippocampo-prefrontal cortex pathway in rats. Neurosci Lett 2003; 345:69-71. [PMID: 12809991 DOI: 10.1016/s0304-3940(03)00492-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The hippocampo-prefrontal cortex pathway reportedly expresses long-term potentiation (LTP) and depression (LTD) in anesthetized rats. We examined whether there were any effects governing the induction of LTD after prior induction of LTP, or vice versa. Induction in sequence of LTP and LTD resulted in significantly stable changes of about 140 and 70% of a common control for 1 h each. The reversed sequence, LTD and LTP, showed a mirror image of about 65 and 135% of control, which were not different from the respective changes in the first sequence (P>0.3 for each). The correlation coefficient between changes was significantly positive in the first sequence and weakly negative in the reverse. These results indicate that this pathway can express compatibility of bidirectional synaptic plasticity while historical changes remain covert.
Collapse
Affiliation(s)
- Yoshinori Izaki
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | |
Collapse
|